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Abstract

This paper is devoted to the study of the two-dimensional Dirac opera-
tor with an arbitrary combination of an electrostatic and a Lorentz scalar
d-interaction of constant strengths supported on a closed curve. For any com-
bination of the coupling constants a rigorous description of the self-adjoint
realization of the operators is given and the spectral properties are described.
For a non-zero mass and a critical combination of coupling constants the op-
erator appears to have an additional point in the essential spectrum, which is



related to a loss of regularity in the operator domain, and the position of this
point is expressed in terms of the coupling constants.
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1 Introduction

1.1 Motivations and state of the art

Initially introduced to model the effects of special relativity on the behavior of quan-
tum particles of spin % (such as electrons), the Dirac operator also comes into play
as an effective operator when studying low-energy electrons in a single layered ma-
terial like graphene. In order to model the interaction of the particles with external
forces, the Dirac operator is coupled to a potential and the understanding of the
spectral features of the resulting Hamiltonian translates into dynamical properties
of the quantum system.

In the last few years a class of singular potentials has been extensively studied
in this relativistic setting. These potentials, which are called d-interactions, are
supported on sets of Lebesgue measure zero and used as idealized replacements for

regular potentials localized in thin neighborhoods of the interaction supports in the



ambient Euclidean space. In nonrelativistic quantum mechanics these interactions
were successfully studied in the case of Schrodinger operators with point interactions
in [1] or with d-interactions supported on hypersurfaces in R?, e.g., in [10, 13, 21].
In the relativistic setting also the one dimensional case, i.e. Dirac operators with ¢-
potentials supported on points in R, were investigated first, see [1,16,24,31]. Then,
the case of potentials supported on surfaces in R? was discussed in [3-7,9,20,25,29,
30], a recent contribution in the two-dimensional case is [32]. In the works mentioned
above, it was observed that there are critical interaction strengths for which the self-
adjoint realization of the operator shows a loss of regularity in the operator domain
and, as a result, may have different spectral properties as in the non-critical case.
This critical case is still not fully understood in the three dimensional case.

In this paper we want to study Dirac operators in R? with electrostatic and
Lorentz scalar d-potentials supported on loops. We provide a systematic approach
combining the general theory of boundary triples and pseudodifferential calculus
for matrix-valued singular integral operators supported on loops, which is inspired
by the analysis in [9] and the paper [15], where similar questions for sign-changing
Laplacians are studied. We show the self-adjointness of the Dirac operators with
these singular potentials and discuss spectral properties for all possible combinations
of interaction strengths. Unlike the previous work in R3, we are able to deal with
more general d-interactions and there is no restriction on the geometry of the loops.
This answers fully [29, Open Problem 11] in space dimension two.

In the following we describe the problem setting in more details. To set the stage,
let ¥ be a connected and closed C'*°-smooth curve which splits R? into a bounded
domain 2, and an unbounded domain Q_, and let v = (v, 1) be the unit normal
vector field at ¥ pointing outwards of {0,. For a C2-valued function f defined on
R? we will often use the notation fi := f | Q4. Then, the distribution dx. f with a
function f having a discontinuity along . is defined in the symmetric form by

st = [ 0L +TEL) s

where T2 f. denotes the Dirichlet trace of fi at ¥ and ds means the integration
with respect to the arc-length. We study Dirac operators A, , in L?(R?*; C?) which
correspond to the formal differential expression

D7777' = —1(0101 + 0262) + mos + (7700 + 7'03)52,

where oy is the identity matrix in C?*2, oy, 09,053 are the C?**2-valued Pauli spin
matrices defined in (1.4), and m,n,7 € R. Following the standard language [38]
one may interpret 17 and 7 as the strengths of the electrostatic and Lorentz scalar
interactions on X, respectively, while the parameter m is usually interpreted as the
mass. Integration by parts shows that if the distribution D, . f is generated by an
L?-function, then f has to fulfil the transmission condition

(o + oavn) (T2f, —TPf ) = %(nag 7o) (T0f 4+ TPF), (1.1)



Our approach to study the self-adjointness and the spectral properties of A, ;
is to define this operator as an extension of a certain symmetric operator and to
use a suitable boundary triple to investigate the mentioned properties. Boundary
triples are an abstract approach in the extension and spectral theory of symmetric
and self-adjoint operators in Hilbert spaces [8,14,17,18]. In the one and three
dimensional setting they were applied successfully to study similar operators as A, ,
in [6,9,16,31]. In the present paper we follow ideas from [9] to construct a boundary
triple which allows us to show the self-adjointness and study the spectral properties
of A, ; for all possible combinations of interaction strengths n and .

The second main ingredient in the study of A, . are explicit properties of integral
operators associated to the Green function corresponding to the unperturbed Dirac
operator. Similar objects played a key role in the investigation of Dirac operators
with singular potentials supported on surfaces in R? in [3-7,9,30]. Since to the best
of our knowledge these integral operators are not studied in the two dimensional
case in detail, we provide the necessary results. In this analysis the properties of
several well-known periodic pseudodifferential operators, such as the Cauchy and
Hilbert transforms on 2, play a crucial role and linking them to the Dirac operator
is an important finding in this paper.

1.2 Main results

Let us pass to the formulation and discussion of the main results of this paper. To
define the operator A, , rigorously, we denote for an open set  C R?

H(o,Q) ={f € L*(%C?) : (0101 + 0205) f € L*(;C*) },

where the derivatives are understood in the distributional sense. One can show that
functions fi in H(o,$:) admit Dirichlet traces TP fy in H~/2(3; C?). With these
notations in hand we define now, following (1.1), for n,7 € R the operator A4, , in
L*(R* C?) by

Amf = ( — 1(0'161 + 0'282) + m0'3)f+ ©® ( - i(0181 + 0'282) + mag)f_,

domA4, , = {f =fr@&f € H(0,Q:)® H(0,0.):

—1 (0'11/1 + 02V2)<T_€f+ — (J'E)f_) = 1 (770’0 + TO'g)(Tff.;,_ + Tf)f_) }

2
(1.2)
In the analysis of A, . it turns out that the special combination n* — 72 = 4 of
interaction strengths is critical in the sense that the A, ; has different properties
than in the so called non-critical case n* — 72 # 4. This phenomenon was also
observed in the three dimensional case in [7], see also [3,6,9,30].
In the non-critical case n? — 72 # 4 the basic properties of A, , are the following:

Theorem 1.1. Let n,7 € R be such that n* — 7% # 4. Then A, , is self-adjoint in
L*(R?; C?) with dom A, , C H'(R*\ ;C?), the essential spectrum of A, , is

SP€Cegs(Ap ) = (— 00, —]m” U [|m],oo),



and the discrete spectrum of A, . in (—|m|,|m|) is finite.

The proof of Theorem 1.1 is given in Section 4.2. There, also some additional
properties of A, . like a Krein-type resolvent formula, an abstract version of the
Birman-Schwinger principle, and some symmetry relations in the point spectrum of
A, ; are shown. Similar results are known in the three dimensional case, see [7].

Our main results in the critical case n? — 72 = 4 are stated in the following
theorem. In particular, this shows that there is a loss of regularity in the domain
of A, . and that there is an additional point in the essential spectrum. Hence, A, ;
has indeed different properties in the critical as in the non-critical case.

Theorem 1.2. Let n,7 € R be such that n* — 7> = 4. Then A, , is self-adjoint in
L*(R% C?) with dom A, , ¢ H*(R?\X;C?) for any s > 0, and the restriction of A, ,
onto the set dom A, . N H'(R*\ X; C?) is essentially self-adjoint in L*(R?; C?). The
essential spectrum of A, ; is

specelitne) = (=0, ~lml] U {~Zm b U [l o0).

Theorem 1.2 is the main result of this paper and shown in Section 4.3. There, also
a Krein type resolvent formula, a Birman Schwinger principle, and several symmetry
relations in the point spectrum of A, ; are shown. We would like to point out that
the corresponding properties in dimension three are only known in the case of purely
electrostatic interactions, i.e. when n = +2 and 7 = 0, see [9,30]. In particular, the
fact that the new point —%m of the essential spectrum of A, ; can be any value in
(—|m|, |m|) was not observed previously. We remark that several papers addressed
the question of presence of a non-empty essential spectrum for Dirac operators in
bounded domains with various boundary conditions, see e.g. [12,23,36]. Our results
can also be regarded as a contribution in this direction.

By a minor modification of the argument, one can also deal with an interaction
supported on several loops. Let N > 1 and consider a family of non-intersecting
C>-smooth loops X1, ..., Xy with normals v;, j € {1,..., N}. Weset ¥ := Ujvzl X,
and for f € H(o,R?\ ¥) we denote its Dirichlet traces on the two sides of %; as
‘J'i ;J» where — corresponds to the side to which v; is directed. In addition, consider
a family of pairs of real parameters

P= <(nj’7-j>)j€{1,...,N}’ i, 7 € R,
and define the associated operator Ay, by
Agjgpf = ( — 1(0181 + 0'282) + mO'g)f in R2 \ E,

dom Ay g := {f € H(o,R*\ 2) :
. 1
—i(ovn + 0'21/]'72)(7_?,]]0 — ‘J'_DJ ) = 5 (nog + TUg)(TEJf + ‘J'ij)
for each j € {1,...,N}}.

(1.3)
Then the preceding results can be extended as follows:



Theorem 1.3. Denote
Jerit ' = {j e{l,...,N}: 77]2 —7'j2 :4}.
Then the following is true:
(i) If Iy = 0, then Asyp is self-adjoint with dom Ax» C H'(R? \ Z;C?), the

essential spectrum of As p is
Specess(AEf«?) = ( — 00, _|m|] U [|m|> OO),
and the discrete spectrum of As.p in (—|m|,|m|) is finite.

(ii) If Jeie # 0, then As g is self-adjoint with dom As » ¢ H*(R?\ ;C?) for any
s > 0, and the restriction of Asp onto the set dom As» N H'(R? \ 2;C?) is
essentially self-adjoint in L*(R?; C?). The essential spectrum of Asp is

Oess(Asp) = ((— 00, —|ml] U { — ;—]m} U [|m], +o0).

jejcrit J

Necessary modifications for the proof of Theorem 1.3 are given in Subsection 4.4.

1.3 Structure of the paper

Let us shortly describe the structure of the paper. First, in Section 2 we recall
some well-known facts on periodic pseudodifferential operators on curves, boundary
triples, and Schur complements of block operator matrices. With that we study
then in Section 3 integral operators, which are associated to the Green function
corresponding to the free Dirac operator in R?, and construct a boundary triple
which is suitable to study the properties of A, ;. Eventually, Section 4 is devoted to
the proofs of the main results of this paper, Theorems 1.1-1.3.

1.4 Notations

In this paper we denote the identity matrix in C**? by o and the C?*2-Pauli spin

matrices by
01 0 —i 1 0
oy = (1 0) , O9:= (i 0) , O3:= (O _1) . (1.4)

It is not difficult to see that the Pauli matrices fulfil
O-jo-k_'_o-ko-j :25jk007 j,k € {1,2,3} (15)

For x = (21, 15) € C? we write 0-x = 0,21 +05%5 and in this sense 0-V = 0,0, +020,.

Next, ¥ C R? is always a C*°-loop of length ¢ > 0, which splits R? into a bounded
domain €2, and an unbounded domain ) with common boundary ¥. By v we
denote the unit normal vector field at > which points outwards of €2, and t denotes



the unit tangent vector at 3. If v : [0,¢] — R? is an arc length parametrization of
Y. with positive orientation, then we have t = 4 and v = (v}, —v;). We sometimes
identify the vector t € R? with the complex number T = t; + its.

If 2 is a measurable set, we write, as usual, L?(f2) for the classical L?-spaces and
L*(Q;C?) := L*(Q)®C2 If Q = X, then L?(X) is based on the inner product, where
the integrals are taken with respect to the arc-length. By H*(Q2) we denote Sobolev
spaces of order s € R on €2, and the Sobolev spaces on the curve X are reviewed in
Section 2.1.

Next, we set

T :=R/Z.

Then C*(T) is the space of all C*°(R)-functions which are 1-periodic. For a € R
we denote the set of periodic pseudodifferential operators on T by W* and the set
of periodic pseudodifferential operators on ¥ by U$, see Definitions 2.1 and 2.3.

For a linear operator A in a Hilbert space H we write dom A, ran A, and ker A for
its domain, range, and kernel, respectively. The identity operator is often denoted by
1. If A is self-adjoint, then we denote by res(A),spec(A),spec,(A), and spec.g(A)
the resolvent set, spectrum, point, and essential spectrum, respectively. If A is self-
adjoint and bounded from below, then N(A, z) is the number of eigenvalues smaller
than z taking multiplicities into account. For z > infspec.(A) this is understood
as N(A, z) = co.

Finally, K; stands for the modified Bessel function of the second kind and order j.

€ess
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2 Preliminaries

In this section we provide some preliminary material from functional analysis and
operator theory. First, in Section 2.1 we recall the definition and some properties
of periodic pseudodifferential operators on smooth curves and some special integral
operators of this form. Afterwards, in Section 2.2 a theorem on the Schur com-
plement of block operator matrices is recalled and finally, in Section 2.3 boundary
triples and their y-fields and Weyl functions are briefly discussed.



2.1 Sobolev spaces and periodic pseudodifferential opera-
tors on closed curves

In this section some properties of periodic pseudodifferential operators on closed
curves are discussed. Special realizations of such operators will play an important
role in the analysis of Dirac operators with singular interactions later. The presen-
tation in this section follows closely the one in [35, Chapters 5 and 7].

Throughout this section ¥ C R? is always a C*°-smooth loop of length ¢ and
v :[0,¢] — X is an arc length parametrization of this curve, i.e. one has |7/(s)| =1
for all s € [0,/¢]. First, we will introduce Sobolev spaces on Y. For that we recall
some constructions for Sobolev spaces of periodic functions on the unit interval.

Denote
T :=R/Z.

For a distribution f € D'(T) := C°°(T)’ (in [35] this space is denoted by D} (R)) we
write, as usual,

Fn) = (fre_nyommmy,  eal(t) = ™, n ez,

for its Fourier coefficients. Recall that a distribution f € D’(T) can be reconstructed
from its Fourier coefficients by

F=3 fnen, (2.1)

nel

where the series converges in D'(T), see [35, Theorem 5.2.1]. For two distributions
f,g € D'(T) we denote by f % g their convolution which is defined (via its Fourier
coefficients) by

frg(n)=f(n)gn), neN.
In particular, for f, g € L'(T) one simply has

frg= / £(s)g(- — 5)ds.

For convenience we set

1 =
ni=-< n=0 n € Z.
Inl, n#0,
Then for s € R, the Sobolev space H*(T) consists of the distributions f € D'(T)

with JU
qu(T) = ZQQS‘f(n)‘ < 00.

neL

/]

The set H*(T) endowed with the above norm becomes a Hilbert space. If s < ¢,
then H'(T) is compactly embedded into H*(T).

Having the definition of Sobolev spaces on T, we can translate this to Sobolev
spaces of order s € R on X. For that we define on D'(X) := C*°(X)’ the linear map

U:D'(Z) = D(T), (Uf)p)=f("e(tTy7(), ¢€C=(T). (22)



It is not difficult to verify that

Uf(t) = f(y(et), feL'(X), teT; (2.3)

this property will often be used. For s € R we define the space
Y)={feD():Uf € H(T)},

which, endowed with the norm

/1

is a Hilbert space. By construction the induced map

mss) = |Uf]

Hs(T) fE HS(E)7

U:HYX) - HYT), scR, (2.4)

is unitary. For f € H°(X) it is useful to observe that

2 _
HfH?{O(z) = HUfH%{O(’]I‘) = Z ‘(Uf, en)LQ(T)| = HUfH%mr) =/ 1”f“%2(z)

ne’l

Note also that the definition of H*(X) implies that C*°(X) is dense in H*(X) for all
s € R.

Next, we recall the definition of periodic pseudodifferential operators on T and
translate this concept to periodic pseudodifferential operators on Y. For that we
define for a function F' : Z — C

(WF)(n) = (W, F)(n) .= F(n+1)—F(n), ne€Z. (2.5)

The subscript n is used, if the function F depends on more than one variable to
clarify on which variable w is acting.

Definition 2.1. A linear operator H acting on C(T) is called a periodic pseu-
dodifferential operator of order o € R, if there exists a function h : T x Z — C with
h(-,n) € C°(T) for each n € Z and

= h(t,n)@(n) en(t) for allu € C*(T), (2.6)
and for all k,1 € Ny there exist constants ci; > 0 such that

< Cky n®! for alln € Z.

‘%whtn

The class of all periodic pseudodifferential operators of order o is denoted by W*.
Furthermore, we set
U= () v

a€eR



We note that one has the obvious inclusions ¥® C U# for o < 5. Moreover, in
the spirit of (2.1) the periodic pseudodifferential operator H is determined by its
Fourier coefficients

Hu(m) =Y @(n){(A(-,n)en, €m)vm),nem).

neL

In particular, if & is independent of ¢, then we simply have ?Ia(n) = h(n)u(n). The
following properties of periodic pseudodifferential operators can be found in [35,
Theorem 7.3.1 and Theorem 7.8.1].

Proposition 2.2. (i) Let H € V®. Then for any s € R the operator H uniquely
extends by continuity to a bounded operator H*(T) — H*~*(T); this extension
will be denoted by the same symbol H.

(i) Let H € ¥ and G € V5. Then H + G € ¥ HG € U*P, and
HG — GH € woth-1,

Having the definition of periodic pseudodifferential operators on T and the bi-
jective map U in (2.2) it is now straightforward to define periodic pseudodifferential
operators on the loop X.

Definition 2.3. A linear map H : C*(X) — D'(X) is called a periodic pseudodif-
ferential operator of order a € R on X, if there exists a periodic pseudodifferential
operator Hy of order a on T such that

H=U"HyU.
We denote by V§, the linear space of all periodic pseudodifferential operators of order

a e R on X and set
U™ =) U8,
aceR
In view of Proposition 2.2 and the fact that U in (2.4) is unitary it is clear that
each H € U¢ induces a unique bounded operator H : H*(X) — H* *(%).
In what follows we discuss several special periodic pseudodifferential operators

and their mapping properties which will play an important role in the analysis in the
main part of this paper. First, let ¢y > 0 be a constant and consider the operator

Lou(t) =Y (+ ) a(n) en(t), ueC=(T), acR, (2.7)

nez

on C*(T). Note that the Fourier coefficients of L*u are f‘@(n) = (2 +|n|)*?u(n)
for n € Z. One can show that L® € U*/? and hence L induces an isomorphism
from H*(T) to H*~®/%(T) for any s € R. The operator L = L' will be of particular
importance in the following.

Using the operator U from (2.2) we introduce

A =U"LU e U aeR, (2.8)

10



and conclude that A® : H*(X) — H*"*/2(X) is an isomorphism for any a,s € R.

Moreover, the above definition of A implies that A*A? = A5 for all o, B € R. We

note that the realization of A = A! for s = % is viewed as an unbounded self-adjoint

operator in L?(X) satisfying A > ¢o. In particular, by varying ¢y we get that A is a

uniformly positive operator and that its lower bound can be arbitrarily large.
With the aid of A we can prove now the following lemma.

Lemma 2.4. Let H € U, consider the associated linear operator in L*(X) defined
by

Hou= Hu, domH, =C*(%),
and assume that Hy, is symmetric. Then the adjoint HX is given by

Hof=Hf, domH: ={fel*X): Hf € L*(%)}.

Proof. The result is trivial for o < 0 due to the boundedness of H..; cf. Proposi-
tion 2.2. Hence, we may assume that o > 0. Recall that f € dom HZ if and only if
the mapping

OOO(Z) g (Hoou, f)L2(Z) (29)

can be extended to a bounded functional on L*(Y).
Let f € L*(X) and f,, € C°°(¥) such that f, — f in L*(X). For u € C*(X) and
the map U from (2.2)-(2.4) one has

(Hooua f>L2(Z) = lim (Hoou7 fn)LQ(Z) = nh_)rgo(u, an)LQ(E) = nh_)rgo g(UU, Uan)LQ(T)

n—o0

= lim ((L**Uu, L**UH fp) 121y = ((L**Uu, L**UH f) 12(1),

n—0o0

where we have used in the last step that L™2UH = L 2*UHU'U gives rise to
a bounded operator from L?(X) — L*(T) due to L™2* € U= UHU ' € ¥*, and
Proposition 2.2. Therefore, if f € L*(2) is such that Hf € L*(X), then

g(LZOlUu, LiQaUHf)[g(T) = g(UU, UHf)LQ('JI‘) = (u, Hf)LZ(E)
and the functional in (2.9) is bounded,
[(Heou, f)L2(E)‘ = |(u, Hf)L2(2)| < ”UHLQ(E)HHf”LQ(E)a

and hence, f € dom H and HX f = Hf.
On the other hand, for f € dom H and every u € C*°(X) the functional in (2.9)
is bounded. For the special choice

U = Z ITH\f(n)U_len e C™(X), keN,

11



one has @(n) = U/H\f(n) for |n| <k and @(n) =0 for |n| > k, and hence
(Hootik, [)r2(sy = L(L** Uy, LU H f) 127
= 03" [%Uuy(n) L-%UH f(n)

nez

=03 (& + |nl)* Tur(n)(c3 + [n])2UH f(n)
nez

=N |THf)|.
In|<k

Sending k — oo we see that a necessary condition for the functional in (2.9) to be
bounded on L*(X) is given by

ST|THF(0))? < o0

nel

ie. UHf € L*(T), and hence Hf € L*(X). We have shown that f € dom HZ if
and only if Hf € L?(X), which finishes the proof of this lemma. O

Next, we discuss that several types of integral operators on T are in fact periodic
pseudodifferential operators, which allows us to deduce their mapping properties
from the general theory. Note that via the isomorphism U from (2.2) the results
can be translated to integral operators on Y. To formulate the following first result,
recall the definition of the map w from (2.5); the proof of this proposition can be
found in [35, Theorem 7.6.1].

Proposition 2.5. Let a € R and k € D'(T) such that for any j € Ny there exists
¢; > 0 with |w/&(n)| < ¢n®~ for alln € Z. Let h € C*°(T?) and let the operator
H be defined on C*(T) by

(Hu)(t) ==k (h(t,")u), we C™(T). (2.10)
Then H € ¥*.

We remark that for k € L*(T) the operator H in (2.10) is an integral operator
acting as

(Hu)(t) := /T/{(t — s)h(t,s)u(s)ds, we C™(T).

As a corollary we obtain:

Corollary 2.6. Let h € C°°(T?). Then the integral operator acting as

Hu(t) = /T h(t, s)u(s)ds, u e C(T),

belongs to W~°.
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In the following proposition we discuss a class of integral operators that appear
quite frequently in our applications.

Proposition 2.7. Let m € Ny, let
a:T*—=C and p:T—C

be C®-functions, assume that p is injective with p'(t) # 0 for allt € T, set K, (2) =
2™ log|z| for z € C\ {0}, and define the integral operator

H,u(t) = / Em (p(t) — p(s)) alt, s)u(s) ds, ue C=(T).
T
Then H,, € U=""1 Furthermore, in the special case a =1 and m = 0 one has

1+2LH)L eV, (2.11)

where the operator L is defined by (2.7).

Proof. First, we treat the case m = 0. For that we introduce the auxiliary function
Xo : T — R by xo(t) :=log ‘ sin(wt)’. Then the Fourier coefficients of x, are

—log2, n=0,
2|n|
see [35, Example 5.6.1]. Next, one has
log (|p(t) — p(s)|) = log(|sin(w(t — 5))|) + ao(t, s) (2.13)

with

sin(mw(t — s)) T

ao(t, s) = log (

MD t#s and ao(t,t):10g<‘p/(t)|).

Using Taylor series expansions one sees that there exist smooth functions f; and f,
such that

1 1

sin(w(t — s)) - Tt —s) fi(t,s) and p(t) — p(s) = (t — s) fa(t, s),

and since p is injective, we have % # 0. From this one concludes that

sin(7(t—

ag : T? — C is a C*-function. Now we decompose Hy = Cy + Dy, where
Can(t) = [ xolt = 9 at.s) u(s)ds = (xo = (alt, Ju) 0.
T
Dou(t) = /ao(t,s)a(t, s)u(s) ds.
T

13



It follows from (2.12) and Proposition 2.5 that Cy € ! and by Corollary 2.6 we
have Dy € ¥=°. Hence Hy € ¥~! by Proposition 2.2.

To show (2.11) consider LHyL = LCyL + LDyL and note that the second term
in the sum belongs to ¥~>°. Furthermore, for a = 1 the Fourier coefficients of CyLu
are given by - .

CoLu(n) = Xo(n)Lu(n) = Xo(n)(cj + |n])*i(n),

and hence one finds with the aid of (2.12)

LCoLu(n) = (c + [n])"/*%5(n) (¢} + [n])/*i(n) = b(n)i(n)

with
—ctlog2, n=0,
b(n) = (cg+n)xo(n) =4 1 &
9 0
2 2|n|7 n % ?

which shows that the action of the operator K := 1 + 2LC\L is determined by

- 1—2clog2, n=0,
Ku(n) = k(n)u(n) with k(n) = 2
() = K(w)a(n) m=1_d .,
n
Therefore, one can show with the help of Proposition 2.5 that K € U~
To study the case m > 1 we consider

p(t) — p(s) = (6_2”1(75_5) —1ai(t,s)
with the C*°-function

p'(t)
—27i

p(t) — p(s)
a(t,s) = o amlis) 1

t#s, and ay(t,t)=

and note, as for ag, that a; € C°°(T?). Then using the decomposition (2.13) we
write

(p(t) — p(s))™ log(|p(t) — p(s)|)
= (&7 — 1) log(|sin(n(t — s))|)ai (L, )™
X (6727ri(t75) _ 1)ma0(t, s)ay (t, s)™.

This shows that H,, = C,, + D,,, where C,, and D,, are integral operators
Cru(t) = / (e_QWi(t_s) —1)" log(| sin(w(t — s)))ar(t, s)™ a(t, s)u(s) ds,
T
Du(t) = / (6_2”1“_5) —1)"ag(t, s)as(t, s)™a(t, s) u(s) ds.
T

The integral kernel of D,,, is smooth, which implies by Corollary 2.6 that D,,, € U=,
It is remains to show that C,, € U=+ For that consider the function

Xm T —=C, xm(t) = (e —1)" log(|sin(rt)|).

14



Using the map w from (2.5) and xo one obtains that Y, (n) = (w™Xo)(n). Now can
show with the help of (2.12) that

()| = ™ I550)] < eI

By Proposition 2.5 this yields C,, € ¥~ (™) which completes the proof of this
proposition. ]
Next, recall that the Hilbert transform Ty on T is defined by
Tou(t) :=1 p.v. / cot (7(t — s))u(s)ds = (k*u)(t), r=ip.v.cot(m), (2.14)
T

where p.v. means the principal value of the integral. By [35, Section 5.7] the distri-
bution k satisfies

-1, n<Q0,
K(n) =sgnn =40, n=0,
1, n > 0.
It follows that i?\u(n) = (1 —=60n)u(n), and
ToeW, TF-1e€v ™ (2.15)

In the following assume that a € C*°(T?). Then the operator

(Tyu)(t) =1 p.v. / cot (m(t — s)) a(s, t) u(s)ds

T

satisfies for ag(t) := a(t,t) the relation
T1 — CL()T[) S \I/_OO, (216)

see Section 7.6.2 in [35]. Since the commutator T5 := ayTy — Thag, which acts as

Tou(t) =1 p.v. / cot (m(t — s)) (a(t,t) — a(s,s)) u(s)ds,

T

has a C* integral kernel, the principal value can be dropped, as the integral is
convergent, and Corollary 2.6 implies that T, € U~°°. Hence, we also have

T — Toag € U™, (2.17)

Corollary 2.8. Let p : T — C be C*°-smooth and injective with p'(t) # 0 for all
t € T. Then the operator C' given by

= — p.v —u(s) S, u *
Cult) =L p. ./Tp@)_p(s)d, € (),

satisfies
C - - To ey and C - To - e v, (218)
p p

15



Proof. We write

w0 p(e) ot (T elts) withalts) =2 TGy
and a(t,t) = 1/p/'(t). Then a € C=(T?) and ao(t) = a(t,t) = 1/p'(t). Thus (2.18)
follows from (2.16) and (2.17). O

Finally we introduce the Cauchy transform Csx on Y. For that we identify R?
with C and use the notation

R? S x = (11,19) ~a) +izy =: £ €C,
RZsy= (yl,yg)T ~y +iy, =: C € C.
Then

Csu(§) = ;p V. /25 <C)<dC, ue C™(X), ey, (2.19)

where the complex line integral is understood as its principal value. With an arc
length parametrization v of ¥ and x = v(t),y = ~(s) it follows that Cy, acts as

B C ORI
Csu(v(t)) p.v. , :
m o (m@) +i72(t) = (1a(s) +72(s))

Recall that for the tangent vector field t at ¥ and y = v(s) € ¥ we use the notation
T(y) := t1(y) + it2(y) = 71 (s) +iv5(s). We shall also view y — T'(y) as a function
on ¥ or s — T(v(s)) as a function on [0,¢]. The same holds for the function
T(y) := ti1(y) — ita(y) = 7, (s) — iv4(s), and we will also denote the corresponding
multiplication operators by 7 and T. With this we see for v € C*®(X) and = =
~(t) € X that

A E)O4(E) — p(e)ulas)
R A COF ) B o= 220,

_ iy u(y) .
T aP /E (v1 +ixg) — (y1 + z’yg)d )

In our considerations also the formal dual C% of Cyx in L*(X), which acts as

Clu(y(t)) = l'p'v‘ /é (%@ - Wé(t))u(“Y(S)? ds (2.21)
0 o (M) —12(t) = (1(s) = i7a(s))
for u € C*(X) and z = (t) € X will play an important role. Note that Cf, is the
operator which satisfies (Csu, v)r2s) = (u, C5v) 2y for all u,v € C°°(X). Similarly
as in (2.20) we have

i[O O — O s)
e A ToET O ETo e 2

_ iy u(y) .
T P /z: (961 - i$2) - (yl - iy2)d (y)

In the following proposition we summarize the basic properties of Cyx, and C%
which are needed for our further considerations. They basically follow directly
from (2.20), (2.22), Corollary 2.8, and (2.15).
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Proposition 2.9. Let Cy and C% be defined by (2.19) and (2.21), let U be given
by (2.2), and let the Hilbert transform Ty be defined by (2.14). Then the following
18 true:

(i) Cs —U'ToU € U™, In particular, Cx € WY and for all s € R the operator
Cy, gives rise to a bounded operator in H*(X).

(i) CL — U'T,U € U™, In particular, Cy € UY and for all s € R the operator
C%, gives rise to a bounded operator in H*(X).

Furthermore, one has C{Cxy — 1 € U™ and CxCy, — 1 € U™,

Proof. Let us prove (i). Note first that the multiplication operators 7" and T that
multiply with the functions s — T'(v(s)) = (s) + i75(s) and s — T(y(s)) =
71 (s) — iv4(s) belong to UL, see [35, Section 7.2]. Hence (i) is equivalent to

CsT — U 'ToUT = CsT — U Ty T(y(£-)U € U™
which in turn is equivalent, by definition, to
UCsTU ' — TyT(y(¢)) € U=,

For v € C*(T) and t € T, we compute (UCsTU'v)(t). Remark that for z =
(z1,79)" € ¥ and w(z) := (U~')(z), (2.3) and (2.20) gives

_ i w(v(s)) 5
(CsTw)(x) = —p. /0 (01 +i22) — (0 (s)+mz(s))d

i e ’
= p- '/0 (x1 +iz2) — (1(s) + i72(s)) o

Hence, a change of variable yields

(UCsTU v)(t) 26% p.v./rﬁds

with ,o(t) Lt) +iv,(¢t). Remark that for all ¢ € T we have p/(t) = €T (y(¢t)) # 0
and p, (71T (y(ft)). Corollary 2.8 gives

CUUCSTU Y — 07 Ty T (4) € U=
which completes the proof of (i). Item (ii) is proved in a similar fashion and the

last statement is a consequence of (i), (i), and (2.15). This can be seen by the
equivalences

T2 -1 €U X = UCLU 'UCU ! —1 € U™ = CCx — 1 € U™,

and a similar argument shows CxC§, — 1 € >, This completes the proof. n
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2.2 Schur complement of block operators
Let Wi, j,k € {1,2}, be closable densely defined operators in a Hilbert space J{.
Define a linear operator W in H & H by

W= (W“ Wm) , dom W = (dom Wy, N dom Wa;) @ (dom Wiy N dom Was).
W21 W22

Assume that dom Wy, C dom Wy, and that Wi is invertible. Then one can define
the Schur complement $(1V) of W as an operator in 3 by

S(W) = W22 — W21W1_11W12, (223)

and one has the factorization

_ 1 0\ (Wiy 0 1 W'Wi,
W= (WQIW;I1 ]1) ( 0 S(W)) (o 1) (224)

We will use the following facts, which follow from Theorem 2.2.14 and Theorem 2.4.6
in the monograph [39].

Proposition 2.10. Assume that 0 € res(Wiy), that dom Wy, C dom Wy and that
W,'Why is bounded on dom Wis. Then W is closable/closed if and only if its Schur
complement 8(W) is closable/closed, with

W 1 ) 0 Wn 0 1 m
W Wi 1 0 8(W) 0 1 ’

dom W = {(xba:g) EHXxH:a + W' Wipas € dom Wiy, 25 € dom §( )} .

and

Moreover, if W is self-adjoint, then 0 € spec (W) if and only if 0 € spec, (S(W)).

2.3 Boundary triples and their Weyl functions

We recall some basic facts about boundary triples following the first chapter of
the paper [14], in which the proofs for all statements can be found. We also refer
the reader to [17,18] and the monographs [8,19] for more details and applications.
Throughout this abstract section J is always a separable Hilbert space.

Definition 2.11. Let S be a densely defined closed symmetric operator in H. A
boundary triple for S* is a triple {G,To,T'1} consisting of a Hilbert space G and two
linear maps 'y, I’y : dom S* — G satisfying the following two conditions:

(i) For all f,g € dom S*

(S*fa g)i}f - <f7 S*g)i}f = (Flfa F09)9 - (FOfa F1g)9
holds.

18



(ii) The map dom S* > f s (Tof,T1f)" € G x G is surjective.

A boundary triple for S* exists if and only if S admits self-adjoint extensions
in H. From now on we assume that this is satisfied and pick a boundary triple
{G,To,T'1}. This induces a number of additional objects. First, the operator

BO =5 [ kerFo
is self-adjoint, and for any z € res(By) one has the direct sum decomposition
dom S* = dom By + ker(S* — z) = ker I'g + ker(S* — 2), (2.25)

showing that [’y [ ker(S* — z) is bijective. This allows to define the ~-field G and
the Weyl function M associated to {G, g, I'1} by

res(By) 3 z+— G, := (I'g | ker(S* — z))_l N,
and
res(By) > z— M, :=T11G,:§— 6.

It is not difficult to show that the operators G, and M,, z € res(By), are bounded,
that the adjoints of these operators are given by

GZ = F1<BO — 3)71 and MZ* = Mg,

and that z — G, and z — M, are holomorphic in z € res(B).

Boundary triples are designed as a tool to handle operators with boundary con-
ditions in an abstract framework via the boundary mappings Iy and I';. To make
this more precise, assume that § = Gy & Sﬁ with some closed subspace Gy, let
IT: G — S be the orthogonal projection onto Gy, and let IT* : Gy — G be the
canonical embedding of Gp; in §. Assume that © is a linear operator in the Hilbert
space G viewed with the induced inner product. In the following we are interested
in extensions of S (formally) given by

Bne := 5" | ker(IIl'; — ©L). (2.26)
More precisely, the operator By g is the restriction of S* onto the set
dom Brie = {f € dom S* : TIl'; f = O, f, (1 — II'INTy f = 0},

where the boundary condition III'; f = ©IIT'y f in dom By g also contains the con-
dition IIl'y f € dom ©. A number of properties of By g are encoded in ©. The most
important of them for our purposes are summarized in the following theorem:

Theorem 2.12. Let S be a densely defined closed symmetric operator in H, let
{9,T0,T1} be a boundary triple for S* with vy-field G, and Weyl function M., and
let By = S* | kerI'y. Moreover, let Il : G — Gy be an orthogonal projection, let © be
a linear operator in Gy, and let Br o be defined by (2.26). Then B e is (essentially)
self-adjoint in H if and only if © is (essentially) self-adjoint in Sn. Furthermore, if
© is self-adjoint and z € res(By), then the following assertions hold:
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(i) z € spec(Bme) if and only if 0 € spec(© — IIM,IT*).

(ii) 2 € spec,(Bm,e) if and only if 0 € spec,(© — IIM.IT*) and the eigenspace is
ker(Bne — z) = G IT* ker(© — IIM,IT*).

(i) 2 € spece(Bmo) if and only if 0 € spec,(© — IIM,IT*).
(iii) For all z € res(Brne) Nres(By) one has

(Bre —2)' = (By — 2) 7' 4 G.IT*(© — IM.IT") "' TIG:.

Finally we recall a special approach for the construction of boundary triples using
abstract trace maps developed in [33] and [34], see also [14, Section 1.4.2]. Let B be
a self-adjoint operator in the Hilbert space H, let G be another Hilbert space, and
assume that

T:domB — §G

is a surjective linear operator which is bounded with respect to the graph norm of
B and such that ker T is a dense subspace of the initial Hilbert space H. Then

S:=B|kerT

is a densely defined closed symmetric operator. Next, define for any z € res(B) the
injective operator

G.:=(T(B-2)"), (2.27)

which is bounded from G to H. Then one has ran G, = ker(S* — z) for z € res(B)
and (2.25) leads to the direct sum decomposition

dom S* = dom B+ranG,, =z € res(B), (2.28)

which shows that for all f € dom S* there exist unique f, € dom B and £ € G such
that f = f. + G.&; one can show that the component £ does not depend on the
choice of z. Having these notations in hand we can formulate now the following
proposition:

Proposition 2.13. Let ( € res(B) be fired and define the mappings T'g,T'; :
dom S* = G for f = fc + Ge€ = fe + Ge€ € dom S* by

Lof =& and T'1f:= %‘J’(fg + fe)-

Then {G,T0, 1} is a boundary triple for S* with S* | kerI'y = B. Moreover, the
~-field and the Weyl function are given by (2.27) and

1
M,=T(G. - §(G< +G¢)), =z €res(B).

20



3 The free Dirac operator and a boundary triple
for Dirac operators in R?

In this section we first recall the definition of the free Dirac operator in R?, a minimal
and a maximal realization of the Dirac operator in R? \ ¥, and we introduce and
study some families of integral operators which will play an important role in our
analysis in Section 4. Afterwards, we define a boundary triple which is useful in the
treatment of Dirac operators with singular -interactions.

3.1 The free, the minimal, and the maximal Dirac operator
and some associated integral operators

For m € R the free Dirac operator in R? is defined by

2
Aof =—1) 0;0;f + mosf = —io-Vf+mosf, domAy=H"(R*C?), (3.1)

J=1

where o := (01,03) and o3 are the C**%-valued Pauli spin matrices in (1.4). First,
we provide some basic properties of Ag. We refer to the monograph [38] for a
detailed discussion of these facts in the three dimensional case; the modifications
to the present two dimensional situation are left to the reader. Using the Fourier
transform and (1.5) one verifies that Ay is self-adjoint in L?(R%* C?) and that its
spectrum is purely essential,

spec(Ag) = specy(Ag) = ( — 00, —|mH U Um|, +oo).
In particular, spec(A4g) = R for m = 0. Due to the identity
(A() — Z)(A() + Z) = (-A + m2 — 22)0'0

one can express the resolvent of Ay through the resolvent of the free Laplacian.
Recall that for z ¢ spec(—A) = [0,00) the resolvent (—A — z)~! is the integral
operator

(=27 w) = 5 [ KoVl =) )y
where K stands for the modified Bessel function of second kind of order j, and we
take the principal square root function, i.e. for z € C\ [0,00) the number /z is
determined by Re/z > 0. For z € res(Aj) one gets
(Ag —2)71 = (Ag + 2)(—-A- (22 — m2))_100,
which leads to

(Ao — =) f(x) /aw— () dy, fe IAR%:CY),
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where

6. (x) = 1@1(1(\/@“') (" | %) (3.2)

1
+%K0(\/m|x|) (mag + zao).

Next we introduce a minimal symmetric operator S which is suitable for our
purposes. More precisely, let S be the restriction of Ay to the functions vanishing
at X, i.e.

Sf=(—ioc-V+mo3)f, domS = Hj(R*\ X;C?). (3.3)

We remark that the A, ; defined in (1.2) is an extension of the symmetric operator
S. One verifies in the same way as in the three dimensional case (see, e.g., [9,
Proposition 3.1]) that the adjoint S* is the maximal realization of the Dirac operator

S*f = (—io -V +mo3)fy & (—ioc -V +mo3)f-,

2 2 2 2 (3.4)
domS* = {f = f, & f € I3 C) & [XQ5C) : fu € H(o, )},

where
H(o, Q) = {f+ € L*(Q4;C?) : (—io - V +mos) fr € L*(Q4;C)}, (3.5)

and the derivatives in the above formula are understood in the distributional sense.
It is not difficult to see that H (o, y) endowed with the norm

. 2
HfiH?{(a,Qi) = HfH%Q(Qi;(C‘l) + ||(_ZJ -V + m0—3)fiHL2(Qi;(C2)

is a Hilbert space which is actually independent of m; cf. [11, Lemma 2.1]. For
our further considerations, it is useful to extend the Dirichlet trace operator onto
H(o;€Q4). In the following lemma we summarize several known results from [11,
Lemma 2.3 and Lemma 2.4]:

Lemma 3.1. The trace map T2, : H'(Qx; C?) — HY*(3;C?), T2 f = fls, can be
extended to a bounded linear operator

TP H(0,Qy) - HV2(2;C?).
Moreover, if TP f € HY2(2;C?) for f € H(0,9Q), then f € H'(Qy;C?).

In the next result we show that any self-adjoint extension A of S with dom A C
H*(R? \ ¥;C?) for some s > 0 has only finitely many discrete eigenvalues in

(=[ml, m]).
Proposition 3.2. Let A be a self-adjoint extension of the symmetric operator S in
L*(R%* C?) and assume that dom A C H*(R?\ X; C?) holds for some s > 0. Then

spec(A) N (—|m|, |m|) is purely discrete and the number of the discrete eigenvalues
of A in (—|m/|,|m|) is finite.
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Proof. It is sufficient to show that A? has at most finitely many eigenvalues in
(—oo, m?). For that, consider the quadratic form

alf, f1 = /]R? |Af|?dz, doma = dom A.

Since A is self-adjoint and hence closed, also the densely defined nonnegative form
a is closed. The self-adjoint operator associated to a via the first representation
theorem is A%. Next, take 0 < r < R with r chosen sufficiently large, such that
the open ball B, = {x € R? : || < r} contains (2, in its interior, and choose
01, p2 € C*(R?) which satisfy

0< ¢, <1, @4+¢i=1 ¢ =1inB,, ¢,=1inR*\ Bg.
Let f € dom A be fixed. Then by construction one has ¢, f € dom A and
Alpf) = @i Af —io - (V) f.
In particular, we note that o, f € H(o,Q_) with TP f = 0 € H/?(2;C?). Thus, it

follows from Lemma 3.1 that o f € H'(Q_;C?).
Next, we remark that V; is supported in B\ B,. Hence, we have for j € {1,2}

aleif,eif] = / (QIAfP + lio - (Vo) fP) da + T35,
R2
where
Jj = / 2Re (p;j(—ic - V +may) f, —io - (Vi;) f) o do
Br\Br
:/ 2Re ((—io -V +mos) f, —io - (;Vip;) f) o d
Br\Br

_ / Re (=i - V + mas) f, =i - V(g2) ) oo dlz.
Bgr\Br

From ¢? + 3 = 1 we obtain V(¢}) = —V(p3) and hence J; = —J5. Moreover, using
(1.5) one verifies [io - (Vy;) fI* = |[V; | f|* for j € {1,2}. Therefore, it follows that

alpifs 1 f] + alpaf, o2 f]
= [ (G dlartaat [ (el + Vel ) d

RQ

:/ |Af|2da:+/ V|f|? du,
R2 R2

where we have used the abbreviation V := [V|* + |Vi,|? in the last step; note
that V' is supported in Bg \ B,. This leads to

lf Sl =dipfood) = [ ViePdosaafnf) - [ VieafPde  (36)
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In the following we will often restrict functions in dom a to B or R?\ B, and view
them as elements in L?(Bg; C?) or L?(R?\ B,;C?), or we will extend L>-functions
on Bg or R?\ B, by zero onto R? and view them as elements in L?(R?; C2). We find
it convenient to use the same letter for the original and the restricted or extended
function.

Let a; be the quadratic form in L?(Bg; C?) defined by

doma; = {g € doma :suppg C Br}, ailg,9] = alg, g] - / Vlg|* da.
Br

As V is bounded and a is nonnegative it follows that a; is semibounded from below.
It is also clear that a; is densely defined in L?*(Bg;C?). To see that a; is closed
consider g, € dom a; such that g, — g in L?(Bg; C?) for n — oo and a1 (g — G, Gn —
gm) — 0 for n,m — oo. Since V is bounded it follows that the zero extensions g,, and
g satisfy g, — ¢ in L?(R?; C?) for n — oo and a(gn— gm, Gn —gm) — 0 for n,m — oc.
As a is closed we conclude ¢ € doma and a(g, — ¢g,9, — g) — 0 for n — oo.
Furthermore, as supp g C By we have g € doma; and a;(g, — ¢, gn—g) — 0 forn —
00, thus a; is closed. Let A; be the self-adjoint operator in L?(Bg; C?) corresponding
to a;. Then A; has a compact resolvent since the form domain dom a; C H*(Bg; C?)
is compactly embedded in L?(Bg;C?) for s > 0. Hence, the number of eigenvalues
N(A;,m?) of A; below m? is finite, that is, N(A;, m?) < oo.
Next, let as be the quadratic form in L?(R?\ B,;C?) defined by

doma, = H, (RQ \ B,; Cz), aslg, g] = alg, 9] — /2 Vl0g|* dx.
R2\B,

As above it is clear that as is densely defined and semibounded from below. Using
integration by parts and (1.5) one sees for g € C5°(R? \ B,;C?) that

dlo.gl= [ I(ie ¥ moglar
= / (g, (—ioc -V + mag)Qg)CQ dx
R2\ B,
- / (6, (~A + mP)g) o do
R2\ B,
= / (IVg]? +m?g]?) dz,
R2\B,

which then extends by density to all g € Hj(R?\ B,;C?). Therefore, the form a,
is closed and the self-adjoint operator associated to ay is Ay = —AP +m? — V|
where —AP denotes the Dirichlet Laplacian in R? \ B,. Hence, it follows that
N(m?, Ay) < 0o, as V has compact support.!

In fact, to see that a compactly supported potential V' leads only to finitely many eigenvalues
of Ay below m? one may argue as follows: Decompose Ao in a similar way as in the proof of [25,
Proposition 3.6 (a)] in an operator A3 acting in L?(Bag \ B,;C?) and an operator A, acting in
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Now, we can conclude that A2 has only finitely many eigenvalues below m?. For
this consider

J: L*(R* C?) — L*(Bg;C* @ L*(R*\ B,;C?), Jf =o1f @ @af.

Due to the properties of ¢; and ¢, we get that J is an isometry. Moreover, with
the above considerations we see J(doma) C dom a; & dom as, and with the equality
(3.6) we obtain

[f?f] (&1@&2)[Jf,Jf]

||-}C||L2 R2;C2) ||Jf||L2(BR :C2) L2(R2\E;C2)‘

It follows from the min-max principle that
N(mQ, AQ) S N(m2, Al D Ag) = N(mQ, Al) + N(mg, AQ)

As we have seen above, the quantity on the right hand side is finite and hence
N(m?, A%) < co. This completes the proof. O

In the following we introduce some families of integral operators associated to
the Green function ¢, associated to Ay given by (3.2). Let us denote the Dirichlet
trace operator on H'(R?;C?) by TP : H'(R?;C?) — HY?(%;C?). It is well-known
that TP is bounded, surjective, and ker TP = H}(R?\ ¥; C?); cf. [26, Theorems 3.37
and 3.40]. For z € res(Ay) we first define the bounded operator

' =TP(A, - 2) 7 LA(R* C?) — HY?(%;C?) (3.7)
and its anti-dual
O, = (TP(Ay —2)7Y) : HY2(2;C?) — LA(R?C?). (3.8)
The basic properties of ®, are stated in the following proposition:

Proposition 3.3. Let z € res(Ag) and consider the operator ®, in (3.8). Then for
¢ € L*(XZ; C?) one has

/qbz r—1y)p(y)ds(y) for a.e. x € R*\ .

Moreover, ®, is a bounded bijective operator from H~'/?(3;C?) onto ker(S* — z).

Proof. First, due to the properties of the trace map it is clear that &, defined
by (3.7) is surjective and

ker®, = {f € L*(R*C?) : (Ag— 2)7'f € Hy(R*\ £;C*)} =ran(S — 2),

L?(R? \ Bag;C?) by introducing a Neumann boundary condition on Bag. The quadratic forms
associated to A3 and A4 are denoted by a3 and a4, respectively. Then, as for Ay, the operator A3
has a compact resolvent, as dom A3 C domaz C H'(Bag \ B,;C?), and hence only finitely many
discrete eigenvalues below m?. Since V is supported in Bg \ B,, the form a4 corresponds to the

Neumann Laplacian in L?(R? \ Byg; C?) shifted by m? and hence it has no eigenvalues below m?.

Thus, by the min-max principle also A, has only finitely many eigenvalues below m?.
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as S = Ag | H}(R?\ X;C?). Using the closed range theorem, (ran®,)* = ker @,
and the fact that ker(S* — z) = (ran(S — z))* is closed we conclude that

®, : HV2(%;C?) — ker(S* — 2)

is a bounded bijective operator. To prove the integral representation consider ¢ €
L*(%;C?) and f € L*(R?;C?). A direct computation using Fubini’s theorem shows

(f7 (I)zSO)LQ(RQ;(C2) = ((I)lzfv (p)LQ(Z;(CQ)
= (TD(AO - 2)_1f7 SO)[P(E;(C?)

[ oste =t an o) asto
- [ (10 [ote—wre@ o)
- [ (10 [otr=ape@asto)) au

where the symmetry property ¢z(x — y)* = ¢.(y — x) was used in the last equality.
This implies the representation for ®.p, ¢ € L*(3;C?), and completes the proof of
this proposition. O

We will also need a family of boundary integral operators with integral kernel ¢,.
To introduce these operators, we study first the structure of the Green function ¢,
in more detail:

Lemma 3.4. Let z € res(Ay) and consider the function ¢, in (3.2). Then there
exist scalar analytic functions gi, g2, g3, and g, and a constant c; < 0 such that

i 1
o.(v) = Lot —(log |z| +log Vm? — 22 + cl)(mag + z0p)

2r” JaP 27
+ %(mQ = %) g1 (m® = 2)[af?) (log Vim? = 22 + log Jo])
+g2((m? = )af?)] 0 2) - (39)
o (m? = a2 [gs(m? — )laP?) (log VirZ = 7 + log] )
+ gi((m? = 2)|f?) | (mary + z00)

In particular, there exist C'°°-smooth matriz valued functions f1 and fy such that

1
: 0
i :
o) =5 | 1 0" Em? + fu(z)log 2| + fa(). (3.10)
Tr, — if,EQ

26



Proof. In order to prove the claimed results, let us recall the series representations
of K; from, e.g., §10.25.2, 10.31.1 and 10.31.2 in [28], which read

uw X 2k
Iu(t) = ;7;_()4kklr(;+k+1)’ i {01},
] " 0o 2k
Ki(t) = " + (logt — log 2)I;(t) — 1 kz_o ((k+1) + 9k + 2))M’
o; k 1 2k
Ko(t) = —(logt —log 2 + v)Io(t) + ’;; AR

I'(t)
(t)

with ¢(t) = and 7 = —¢(1) < log 2. This implies first that

Io(t) = 1+ t*ho(t?) and Iy(t) = thy(t?)

with some analytic functions hg and h;. Furthermore, with some analytic functions
ko and k; we have

Ki(t) = =+ (logt — log 2) I, (t) + thk ()

+ thy () log t + t (ki (t*) — hy(t?) log 2)

S| =k =

and
Ko(t) = —(logt —log 2 + ) Io(t) + t?ko(t?)
= —logt — c; — t?ho(t?) logt — c1t>ho(t?) + t2ko(t?)
with ¢; := v —log2 < 0. This can be rewritten in a simplified form as
Ki(t) = % + tg1(t*) log t + tga(t?),
Ko(t) = —logt — c; + t?g3(t?) log t + t2g4(t?),

where ¢1, g2, 93, and g4 are analytic functions and ¢; < 0. Using now the explicit
expression for ¢, we decompose

¢.(x) = iﬂKl (Vm? — 22|z]) <0 : i) + %Ko(\/m2 — 22|z|) (mos + z00)

27 ||

/m?— 22{ 1
=i
27 vm? — 22|z
+vm? — 22|z|gi ((m* — 2%)|z|*) log (Vm? — 22|z])

il - o)} (o 2)
T =
+ (m? — 22)|x|293((m2 — z2)|x|2) log (\/m2 - 22|x|)

+ (m? — ,2'2)|x|2g4((m2 — 22)|x|2)}(m03 + ZUO),
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which leads to the decomposition (3.9). The representation (3.10) follows from (3.9)
after noting that

1
L v — L T1 +izs
or |z|2 27 1 0
Tr1 — ifﬂg
O
For z € res(Ap) we introduce the operator
C.o(x) :==p.v. / b.(x — y)p(y)ds(y), @€ C=(%;C?), v e X. (3.11)

The basic properties of €, are stated in the following proposition. For the formu-
lation of the result, recall the definition of the operator A from (2.8) and of the
Cauchy transform Cfy, and its dual Cf, from (2.19) and (2.21), respectively.

Proposition 3.5. Let z € res(Ay) and consider the operator C, in (3.11). Then
C. € VY and, in particular, C, gives rise to a bounded operator in H*(X3;C?) for
any s € R. The realization in L*(X; C?) satisfies €& = C;. Moreover, if t = (tq,ta)
1s the tangent vector field at ¥ and T = t1 + ito, T = t, — ity, then one has

1 0 ACsTA ¢ ((z4+m)l 0
A@A_ﬁawq¢ 0 )+E< 0 (z-myu)tY¥ G12)

with ¥ € Uil
Proof. We make use of (3.9) to decompose ¢, in the form

¢z(x) - Xl(aj) + XQ(QZ) + X3($)7

where
1
1 0 T +1z
_ 1 2
x1(z) o 1 0 J
ry — il’g
1
Yolz) = —— (z+m 0 )log\x!
27 0 zZ—1m

x3(x) = [h1(|x|2) log |z| + h2(|x|2)} (o)
+ [|x|2h3(|x|2) log |z| + h4(|x|2)] (mos + zoy),

and hq, hs, h3, and hy are analytic functions. In the following we will use the corre-
sponding decomposition €, = P, + P, + P53, where

(Pig)(x) = pov. / i (& — 1)o(y) ds(y),
<%@@»=é§xx—mwwdxm,
(Pyp) () = / va(& — w)o(y) ds(y).
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Here we have removed the principal value from the integral operators P, and Ps,
since these integrals converge almost everywhere by [22, Proposition 3.10].
Let us discuss the operator P; first. With the help of (2.20) and (2.22) we obtain

1/ 0 T
=g (TC,E i ) (3.13)

and since T, T € U we conclude P, € ¥ from Proposition 2.9.
Next, we claim that the integral operator P, admits the representation

4 ((z +m)A~? 0

PZ:E 0 (z—m

) AQ) + 0, (3.14)

with some W, € U5? and A=2 = U™1L72U € V3!, so that P, € W', In fact, using
a parametrization 7 : [0, ¢] — R? of ¥ we find

wrnm=-5 (73" .2, [leehn 2] 1) s

2m
for f € C=(X). Therefore, with f = U 'u and p(-) = v () + i2(-) = (L) we

conclude

wrrtan = ("0

Y4 (z+m 0

) /Tlog |p(t) = p(s)| u(s) ds
) Hou(t)

- T or 0 z—m
with Hy as in Proposition 2.7. Now it follows from Proposition 2.7 (with m = 0,
a = 1, and p as above) that Hy € ¥~ and 1 + 2LHyL € ¥~!. Furthermore,
Proposition 2.2 (ii) and L™' € U712 yield 1172 + Hy € U2 and hence

14 +m) L2 0 _ _
- (<Z T(’f) (o m)LQ) +UPU ™ €02,
We then conclude
14 z4+m)A2 0 _
CAr <( 0) (z — m)A‘2> +Pye v

which leads to (3.14).
It will be shown now that P3 € U2, Indeed, setting again p(-) = 71 (¢-)+ive((-) =
~(¢-) we see that y3 can be written in the form

alolt) = p(s)) = tog p(0) ~ par(t.9) (O ) st

with the C*°-smooth matrix valued functions

ar(t, s) = ha (|p(t) = p(s)|*) o9 -
+ h3(|ﬂ(t) - P(S)|2) (mos + zoy) <p(t) 0 p(t) 6 P(S))
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and

as(t, s) = h2(’P(t) - ,0(8)|2)} (p(t) E p(s) W)

+ha(lp(t) — p(s)]?) (mos + zoo).

Hence, it follows as above in the proof of (3.14) with Proposition 2.7 applied in the
case m = 1 that UR U™ = H, € U2 so that P; € W5® Together with (3.13)
and (3.14) this implies first €, € ¥ and in a second step, together with Proposi-
tion 2.2 (i) and A € \IIIE/Q, that also (3.12) is true.

Finally, since ¢, (y—2z)* = ¢=z(z—y), we find that the realization of €, in L?(%; C?)
satisfies C = C;. Hence, all claims have been shown.

]

Finally, we prove a result on how ®, and C, are related to each other by taking
traces. Recall that T2 is the Dirichlet trace operator on H (o, ), see Lemma 3.1.

Proposition 3.6. For ¢ € H~'/2(%;C?) one has

7000 =F5(0-v)p+Cap. (3.15)
Proof. First we note that it suffices to prove (3.15) for ¢ € C*(%; C?); by continuity
this implies the claim for any ¢ € H~/2(%;C?). The assertion essentially follows

from the classical Plemelj-Sokhotskii formula, see, e.g., [35, Theorem 4.1.1], which
states that the holomorphic function

C\ZBSH@(&):L/MdC

satisfies . © .
¥
TLP(E) = —pv. [ L d(+ = z. 1
2a(e) = gopv. [ EL dcE 500, e (3.16)
In order to use it, recall that by (3.10) we can write ¢,(z) = x1(z) + X2(x) with
1
1 0 +1 ~
xi(@) = —o— 1 01“ and  Xa(x) = fi(z)log |z] + fa(z),
Ty — irs

where f; and fy are C"°°-smooth matrix functions. In a corresponding way we
decompose &, = ¥; + U, with

V() Z/Exl(w—y)so(y)dS(y) and \11290(:'3):/2%2(:6—1/) o(y)ds(y),

and C, = P, + P, with

Pip(z) = p.v. /

[Mile=p)el)dsts) and Papla) - / oz — y) o(y) ds(y).

by
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As in the proof of Proposition 3.5 we have removed the principal value from the
integral operator P, since the integral exists almost everywhere. One sees easily
that Wy is continuous on R?, and its value on ¥ coincides with Py, i.e.

In order to find the relation between W, and P, we write the normal vector field
as a complex number N = vy + ivy = 5 — i7] and use the relation d(y; + iys) =
iN(y) ds(y) of the complex and the classical line element on 3. With ¢ = (1, ¢2)
we get then

1
_ 1 0 (y1 + iyz) — (I1 + i$2) Spl(y)
Vigle) = o : 0 (20 asto

2\ (y1 —iy2) — (21 — izo)

1 ©2(y) s
27Ti/z (y1 +iy2) — (21 + izg) ds(y)

1 #1(y) ;
i /E (g1 + iys) — (21 + izo) ds(y)

1 —iN(y)2(y) .
2_7ri / ( - : ) d(?h + 1?/2)

s (Y1 +iy2) — (21 +izo

1 —iN(y)e1(y)
ol

v (y1 +iye) — (z1 +ixp)

d(y1 +1iy2)

Applying now (3.16) to each component of this vector we find that

1 _iW%(y)
.v/(

— . — d(y1 + iy)
271 v (y1 +iy2) — (21 + iz2)
TPU p(z) = +

1 —iN (y)p1(y)
.v/(

~2mi » (g1 +iye) — (z1 + iz

o )d(y1 +iys)

_2%1 p'v'/ (21 + 1:1:52@)% + iys) 4stv) i (N(fﬂ)%(?ﬁ))

(
1o e1(y) .
R Ao e i
= Pip(a) F 5 (0 () (a).

A combination of this and (3.17) leads to the claim of this proposition. O

3.2 A boundary triple for Dirac operators with singular in-
teractions supported on loops

In this section we follow the strategy from Section 2.3 to introduce a boundary triple
which is suitable to study Dirac operators in L?(R?; C?) with singular interactions
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supported on the loop . To get an explicit representation of the boundary mappings
the results from Section 3.1 play an important role. We remark that the obtained
boundary triple is closely related to the one used in [9] to study Dirac operators in
the three dimensional case.

Recall the definitions of the free Dirac operator Ay, the symmetric operator S,
and its adjoint S* from (3.1), (3.3), and (3.4), respectively. Moreover, T2 is the
Dirichlet trace operator defined on dom S* from Lemma 3.1, the integral operators
®, and €, are introduced for z € res(Ap) in (3.8) and (3.11), respectively. The oper-

ator A € \1112/ % is given by (2.8) and will sometimes be viewed as an isomorphism from
L3(%;C?) — HY2(2;C?) or from H'Y?(X;C?) — L?*(3;C?), and is also regarded
as an unbounded uniformly positive self-adjoint operator L?(¥; C?).

Proposition 3.7. Let ¢ € res(Ap) be fived and define Ty, Ty : dom S* — L*(X; C?)

by
Tof =iA" (o - ) (T2 f1 —TF),
1 b b (3.18)
Dif = SA(T2F +T2F) = (€ +€JATof),  f=fr@f €doms".

Then {L*(3;C?),T,T1} is a boundary triple for S* such that Ay = S* | ker .
Moreover, the corresponding ~y-field is

res(Apg) 22— G, = A

and the Weyl function is
1
res(Ao) 3 2 M. = A (€. — 5 (€ +€) )A.

Proof. Recall that the Dirichlet trace operator 72 : H'(R?,C2?) — HY2(%;C?) is
bounded, surjective, and one has ker 72 = H}(R? \ 3; C?). Hence,

T := ATP . H'(R?* C?) = dom Ay — L*(X;C?)

is bounded and surjective with ker 7 = dom S. Following the constructions in Sec-
tion 2.3 for B = Ay we consider for z € res(Ay)

T(Ag— 2) ' = ATP(Ag — 2)7! = AD/,

with @, given by (3.7), so that the operator G, from (2.27) in the present context
is given by
G, = ®,A. (3.19)

Let ¢ € res(Ap) be fixed. Then, by (2.28) any f € dom S* can be written as
=T+ G = fe+ G
for some £ € L*(X;C?) and [, fz € H'(R?* C?), and according to Proposition 2.13

Iof =¢ and I'if = %(ch-Fng)
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defines a boundary triple for S* such that Aqg = S* | ker I'.

Next we show that the above boundary maps coincide with the more explicit
representations of I'y and I'; stated in the proposition. Let f = fe+G¢& = fe+PAE
with ¢ € L*(X;C?) and f, € H'(R?; C?) be fixed. Using that the jump of the trace
of fe € H'(R* C?) at I is zero and the trace formula from Proposition 3.6 we find

T e = T2f2 = T2 (fe + PAE) . — T2 (fe + PAE)
= TP (DAE) = T2(PAE)
- —%(0 V)AL + CAAE — %(a V)AE — CAE
= —i(o - v)A&
and hence we conclude
Pof =€ =iA" (0 - v)(T2f. — TP f.),

which is the claimed formula for I'y f. Employing again Proposition 3.6 we find
(T£f<’+ + ‘J‘PfQ,)

(TR(f = @A)+ + T2(f — ®AE)-)

TP f =

(‘-Tff+ ~ CAE+ Lo AL+ TPF. — CAE — (o v)Aa) (3.20)

(TVf+ + TPf2) — CeAL

el i e il

=5 (T +T0f) = CATof

and analogously
1
TP fe =5 (T2 +T2f) — CeATof. (3.21)
By summing up the last two formulae (3.20) and (3.21) we find
1 1 1
Tif=5(Tfe+Tfe) = §A(7ng +TPf:) = §A<(inf+ +TPf) — (G + GE)AFOf>

which is the claimed formula for I'y in (3.18).

Finally, the claimed representation of the ~-field follows from Proposition 2.13
and (3.19). Using again Proposition 3.6, we can simplify the formula for the Weyl
function M, from Proposition 2.13 and get for ¢ € L?(3; C?)

1
Moo =7 (6. 3(6e+ 6 ) ¢

1
= AT? (CDZ — 5(<I>C + @5)) Ay
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In the above calculation we used the regularization property (G, — 3(G¢ + G¢))g €
dom Ay = H'(R?;C?), which holds automatically by the abstract theory (see the
formula for the Weyl function in Proposition 2.13), and hence T2 and ‘.Tf lead to
the same trace in the second equality above. Therefore, all claimed statements have
been shown. O

Finally, we state an auxiliary regularity result that will be used later.

Lemma 3.8. Let f € domS*. Then f € H*(R?\ X;C?) if and only if Tof €
H(%;C?).

Proof. First, if f = f, © f_ € H'(R?\ X;C?), then one has TP f. ¢ HY2(%;C?)
implying TP f, — TP f_ € HY2(3;C?). As o - v is a C*-matrix function it follows
that i(o - v) (TP fL — TP f_) € H'/?(X;C?). Using that A is a bijection from H*(X)
to H*"1/2(X) for all s € R, this yields

Lof =iAo-v)(TLfr —TPf) € H'(S;CP).

Conversely, let f = f, @ f_ € dom S* with T'gf € H'(3;C?). Since A : H(Z) —
H'2(X) is bijective and the C*°-matrix function o - v is invertible we conclude from
the definition of I'y that

TP —TPf e HVA(3;C). (3.22)

By Proposition 3.5 the operators €, and €; are bounded in H'/2(%;C?), which
gives (Cc + Cz)ALf € H/*(X;C?). In addition, I'y f € L*(X;C?) implies A~'T; €
H'Y/?(3; C?). With the definition of T'; this yields

1 _ 1
5(Tff+ +TPF) =N f + §(e< +Cp)ALyf € HY2(%;C?).

Hence, together with (3.22) this implies T2 fL € HY2(X;C?). Finally, Lemma 3.1
shows fy € H'(Qy; C?). O

4 Dirac operators with singular interactions

In this section we study the Dirac operator A, , introduced in (1.2) and we prove
the main results of this paper. First, in Section 4.1 we show how A, ; is related to
the boundary triple {L?*(3;C?),T'y,I';} from Proposition 3.7. Then, in Section 4.2,
we show the self-adjointness of A, . for non-critical interaction strengths, i.e. when
n* — 7% # 4, and investigate the spectral properties of A, , in this setting. In
Section 4.3 we the study the self-adjointness and the spectral properties of A, . in
the case of critical interaction strengths. Finally, in Section 4.4 we provide a sketch
of the proof of Theorem 1.3.
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4.1 Definition of A, ; via the boundary triple

Recall the definition of the space H(o,4) from (3.5), the trace maps T2 on
H(c,4) in Lemma 3.1, and that the operator A, ; in (1.2) is defined by

A, f = (—io -V +mos)fL & (—ioc -V +mos) f_,

dom A, , = {f —f, o f € H(o,0)® H(o,Q) : (4.1)
—i(o-v)(TVf+ —TPf) = %(7700 + 703) (TV f+ + ‘J'?f_)}.

Before analyzing the properties of A, ; we would like to mention that for special
values of the interaction strengths A, . decouples in Dirac operators in L*(2,; C?)
and L?(£2_;C?) subject to certain boundary conditions. Similar effects are known
from dimension three, see [20, Section V], [4, Section 5], and [7, Lemma 3.1]. The
result reads as follows:

Lemma 4.1. Let n,7 € R. Then the following holds:

(i) If n* — 72 # —4, then there is an invertible matriz M (explicitly given below
in (4.4)) such that f = f1 @ f- € dom A, - if and only if

TOf = MTPf.

(ii) If n®* — 7% = —4, then A,, = Ay ® A_, where AL is a Dirac operator in
L*(Q4;C?) and fr € dom Ay if and only if

TPfy = j:%(a ) (noo + 10o3) TE fs. (4.2)

Remark 4.2. Assume that n? — 72 = —4, which is equivalent to Z—z + % = 1. Thus,

there exists ¢ € [0, 2] \ {Z, 2} such that

2
T_ —sind and — = cos?.
T T

Using (1.5) we see that (4.2) for f is equivalent to

27 7
0= ?03(0 V) (00 — 5(0 V) (noo + 7'03)> ‘J'ff+
= (O'[) +io3(0 - v) cos — sin 1903)‘.Tff+,

i.e. the operators A, in the bounded domain €2, are exactly those investigated
in [11]. The case ¥ = 0 corresponds to the well-known infinite mass boundary
condition (also called MIT bag) studied in [2,27,37]. We would like to point out
that our results on A, , obtained later in Section 4.2 can be used for a deeper
understanding for A..
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Proof of Lemma 4.1. The transmission condition in the definition of A, ; can be
written in the form

(i(a V) + %(7700 - 7'03)> TPf = (i(a V) — %(7700 + 7'0'3)> A

Multiplying this equation with —i (o - v) we obtain the equivalent form
(00—~ R)T2S. = (00 + R)T2S (4.3)
with

R = 3 (o -v)(noo+ 7103) = 3 (noo — 1o3)(0 - V),

where (1.5) was used. One computes

2 _ 1, ot _ =7
R —2(7700 To3) (o 1/)2(0 v)(nog + 103) = 1

00,

which implies

2 _ 2
(0’0-R)(0'0+R):O'0—R2:0'0+17 T

Assume now 1> —7% # —4. Then both o=+ R are invertible with inverses (oo R) ™ =
4+17+772 (60 F R). Therefore, the transmission condition can be equivalently rewritten
as

TV f= (00— R) oo+ R)TZf or TPf = (00+ R) (00— R)T{fy, (44)

which shows assertion (i). On the other hand, for n* — 72 = —4 one has R? = o,
and multiplying (4.3) by 09 — R or g + R leads to the two conditions

TV fe =+RTDfs.

It follows that the operator A, . decouples in a orthogonal sum of operators A,
acting in 24 and hence, also statement (ii) has been shown. O

We are going to represent A, , using the boundary triple {L*(3;C?), T, T}
constructed in Proposition 3.7. Note that the definition of I'j and I'; can be rewritten
as

i(o-v) (TVfe —TPf) = Ao f, (4.5)
(TPfe+TPf) =A'I0f + % (Cc + Cz)AL, f. (4.6)

With this we can identify the parameter in L?(X; C?) that corresponds to the oper-
ator A, ;.

Proposition 4.3. Let n,7 € R. Then the following holds:
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(i) Assume |n| # |7| and let © be the linear operator in L*(3; C?) obtained as the
mazimal realization of the periodic pseudodifferential operator 0 € Vi, given

by
1

1

i.e. dom© = {p € L*(X;C?) : fp € L*(Z;C?)} and Op = . Then
domAW:{fedomS*:Fngdom@, Flf:®Fof}. (4.8)
(ii)) Assumen =1 #0, let
I, : LA(3;C%) — LA(D), (Zl> — 1,
2

and let © 4 be the linear operator in L*(X) obtained as the maximal realization
of the periodic pseudodifferential operator 0, € Vi, given by

1 1 .
0, = —A<% 0 (6 + eg)m)A, (4.9)

i.e. domO, = {p € L*(X):0,p € L*(X)} and O, =0,¢. Then
dom A, = {f € dom S* : TI,T, f = O, 11, T f, (09 — I I )T f = o}.
(4.10)

(i) Assumen = —1 #0, let
- : LA(%;C?) — LA(Z), @1) — @,
2

and let ©_ be the linear operator in L*(X) obtained as the maximal realization
of the periodic pseudodifferential operator _ € Wi, given by

| 1 .
6 — —A(% I (€ + eg—)n,)A, (4.11)
ie. domO_ = {p e L*(X):0_p € L*(X)} and O_p = 6_¢p. Then

dom A, , = {f € domS* : TI_T, f = O_I_Tyf, (00 — IT* )T f = o}.
(4.12)

Note that the case n = 7 = 0 is not discussed in the previous statement because
A, ; simply becomes the free Dirac operator Ay introduced in (3.1).

Remark 4.4. (i) The operators © and O in Proposition 4.3 are well-defined due
to the fact that 6 and 04 are periodic pseudodifferential operators of order

1. For example fp makes sense as an element of H~'(X;C?) for any ¢ €
L*(3;C?), and H'(X;C?) C dom©.

37



(ii) In assertions (ii) and (iii) of the above proposition we decomposed § =
L3(%;C?) = Sm, @ G, where
Sn, = {gp = (i;) € L*(Z;C?) oy = O} ~ [*(X)

and

Sn_ = {90 = (901) € L*(%;C?%) : ¢y = 0} ~ [3(%).

P2

Proof. With the help of (4.5) and (4.6) the transmission condition in (4.1) can be
rewritten as

—ATof = (o + 7o) (AT f + - (ec + €)ATof ). (4.13)

Now let us distinguish between several cases.

(i) For |n| # |7| the matrix noy + 703 is invertible with
_ 1
(770—[)"’7—0'3) 1 = m(nao—Tag)

Hence, we can rewrite the equality (4.13) as

1 1
Flf =—A |:2—T2(770'0 - 7'0'3) + 5 (GC + GC)} Arof = @Fof,

n J—
which gives the claimed representation in (4.8)

The cases (ii) are and (iii) are almost identical, so we only give a proof for (ii).
By (4.13) we have that f € dom A4, ; if and only if

_AFOf — (7]0‘0 -+ T0'3> (A Flf + = (GC + GC)AFOf)
B ey

:277H:H+( B B (€<+€<)AFof)

Writing this equation in components it follows that this boundary condition is equiv-
alent to the conditions
(UO - HiH—F)FOf =0

and
1
0,7, f = —A( TR ((24 + €<)>AF0f
_ —A<2n I, 2(64 + €T, )AILFOf
= @+H+Fof.
Hence, we find that (4.10) is true. O

In view of the general theory of boundary triples, see Subsection 2.3, many
properties of A, ; can be deduced from the respective properties of the operators ©
and ©4 from Proposition 4.3. We prefer to consider separately the non-critical case
n? — 72 # 4 and the critical case n? — 72 = 4, where the latter one is more involved.
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4.2 Non-critical case

Throughout this subsection we assume that

n* — 12 £ 4.

In order to show the self-adjointness of A, ; we use Theorem 2.12. For that it is
necessary to investigate the operators © and ©. in Proposition 4.3.

Lemma 4.5. Let n,7 € R with n?> — 72 # 4. Then the following holds:
(i) If n* — 72 #0, then dom© = H'(3;C?) and © is self-adjoint in L*(XZ; C?).
(ii) If n = 7, then dom Oy = HY(X) and O is self-adjoint in L*(X).

Proof. (i) Let us consider the restriction ©; := © | H'(XZ;C?). Since § € ¥y, the
operator O is well-defined as an operator in L?(3; C?). We show © = ©; and that
O, is self-adjoint in L?(3; C?).

First, it follows from Proposition 3.5 that (C; + C¢)* = Cz + C; and hence ©; is
a symmetric operator in L*(3; C?). Moreover, since ©; is a symmetric extension of
the symmetric operator O, := © | C°°(3;C?) Lemma 2.4 implies O} C 0%, = ©.
Hence, © = ©; and ©; = OF follows if we show © C O, for which it suffices to
check the inclusion

dom® C dom©; = H*(%;C?). (4.14)

To see (4.14) fix some ¢ € dom ©. Then o € L*(X;C?). Using Proposition 3.5 we
find that

2 —_
1 A CET Y
Op = —§APA<,0 + Uy, where P = ch_f 9 and W e WY,
b

n—rT

Hence, APAp € L*(X;C?) and as A : HY2(%;C?) — L%*(X;C?) is bijective, this
amounts to PAp € HY2(¥;C?). Since Cx,C% € Y by Proposition 2.9, these
operators give rise to bounded operators in H'/?(X; C?), which implies that

2 — 2 _
—CsT CsT
n—rT 9 n+rT 5 A¢
—TC% TC%
n+r1 n—rT
— — CsTTCY, 0
=77 A | Ap e B (5 ).
/

Now we use that 7T = TT is the multiplication operator with the constant function
1 and that CxCy, — 1, C5Cxy — 1 € U™ by Proposition 2.9. We then obtain from
the last line that

4 —n? + 72

o Ap+ Ty € H'/?(S;C?)
-7
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with some U € U5 and hence 4;22272 Ap € HY?(;C?). Since n? — 72 # 4 by
assumption, this implies Ap € H'Y?(X;C?) and thus, ¢ € H'(X;C?). We have
shown (4.14). This completes the proof of (i)

(ii) We consider the case n = 7, the other one being similar. Recall that ©, is the

maximal operator in L?*(X) associated to the periodic pseudodifferential operator
1 /1
0 = —3 A(5 L (G + ec—)ni)/\.

Using Proposition 3.5 we find for ¢ € dom O, that

1, 1 0 ACsTA\ . = 1., =
O.p = 217/\90 2H+<ATC,EA 0 )H+s0+‘11s0— 277/\90+\1st

with some symmetric operator ¥ € W% This implies dom ©, = dom A2 = H'(2; C)
and since A? is self-adjoint we conclude that also © is self-adjoint in L?(X). O

After the preparatory considerations in Lemma 4.5 we are now ready to show
the self-adjointness of A, ; for non-critical interaction strengths. To formulate the
result we recall the definitions of the free Dirac operator Ay from (3.1), of ®, and
®’ from (3.8) and (3.7), and of €, in (3.11), respectively.

Theorem 4.6. Assume that n,7 € R with n*> — 1% # 4 and (n,7) # (0,0). Then
the operator A, . is self-adjoint in L*(R* C*) with dom 4, , C H'(R?\ ¥;C?).
Moreover, for all z € res(A, ) Nres(Ay) the operator oy + (nog+ 1703)C. is bounded
and boundedly invertible in H'/?(2; C?) and

(A, — ) h=(Ag—2) -, (00 + (noo + 7'0'3)(‘3,2)71(770'0 + 703) DL (4.15)
holds.

Proof. First, according to Theorem 2.12 the self-adjointness of ©® and ©O. in
L*(X;C?) and L*(X), respectively, implies the self-adjointness of A4, , in L*(R?; C?).
In addition, since dom©® = H'(XZ;C?) and dom©, = H'(X), Lemma 3.8 yields
dom A4, , C H'(R*\ X;C?).

It remains to show the Krein type resolvent formula in (4.15). First, for |n| # ||
we have by Theorem 2.12 that ©— M., z € res(4,, ;)Nres(Ap), is boundedly invertible
in L?(3;C?) and

(Apr —2)h = (Ag—2) '+ G (0 - M) TG

Taking the special form of © and M, = A(GZ — %(GC + GE))A into account and using

7727;7_2(770'0 — ’7'0'3) = (770'(] + ’7'0'3)_17 we find

= —A(noo + 703) ' (00 + (nog + 703)€.) A.
(4.16)
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As © — M, is a bijective operator in L?(%; C?) defined on dom © = H'(3; C?) this
implies that oo + (noo +703)C, is bijective in HY/2(3; C?). In particular, the inverse
(00 + (nog+703)€.)~" is well-defined and bounded in H/?(%; C?). Using G, = ®,A
and G = AD. we get

G.(6 - Mz)flG = —®, AN (00 + (noo + 7‘03)63)71(7700 + 703) AT ADL

= -0, (00 + (noo + Tog)ez)_l(noo + 703) DL,

*
z

(4.17)

which leads to (4.15).
The proof of (4.15) for || = |7| # 0 is similar as above. First, one notes in the
same way as in (4.16) that

1 1
Q:E_H:I:Mzn*i = —A(2—+Hi62H1)A = —2—HiA(Uo+27]H1Hiez)AH1, (418)
n n

which implies with 29Il II} = noy + To3
T (O — T M.IT,) Ty = AT (M (0 + 2pIT5TT, C)ITL) ™ 27T A
— A (I TLs (0 4 2911411, €)™ 2 TT T A~
—1

= A" (UO + (noo + TUg)Gz) (noo + To3) A1

With this observation and the same ideas as above one shows (4.15) also in the case
In| = |7|. This finishes the proof of this theorem. O

In the following proposition we discuss the basic spectral properties of A, -
Proposition 4.7. Let n,7 € R be such that > — 72 # 4. Then the following holds:
(i) For the essential spectrum of A, ; we have
SPECess(Anr) = ((— 00, —|m|] U [Im],0).
A,.)=R.

In particular, for m =0 we have spec(A, ;) = SPeCql(

(i) Assume m # 0. Then z € (—|m|,|m|) is a discrete eigenvalue of A, . if and
only if there exists o € HY?(3; C?) such that (oo + (nog + 703)C. )¢ = 0.

(iii) If m # 0, then A, ; has at most finitely many eigenvalues in (— |m|, |ml).

Proof. Item (i) is a direct consequence of (4.15). In fact, by (3.7) and Theorem 4.6
the operator

(00 + (7700 + 7—0'3)6,3)_1(7]0'0 + T0'3>(I)/2 : L2<R2’ (CZ) - H1/2(2, C2)

is bounded. Since the embedding H'?(%;C?) — H~Y2(%;C?) is compact and
®, : H'/2(%; C?) — L*(R?* C?) is bounded by definition, we conclude from (4.15)
that the resolvent difference

(A, — 2) = (Ag—2) =D, (ag + (noo + TJg)ez)71<770'0 + 703)P.
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is a compact operator. Hence, specq (A, ;) = spec(Ao) = (—o0, —|m|] U [|m], c0).

Next, we prove assertion (ii) for |n| # |7|. First we note that by Theorem 2.12
a number z € res(Ay) is an eigenvalue of A, . if and only if zero is an eigenvalue of
© — M,. Using (4.16) this means that z € res(4y) is an eigenvalue of A, ; if and
only if there exists ¢ € dom © = H'(X; C?) such that

—A(nog + 70o3)7* (00 + (noo + TUg)GZ)Aw =0,
i.e. if and only if o := Ay € H'/2(X; C?) satisfies

(00 + (noo + 703)C. ) = 0.

The proof of item (ii) for |p| = |7| is similar, one just has to use (4.18) instead
of (4.16).

Finally, assertion (iii) is an immediate consequence of Proposition 3.2, as
dom A4, . C H'(R?\ 3; C?) by Theorem 4.6. O

Finally, we provide some symmetry relations for the point spectrum of A, .,
which can be seen as consequences of commutator relations of A, ;. The following
results are the two dimensional analogues of [7, Proposition 4.2].

Proposition 4.8. Let n,7 € R and assume that n? — 72 # 4. Then the following
holds:

(1) If [nl # |7l, then z € spec,(A_un/op—r2),—ar/m>—r2)) i and only if z €
spec, (A7)

(ii) z € spec,(A,.7) if and only if —z € spec,(A_, ).
Proof. (i) Consider the unitary and self-adjoint operator
U: L (24 C)OL*(Q-;C°) — L2 (4 C)OL*(Q;C%), U(fe@f-) = f+®(—f-).

We claim that
Anﬂ- == UA74,,7/(7727T2),747-/(7]277-2)U. (4.19)

For this purpose we note first that f = f, & f_ € H'(2,;C?*) @ H'(Q_; C?) belongs
to dom A, ;, if and only if

—i(o-v)(TPfr —TPf) = %(nao +703) (TVf+ + TP 1), (4.20)
which is equivalent to
o )TV + TS)-) = 0w +703) (TXUF)s ~TAU)-).

By multiplying the last equation with (nog + 703)™! = 7727;#(7700 — 703) and using
(1.5) we find that f € dom A, ; if and only if

(T2WUf) = TPUS)-),

DO | —

+r2(’7"0 +703)(T2US)+ +T2(US)-) =

—i(o - V)n2
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which is equivalent to

(TPWF)4 + TUF)-) = —i(o - ) (T2WU )4 — TPWUF)-)

1
—7_2(77‘70 + 703)5

_772 _
ie. Uf € domA_g02—r2) _ar/m2—-2). Hence, we have shown the equality
dom A, » = dom A_y,/(m2—72),—47/(2—-2)U. Moreover, a straightforward calculation
shows UA, - f = A_u/62—r2),—ar/opp—r2yU f for any f € dom A, .. This gives (4.19),
which yields (i).

(ii) Define the nonlinear charge conjugation operator
Cf=of, f € L*(R?% C?).
Then we see immediately C?f = f for all f € L?(R?; C?). We claim that
CA,,=-A_,.C, (4.21)

which yields then the claim of statement (ii). To prove (4.21), we note first by taking
the complex conjugate of equation (4.20) that f € dom A, ; if and only if

i - - 1 - -
i@ v) (T —T2f) = 5(7700 +703) (T f +T2F2), (4.22)
where @ = (77,02) and &; is the matrix with the complex conjugate entries of ;.

By multiplying this equation by oy and using (1.5), o7 = 01, and 73 = —0oy we find
that (4.22) is equivalent to

. - - 1 - -
i(o-v)(T2(o1fy) = T2(a1f)) = 5 (oo = 703) (T (01 f1) + T2 (o1 f2)),
ie. Cf € domA_, .. Moreover, using again (1.5) and o3 = —oy we get

(—io -V +mos)Cf = (—io -V +mos)oLf

=o01(—ic -V —mos) f

= —0y(—io -V +mos) f
= —C( —10-V +m03)f)a

which implies (4.21). O

4.3 Critical case

In this subsection we study the self-adjointness and the spectral properties of A, - for
the critical interaction strengths, i.e. when n? — 72 = 4. To show the self-adjointness
of A, . we prove that the corresponding operator © in Proposition 4.3 is self-adjoint

in L?(3; C?).

Lemma 4.9. Let n,7 € R be such that n* — > = 4. Then the operator © is
self-adjoint in L?(3; C?) and the restriction of © onto H'(X; C?) is essentially self-
adjoint in L*(3;C?).
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Remark 4.10. According to Lemma 4.9 the operator © is essentially self-adjoint on
H'(3;C?). Tt will turn out later in the proof of Proposition 4.12 that spec(©) is
non-empty. Hence, one has dom © ¢ H*(3; C?) for all s > 0.

ess(

Proof of Lemma 4.9. As in the proof of Lemma 4.5 we consider the restriction 0, :=
© | H(X;C?). Tt follows in the same way as in the proof of Lemma 4.5 that ©; is a
symmetric operator in L2(3; C?) and together with Lemma 2.4 we see ©; C ©% C ©.
To see © C O, which then implies the claims, we will show (the slightly stronger
fact) that

dom © = dom 6. (4.23)

For this we consider the associated periodic pseudodifferential operator 6 defined
in (4.7) and recall that with the aid of Proposition 3.5 we have

2 _
1 A% ACsTA
0=—-v+0, wherev=|"T"T ) (4.24)
2 ATCLA A2

n—T
with some operator ¥ € WY which is symmetric and hence self-adjoint in L?(3; C?).
In the following we denote by T the maximal realization of v in L*(3;C?), that is

Te=vp, domT = {pe L*(5;C? :vp e L*(Z;C*)} = domO,

and T, = Y [ H'(X;C?). Note that domY; = dom©;. In the same way as in
Subsection 2.2 we use the Schur complement to decompose v (on a formal level
in the sense of periodic pseudodifferential operators without specification of the
operator domains) as

i 0O (22 0\ (1 "ETa07A
v=|n+T1 . n+T 2 . ;o (4.25)

where the Schur complement has the form

_ 2 2 N+T ' 2\—1 a2
S(U)_T]—TA 5 ATCEA(A?) AC’ETA—n_T

Az ; T ATCLOSTA.

Using that Cy,Cy, = 1 + R with R € U™, see Proposition 2.9, we can rewrite this
expression as

2 4o
S(U)_U—TA -

ATTA —

1 er T 1 J2“ TATRTA = —%ATRTA € 5™,

where we used in the last step that 7T is the multiplication operator with the
constant function 1 and 7> — 72 = 4. From this, (4.25), and dom A? = H'(X) we
obtain now

dom® =domY = {(cpl, ©2)" € LA(X;C?) : o1 + HTTA_ICETA(,OQ € HI(Z)} :

44



Let us now consider the operator realizations ©y, Y1 of #, v and their closures ©1, T
in L?(X;C?). We leave it to the reader to check that the assumptions in Proposi-
tion 2.10 are satisfied when each entry of the pseudodifferential operators in the
matrix representation of v in (4.24) is defined on H'(X); in particular, note that
the upper left corner is a boundedly invertible self-adjoint operator in L*(X) with

domain H'(X). Then it follows from Proposition 2.10 that dom §(Z;) = L*(X) and

dom ©; = dom Z;
= {(SOMSOQ)T € L*(3;C%) : o1 + HTTA_ngTAgoQ € Hl(E)} = dom ©

hold. Hence, we have shown (4.23), which finishes the proof of this proposition. [

With Lemma 4.9 we are now ready to show the self-adjointness of A, . for critical
interaction strengths. To formulate the result we recall the definitions of the free
Dirac operator Ay from (3.1), of &, and ¢/, from (3.8) and (3.7), and of C, in (3.11),
respectively.

Theorem 4.11. Assume that n,7 € R with n* — 72 = 4. Then the operator A, , is
self-adjoint in L*(R?; C?) and the restriction to dom A, , N H'(R?\ ¥; C?) is essen-
tially self-adjoint in L*(R?; C?). Moreover, for all z € res(A, .)Nres(Ay) the operator
o0 + (noo + 703)C. admits a bounded inverse from HY?(3;C?) to H~/2(3;C?) and

(Apr —2) ' =(Ap—2)' =@, (00 + (noo + 703)(32)_1(7700 + 703) DL (4.26)
holds.

Proof. First, according to Theorem 2.12 the self-adjointness of © in L*(¥; C?) im-
plies the self-adjointness of A, . in L?(R%* C?), and the essential self-adjointness of
O, =0 | H'(X;C?) in L*(X; C?) implies the essential self-adjointness of the restric-
tion of A, . to dom A, , N H'(R?\ 2; C?) in L*(R?;C?). For the latter observation
we have also used that by Lemma 3.8

S* T ker(I't —©11) = A, - | (dom AN HY(R?\ %; (CQ)).

It remains to verify the Krein type resolvent formula in (4.26). By Theorem 2.12
we have that © — M, is boundedly invertible in L?*(3;C?) and

-1 _ -1 =1 s
T — 0 — z - z z*
(Ayr —2) = (Ag— 2) '+ G.(0 — M,) G

Taking the special form of © and M, = A((‘Bz — %((‘34 + Gg))A into account we find
with a similar calculation as in (4.16)-(4.17) that

(©—M) "t =-A"1 (00 + (noo + TO'3)GZ)_1<T]O'0 + 1o3)AL

As (© — M,)™! is bounded in L*(3;C?) we deduce that (oq + (nog + 703)€,)~" is
bounded from H'/?(%;C?) to H~'/?(%;C?). Using G, = ®.A and G = AP, we get
G.(0 - Mz)_le = —®, AN (00 + (noo + 7'03)@2)_1(7700 + 703) AT AP

= -0, (O’O + (nog + 703)83)_1(7700 + 703)P,
and thus (4.26). O
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In the next proposition we analyze the essential spectrum of the self-adjoint
operator ©. Note that our assumption n* — 72 = 4 implies |7| < |n|, and hence
~zm € (—|ml, m]).

Proposition 4.12. Let ,7 € R be such that n* — 7% = 4 and let m # 0. Then for
z € (=|ml,|ml) one has 0 € specq (M. — ©) if and only if z = =T m.

ess (

Proof. Throughout the proof we assume that z € (—|m|, |m|). In particular, M, is
a bounded self-adjoint operator in L?(X; C?). Recall that
1
Mz -0 = Am(?’]@'g — 7'0'3>A + AGZA,
and using Proposition 3.5 we decompose this self-adjoint operator in M, — O =
El + EQ, where

1 1 _
A + i(z +m)1 —~ACyTA
=, = n+T ! 47 ] 2 /
—ATCLA A+ —(z—m)l
2 s n—rT * 47r(z m)

and =, € \Ilgl is a compact self-adjoint operator in L?(3;C?). We note that =;
defined on dom(M, — ©) = dom © is a self-adjoint operator in L*(3; C?). Tt follows
that spec. (M, — O) = spec(Z1) and, in particular,

0 € spec (M, — O) if and only if 0 € spec.(Z1).

In the following we will show that 0 € spec. (=) if and only if z = —5 m. For
this, the Schur complement of =Z; and Proposition 2.10 will be used. To proceed, we
shall use the operator A € Wi/ from (2.8) (see also (2.7)). Recall also that A2 > 3

[ml|e

for co > 0. Now we choose ¢q such that c§ > 2

of El

|n+ 7|. Then the upper left corner

1 l
A+ — 1
n+T i 4 (z4m)
is boundedly invertible in L?*(X). We leave it to the reader to check that the other
assumptions in Proposition 2.10 are also satisfied for the block operator matrix =;.
Therefore, we have 0 € spec.(=Z;) if and only if 0 € spec,(8), where 8 := 8(Z,) is
the Schur complement

ess (

l(z+m)(n+T)

1 A2 4 l(z—m)
4m

S =
n—rT 4

~1
-1 Z T ATCLA (A2 + ]1) ACSTA.

To simplify the last summand in the above expression of 8§ we use the identity
(A2 +al)y P =A2—aA YA +al) AT = A2 —aA (A2 Fal)t (4.27)
and rewrite 8 = 8; + 8y with

5, — 1 A2+€(z—m)

n—rT A7

- Z T ATCLCSTA
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and

(n+7)? lz+m)
4 4m

z+m)(n+T)
41

-1
Sy = ATCS (A2 + ]l) CsTA.
By Proposition 2.9 one has C{,Cy = 1 + K; with K; € U™, so

n+T

CEATCLCSTA = Z T A% K,
with Ky € U5, This gives because of n? — 72 = 4
1 - 0 -
sy =L a2 Emmy T e g Mmoo
n—T 4 4 47

In order to deal with 8y we use again the identity (4.27), which gives

4 47 , s lz4+m)(n+T1) -
(77 T 7_)2 E(z T m) 89 ATCE (A + T Cs, 3+ £y,
where B
K3 = ATCL,A2CsTA
and
-1
PG ”;) 7 \poyp- <A2 MG TZ) n+7) ]1) CsTA.
T T

Using Proposition 2.2 one finds that K, € \Dgl and hence this operator is compact
in L?(3;C?). In order to simplify K3 we note first that

K5 :=TCHyA 2 — A*TC% € U2
by Proposition 2.2 (ii). Hence,
K3 = AN 2TCLOsTA + AK5CsTA =: AN ?TCLCsTA + K

with K € Ug'. Using again CxCs — 1 € W=, see Proposition 2.9, we arrive at
K3 =1 + K; with K; € ¥g'. With this we find
(n+7)* L(z+m)

Sy = . Ks+ Ky) =
2 1 47r(3+4)

(n+71)? lz+m)

1+ K,
4 A + s

with Kg € W', Using this in the expression of the Schur complement § we conclude,
with some Ky € \Ilgl, that

S=81+38
_ <€(z4—7rm) N (77—27-)2 ' €<Z4—;m)>]l+Kg
I ) (O e,
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As Ky is compact and symmetric, it does not influence the essential spectrum, and

we have
(n+7)*—4
——m

(n+7)* +4

With n? — 72 = 4 we can simplify the last expression to

§) if and only if z = —

€ess (

0 € spec

(77—|—7')2—4_772—|—7'2+2777'—n2—|—7'2 _27‘2—|—2777_27'(17+7') T

(n+72+4 P2t -1 22427 (n+T) N
Hence, 0 € spec.(8) if and only if z = — T m. This finishes the proof of this
n
proposition. [

We are now ready to describe the spectral properties of A, ; for critical interac-
tion strengths. Compared to Proposition 4.7, the following theorem shows that the
spectral properties of A, . differ significantly from the non-critical case.

Theorem 4.13. Let n,7 € R be such that n”* — 72> = 4. Then the following holds:
(i) The essential spectrum of A, - is
SP€Cegs(Apr) = (=00, —|m|] U { - %m} U [Jm], +00).
In particular, for m =0 we have spec(A, ;) = specy(A4,-) = R.

(ii) Assume m # 0. Then z ¢ spec(Ay.-) s a discrete eigenvalue of A, ; if and
only if there exists ¢ € H~'/?(3;C?) such that (og + (nog + 703)C. )¢ = 0.

(iii) For all s > 0 we have dom A, . ¢ H*(R*\ X;C?).

Remark 4.14. Ttem (ii) in the above theorem is slightly weaker as Proposition 4.7 (ii),
since one has to search for eigenfunctions ¢ of the Birman-Schwinger operator oy +
(noo + 703)C, in the larger space H~'/2(3;C?). However, as there is no Sobolev
regularity in dom A, . the smoothness of the eigenfunctions of oy + (nog + 703)C,
can not be improved.

Proof of Theorem 4.13. In order to verify assertion (i) we note that the inclusion
(=00, —|m|] U [|m],00) C speceg(A;.r) (4.28)

can be shown in the same way as in [9, Theorem 5.7 (i)], where the three dimensional
situation is discussed. In fact, for a fixed z € (—oo, —|m|) U (|m], 00) one verifies
that

1 1 e e
fo(x1,22) := EX <ﬁ|x - yn|> e szmzwl(VZZ — m20y + mos + ZUO)C

is a singular sequence for A, , and z. Here x : R — [0,1] is a C*°-function such

that x(t) = 1 for |t| < 1 and x(t) = 0 for |[¢{] > 1, ( € C? is chosen such that

(V22 —m20y + moz + z09)¢ # 0, R > 0 is such that R®\ B(0,R) C Q_, and
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Yn = (R+n20), n € N. The reader is referred to the proof of [9, Theorem 5.7 (i)]
for more details. Moreover, according to Theorem 2.12 we have z € specq (A4, ) N
(—|m|,|m|) if and only if 0 € spec.(© — M.), that is, by Proposition 4.12 we have
Z € SpeCeg(Ay,r) N (=|m|, |m|) if and only if 2 = —Fm. Together with (4.28) this
implies (i).

To prove item (ii) we note first that by Theorem 2.12 a point z € res(Ap) is an
eigenvalue of A, . if and only if zero is an eigenvalue of © — M,. Using a similar
calculation as in (4.16) this shows that z € res(A4) is an eigenvalue of A, . if and
only if there exists ¢ € dom © C L?*(X; C?) such that

ess

—A(nog + 70o3)7* (00 + (noo + TJg)GZ)Aw =0,

i.e. if and only if ¢ := Ay € H™'/2(X; C?) satisfies (00 + (noo + 703)C.) ¢ = 0.
Eventually, since dom A4, ; is independent of m, it suffices to prove state-

ment (iii) for m # 0. In this case the claim is a consequence of Proposition 3.2, as

Specess(AnyT) N (_|m|7 |m|) 7é @ O

Finally, we state several symmetry relations in the spectrum of A, .. The follow-
ing proposition is the counterpart of Proposition 4.8 for critical interaction strengths.

Proposition 4.15. Let n,7 € R and assume that n* — 7> = 4. Then the following
holds:

(i) z € spec,(Ay-) if and only if z € spec, (A, ;).
(ii) z € spec,(Ay.7) if and only if —z € spec,(A_, ;).

Proof. In the following set A; = A, | (domA,, N H'(R*\ ¥;C?)). Then
by Theorem 4.11 the operator Al _is essentially self-adjoint in L?(R?;C?) and, in

T
: 1 _
particular, A} = A, ..

(i) Consider the unitary and self-adjoint mapping
U: L} (Q4;C)@L*(Q-;C°) — L2(Q; C)@L*(Q-;C%), U(fy@f-) = f+®(—f-).

As in the proof of Proposition 4.8 (i) one verifies A}W = UAl_n’_TU. By taking
closures we find A, = UA_, _;U and hence the claim follows.
(ii) Consider the nonlinear charge conjugation operator

Cf=oif, f € L*(R?% C?).

Then C?f = f for f € L*R?*C? and in the same way as in the proof of
Proposition 4.8 (ii) one obtains CA, = —A!' C. Taking closures leads to
CA, .= —A_,,;C, which implies (ii). O
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4.4 Sketch of the proof of Theorem 1.3

To prove Theorem 1.3 we use similar constructions as in the case of one loop. We
give some comments on necessary modifications in this subsection. Let N > 1
and let ¥;,7 € {1,..., N}, be non-intersecting C'*°-smooth loops with normals v;.
We set X = Ujvzl 3;, and for f € H(o,R?*\ ) we denote its Dirichlet traces from
Lemma 3.1 on the two sides of X; by ‘J'i ;f» where — corresponds to the side to which
v; is directed. The Sobolev spaces on X are defined by H*(X) := @j\le H*(%;), and
for ¢ € H*(X) we denote by ¢; its restriction on ¥;. Furthermore, if A; denotes
the isomorphism defined in (2.8) on ¥;, then we set A := @jvzl A;. As in the case
of one loop one starts with the symmetric operator S := Ay | Hj(R? \ ; C?). For
z € res(Ap) and ¢ € L*(X; C?) we introduce

D.p(z) = /E@(x —y)p(y)ds(y), zeR*\X.

As for the single loop in Proposition 3.3 one shows that @, extends to a bounded
map @, : H~Y/2(%;C?) — L?(R? C?) with ran®, = ker(S* — z). The associated
principal value operator C,,

(€4)(@) = pv. [ oo = ply)dsty), ¢ € CX(EC), a e
M
has a block structure of the form

(Cp)j(x) == Clops () + Y _(KFer)(x), @€ C®(%CP), z €Y, (4.29)

k#j
€p)w) =p. [ oo e ds). e, (4.30)
o)) = [ d:(z —y)enly) ds(y). zeX;. (4.31)

The operators € are the same as in the one loop case, while the operators K%* have
smooth integral kernels; hence, they define bounded operators from H*(3, C?) to
HY(3;,C?) for any s,¢ € R. With the help of Proposition 3.6 one can show now the
trace equality

i
TL®p=7F B (0-v;) @i + (C’z@)j-
The construction of the boundary triple takes then literally the same form as for
a single loop. Let ¢ € res(4) be fixed and set (T2f) = (TL,f)L,. Then
{L2<2, C2>, FO, Fl} with
Lof =ih"H o - v)(T2f = T2F),

Df = g A((T2F 4+ T20) (€ + AT,
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is a boundary triple for S*. The corresponding 7-field G and Weyl function M are
2z G, = ®,A and

2 M. = A€, - %(e<+e<-))/\.

Assume first that |n;| # || for any j. We define the linear operator © in
L*(%;C?) by

1 _ 1
0= -Alz+ 5 €+ €A (E0) = (o= ou) ¢
M =7

on its maximal domain in L?(3;C?). Then the operator Ay defined in (1.3) cor-
responds to the boundary condition 'y f = OT'of. Using (4.29) one sees that © can
be written as © = @jvzl 0, + ©, where ©; is the operator in L?(X;; C?) acting as

0; = —A; { 3 (1j00 = 7j03) + 5 (€ + Co) | Ay,

2
ny —7j

with maximal domain, while © is a bounded operator from H*(3, C2) to H'(%, C?)
for any s,¢ € R which is self-adjoint in L?(3; C?). Hence, the self-adjointness of © is
determined by the self-adjointness of @jvzl ©,, and each ©; is exactly of the form as
in the single-loop case. Hence, ©; is self-adjoint by Lemma 4.5 and Lemma 4.9 and
thus, also © is self-adjoint in L?(X; C?). This implies also the statements concerning
the domain regularity.

In order to study the essential spectrum we decompose M, to blocks as in (4.29)
and remark that the terms KJ* produce compact remainders, which do not influence

the essential spectrum. Hence, the condition 0 € spec, (M, — ©) is equivalent to

N

1 .
0e SPECegq <@ (Ajm(njao — TjO’3)Aj + AJGJZA]>> .
J

7j=1 J

As each of the terms on the right-hand side is covered by the analysis of the single-
loop case, the statement on the essential spectrum of M, — © and thus, with the
help of Theorem 2.12, also of Ay, p, follows.

If for some j one has |n;| = |7;|, then the analysis can be done in a similar way
following the strategy from Section 4.2. The details are left to the reader.
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