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Abstract

This paper is devoted to the study of the two-dimensional Dirac opera-
tor with an arbitrary combination of an electrostatic and a Lorentz scalar
δ-interaction of constant strengths supported on a closed curve. For any com-
bination of the coupling constants a rigorous description of the self-adjoint
realization of the operators is given and the spectral properties are described.
For a non-zero mass and a critical combination of coupling constants the op-
erator appears to have an additional point in the essential spectrum, which is
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related to a loss of regularity in the operator domain, and the position of this
point is expressed in terms of the coupling constants.
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1 Introduction

1.1 Motivations and state of the art

Initially introduced to model the effects of special relativity on the behavior of quan-
tum particles of spin 1

2
(such as electrons), the Dirac operator also comes into play

as an effective operator when studying low-energy electrons in a single layered ma-
terial like graphene. In order to model the interaction of the particles with external
forces, the Dirac operator is coupled to a potential and the understanding of the
spectral features of the resulting Hamiltonian translates into dynamical properties
of the quantum system.

In the last few years a class of singular potentials has been extensively studied
in this relativistic setting. These potentials, which are called δ-interactions, are
supported on sets of Lebesgue measure zero and used as idealized replacements for
regular potentials localized in thin neighborhoods of the interaction supports in the
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ambient Euclidean space. In nonrelativistic quantum mechanics these interactions
were successfully studied in the case of Schrödinger operators with point interactions
in [1] or with δ-interactions supported on hypersurfaces in Rd, e.g., in [10, 13, 21].
In the relativistic setting also the one dimensional case, i.e. Dirac operators with δ-
potentials supported on points in R, were investigated first, see [1,16,24,31]. Then,
the case of potentials supported on surfaces in R3 was discussed in [3–7,9,20,25,29,
30], a recent contribution in the two-dimensional case is [32]. In the works mentioned
above, it was observed that there are critical interaction strengths for which the self-
adjoint realization of the operator shows a loss of regularity in the operator domain
and, as a result, may have different spectral properties as in the non-critical case.
This critical case is still not fully understood in the three dimensional case.

In this paper we want to study Dirac operators in R2 with electrostatic and
Lorentz scalar δ-potentials supported on loops. We provide a systematic approach
combining the general theory of boundary triples and pseudodifferential calculus
for matrix-valued singular integral operators supported on loops, which is inspired
by the analysis in [9] and the paper [15], where similar questions for sign-changing
Laplacians are studied. We show the self-adjointness of the Dirac operators with
these singular potentials and discuss spectral properties for all possible combinations
of interaction strengths. Unlike the previous work in R3, we are able to deal with
more general δ-interactions and there is no restriction on the geometry of the loops.
This answers fully [29, Open Problem 11] in space dimension two.

In the following we describe the problem setting in more details. To set the stage,
let Σ be a connected and closed C∞-smooth curve which splits R2 into a bounded
domain Ω+ and an unbounded domain Ω−, and let ν = (ν1, ν2) be the unit normal
vector field at Σ pointing outwards of Ω+. For a C2-valued function f defined on
R2 we will often use the notation f± := f � Ω±. Then, the distribution δΣf with a
function f having a discontinuity along Σ is defined in the symmetric form by

〈δΣf, ϕ〉 :=

∫
Σ

1

2

(
TD+f+ + TD−f−

)
· ϕ ds,

where TD±f± denotes the Dirichlet trace of f± at Σ and ds means the integration
with respect to the arc-length. We study Dirac operators Aη,τ in L2(R2;C2) which
correspond to the formal differential expression

Dη,τ := −i
(
σ1∂1 + σ2∂2

)
+mσ3 + (ησ0 + τσ3)δΣ,

where σ0 is the identity matrix in C2×2, σ1, σ2, σ3 are the C2×2-valued Pauli spin
matrices defined in (1.4), and m, η, τ ∈ R. Following the standard language [38]
one may interpret η and τ as the strengths of the electrostatic and Lorentz scalar
interactions on Σ, respectively, while the parameter m is usually interpreted as the
mass. Integration by parts shows that if the distribution Dη,τf is generated by an
L2-function, then f has to fulfil the transmission condition

−i (σ1ν1 + σ2ν2) (TD+f+ − TD−f−) =
1

2
(ησ0 + τσ3)(TD+f+ + TD−f−). (1.1)
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Our approach to study the self-adjointness and the spectral properties of Aη,τ
is to define this operator as an extension of a certain symmetric operator and to
use a suitable boundary triple to investigate the mentioned properties. Boundary
triples are an abstract approach in the extension and spectral theory of symmetric
and self-adjoint operators in Hilbert spaces [8, 14, 17, 18]. In the one and three
dimensional setting they were applied successfully to study similar operators as Aη,τ
in [6,9,16,31]. In the present paper we follow ideas from [9] to construct a boundary
triple which allows us to show the self-adjointness and study the spectral properties
of Aη,τ for all possible combinations of interaction strengths η and τ .

The second main ingredient in the study of Aη,τ are explicit properties of integral
operators associated to the Green function corresponding to the unperturbed Dirac
operator. Similar objects played a key role in the investigation of Dirac operators
with singular potentials supported on surfaces in R3 in [3–7,9,30]. Since to the best
of our knowledge these integral operators are not studied in the two dimensional
case in detail, we provide the necessary results. In this analysis the properties of
several well-known periodic pseudodifferential operators, such as the Cauchy and
Hilbert transforms on Σ, play a crucial role and linking them to the Dirac operator
is an important finding in this paper.

1.2 Main results

Let us pass to the formulation and discussion of the main results of this paper. To
define the operator Aη,τ rigorously, we denote for an open set Ω ⊂ R2

H(σ,Ω) =
{
f ∈ L2(Ω;C2) : (σ1∂1 + σ2∂2)f ∈ L2(Ω;C2)

}
,

where the derivatives are understood in the distributional sense. One can show that
functions f± in H(σ,Ω±) admit Dirichlet traces TD±f± in H−1/2(Σ;C2). With these
notations in hand we define now, following (1.1), for η, τ ∈ R the operator Aη,τ in
L2(R2;C2) by

Aη,τf :=
(
− i(σ1∂1 + σ2∂2) +mσ3

)
f+ ⊕

(
− i(σ1∂1 + σ2∂2) +mσ3

)
f−,

domAη,τ :=

{
f = f+ ⊕ f− ∈ H(σ,Ω+)⊕H(σ,Ω−) :

− i (σ1ν1 + σ2ν2)
(
TD+f+ − TD−f−

)
=

1

2
(ησ0 + τσ3)

(
TD+f+ + TD−f−

)}
.

(1.2)
In the analysis of Aη,τ it turns out that the special combination η2 − τ 2 = 4 of
interaction strengths is critical in the sense that the Aη,τ has different properties
than in the so called non-critical case η2 − τ 2 6= 4. This phenomenon was also
observed in the three dimensional case in [7], see also [3, 6, 9, 30].

In the non-critical case η2− τ 2 6= 4 the basic properties of Aη,τ are the following:

Theorem 1.1. Let η, τ ∈ R be such that η2 − τ 2 6= 4. Then Aη,τ is self-adjoint in
L2(R2;C2) with domAη,τ ⊂ H1(R2 \ Σ;C2), the essential spectrum of Aη,τ is

specess(Aη,τ ) =
(
−∞,−|m|

]
∪
[
|m|,∞

)
,
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and the discrete spectrum of Aη,τ in (−|m|, |m|) is finite.

The proof of Theorem 1.1 is given in Section 4.2. There, also some additional
properties of Aη,τ like a Krein-type resolvent formula, an abstract version of the
Birman-Schwinger principle, and some symmetry relations in the point spectrum of
Aη,τ are shown. Similar results are known in the three dimensional case, see [7].

Our main results in the critical case η2 − τ 2 = 4 are stated in the following
theorem. In particular, this shows that there is a loss of regularity in the domain
of Aη,τ and that there is an additional point in the essential spectrum. Hence, Aη,τ
has indeed different properties in the critical as in the non-critical case.

Theorem 1.2. Let η, τ ∈ R be such that η2 − τ 2 = 4. Then Aη,τ is self-adjoint in
L2(R2;C2) with domAη,τ 6⊂ Hs(R2 \Σ;C2) for any s > 0, and the restriction of Aη,τ
onto the set domAη,τ ∩H1(R2 \Σ;C2) is essentially self-adjoint in L2(R2;C2). The
essential spectrum of Aη,τ is

specess(Aη,τ ) =
(
−∞,−|m|

]
∪
{
−τ
η
m

}
∪
[
|m|,∞

)
.

Theorem 1.2 is the main result of this paper and shown in Section 4.3. There, also
a Krein type resolvent formula, a Birman Schwinger principle, and several symmetry
relations in the point spectrum of Aη,τ are shown. We would like to point out that
the corresponding properties in dimension three are only known in the case of purely
electrostatic interactions, i.e. when η = ±2 and τ = 0, see [9,30]. In particular, the
fact that the new point − τ

η
m of the essential spectrum of Aη,τ can be any value in

(−|m|, |m|) was not observed previously. We remark that several papers addressed
the question of presence of a non-empty essential spectrum for Dirac operators in
bounded domains with various boundary conditions, see e.g. [12,23,36]. Our results
can also be regarded as a contribution in this direction.

By a minor modification of the argument, one can also deal with an interaction
supported on several loops. Let N ≥ 1 and consider a family of non-intersecting
C∞-smooth loops Σ1, . . . ,ΣN with normals νj, j ∈ {1, . . . , N}. We set Σ :=

⋃N
j=1 Σj,

and for f ∈ H(σ,R2 \ Σ) we denote its Dirichlet traces on the two sides of Σj as
TD±,jf , where − corresponds to the side to which νj is directed. In addition, consider
a family of pairs of real parameters

P :=
(
(ηj, τj)

)
j∈{1,...,N}, ηj, τj ∈ R,

and define the associated operator AΣ,P by

AΣ,Pf :=
(
− i(σ1∂1 + σ2∂2) +mσ3

)
f in R2 \ Σ,

domAΣ,P :=
{
f ∈ H(σ,R2 \ Σ) :

− i (σ1νj,1 + σ2νj,2)
(
TD+,jf − TD−,jf

)
=

1

2
(ησ0 + τσ3)

(
TD+,jf + TD−,jf

)
for each j ∈ {1, . . . , N}

}
.

(1.3)
Then the preceding results can be extended as follows:
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Theorem 1.3. Denote

Icrit :=
{
j ∈ {1, . . . , N} : η2

j − τ 2
j = 4

}
.

Then the following is true:

(i) If Icrit = ∅, then AΣ,P is self-adjoint with domAΣ,P ⊂ H1(R2 \ Σ;C2), the
essential spectrum of AΣ,P is

specess(AΣ,P) =
(
−∞,−|m|

]
∪
[
|m|,∞

)
,

and the discrete spectrum of AΣ,P in (−|m|, |m|) is finite.

(ii) If Icrit 6= ∅, then AΣ,P is self-adjoint with domAΣ,P 6⊂ Hs(R2 \ Σ;C2) for any
s > 0, and the restriction of AΣ,P onto the set domAΣ,P ∩ H1(R2 \ Σ;C2) is
essentially self-adjoint in L2(R2;C2). The essential spectrum of AΣ,P is

σess(AΣ,P) =
(
−∞,−|m|

] ⋃
j∈Icrit

{
− τj
ηj
m
}
∪
[
|m|,+∞

)
.

Necessary modifications for the proof of Theorem 1.3 are given in Subsection 4.4.

1.3 Structure of the paper

Let us shortly describe the structure of the paper. First, in Section 2 we recall
some well-known facts on periodic pseudodifferential operators on curves, boundary
triples, and Schur complements of block operator matrices. With that we study
then in Section 3 integral operators, which are associated to the Green function
corresponding to the free Dirac operator in R2, and construct a boundary triple
which is suitable to study the properties of Aη,τ . Eventually, Section 4 is devoted to
the proofs of the main results of this paper, Theorems 1.1–1.3.

1.4 Notations

In this paper we denote the identity matrix in C2×2 by σ0 and the C2×2-Pauli spin
matrices by

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
. (1.4)

It is not difficult to see that the Pauli matrices fulfil

σjσk + σkσj = 2δjkσ0, j, k ∈ {1, 2, 3}. (1.5)

For x = (x1, x2) ∈ C2 we write σ·x = σ1x1+σ2x2 and in this sense σ·∇ = σ1∂1+σ2∂2.
Next, Σ ⊂ R2 is always a C∞-loop of length ` > 0, which splits R2 into a bounded

domain Ω+ and an unbounded domain Ω− with common boundary Σ. By ν we
denote the unit normal vector field at Σ which points outwards of Ω+, and t denotes
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the unit tangent vector at Σ. If γ : [0, `] → R2 is an arc length parametrization of
Σ with positive orientation, then we have t = γ′ and ν = (γ′2,−γ′1). We sometimes
identify the vector t ∈ R2 with the complex number T = t1 + it2.

If Ω is a measurable set, we write, as usual, L2(Ω) for the classical L2-spaces and
L2(Ω;C2) := L2(Ω)⊗C2. If Ω = Σ, then L2(Σ) is based on the inner product, where
the integrals are taken with respect to the arc-length. By Hs(Ω) we denote Sobolev
spaces of order s ∈ R on Ω, and the Sobolev spaces on the curve Σ are reviewed in
Section 2.1.

Next, we set
T := R/Z.

Then C∞(T) is the space of all C∞(R)-functions which are 1-periodic. For α ∈ R
we denote the set of periodic pseudodifferential operators on T by Ψα and the set
of periodic pseudodifferential operators on Σ by Ψα

Σ, see Definitions 2.1 and 2.3.
For a linear operator A in a Hilbert space H we write domA, ranA, and kerA for

its domain, range, and kernel, respectively. The identity operator is often denoted by
1. If A is self-adjoint, then we denote by res(A), spec(A), specp(A), and specess(A)
the resolvent set, spectrum, point, and essential spectrum, respectively. If A is self-
adjoint and bounded from below, then N(A, z) is the number of eigenvalues smaller
than z taking multiplicities into account. For z > inf specess(A) this is understood
as N(A, z) =∞.

Finally, Kj stands for the modified Bessel function of the second kind and order j.
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2 Preliminaries

In this section we provide some preliminary material from functional analysis and
operator theory. First, in Section 2.1 we recall the definition and some properties
of periodic pseudodifferential operators on smooth curves and some special integral
operators of this form. Afterwards, in Section 2.2 a theorem on the Schur com-
plement of block operator matrices is recalled and finally, in Section 2.3 boundary
triples and their γ-fields and Weyl functions are briefly discussed.
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2.1 Sobolev spaces and periodic pseudodifferential opera-
tors on closed curves

In this section some properties of periodic pseudodifferential operators on closed
curves are discussed. Special realizations of such operators will play an important
role in the analysis of Dirac operators with singular interactions later. The presen-
tation in this section follows closely the one in [35, Chapters 5 and 7].

Throughout this section Σ ⊂ R2 is always a C∞-smooth loop of length ` and
γ : [0, `]→ Σ is an arc length parametrization of this curve, i.e. one has |γ′(s)| = 1
for all s ∈ [0, `]. First, we will introduce Sobolev spaces on Σ. For that we recall
some constructions for Sobolev spaces of periodic functions on the unit interval.
Denote

T := R/Z.
For a distribution f ∈ D′(T) := C∞(T)′ (in [35] this space is denoted by D′1(R)) we
write, as usual,

f̂(n) := 〈f, e−n〉D′(T),D(T), en(t) = e2πnit, n ∈ Z,

for its Fourier coefficients. Recall that a distribution f ∈ D′(T) can be reconstructed
from its Fourier coefficients by

f =
∑
n∈Z

f̂(n)en, (2.1)

where the series converges in D′(T), see [35, Theorem 5.2.1]. For two distributions
f, g ∈ D′(T) we denote by f ? g their convolution which is defined (via its Fourier
coefficients) by

f̂ ? g(n) = f̂(n) ĝ(n), n ∈ N.
In particular, for f, g ∈ L1(T) one simply has

f ? g =

∫
T
f(s)g(· − s) ds.

For convenience we set

n :=

{
1, n = 0,

|n|, n 6= 0,
n ∈ Z.

Then for s ∈ R, the Sobolev space Hs(T) consists of the distributions f ∈ D′(T)
with

‖f‖2
Hs(T) :=

∑
n∈Z

n2s
∣∣f̂(n)

∣∣2 <∞.
The set Hs(T) endowed with the above norm becomes a Hilbert space. If s < t,
then H t(T) is compactly embedded into Hs(T).

Having the definition of Sobolev spaces on T, we can translate this to Sobolev
spaces of order s ∈ R on Σ. For that we define on D′(Σ) := C∞(Σ)′ the linear map

U : D′(Σ)→ D′(T), (Uf)(ϕ) = f
(
`−1ϕ(`−1γ−1(·))

)
, ϕ ∈ C∞(T). (2.2)
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It is not difficult to verify that

Uf(t) = f(γ(`t)), f ∈ L1(Σ), t ∈ T; (2.3)

this property will often be used. For s ∈ R we define the space

Hs(Σ) :=
{
f ∈ D′(Σ) : Uf ∈ Hs(T)

}
,

which, endowed with the norm

‖f‖Hs(Σ) := ‖Uf‖Hs(T), f ∈ Hs(Σ),

is a Hilbert space. By construction the induced map

U : Hs(Σ)→ Hs(T), s ∈ R, (2.4)

is unitary. For f ∈ H0(Σ) it is useful to observe that

‖f‖2
H0(Σ) = ‖Uf‖2

H0(T) =
∑
n∈Z

∣∣(Uf, en)L2(T)

∣∣2 = ‖Uf‖2
L2(T) = `−1‖f‖2

L2(Σ).

Note also that the definition of Hs(Σ) implies that C∞(Σ) is dense in Hs(Σ) for all
s ∈ R.

Next, we recall the definition of periodic pseudodifferential operators on T and
translate this concept to periodic pseudodifferential operators on Σ. For that we
define for a function F : Z→ C

(ωF )(n) = (ωnF )(n) := F (n+ 1)− F (n), n ∈ Z. (2.5)

The subscript n is used, if the function F depends on more than one variable to
clarify on which variable ω is acting.

Definition 2.1. A linear operator H acting on C∞(T) is called a periodic pseu-
dodifferential operator of order α ∈ R, if there exists a function h : T×Z→ C with
h(·, n) ∈ C∞(T) for each n ∈ Z and

Hu(t) =
∑
n∈Z

h(t, n) û(n) en(t) for all u ∈ C∞(T), (2.6)

and for all k, l ∈ N0 there exist constants ck,l > 0 such that∣∣∣∣ ∂k∂tk ωlnh(t, n)

∣∣∣∣ ≤ ck,l n
α−l for all n ∈ Z.

The class of all periodic pseudodifferential operators of order α is denoted by Ψα.
Furthermore, we set

Ψ−∞ :=
⋂
α∈R

Ψα.
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We note that one has the obvious inclusions Ψα ⊂ Ψβ for α < β. Moreover, in
the spirit of (2.1) the periodic pseudodifferential operator H is determined by its
Fourier coefficients

Ĥu(m) =
∑
n∈Z

û(n)〈h(·, n)en, e−m〉D′(T),D(T).

In particular, if h is independent of t, then we simply have Ĥu(n) = h(n)û(n). The
following properties of periodic pseudodifferential operators can be found in [35,
Theorem 7.3.1 and Theorem 7.8.1].

Proposition 2.2. (i) Let H ∈ Ψα. Then for any s ∈ R the operator H uniquely
extends by continuity to a bounded operator Hs(T)→ Hs−α(T); this extension
will be denoted by the same symbol H.

(ii) Let H ∈ Ψα and G ∈ Ψβ. Then H + G ∈ Ψmax{α,β}, HG ∈ Ψα+β, and
HG−GH ∈ Ψα+β−1.

Having the definition of periodic pseudodifferential operators on T and the bi-
jective map U in (2.2) it is now straightforward to define periodic pseudodifferential
operators on the loop Σ.

Definition 2.3. A linear map H : C∞(Σ) → D′(Σ) is called a periodic pseudodif-
ferential operator of order α ∈ R on Σ, if there exists a periodic pseudodifferential
operator H0 of order α on T such that

H = U−1H0U.

We denote by Ψα
Σ the linear space of all periodic pseudodifferential operators of order

α ∈ R on Σ and set
Ψ−∞Σ :=

⋂
α∈R

Ψα
Σ.

In view of Proposition 2.2 and the fact that U in (2.4) is unitary it is clear that
each H ∈ Ψα

Σ induces a unique bounded operator H : Hs(Σ)→ Hs−α(Σ).
In what follows we discuss several special periodic pseudodifferential operators

and their mapping properties which will play an important role in the analysis in the
main part of this paper. First, let c0 > 0 be a constant and consider the operator

Lαu(t) =
∑
n∈Z

(
c2

0 + |n|
)α/2

û(n) en(t), u ∈ C∞(T), α ∈ R, (2.7)

on C∞(T). Note that the Fourier coefficients of Lαu are L̂αu(n) = (c2
0 + |n|)α/2 û(n)

for n ∈ Z. One can show that Lα ∈ Ψα/2 and hence Lα induces an isomorphism
from Hs(T) to Hs−α/2(T) for any s ∈ R. The operator L = L1 will be of particular
importance in the following.

Using the operator U from (2.2) we introduce

Λα := U−1LαU ∈ Ψ
α/2
Σ , α ∈ R, (2.8)
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and conclude that Λα : Hs(Σ) → Hs−α/2(Σ) is an isomorphism for any α, s ∈ R.
Moreover, the above definition of Λ implies that ΛαΛβ = Λα+β for all α, β ∈ R. We
note that the realization of Λ = Λ1 for s = 1

2
is viewed as an unbounded self-adjoint

operator in L2(Σ) satisfying Λ ≥ c0. In particular, by varying c0 we get that Λ is a
uniformly positive operator and that its lower bound can be arbitrarily large.

With the aid of Λ we can prove now the following lemma.

Lemma 2.4. Let H ∈ Ψα
Σ, consider the associated linear operator in L2(Σ) defined

by

H∞u = Hu, domH∞ = C∞(Σ),

and assume that H∞ is symmetric. Then the adjoint H∗∞ is given by

H∗∞f = Hf, domH∗∞ =
{
f ∈ L2(Σ) : Hf ∈ L2(Σ)

}
.

Proof. The result is trivial for α ≤ 0 due to the boundedness of H∞; cf. Proposi-
tion 2.2. Hence, we may assume that α > 0. Recall that f ∈ domH∗∞ if and only if
the mapping

C∞(Σ) 3 u 7→ (H∞u, f)L2(Σ) (2.9)

can be extended to a bounded functional on L2(Σ).
Let f ∈ L2(Σ) and fn ∈ C∞(Σ) such that fn → f in L2(Σ). For u ∈ C∞(Σ) and

the map U from (2.2)-(2.4) one has

(H∞u, f)L2(Σ) = lim
n→∞

(H∞u, fn)L2(Σ) = lim
n→∞

(u,Hfn)L2(Σ) = lim
n→∞

`(Uu, UHfn)L2(T)

= lim
n→∞

`(L2αUu, L−2αUHfn)L2(T) = `(L2αUu, L−2αUHf)L2(T),

where we have used in the last step that L−2αUH = L−2αUHU−1U gives rise to
a bounded operator from L2(Σ) → L2(T) due to L−2α ∈ Ψ−α, UHU−1 ∈ Ψα, and
Proposition 2.2. Therefore, if f ∈ L2(Σ) is such that Hf ∈ L2(Σ), then

`(L2αUu, L−2αUHf)L2(T) = `(Uu, UHf)L2(T) = (u,Hf)L2(Σ)

and the functional in (2.9) is bounded,

|(H∞u, f)L2(Σ)| = |(u,Hf)L2(Σ)| ≤ ‖u‖L2(Σ)‖Hf‖L2(Σ),

and hence, f ∈ domH∗∞ and H∗∞f = Hf .
On the other hand, for f ∈ domH∗∞ and every u ∈ C∞(Σ) the functional in (2.9)

is bounded. For the special choice

uk =
∑
|n|≤k

ÛHf(n)U−1en ∈ C∞(Σ), k ∈ N,

11



one has Ûuk(n) = ÛHf(n) for |n| ≤ k and Ûuk(n) = 0 for |n| > k, and hence

(H∞uk, f)L2(Σ) = `(L2αUuk, L
−2αUHf)L2(T)

= `
∑
n∈Z

L̂2αUuk(n) ̂L−2αUHf(n)

= `
∑
n∈Z

(c2
0 + |n|)αÛuk(n)(c2

0 + |n|)−αÛHf(n)

= `
∑
|n|≤k

∣∣ÛHf(n)
∣∣2.

Sending k → ∞ we see that a necessary condition for the functional in (2.9) to be
bounded on L2(Σ) is given by ∑

n∈Z

∣∣ÛHf(n)
∣∣2 <∞,

i.e. UHf ∈ L2(T), and hence Hf ∈ L2(Σ). We have shown that f ∈ domH∗∞ if
and only if Hf ∈ L2(Σ), which finishes the proof of this lemma.

Next, we discuss that several types of integral operators on T are in fact periodic
pseudodifferential operators, which allows us to deduce their mapping properties
from the general theory. Note that via the isomorphism U from (2.2) the results
can be translated to integral operators on Σ. To formulate the following first result,
recall the definition of the map ω from (2.5); the proof of this proposition can be
found in [35, Theorem 7.6.1].

Proposition 2.5. Let α ∈ R and κ ∈ D′(T) such that for any j ∈ N0 there exists
cj > 0 with

∣∣ωjκ̂(n)
∣∣ ≤ cjn

α−j for all n ∈ Z. Let h ∈ C∞(T2) and let the operator
H be defined on C∞(T) by

(Hu)(t) := κ ?
(
h(t, ·)u

)
, u ∈ C∞(T). (2.10)

Then H ∈ Ψα.

We remark that for κ ∈ L1(T) the operator H in (2.10) is an integral operator
acting as

(Hu)(t) :=

∫
T
κ(t− s)h(t, s)u(s) ds, u ∈ C∞(T).

As a corollary we obtain:

Corollary 2.6. Let h ∈ C∞(T2). Then the integral operator acting as

Hu(t) :=

∫
T
h(t, s)u(s) ds, u ∈ C∞(T),

belongs to Ψ−∞.
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In the following proposition we discuss a class of integral operators that appear
quite frequently in our applications.

Proposition 2.7. Let m ∈ N0, let

a : T2 → C and ρ : T→ C

be C∞-functions, assume that ρ is injective with ρ′(t) 6= 0 for all t ∈ T, set κm(z) :=
zm log |z| for z ∈ C \ {0}, and define the integral operator

Hmu(t) :=

∫
T
κm
(
ρ(t)− ρ(s)

)
a(t, s)u(s) ds, u ∈ C∞(T).

Then Hm ∈ Ψ−m−1. Furthermore, in the special case a ≡ 1 and m = 0 one has

1 + 2LH0L ∈ Ψ−1, (2.11)

where the operator L is defined by (2.7).

Proof. First, we treat the case m = 0. For that we introduce the auxiliary function
χ0 : T→ R by χ0(t) := log

∣∣ sin(πt)
∣∣. Then the Fourier coefficients of χ0 are

χ̂0(n) =

− log 2, n = 0,

− 1

2|n|
, n 6= 0,

(2.12)

see [35, Example 5.6.1]. Next, one has

log (|ρ(t)− ρ(s)|) = log(| sin(π(t− s))|) + a0(t, s) (2.13)

with

a0(t, s) = log

(∣∣∣∣ ρ(t)− ρ(s)

sin(π(t− s))

∣∣∣∣) , t 6= s, and a0(t, t) = log

(
|ρ′(t)|
π

)
.

Using Taylor series expansions one sees that there exist smooth functions f1 and f2

such that

1

sin(π(t− s))
=

1

π(t− s)
f1(t, s) and ρ(t)− ρ(s) = (t− s)f2(t, s),

and since ρ is injective, we have ρ(t)−ρ(s)
sin(π(t−s)) 6= 0. From this one concludes that

a0 : T2 → C is a C∞-function. Now we decompose H0 = C0 +D0, where

C0u(t) =

∫
T
χ0(t− s) a(t, s)u(s) ds = (χ0 ? (a(t, ·)u))(t),

D0u(t) =

∫
T
a0(t, s) a(t, s)u(s) ds.
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It follows from (2.12) and Proposition 2.5 that C0 ∈ Ψ−1 and by Corollary 2.6 we
have D0 ∈ Ψ−∞. Hence H0 ∈ Ψ−1 by Proposition 2.2.

To show (2.11) consider LH0L = LC0L + LD0L and note that the second term
in the sum belongs to Ψ−∞. Furthermore, for a ≡ 1 the Fourier coefficients of C0Lu
are given by

Ĉ0Lu(n) = χ̂0(n)L̂u(n) = χ̂0(n)(c2
0 + |n|)1/2û(n),

and hence one finds with the aid of (2.12)

L̂C0Lu(n) = (c2
0 + |n|)1/2χ̂0(n)(c2

0 + |n|)1/2û(n) = b(n)û(n)

with

b(n) = (c2
0 + |n|)χ̂0(n) =

−c
2
0 log 2, n = 0,

−1

2
− c2

0

2|n|
, n 6= 0,

which shows that the action of the operator K := 1 + 2LC0L is determined by

K̂u(n) = k(n)û(n) with k(n) =

1− 2c2
0 log 2, n = 0,

− c
2
0

|n|
, n 6= 0.

Therefore, one can show with the help of Proposition 2.5 that K ∈ Ψ−1.
To study the case m ≥ 1 we consider

ρ(t)− ρ(s) =
(
e−2πi(t−s) − 1

)
a1(t, s)

with the C∞-function

a1(t, s) =
ρ(t)− ρ(s)

e−2πi(t−s) − 1
, t 6= s, and a1(t, t) =

ρ′(t)

−2πi

and note, as for a0, that a1 ∈ C∞(T2). Then using the decomposition (2.13) we
write

(ρ(t)− ρ(s))m log(|ρ(t)− ρ(s)|)
=
(
e−2πi(t−s) − 1

)m
log(| sin(π(t− s))|)a1(t, s)m

+
(
e−2πi(t−s) − 1

)m
a0(t, s)a1(t, s)m.

This shows that Hm = Cm +Dm, where Cm and Dm are integral operators

Cmu(t) =

∫
T

(
e−2πi(t−s) − 1

)m
log(| sin(π(t− s))|)a1(t, s)m a(t, s)u(s) ds,

Dmu(t) =

∫
T

(
e−2πi(t−s) − 1

)m
a0(t, s)a1(t, s)ma(t, s)u(s) ds.

The integral kernel of Dm is smooth, which implies by Corollary 2.6 that Dm ∈ Ψ−∞.
It is remains to show that Cm ∈ Ψ−(m+1). For that consider the function

χm : T→ C, χm(t) :=
(
e−2πit − 1

)m
log(| sin(πt)|).
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Using the map ω from (2.5) and χ0 one obtains that χ̂m(n) =
(
ωmχ̂0

)
(n). Now can

show with the help of (2.12) that

|ωjχ̂m(n)| = |ωm+jχ̂0(n)| ≤ cjn
−m−1−j.

By Proposition 2.5 this yields Cm ∈ Ψ−(m+1), which completes the proof of this
proposition.

Next, recall that the Hilbert transform T0 on T is defined by

T0u(t) := i p.v.

∫
T

cot
(
π(t− s)

)
u(s)ds = (κ ? u)(t), κ = i p.v. cot(π·), (2.14)

where p.v. means the principal value of the integral. By [35, Section 5.7] the distri-
bution κ satisfies

κ̂(n) = sgnn =


−1, n < 0,

0, n = 0,

1, n > 0.

It follows that T̂ 2
0 u(n) = (1− δ0,n)û(n), and

T0 ∈ Ψ0, T 2
0 − 1 ∈ Ψ−∞. (2.15)

In the following assume that a ∈ C∞(T2). Then the operator

(T1u)(t) = i p.v.

∫
T

cot
(
π(t− s)

)
a(s, t)u(s) ds

satisfies for a0(t) := a(t, t) the relation

T1 − a0T0 ∈ Ψ−∞, (2.16)

see Section 7.6.2 in [35]. Since the commutator T2 := a0T0 − T0a0, which acts as

T2u(t) = i p.v.

∫
T

cot
(
π(t− s)

) (
a(t, t)− a(s, s)

)
u(s) ds,

has a C∞ integral kernel, the principal value can be dropped, as the integral is
convergent, and Corollary 2.6 implies that T2 ∈ Ψ−∞. Hence, we also have

T − T0a0 ∈ Ψ−∞. (2.17)

Corollary 2.8. Let ρ : T → C be C∞-smooth and injective with ρ′(t) 6= 0 for all
t ∈ T. Then the operator C given by

Cu(t) =
i

π
p.v.

∫
T

u(s)

ρ(t)− ρ(s)
ds, u ∈ C∞(T),

satisfies

C − 1

ρ′
T0 ∈ Ψ−∞ and C − T0

1

ρ′
∈ Ψ−∞. (2.18)
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Proof. We write

1

π

1

ρ(t)− ρ(s)
= cot

(
π(t− s)

)
a(t, s) with a(t, s) =

1

π

tan
(
π(t− s)

)
ρ(t)− ρ(s)

, t 6= s,

and a(t, t) = 1/ρ′(t). Then a ∈ C∞(T2) and a0(t) = a(t, t) = 1/ρ′(t). Thus (2.18)
follows from (2.16) and (2.17).

Finally we introduce the Cauchy transform CΣ on Σ. For that we identify R2

with C and use the notation

R2 3 x = (x1, x2)> ∼ x1 + ix2 =: ξ ∈ C,
R2 3 y = (y1, y2)> ∼ y1 + iy2 =: ζ ∈ C.

Then

CΣu(ξ) :=
i

π
p.v.

∫
Σ

u(ζ)

ξ − ζ
dζ, u ∈ C∞(Σ), ξ ∈ Σ, (2.19)

where the complex line integral is understood as its principal value. With an arc
length parametrization γ of Σ and x = γ(t), y = γ(s) it follows that CΣ acts as

CΣu(γ(t)) =
i

π
p.v.

∫ `

0

(γ′1(s) + iγ′2(s))u(γ(s))

(γ1(t) + iγ2(t))− (γ1(s) + iγ2(s))
ds.

Recall that for the tangent vector field t at Σ and y = γ(s) ∈ Σ we use the notation
T (y) := t1(y) + it2(y) = γ′1(s) + iγ′2(s). We shall also view y 7→ T (y) as a function
on Σ or s 7→ T (γ(s)) as a function on [0, `]. The same holds for the function
T (y) := t1(y) − it2(y) = γ′1(s) − iγ′2(s), and we will also denote the corresponding
multiplication operators by T and T . With this we see for u ∈ C∞(Σ) and x =
γ(t) ∈ Σ that

(CΣTu)(x) =
i

π
p.v.

∫ `

0

(γ′1(s) + iγ′2(s))(γ′1(s)− iγ′2(s))u(γ(s))

(γ1(t) + iγ2(t))− (γ1(s) + iγ2(s))
ds

=
i

π
p.v.

∫
Σ

u(y)

(x1 + ix2)− (y1 + iy2)
ds(y).

(2.20)

In our considerations also the formal dual C ′Σ of CΣ in L2(Σ), which acts as

C ′Σu(γ(t)) =
i

π
p.v.

∫ `

0

(γ′1(t)− iγ′2(t))u(γ(s))

(γ1(t)− iγ2(t))− (γ1(s)− iγ2(s))
ds (2.21)

for u ∈ C∞(Σ) and x = γ(t) ∈ Σ will play an important role. Note that C ′Σ is the
operator which satisfies (CΣu, v)L2(Σ) = (u,C ′Σv)L2(Σ) for all u, v ∈ C∞(Σ). Similarly
as in (2.20) we have

(TC ′Σu)(x) =
i

π
p.v.

∫ `

0

(γ′1(t) + iγ′2(t))(γ′1(t)− iγ′2(t))u(γ(s))

(γ1(t)− iγ2(t))− (γ1(s)− iγ2(s))
ds

=
i

π
p.v.

∫
Σ

u(y)

(x1 − ix2)− (y1 − iy2)
ds(y).

(2.22)

In the following proposition we summarize the basic properties of CΣ and C ′Σ
which are needed for our further considerations. They basically follow directly
from (2.20), (2.22), Corollary 2.8, and (2.15).
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Proposition 2.9. Let CΣ and C ′Σ be defined by (2.19) and (2.21), let U be given
by (2.2), and let the Hilbert transform T0 be defined by (2.14). Then the following
is true:

(i) CΣ − U−1T0U ∈ Ψ−∞Σ . In particular, CΣ ∈ Ψ0
Σ and for all s ∈ R the operator

CΣ gives rise to a bounded operator in Hs(Σ).

(ii) C ′Σ − U−1T0U ∈ Ψ−∞Σ . In particular, C ′Σ ∈ Ψ0
Σ and for all s ∈ R the operator

C ′Σ gives rise to a bounded operator in Hs(Σ).

Furthermore, one has C ′ΣCΣ − 1 ∈ Ψ−∞Σ and CΣC
′
Σ − 1 ∈ Ψ−∞Σ .

Proof. Let us prove (i). Note first that the multiplication operators T and T that
multiply with the functions s 7→ T (γ(s)) = γ′1(s) + iγ′2(s) and s 7→ T (γ(s)) =
γ′1(s)− iγ′2(s) belong to Ψ0

Σ, see [35, Section 7.2]. Hence (i) is equivalent to

CΣT − U−1T0UT = CΣT − U−1T0T (γ(`·))U ∈ Ψ−∞Σ

which in turn is equivalent, by definition, to

UCΣTU
−1 − T0T (γ(`·)) ∈ Ψ−∞.

For v ∈ C∞(T) and t ∈ T, we compute
(
UCΣTU

−1v
)
(t). Remark that for x =

(x1, x2)> ∈ Σ and w(x) := (U−1v)(x), (2.3) and (2.20) gives

(CΣTw)(x) =
i

π
p.v.

∫ `

0

w(γ(s))

(x1 + ix2)− (γ1(s) + iγ2(s))
ds

=
i

π
p.v.

∫ `

0

v(`−1s)

(x1 + ix2)− (γ1(s) + iγ2(s))
ds.

Hence, a change of variable yields

(UCΣTU
−1v)(t) = `

i

π
p.v.

∫
T

v(s)

ρ(t)− ρ(s)
ds

with ρ(t) := γ1(`t)+iγ2(`t). Remark that for all t ∈ T we have ρ′(t) = `T (γ(`t)) 6= 0
and 1

ρ′(t)
= `−1T (γ(`t)). Corollary 2.8 gives

`−1UCΣTU
−1 − `−1T0T (`·) ∈ Ψ−∞

which completes the proof of (i). Item (ii) is proved in a similar fashion and the
last statement is a consequence of (i), (ii), and (2.15). This can be seen by the
equivalences

T 2
0 − 1 ∈ Ψ−∞ ⇐⇒ UC ′ΣU

−1UCΣU
−1 − 1 ∈ Ψ−∞ ⇐⇒ C ′ΣCΣ − 1 ∈ Ψ−∞Σ ,

and a similar argument shows CΣC
′
Σ − 1 ∈ Ψ−∞Σ . This completes the proof.

17



2.2 Schur complement of block operators

Let Wjk, j, k ∈ {1, 2}, be closable densely defined operators in a Hilbert space H.
Define a linear operator W in H ⊕H by

W :=

(
W11 W12

W21 W22

)
, domW = (domW11 ∩ domW21)⊕ (domW12 ∩ domW22).

Assume that domW11 ⊂ domW21 and that W11 is invertible. Then one can define
the Schur complement S(W ) of W as an operator in H by

S(W ) := W22 −W21W
−1
11 W12, (2.23)

and one has the factorization

W =

(
1 0

W21W
−1
11 1

)(
W11 0

0 S(W )

)(
1 W−1

11 W12

0 1

)
. (2.24)

We will use the following facts, which follow from Theorem 2.2.14 and Theorem 2.4.6
in the monograph [39].

Proposition 2.10. Assume that 0 ∈ res(W11), that domW11 ⊂ domW21 and that
W−1

11 W12 is bounded on domW12. Then W is closable/closed if and only if its Schur
complement S(W ) is closable/closed, with

W =

(
1 0

W21W
−1
11 1

)(
W11 0

0 S(W )

)(
1 W−1

11 W12

0 1

)
,

and

domW =
{

(x1, x2) ∈ H ×H : x1 +W−1
11 W12 x2 ∈ domW11, x2 ∈ dom S(W )

}
.

Moreover, if W is self-adjoint, then 0 ∈ specess(W ) if and only if 0 ∈ specess

(
S(W )

)
.

2.3 Boundary triples and their Weyl functions

We recall some basic facts about boundary triples following the first chapter of
the paper [14], in which the proofs for all statements can be found. We also refer
the reader to [17, 18] and the monographs [8, 19] for more details and applications.
Throughout this abstract section H is always a separable Hilbert space.

Definition 2.11. Let S be a densely defined closed symmetric operator in H. A
boundary triple for S∗ is a triple {G,Γ0,Γ1} consisting of a Hilbert space G and two
linear maps Γ0,Γ1 : domS∗ → G satisfying the following two conditions:

(i) For all f, g ∈ domS∗

(S∗f, g)H − (f, S∗g)H = (Γ1f,Γ0g)G − (Γ0f,Γ1g)G

holds.
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(ii) The map domS∗ 3 f 7→ (Γ0f,Γ1f)> ∈ G× G is surjective.

A boundary triple for S∗ exists if and only if S admits self-adjoint extensions
in H. From now on we assume that this is satisfied and pick a boundary triple
{G,Γ0,Γ1}. This induces a number of additional objects. First, the operator

B0 := S∗ � ker Γ0

is self-adjoint, and for any z ∈ res(B0) one has the direct sum decomposition

domS∗ = domB0 +̇ ker(S∗ − z) = ker Γ0 +̇ ker(S∗ − z), (2.25)

showing that Γ0 � ker(S∗ − z) is bijective. This allows to define the γ-field G and
the Weyl function M associated to {G,Γ0,Γ1} by

res(B0) 3 z 7→ Gz :=
(
Γ0 � ker(S∗ − z)

)−1
: G→ H

and
res(B0) 3 z 7→Mz := Γ1Gz : G→ G.

It is not difficult to show that the operators Gz and Mz, z ∈ res(B0), are bounded,
that the adjoints of these operators are given by

G∗z = Γ1(B0 − z)−1 and M∗
z = Mz̄,

and that z 7→ Gz and z 7→Mz are holomorphic in z ∈ res(B0).
Boundary triples are designed as a tool to handle operators with boundary con-

ditions in an abstract framework via the boundary mappings Γ0 and Γ1. To make
this more precise, assume that G = GΠ ⊕ G⊥Π with some closed subspace GΠ, let
Π : G → GΠ be the orthogonal projection onto GΠ, and let Π∗ : GΠ → G be the
canonical embedding of GΠ in G. Assume that Θ is a linear operator in the Hilbert
space GΠ viewed with the induced inner product. In the following we are interested
in extensions of S (formally) given by

BΠ,Θ := S∗ � ker(ΠΓ1 −ΘΓ0). (2.26)

More precisely, the operator BΠ,Θ is the restriction of S∗ onto the set

domBΠ,Θ =
{
f ∈ domS∗ : ΠΓ1f = ΘΠΓ0f, (1− Π∗Π)Γ0f = 0

}
,

where the boundary condition ΠΓ1f = ΘΠΓ0f in domBΠ,Θ also contains the con-
dition ΠΓ0f ∈ dom Θ. A number of properties of BΠ,Θ are encoded in Θ. The most
important of them for our purposes are summarized in the following theorem:

Theorem 2.12. Let S be a densely defined closed symmetric operator in H, let
{G,Γ0,Γ1} be a boundary triple for S∗ with γ-field Gz and Weyl function Mz, and
let B0 = S∗ � ker Γ0. Moreover, let Π : G→ GΠ be an orthogonal projection, let Θ be
a linear operator in GΠ, and let BΠ,Θ be defined by (2.26). Then BΠ,Θ is (essentially)
self-adjoint in H if and only if Θ is (essentially) self-adjoint in GΠ. Furthermore, if
Θ is self-adjoint and z ∈ res(B0), then the following assertions hold:
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(i) z ∈ spec(BΠ,Θ) if and only if 0 ∈ spec(Θ− ΠMzΠ
∗).

(ii) z ∈ specp(BΠ,Θ) if and only if 0 ∈ specp(Θ − ΠMzΠ
∗) and the eigenspace is

ker(BΠ,Θ − z) = GzΠ
∗ ker(Θ− ΠMzΠ

∗).

(iii) z ∈ specess(BΠ,Θ) if and only if 0 ∈ specess(Θ− ΠMzΠ
∗).

(iii) For all z ∈ res(BΠ,Θ) ∩ res(B0) one has

(BΠ,Θ − z)−1 = (B0 − z)−1 +GzΠ
∗(Θ− ΠMzΠ

∗)−1ΠG∗z̄.

Finally we recall a special approach for the construction of boundary triples using
abstract trace maps developed in [33] and [34], see also [14, Section 1.4.2]. Let B be
a self-adjoint operator in the Hilbert space H, let G be another Hilbert space, and
assume that

T : domB → G

is a surjective linear operator which is bounded with respect to the graph norm of
B and such that kerT is a dense subspace of the initial Hilbert space H. Then

S := B � kerT

is a densely defined closed symmetric operator. Next, define for any z ∈ res(B) the
injective operator

Gz :=
(
T(B − z̄)−1

)∗
, (2.27)

which is bounded from G to H. Then one has ranGz = ker(S∗ − z) for z ∈ res(B)
and (2.25) leads to the direct sum decomposition

domS∗ = domB+̇ ranGz, z ∈ res(B), (2.28)

which shows that for all f ∈ domS∗ there exist unique fz ∈ domB and ξ ∈ G such
that f = fz + Gzξ; one can show that the component ξ does not depend on the
choice of z. Having these notations in hand we can formulate now the following
proposition:

Proposition 2.13. Let ζ ∈ res(B) be fixed and define the mappings Γ0,Γ1 :
domS∗ → G for f = fζ +Gζξ = fζ̄ +Gζ̄ξ ∈ domS∗ by

Γ0f := ξ and Γ1f :=
1

2
T(fζ + fζ̄).

Then {G,Γ0,Γ1} is a boundary triple for S∗ with S∗ � ker Γ0 = B. Moreover, the
γ-field and the Weyl function are given by (2.27) and

Mz = T
(
Gz −

1

2
(Gζ +Gζ̄)

)
, z ∈ res(B).
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3 The free Dirac operator and a boundary triple

for Dirac operators in R2

In this section we first recall the definition of the free Dirac operator in R2, a minimal
and a maximal realization of the Dirac operator in R2 \ Σ, and we introduce and
study some families of integral operators which will play an important role in our
analysis in Section 4. Afterwards, we define a boundary triple which is useful in the
treatment of Dirac operators with singular δ-interactions.

3.1 The free, the minimal, and the maximal Dirac operator
and some associated integral operators

For m ∈ R the free Dirac operator in R2 is defined by

A0f = −i
2∑
j=1

σj∂jf +mσ3f = −iσ · ∇f +mσ3f, domA0 = H1(R2;C2), (3.1)

where σ := (σ1, σ2) and σ3 are the C2×2-valued Pauli spin matrices in (1.4). First,
we provide some basic properties of A0. We refer to the monograph [38] for a
detailed discussion of these facts in the three dimensional case; the modifications
to the present two dimensional situation are left to the reader. Using the Fourier
transform and (1.5) one verifies that A0 is self-adjoint in L2(R2;C2) and that its
spectrum is purely essential,

spec(A0) = specess(A0) =
(
−∞,−|m|

]
∪
[
|m|,+∞

)
.

In particular, spec(A0) = R for m = 0. Due to the identity

(A0 − z)(A0 + z) = (−∆ +m2 − z2)σ0

one can express the resolvent of A0 through the resolvent of the free Laplacian.
Recall that for z /∈ spec(−∆) = [0,∞) the resolvent (−∆ − z)−1 is the integral
operator

(−∆− z)−1f(x) =
1

2π

∫
R2

K0

(√
−z|x− y|

)
f(y) dy,

where Kj stands for the modified Bessel function of second kind of order j, and we
take the principal square root function, i.e. for z ∈ C \ [0,∞) the number

√
z is

determined by Re
√
z > 0. For z ∈ res(A0) one gets

(A0 − z)−1 = (A0 + z)
(
−∆− (z2 −m2)

)−1
σ0,

which leads to

(A0 − z)−1f(x) =

∫
R2

φz(x− y)f(y) dy, f ∈ L2(R2;C2),
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where

φz(x) = i

√
m2 − z2

2π
K1

(√
m2 − z2|x|

)(
σ · x
|x|

)
+

1

2π
K0

(√
m2 − z2|x|

)(
mσ3 + zσ0

)
.

(3.2)

Next we introduce a minimal symmetric operator S which is suitable for our
purposes. More precisely, let S be the restriction of A0 to the functions vanishing
at Σ, i.e.

Sf = (−iσ · ∇+mσ3)f, domS = H1
0 (R2 \ Σ;C2). (3.3)

We remark that the Aη,τ defined in (1.2) is an extension of the symmetric operator
S. One verifies in the same way as in the three dimensional case (see, e.g., [9,
Proposition 3.1]) that the adjoint S∗ is the maximal realization of the Dirac operator

S∗f = (−iσ · ∇+mσ3)f+ ⊕ (−iσ · ∇+mσ3)f−,

domS∗ =
{
f = f+ ⊕ f− ∈ L2(Ω+;C2)⊕ L2(Ω−;C2) : f± ∈ H(σ,Ω±)

}
,

(3.4)

where

H(σ,Ω±) =
{
f± ∈ L2(Ω±;C2) : (−iσ · ∇+mσ3)f± ∈ L2(Ω±;C2)

}
, (3.5)

and the derivatives in the above formula are understood in the distributional sense.
It is not difficult to see that H(σ,Ω±) endowed with the norm

‖f±‖2
H(σ,Ω±) := ‖f‖2

L2(Ω±;C4) +
∥∥(−iσ · ∇+mσ3)f±

∥∥2

L2(Ω±;C2)

is a Hilbert space which is actually independent of m; cf. [11, Lemma 2.1]. For
our further considerations, it is useful to extend the Dirichlet trace operator onto
H(σ; Ω±). In the following lemma we summarize several known results from [11,
Lemma 2.3 and Lemma 2.4]:

Lemma 3.1. The trace map TD±,0 : H1(Ω±;C2)→ H1/2(Σ;C2),TD±,0f = f |Σ, can be
extended to a bounded linear operator

TD± : H(σ,Ω±)→ H−1/2(Σ;C2).

Moreover, if TD±f ∈ H1/2(Σ;C2) for f ∈ H(σ,Ω±), then f ∈ H1(Ω±;C2).

In the next result we show that any self-adjoint extension A of S with domA ⊂
Hs(R2 \ Σ;C2) for some s > 0 has only finitely many discrete eigenvalues in
(−|m|, |m|).

Proposition 3.2. Let A be a self-adjoint extension of the symmetric operator S in
L2(R2;C2) and assume that domA ⊂ Hs(R2 \ Σ;C2) holds for some s > 0. Then
spec(A) ∩ (−|m|, |m|) is purely discrete and the number of the discrete eigenvalues
of A in (−|m|, |m|) is finite.
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Proof. It is sufficient to show that A2 has at most finitely many eigenvalues in
(−∞,m2). For that, consider the quadratic form

a[f, f ] =

∫
R2

|Af |2 dx, dom a = domA.

Since A is self-adjoint and hence closed, also the densely defined nonnegative form
a is closed. The self-adjoint operator associated to a via the first representation
theorem is A2. Next, take 0 < r < R with r chosen sufficiently large, such that
the open ball Br = {x ∈ R2 : |x| < r} contains Ω+ in its interior, and choose
ϕ1, ϕ2 ∈ C∞(R2) which satisfy

0 ≤ ϕ1, ϕ2 ≤ 1, ϕ2
1 + ϕ2

2 = 1, ϕ1 = 1 in Br, ϕ2 = 1 in R2 \BR.

Let f ∈ domA be fixed. Then by construction one has ϕjf ∈ domA and

A(ϕjf) = ϕjAf − iσ · (∇ϕj)f.

In particular, we note that ϕ2f ∈ H(σ,Ω−) with TD−f = 0 ∈ H1/2(Σ;C2). Thus, it
follows from Lemma 3.1 that ϕ2f ∈ H1(Ω−;C2).

Next, we remark that ∇ϕj is supported in BR\Br. Hence, we have for j ∈ {1, 2}

a[ϕjf, ϕjf ] =

∫
R2

(
ϕ2
j |Af |2 + |iσ · (∇ϕj)f |2

)
dx+ Ij,

where

Ij =

∫
BR\Br

2 Re
(
ϕj(−iσ · ∇+mσ3)f,−iσ · (∇ϕj)f

)
C2 dx

=

∫
BR\Br

2 Re
(
(−iσ · ∇+mσ3)f,−iσ · (ϕj∇ϕj)f

)
C2 dx

=

∫
BR\Br

Re
(
(−iσ · ∇+mσ3)f,−iσ · ∇(ϕ2

j)f
)
C2 dx.

From ϕ2
1 +ϕ2

2 = 1 we obtain ∇(ϕ2
1) = −∇(ϕ2

2) and hence I1 = −I2. Moreover, using
(1.5) one verifies |iσ · (∇ϕj)f |2 = |∇ϕj|2|f |2 for j ∈ {1, 2}. Therefore, it follows that

a[ϕ1f, ϕ1f ] + a[ϕ2f, ϕ2f ]

=

∫
R2

(ϕ2
1 + ϕ2

2)|Af |2 dx+

∫
R2

(
|∇ϕ1|2 + |∇ϕ2|2

)
|f |2
)

dx

=

∫
R2

|Af |2 dx+

∫
R2

V |f |2 dx,

where we have used the abbreviation V := |∇ϕ1|2 + |∇ϕ2|2 in the last step; note
that V is supported in BR \Br. This leads to

a[f, f ] = a[ϕ1f, ϕ1f ]−
∫
R2

V |ϕ1f |2 dx+ a[ϕ2f, ϕ2f ]−
∫
R2

V |ϕ2f |2 dx. (3.6)
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In the following we will often restrict functions in dom a to BR or R2\Br and view
them as elements in L2(BR;C2) or L2(R2 \ Br;C2), or we will extend L2-functions
on BR or R2 \Br by zero onto R2 and view them as elements in L2(R2;C2). We find
it convenient to use the same letter for the original and the restricted or extended
function.

Let a1 be the quadratic form in L2(BR;C2) defined by

dom a1 =
{
g ∈ dom a : supp g ⊂ BR

}
, a1[g, g] = a[g, g]−

∫
BR

V |g|2 dx.

As V is bounded and a is nonnegative it follows that a1 is semibounded from below.
It is also clear that a1 is densely defined in L2(BR;C2). To see that a1 is closed
consider gn ∈ dom a1 such that gn → g in L2(BR;C2) for n→∞ and a1(gn−gm, gn−
gm)→ 0 for n,m→∞. Since V is bounded it follows that the zero extensions gn and
g satisfy gn → g in L2(R2;C2) for n→∞ and a(gn−gm, gn−gm)→ 0 for n,m→∞.
As a is closed we conclude g ∈ dom a and a(gn − g, gn − g) → 0 for n → ∞.
Furthermore, as supp g ⊂ BR we have g ∈ dom a1 and a1(gn−g, gn−g)→ 0 for n→
∞, thus a1 is closed. Let A1 be the self-adjoint operator in L2(BR;C2) corresponding
to a1. Then A1 has a compact resolvent since the form domain dom a1 ⊂ Hs(BR;C2)
is compactly embedded in L2(BR;C2) for s > 0. Hence, the number of eigenvalues
N(A1,m

2) of A1 below m2 is finite, that is, N(A1,m
2) <∞.

Next, let a2 be the quadratic form in L2(R2 \Br;C2) defined by

dom a2 = H1
0

(
R2 \Br;C2

)
, a2[g, g] = a[g, g]−

∫
R2\Br

V |g|2 dx.

As above it is clear that a2 is densely defined and semibounded from below. Using
integration by parts and (1.5) one sees for g ∈ C∞0 (R2 \Br;C2) that

a[g, g] =

∫
R2\Br

|(−iσ · ∇+mσ3)g|2 dx

=

∫
R2\Br

(
g, (−iσ · ∇+mσ3)2g

)
C2 dx

=

∫
R2\Br

(
g, (−∆ +m2)g

)
C2 dx

=

∫
R2\Br

(
|∇g|2 +m2|g|2

)
dx,

which then extends by density to all g ∈ H1
0

(
R2 \ Br;C2

)
. Therefore, the form a2

is closed and the self-adjoint operator associated to a2 is A2 = −∆D + m2 − V ,
where −∆D denotes the Dirichlet Laplacian in R2 \ Br. Hence, it follows that
N(m2, A2) <∞, as V has compact support.1

1In fact, to see that a compactly supported potential V leads only to finitely many eigenvalues
of A2 below m2 one may argue as follows: Decompose A2 in a similar way as in the proof of [25,
Proposition 3.6 (a)] in an operator A3 acting in L2(B2R \ Br;C2) and an operator A4 acting in
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Now, we can conclude that A2 has only finitely many eigenvalues below m2. For
this consider

J : L2(R2;C2)→ L2(BR;C2)⊕ L2(R2 \Br;C2), Jf = ϕ1f ⊕ ϕ2f.

Due to the properties of ϕ1 and ϕ2 we get that J is an isometry. Moreover, with
the above considerations we see J(dom a) ⊂ dom a1⊕dom a2, and with the equality
(3.6) we obtain

a[f, f ]

‖f‖2
L2(R2;C2)

=
(a1 ⊕ a2)[Jf, Jf ]

‖Jf‖2
L2(BR;C2)⊕L2(R2\Br;C2)

.

It follows from the min-max principle that

N(m2, A2) ≤ N(m2, A1 ⊕ A2) = N(m2, A1) + N(m2, A2).

As we have seen above, the quantity on the right hand side is finite and hence
N(m2, A2) <∞. This completes the proof.

In the following we introduce some families of integral operators associated to
the Green function φz associated to A0 given by (3.2). Let us denote the Dirichlet
trace operator on H1(R2;C2) by TD : H1(R2;C2) → H1/2(Σ;C2). It is well-known
that TD is bounded, surjective, and kerTD = H1

0 (R2 \Σ;C2); cf. [26, Theorems 3.37
and 3.40]. For z ∈ res(A0) we first define the bounded operator

Φ′z := TD(A0 − z̄)−1 : L2(R2;C2)→ H1/2(Σ;C2) (3.7)

and its anti-dual

Φz :=
(
TD(A0 − z)−1

)′
: H−1/2(Σ;C2)→ L2(R2;C2). (3.8)

The basic properties of Φz are stated in the following proposition:

Proposition 3.3. Let z ∈ res(A0) and consider the operator Φz in (3.8). Then for
ϕ ∈ L2(Σ;C2) one has

Φzϕ(x) =

∫
Σ

φz(x− y)ϕ(y)ds(y) for a.e. x ∈ R2 \ Σ.

Moreover, Φz is a bounded bijective operator from H−1/2(Σ;C2) onto ker(S∗ − z).

Proof. First, due to the properties of the trace map it is clear that Φ′z defined
by (3.7) is surjective and

ker Φ′z =
{
f ∈ L2(R2;C2) : (A0 − z̄)−1f ∈ H1

0 (R2 \ Σ;C2)
}

= ran(S − z̄),

L2(R2 \ B2R;C2) by introducing a Neumann boundary condition on ∂B2R. The quadratic forms
associated to A3 and A4 are denoted by a3 and a4, respectively. Then, as for A1, the operator A3

has a compact resolvent, as domA3 ⊂ dom a3 ⊂ H1(B2R \ Br;C2), and hence only finitely many
discrete eigenvalues below m2. Since V is supported in BR \ Br, the form a4 corresponds to the
Neumann Laplacian in L2(R2 \B2R;C2) shifted by m2 and hence it has no eigenvalues below m2.
Thus, by the min-max principle also A2 has only finitely many eigenvalues below m2.
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as S = A0 � H1
0 (R2 \ Σ;C2). Using the closed range theorem, (ran Φz)

⊥ = ker Φ′z,
and the fact that ker(S∗ − z) = (ran(S − z̄))⊥ is closed we conclude that

Φz : H−1/2(Σ;C2)→ ker(S∗ − z)

is a bounded bijective operator. To prove the integral representation consider ϕ ∈
L2(Σ;C2) and f ∈ L2(R2;C2). A direct computation using Fubini’s theorem shows

(f,Φzϕ)L2(R2;C2) = (Φ′zf, ϕ)L2(Σ;C2)

=
(
TD(A0 − z̄)−1f, ϕ

)
L2(Σ;C2)

=

∫
Σ

(∫
R2

φz̄(x− y)f(y) dy, ϕ(x)

)
C2

ds(x)

=

∫
R2

(
f(y),

∫
Σ

φz̄(x− y)∗ϕ(x) ds(x)

)
C2

dy

=

∫
R2

(
f(y),

∫
Σ

φz(y − x)ϕ(x) ds(x)

)
C2

dy,

where the symmetry property φz̄(x− y)∗ = φz(y − x) was used in the last equality.
This implies the representation for Φzϕ, ϕ ∈ L2(Σ;C2), and completes the proof of
this proposition.

We will also need a family of boundary integral operators with integral kernel φz.
To introduce these operators, we study first the structure of the Green function φz
in more detail:

Lemma 3.4. Let z ∈ res(A0) and consider the function φz in (3.2). Then there
exist scalar analytic functions g1, g2, g3, and g4 and a constant c1 < 0 such that

φz(x) =
i

2π
σ · x

|x|2
− 1

2π

(
log |x|+ log

√
m2 − z2 + c1

)
(mσ3 + zσ0)

+
i

2π
(m2 − z2)

[
g1

(
(m2 − z2)|x|2

)(
log
√
m2 − z2 + log |x|

)
+ g2

(
(m2 − z2)|x|2

)]
(σ · x)

+
1

2π
(m2 − z2)|x|2

[
g3

(
(m2 − z2)|x|2

)(
log
√
m2 − z2 + log |x|

)
+ g4

(
(m2 − z2)|x|2

)]
(mσ3 + zσ0).

(3.9)

In particular, there exist C∞-smooth matrix valued functions f1 and f2 such that

φz(x) =
i

2π

 0
1

x1 + ix2
1

x1 − ix2

0

+ f1(x) log |x|+ f2(x). (3.10)
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Proof. In order to prove the claimed results, let us recall the series representations
of Kj from, e.g., §10.25.2, 10.31.1 and 10.31.2 in [28], which read

Iµ(t) =
tµ

2µ

∞∑
k=0

t2k

4kk!Γ(µ+ k + 1)
, µ ∈ {0, 1},

K1(t) =
1

t
+ (log t− log 2)I1(t)− t

4

∞∑
k=0

(
ψ(k + 1) + ψ(k + 2)

) t2k

4kk!(k + 1)!
,

K0(t) = −(log t− log 2 + γ)I0(t) +
∞∑
k=1

k∑
j=1

1

j

t2k

4k(k!)2
,

with ψ(t) =
Γ′(t)

Γ(t)
and γ = −ψ(1) < log 2. This implies first that

I0(t) = 1 + t2h0(t2) and I1(t) = th1(t2)

with some analytic functions h0 and h1. Furthermore, with some analytic functions
k0 and k1 we have

K1(t) =
1

t
+ (log t− log 2)I1(t) + tk1(t2)

=
1

t
+ th1(t2) log t+ t

(
k1(t2)− h1(t2) log 2

)
and

K0(t) = −(log t− log 2 + γ)I0(t) + t2k0(t2)

= − log t− c1 − t2h0(t2) log t− c1t
2h0(t2) + t2k0(t2)

with c1 := γ − log 2 < 0. This can be rewritten in a simplified form as

K1(t) =
1

t
+ tg1(t2) log t+ tg2(t2),

K0(t) = − log t− c1 + t2g3(t2) log t+ t2g4(t2),

where g1, g2, g3, and g4 are analytic functions and c1 < 0. Using now the explicit
expression for φz we decompose

φz(x) = i

√
m2 − z2

2π
K1

(√
m2 − z2|x|

)(
σ · x
|x|

)
+

1

2π
K0

(√
m2 − z2|x|

)(
mσ3 + zσ0

)
= i

√
m2 − z2

2π

{
1√

m2 − z2|x|
+
√
m2 − z2|x|g1

(
(m2 − z2)|x|2

)
log
(√

m2 − z2|x|
)

+
√
m2 − z2|x|g2

(
(m2 − z2)|x|2

)}(
σ · x
|x|

)
+

1

2π

{
− log

(√
m2 − z2|x|

)
− c1

+ (m2 − z2)|x|2g3

(
(m2 − z2)|x|2

)
log
(√

m2 − z2|x|
)

+ (m2 − z2)|x|2g4

(
(m2 − z2)|x|2

)}(
mσ3 + zσ0

)
,
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which leads to the decomposition (3.9). The representation (3.10) follows from (3.9)
after noting that

i

2π
σ · x

|x|2
=

i

2π

 0
1

x1 + ix2
1

x1 − ix2

0

 .

For z ∈ res(A0) we introduce the operator

Czϕ(x) := p.v.

∫
Σ

φz(x− y)ϕ(y)ds(y), ϕ ∈ C∞(Σ;C2), x ∈ Σ. (3.11)

The basic properties of Cz are stated in the following proposition. For the formu-
lation of the result, recall the definition of the operator Λ from (2.8) and of the
Cauchy transform CΣ and its dual C ′Σ from (2.19) and (2.21), respectively.

Proposition 3.5. Let z ∈ res(A0) and consider the operator Cz in (3.11). Then
Cz ∈ Ψ0

Σ and, in particular, Cz gives rise to a bounded operator in Hs(Σ;C2) for
any s ∈ R. The realization in L2(Σ;C2) satisfies C∗z = Cz̄. Moreover, if t = (t1, t2)
is the tangent vector field at Σ and T = t1 + it2, T = t1 − it2, then one has

ΛCzΛ =
1

2

(
0 ΛCΣTΛ

ΛTC ′ΣΛ 0

)
+

`

4π

(
(z +m)1 0

0 (z −m)1

)
+ Ψ (3.12)

with Ψ ∈ Ψ−1
Σ .

Proof. We make use of (3.9) to decompose φz in the form

φz(x) = χ1(x) + χ2(x) + χ3(x),

where

χ1(x) =
i

2π

 0
1

x1 + ix2
1

x1 − ix2

0

 ,

χ2(x) = − 1

2π

(
z +m 0

0 z −m

)
log |x|

χ3(x) =
[
h1

(
|x|2
)

log |x|+ h2

(
|x|2
)]

(σ · x)

+
[
|x|2h3

(
|x|2
)

log |x|+ h4

(
|x|2
)]

(mσ3 + zσ0),

and h1, h2, h3, and h4 are analytic functions. In the following we will use the corre-
sponding decomposition Cz = P1 + P2 + P3, where

(P1ϕ)(x) = p.v.

∫
Σ

χ1(x− y)ϕ(y) ds(y),

(P2ϕ)(x) =

∫
Σ

χ2(x− y)ϕ(y) ds(y),

(P3ϕ)(x) =

∫
Σ

χ3(x− y)ϕ(y) ds(y).
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Here we have removed the principal value from the integral operators P2 and P3,
since these integrals converge almost everywhere by [22, Proposition 3.10].

Let us discuss the operator P1 first. With the help of (2.20) and (2.22) we obtain

P1 =
1

2

(
0 CΣT

TC ′Σ 0

)
(3.13)

and since T, T ∈ Ψ0
Σ we conclude P1 ∈ Ψ0

Σ from Proposition 2.9.
Next, we claim that the integral operator P2 admits the representation

P2 =
`

4π

(
(z +m)Λ−2 0

0 (z −m)Λ−2

)
+ Ψ1 (3.14)

with some Ψ1 ∈ Ψ−2
Σ and Λ−2 = U−1L−2U ∈ Ψ−1

Σ , so that P2 ∈ Ψ−1
Σ . In fact, using

a parametrization γ : [0, `]→ R2 of Σ we find

(UP2f)(t) = − `

2π

(
z +m 0

0 z −m

)∫
T

log
∣∣γ(`t)− γ(`s)

∣∣ f(γ(`s)
)

ds

for f ∈ C∞(Σ). Therefore, with f = U−1u and ρ(·) = γ1(`·) + iγ2(`·) ≡ γ(`·) we
conclude

(UP2U
−1u)(t) = − `

2π

(
z +m 0

0 z −m

)∫
T

log
∣∣ρ(t)− ρ(s)

∣∣u(s) ds

= − `

2π

(
z +m 0

0 z −m

)
H0u(t)

with H0 as in Proposition 2.7. Now it follows from Proposition 2.7 (with m = 0,
a ≡ 1, and ρ as above) that H0 ∈ Ψ−1 and 1 + 2LH0L ∈ Ψ−1. Furthermore,
Proposition 2.2 (ii) and L−1 ∈ Ψ−1/2 yield 1

2
L−2 +H0 ∈ Ψ−2 and hence

− `

4π

(
(z +m)L−2 0

0 (z −m)L−2

)
+ UP2U

−1 ∈ Ψ−2.

We then conclude

− `

4π

(
(z +m)Λ−2 0

0 (z −m)Λ−2

)
+ P2 ∈ Ψ−2

Σ ,

which leads to (3.14).
It will be shown now that P3 ∈ Ψ−2

Σ . Indeed, setting again ρ(·) = γ1(`·)+iγ2(`·) ≡
γ(`·) we see that χ3 can be written in the form

χ3(ρ(t)− ρ(s)) = log |ρ(t)− ρ(s)|a1(t, s)

(
0 ρ(t)− ρ(s)

ρ(t)− ρ(s) 0

)
+ a2(t, s)

with the C∞-smooth matrix valued functions

a1(t, s) := h1

(
|ρ(t)− ρ(s)|2

)
σ0

+ h3

(
|ρ(t)− ρ(s)|2

)
(mσ3 + zσ0)

(
0 ρ(t)− ρ(s)

ρ(t)− ρ(s) 0

)
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and

a2(t, s) := h2

(
|ρ(t)− ρ(s)|2

)] ( 0 ρ(t)− ρ(s)
ρ(t)− ρ(s) 0

)
+h4

(
|ρ(t)− ρ(s)|2

)
(mσ3 + zσ0).

Hence, it follows as above in the proof of (3.14) with Proposition 2.7 applied in the
case m = 1 that UP3U

−1 = H1 ∈ Ψ−2, so that P3 ∈ Ψ−2
Σ . Together with (3.13)

and (3.14) this implies first Cz ∈ Ψ0
Σ and in a second step, together with Proposi-

tion 2.2 (i) and Λ ∈ Ψ
1/2
Σ , that also (3.12) is true.

Finally, since φz(y−x)∗ = φz(x−y), we find that the realization of Cz in L2(Σ;C2)
satisfies C∗z = Cz̄. Hence, all claims have been shown.

Finally, we prove a result on how Φz and Cz are related to each other by taking
traces. Recall that TD± is the Dirichlet trace operator on H(σ,Ω±), see Lemma 3.1.

Proposition 3.6. For ϕ ∈ H−1/2(Σ;C2) one has

TD±Φzϕ = ∓ i

2
(σ · ν)ϕ+ Czϕ. (3.15)

Proof. First we note that it suffices to prove (3.15) for ϕ ∈ C∞(Σ;C2); by continuity
this implies the claim for any ϕ ∈ H−1/2(Σ;C2). The assertion essentially follows
from the classical Plemelj-Sokhotskii formula, see, e.g., [35, Theorem 4.1.1], which
states that the holomorphic function

C \ Σ 3 ξ 7→ Φ(ξ) =
1

2πi

∫
Σ

ϕ(ζ)

ζ − ξ
dζ

satisfies

TD±Φ(ξ) =
1

2πi
p.v.

∫
Σ

ϕ(ζ)

ζ − ξ
dζ ± 1

2
ϕ(ξ), ξ ∈ Σ. (3.16)

In order to use it, recall that by (3.10) we can write φz(x) = χ1(x) + χ̃2(x) with

χ1(x) = − 1

2πi

 0
1

x1 + ix2
1

x1 − ix2

0

 and χ̃2(x) = f1(x) log |x|+ f2(x),

where f1 and f2 are C∞-smooth matrix functions. In a corresponding way we
decompose Φz = Ψ1 + Ψ2 with

Ψ1ϕ(x) =

∫
Σ

χ1(x− y)ϕ(y) ds(y) and Ψ2ϕ(x) =

∫
Σ

χ̃2(x− y)ϕ(y) ds(y),

and Cz = P1 + P2 with

P1ϕ(x) = p.v.

∫
Σ

χ1(x− y)ϕ(y) ds(y) and P2ϕ(x) =

∫
Σ

χ̃2(x− y)ϕ(y) ds(y).
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As in the proof of Proposition 3.5 we have removed the principal value from the
integral operator P2, since the integral exists almost everywhere. One sees easily
that Ψ2ϕ is continuous on R2, and its value on Σ coincides with P2ϕ, i.e.

TD±Ψ2ϕ = P2ϕ. (3.17)

In order to find the relation between Ψ1ϕ and P1ϕ, we write the normal vector field
as a complex number N = ν1 + iν2 = γ′2 − iγ′1 and use the relation d(y1 + iy2) =
iN(y) ds(y) of the complex and the classical line element on Σ. With ϕ = (ϕ1, ϕ2)
we get then

Ψ1ϕ(x) =
1

2πi

∫
Σ

 0
1

(y1 + iy2)− (x1 + ix2)
1

(y1 − iy2)− (x1 − ix2)
0

(ϕ1(y)
ϕ2(y)

)
ds(y)

=


1

2πi

∫
Σ

ϕ2(y)

(y1 + iy2)− (x1 + ix2)
ds(y)

1

2πi

∫
Σ

ϕ1(y)

(y1 + iy2)− (x1 + ix2)
ds(y)



=


1

2πi

∫
Σ

−iN(y)ϕ2(y)

(y1 + iy2)− (x1 + ix2)
d(y1 + iy2)

− 1

2πi

∫
Σ

−iN(y)ϕ1(y)

(y1 + iy2)− (x1 + ix2)
d(y1 + iy2)

 .

Applying now (3.16) to each component of this vector we find that

TD±Ψ1ϕ(x) =


1

2πi
p.v.

∫
Σ

−iN(y)ϕ2(y)

(y1 + iy2)− (x1 + ix2)
d(y1 + iy2)

− 1

2πi
p.v.

∫
Σ

−iN(y)ϕ1(y)

(y1 + iy2)− (x1 + ix2)
d(y1 + iy2)

± 1

2

(
−iN(x)ϕ2(x)
−iN(x)ϕ1(x)

)

=

−
1

2πi
p.v.

∫
Σ

ϕ2(y)

(x1 + ix2)− (y1 + iy2)
ds(y)

− 1

2πi
p.v.

∫
Σ

ϕ1(y)

(x1 − ix2)− (y1 − iy2)
ds(y)

∓ i

2

(
N(x)ϕ2(x)
N(x)ϕ1(x)

)

= P1ϕ(x)∓ i

2
(σ · ν(x))ϕ(x).

A combination of this and (3.17) leads to the claim of this proposition.

3.2 A boundary triple for Dirac operators with singular in-
teractions supported on loops

In this section we follow the strategy from Section 2.3 to introduce a boundary triple
which is suitable to study Dirac operators in L2(R2;C2) with singular interactions
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supported on the loop Σ. To get an explicit representation of the boundary mappings
the results from Section 3.1 play an important role. We remark that the obtained
boundary triple is closely related to the one used in [9] to study Dirac operators in
the three dimensional case.

Recall the definitions of the free Dirac operator A0, the symmetric operator S,
and its adjoint S∗ from (3.1), (3.3), and (3.4), respectively. Moreover, TD± is the
Dirichlet trace operator defined on domS∗ from Lemma 3.1, the integral operators
Φz and Cz are introduced for z ∈ res(A0) in (3.8) and (3.11), respectively. The oper-

ator Λ ∈ Ψ
1/2
Σ is given by (2.8) and will sometimes be viewed as an isomorphism from

L2(Σ;C2) → H−1/2(Σ;C2) or from H1/2(Σ;C2) → L2(Σ;C2), and is also regarded
as an unbounded uniformly positive self-adjoint operator L2(Σ;C2).

Proposition 3.7. Let ζ ∈ res(A0) be fixed and define Γ0,Γ1 : domS∗ → L2(Σ;C2)
by

Γ0f = iΛ−1(σ · ν)
(
TD+f+ − TD−f−),

Γ1f =
1

2
Λ
(

(TD+f+ + TD−f−)− (Cζ + Cζ̄)ΛΓ0f
)
, f = f+ ⊕ f− ∈ domS∗.

(3.18)

Then {L2(Σ;C2),Γ0,Γ1} is a boundary triple for S∗ such that A0 = S∗ � ker Γ0.
Moreover, the corresponding γ-field is

res(A0) 3 z 7→ Gz = ΦzΛ

and the Weyl function is

res(A0) 3 z 7→Mz = Λ
(
Cz −

1

2

(
Cζ + Cζ̄

))
Λ.

Proof. Recall that the Dirichlet trace operator TD : H1(R2;C2) → H1/2(Σ;C2) is
bounded, surjective, and one has kerTD = H1

0 (R2 \ Σ;C2). Hence,

T := ΛTD : H1(R2;C2) = domA0 → L2(Σ;C2)

is bounded and surjective with kerT = domS. Following the constructions in Sec-
tion 2.3 for B = A0 we consider for z ∈ res(A0)

T(A0 − z̄)−1 = ΛTD(A0 − z̄)−1 = ΛΦ′z

with Φ′z given by (3.7), so that the operator Gz from (2.27) in the present context
is given by

Gz = ΦzΛ. (3.19)

Let ζ ∈ res(A0) be fixed. Then, by (2.28) any f ∈ domS∗ can be written as

f = fζ +Gζξ = fζ̄ +Gζ̄ξ

for some ξ ∈ L2(Σ;C2) and fζ , fζ̄ ∈ H1(R2;C2), and according to Proposition 2.13

Γ0f = ξ and Γ1f =
1

2

(
Tfζ + Tfζ̄

)
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defines a boundary triple for S∗ such that A0 = S∗ � ker Γ0.
Next we show that the above boundary maps coincide with the more explicit

representations of Γ0 and Γ1 stated in the proposition. Let f = fζ+Gζξ = fζ+ΦζΛξ
with ξ ∈ L2(Σ;C2) and fζ ∈ H1(R2;C2) be fixed. Using that the jump of the trace
of fζ ∈ H1(R2;C2) at Σ is zero and the trace formula from Proposition 3.6 we find

TD+f+ − TD−f− = TD+
(
fζ + ΦζΛξ

)
+
− TD−

(
fζ + ΦζΛξ

)
−

= TD+
(
ΦζΛξ

)
+
− TD−

(
ΦζΛξ

)
−

= − i

2
(σ · ν)Λξ + CζΛξ −

i

2
(σ · ν)Λξ − CζΛξ

= −i(σ · ν)Λξ

and hence we conclude

Γ0f = ξ = iΛ−1(σ · ν)
(
TD+f+ − TD−f−

)
,

which is the claimed formula for Γ0f . Employing again Proposition 3.6 we find

TDfζ =
1

2

(
TD+fζ,+ + TD−fζ,−

)
=

1

2

(
TD+ (f − ΦζΛξ)+ + TD− (f − ΦζΛξ)−

)
=

1

2

(
TD+f+ − CζΛξ +

i

2
(σ · ν)Λξ + TD−f− − CζΛξ −

i

2
(σ · ν)Λξ

)
=

1

2

(
TD+f+ + TD−f−

)
− CζΛξ

=
1

2

(
TD+f+ + TD−f−

)
− CζΛΓ0f

(3.20)

and analogously

TDfζ̄ =
1

2

(
TD+f+ + TD−f−

)
− Cζ̄ΛΓ0f. (3.21)

By summing up the last two formulae (3.20) and (3.21) we find

Γ1f =
1

2

(
Tfζ + Tfζ̄

)
=

1

2
Λ
(
TDfζ + TDfζ̄

)
=

1

2
Λ
(

(TD+f+ + TD−f−)− (Cζ + Cζ̄)ΛΓ0f
)

which is the claimed formula for Γ1 in (3.18).
Finally, the claimed representation of the γ-field follows from Proposition 2.13

and (3.19). Using again Proposition 3.6, we can simplify the formula for the Weyl
function Mz from Proposition 2.13 and get for ϕ ∈ L2(Σ;C2)

Mzϕ = T

(
Gz −

1

2
(Gζ +Gζ̄)

)
ϕ

= ΛTD+

(
Φz −

1

2
(Φζ + Φζ̄)

)
Λϕ

= Λ

(
Cz −

i

2
(σ · ν)− 1

2

(
Cζ −

i

2
(σ · ν) + Cζ̄ −

i

2
(σ · ν)

))
Λϕ

= Λ

(
Cz −

1

2

(
Cζ + Cζ̄

))
Λϕ.
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In the above calculation we used the regularization property (Gz − 1
2
(Gζ +Gζ̄))ϕ ∈

domA0 = H1(R2;C2), which holds automatically by the abstract theory (see the
formula for the Weyl function in Proposition 2.13), and hence TD and TD+ lead to
the same trace in the second equality above. Therefore, all claimed statements have
been shown.

Finally, we state an auxiliary regularity result that will be used later.

Lemma 3.8. Let f ∈ domS∗. Then f ∈ H1(R2 \ Σ;C2) if and only if Γ0f ∈
H1(Σ;C2).

Proof. First, if f = f+ ⊕ f− ∈ H1(R2 \ Σ;C2), then one has TD±f± ∈ H1/2(Σ;C2)
implying TD+f+ − TD−f− ∈ H1/2(Σ;C2). As σ · ν is a C∞-matrix function it follows
that i(σ · ν)

(
TD+f+ − TD−f−

)
∈ H1/2(Σ;C2). Using that Λ is a bijection from Hs(Σ)

to Hs−1/2(Σ) for all s ∈ R, this yields

Γ0f = iΛ−1(σ · ν)
(
TD+f+ − TD−f−

)
∈ H1(Σ;C2).

Conversely, let f = f+⊕f− ∈ domS∗ with Γ0f ∈ H1(Σ;C2). Since Λ : H1(Σ)→
H1/2(Σ) is bijective and the C∞-matrix function σ · ν is invertible we conclude from
the definition of Γ0 that

TD+f+ − TD−f− ∈ H1/2(Σ;C2). (3.22)

By Proposition 3.5 the operators Cζ and Cζ̄ are bounded in H1/2(Σ;C2), which
gives (Cζ + Cζ̄)ΛΓ0f ∈ H1/2(Σ;C2). In addition, Γ1f ∈ L2(Σ;C2) implies Λ−1Γ1 ∈
H1/2(Σ;C2). With the definition of Γ1 this yields

1

2

(
TD+f+ + TD−f−

)
= Λ−1Γ1f +

1

2
(Cζ + Cζ̄)ΛΓ0f ∈ H1/2(Σ;C2).

Hence, together with (3.22) this implies TD±f± ∈ H1/2(Σ;C2). Finally, Lemma 3.1
shows f± ∈ H1(Ω±;C2).

4 Dirac operators with singular interactions

In this section we study the Dirac operator Aη,τ introduced in (1.2) and we prove
the main results of this paper. First, in Section 4.1 we show how Aη,τ is related to
the boundary triple {L2(Σ;C2),Γ0,Γ1} from Proposition 3.7. Then, in Section 4.2,
we show the self-adjointness of Aη,τ for non-critical interaction strengths, i.e. when
η2 − τ 2 6= 4, and investigate the spectral properties of Aη,τ in this setting. In
Section 4.3 we the study the self-adjointness and the spectral properties of Aη,τ in
the case of critical interaction strengths. Finally, in Section 4.4 we provide a sketch
of the proof of Theorem 1.3.
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4.1 Definition of Aη,τ via the boundary triple

Recall the definition of the space H(σ,Ω±) from (3.5), the trace maps TD± on
H(σ,Ω±) in Lemma 3.1, and that the operator Aη,τ in (1.2) is defined by

Aη,τf = (−iσ · ∇+mσ3)f+ ⊕ (−iσ · ∇+mσ3)f−,

domAη,τ =
{
f = f+ ⊕ f− ∈ H(σ,Ω+)⊕H(σ,Ω−) :

− i(σ · ν)
(
TD+f+ − TD−f−

)
=

1

2
(ησ0 + τσ3)

(
TD+f+ + TD−f−

)}
.

(4.1)

Before analyzing the properties of Aη,τ we would like to mention that for special
values of the interaction strengths Aη,τ decouples in Dirac operators in L2(Ω+;C2)
and L2(Ω−;C2) subject to certain boundary conditions. Similar effects are known
from dimension three, see [20, Section V], [4, Section 5], and [7, Lemma 3.1]. The
result reads as follows:

Lemma 4.1. Let η, τ ∈ R. Then the following holds:

(i) If η2 − τ 2 6= −4, then there is an invertible matrix M (explicitly given below
in (4.4)) such that f = f+ ⊕ f− ∈ domAη,τ if and only if

TD+f+ = MTD−f−.

(ii) If η2 − τ 2 = −4, then Aη,τ = A+ ⊕ A−, where A± is a Dirac operator in
L2(Ω±;C2) and f± ∈ domA± if and only if

TD±f± = ± i
2

(σ · ν) (ησ0 + τσ3)TD±f±. (4.2)

Remark 4.2. Assume that η2 − τ 2 = −4, which is equivalent to η2

τ2
+ 4

τ2
= 1. Thus,

there exists ϑ ∈ [0, 2π] \ {π
2
, 3π

2
} such that

η

τ
= − sinϑ and

2

τ
= cosϑ.

Using (1.5) we see that (4.2) for f+ is equivalent to

0 =
2i

τ
σ3(σ · ν)

(
σ0 −

i

2
(σ · ν) (ησ0 + τσ3)

)
TD+f+

=
(
σ0 + iσ3(σ · ν) cosϑ− sinϑσ3

)
TD+f+,

i.e. the operators A+ in the bounded domain Ω+ are exactly those investigated
in [11]. The case ϑ = 0 corresponds to the well-known infinite mass boundary
condition (also called MIT bag) studied in [2, 27, 37]. We would like to point out
that our results on Aη,τ obtained later in Section 4.2 can be used for a deeper
understanding for A±.
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Proof of Lemma 4.1. The transmission condition in the definition of Aη,τ can be
written in the form(

i(σ · ν) +
1

2
(ησ0 + τσ3)

)
TD+f+ =

(
i(σ · ν)− 1

2
(ησ0 + τσ3)

)
TD−f−.

Multiplying this equation with −i (σ · ν) we obtain the equivalent form

(σ0 −R)TD+f+ = (σ0 +R)TD−f− (4.3)

with

R :=
i

2
(σ · ν)(ησ0 + τσ3) =

i

2
(ησ0 − τσ3)(σ · ν),

where (1.5) was used. One computes

R2 =
i

2
(ησ0 − τσ3)(σ · ν)

i

2
(σ · ν)(ησ0 + τσ3) = −η

2 − τ 2

4
σ0,

which implies

(σ0 −R)(σ0 +R) = σ0 −R2 = σ0 +
η2 − τ 2

4
σ0.

Assume now η2−τ 2 6= −4. Then both σ0±R are invertible with inverses (σ0±R)−1 =
1

4+η2−τ2 (σ0∓R). Therefore, the transmission condition can be equivalently rewritten
as

TD+f+ = (σ0 −R)−1(σ0 +R)TD−f− or TD−f− = (σ0 +R)−1(σ0 −R)TD+f+, (4.4)

which shows assertion (i). On the other hand, for η2 − τ 2 = −4 one has R2 = σ0

and multiplying (4.3) by σ0 −R or σ0 +R leads to the two conditions

TD±f± = ±RTD±f±.

It follows that the operator Aη,τ decouples in a orthogonal sum of operators A±
acting in Ω± and hence, also statement (ii) has been shown.

We are going to represent Aη,τ using the boundary triple {L2(Σ;C2),Γ0,Γ1}
constructed in Proposition 3.7. Note that the definition of Γ0 and Γ1 can be rewritten
as

i(σ · ν)
(
TD+f+ − TD−f−

)
= ΛΓ0f, (4.5)

1

2

(
TD+f+ + TD−f−

)
= Λ−1Γ1f +

1

2
(Cζ + Cζ̄)ΛΓ0f. (4.6)

With this we can identify the parameter in L2(Σ;C2) that corresponds to the oper-
ator Aη,τ .

Proposition 4.3. Let η, τ ∈ R. Then the following holds:
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(i) Assume |η| 6= |τ | and let Θ be the linear operator in L2(Σ;C2) obtained as the
maximal realization of the periodic pseudodifferential operator θ ∈ Ψ1

Σ given
by

θ = −Λ

[
1

η2 − τ 2
(ησ0 − τσ3) +

1

2
(Cζ + Cζ̄)

]
Λ, (4.7)

i.e. dom Θ =
{
ϕ ∈ L2(Σ;C2) : θϕ ∈ L2(Σ;C2)

}
and Θϕ = θϕ. Then

domAη,τ =
{
f ∈ domS∗ : Γ0f ∈ dom Θ, Γ1f = ΘΓ0f

}
. (4.8)

(ii) Assume η = τ 6= 0, let

Π+ : L2(Σ;C2)→ L2(Σ),

(
ϕ1

ϕ2

)
7→ ϕ1,

and let Θ+ be the linear operator in L2(Σ) obtained as the maximal realization
of the periodic pseudodifferential operator θ+ ∈ Ψ1

Σ given by

θ+ = −Λ
( 1

2η
+ Π+

1

2
(Cζ + Cζ̄)Π

∗
+

)
Λ, (4.9)

i.e. dom Θ+ =
{
ϕ ∈ L2(Σ) : θ+ϕ ∈ L2(Σ)

}
and Θ+ϕ = θ+ϕ. Then

domAη,τ =
{
f ∈ domS∗ : Π+Γ1f = Θ+Π+Γ0f, (σ0 − Π∗+Π+)Γ0f = 0

}
.

(4.10)

(iii) Assume η = −τ 6= 0, let

Π− : L2(Σ;C2)→ L2(Σ),

(
ϕ1

ϕ2

)
7→ ϕ2,

and let Θ− be the linear operator in L2(Σ) obtained as the maximal realization
of the periodic pseudodifferential operator θ− ∈ Ψ1

Σ given by

θ− = −Λ
( 1

2η
+ Π−

1

2
(Cζ + Cζ̄)Π

∗
−

)
Λ, (4.11)

i.e. dom Θ− =
{
ϕ ∈ L2(Σ) : θ−ϕ ∈ L2(Σ)

}
and Θ−ϕ = θ−ϕ. Then

domAη,τ =
{
f ∈ domS∗ : Π−Γ1f = Θ−Π−Γ0f, (σ0 − Π∗−Π−)Γ0f = 0

}
.

(4.12)

Note that the case η = τ = 0 is not discussed in the previous statement because
Aη,τ simply becomes the free Dirac operator A0 introduced in (3.1).

Remark 4.4. (i) The operators Θ and Θ± in Proposition 4.3 are well-defined due
to the fact that θ and θ± are periodic pseudodifferential operators of order
1. For example θϕ makes sense as an element of H−1(Σ;C2) for any ϕ ∈
L2(Σ;C2), and H1(Σ;C2) ⊂ dom Θ.
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(ii) In assertions (ii) and (iii) of the above proposition we decomposed G =
L2(Σ;C2) = GΠ+ ⊕ GΠ− , where

GΠ+ :=

{
ϕ =

(
ϕ1

ϕ2

)
∈ L2(Σ;C2) : ϕ2 = 0

}
' L2(Σ)

and

GΠ− :=

{
ϕ =

(
ϕ1

ϕ2

)
∈ L2(Σ;C2) : ϕ1 = 0

}
' L2(Σ).

Proof. With the help of (4.5) and (4.6) the transmission condition in (4.1) can be
rewritten as

−ΛΓ0f = (ησ0 + τσ3)
(

Λ−1Γ1f +
1

2
(Cζ + Cζ̄)ΛΓ0f

)
. (4.13)

Now let us distinguish between several cases.
(i) For |η| 6= |τ | the matrix ησ0 + τσ3 is invertible with

(ησ0 + τσ3)−1 =
1

η2 − τ 2
(ησ0 − τσ3).

Hence, we can rewrite the equality (4.13) as

Γ1f = −Λ

[
1

η2 − τ 2
(ησ0 − τσ3) +

1

2
(Cζ + Cζ̄)

]
ΛΓ0f = ΘΓ0f,

which gives the claimed representation in (4.8)
The cases (ii) are and (iii) are almost identical, so we only give a proof for (ii).

By (4.13) we have that f ∈ domAη,τ if and only if

−ΛΓ0f = (ησ0 + τσ3)
(

Λ−1Γ1f +
1

2
(Cζ + Cζ̄)ΛΓ0f

)
=

(
2η 0
0 0

)(
Λ−1Γ1f +

1

2
(Cζ + Cζ̄)ΛΓ0f

)
= 2ηΠ∗+Π+

(
Λ−1Γ1f +

1

2
(Cζ + Cζ̄)ΛΓ0f

)
.

Writing this equation in components it follows that this boundary condition is equiv-
alent to the conditions

(σ0 − Π∗+Π+)Γ0f = 0

and

Π+Γ1f = −Λ
( 1

2η
+ Π+

1

2
(Cζ + Cζ̄)

)
ΛΓ0f

= −Λ
( 1

2η
+ Π+

1

2
(Cζ + Cζ̄)Π

∗
+

)
ΛΠ+Γ0f

= Θ+Π+Γ0f.

Hence, we find that (4.10) is true.

In view of the general theory of boundary triples, see Subsection 2.3, many
properties of Aη,τ can be deduced from the respective properties of the operators Θ
and Θ± from Proposition 4.3. We prefer to consider separately the non-critical case
η2 − τ 2 6= 4 and the critical case η2 − τ 2 = 4, where the latter one is more involved.
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4.2 Non-critical case

Throughout this subsection we assume that

η2 − τ 2 6= 4.

In order to show the self-adjointness of Aη,τ we use Theorem 2.12. For that it is
necessary to investigate the operators Θ and Θ± in Proposition 4.3.

Lemma 4.5. Let η, τ ∈ R with η2 − τ 2 6= 4. Then the following holds:

(i) If η2 − τ 2 6= 0, then dom Θ = H1(Σ;C2) and Θ is self-adjoint in L2(Σ;C2).

(ii) If η = ±τ , then dom Θ± = H1(Σ) and Θ± is self-adjoint in L2(Σ).

Proof. (i) Let us consider the restriction Θ1 := Θ � H1(Σ;C2). Since θ ∈ Ψ1
Σ, the

operator Θ1 is well-defined as an operator in L2(Σ;C2). We show Θ = Θ1 and that
Θ1 is self-adjoint in L2(Σ;C2).

First, it follows from Proposition 3.5 that (Cζ + Cζ̄)
∗ = Cζ̄ + Cζ and hence Θ1 is

a symmetric operator in L2(Σ;C2). Moreover, since Θ1 is a symmetric extension of
the symmetric operator Θ∞ := Θ � C∞(Σ;C2) Lemma 2.4 implies Θ∗1 ⊂ Θ∗∞ = Θ.
Hence, Θ = Θ1 and Θ1 = Θ∗1 follows if we show Θ ⊂ Θ1, for which it suffices to
check the inclusion

dom Θ ⊂ dom Θ1 = H1(Σ;C2). (4.14)

To see (4.14) fix some ϕ ∈ dom Θ. Then θϕ ∈ L2(Σ;C2). Using Proposition 3.5 we
find that

θϕ = −1

2
ΛPΛϕ+ Ψ̂ϕ, where P =


2

η + τ
CΣT

TC ′Σ
2

η − τ

 and Ψ̂ ∈ Ψ0
Σ.

Hence, ΛPΛϕ ∈ L2(Σ;C2) and as Λ : H1/2(Σ;C2) → L2(Σ;C2) is bijective, this
amounts to PΛϕ ∈ H1/2(Σ;C2). Since CΣ, C

′
Σ ∈ Ψ0

Σ by Proposition 2.9, these
operators give rise to bounded operators in H1/2(Σ;C2), which implies that

2

η − τ
−CΣT

−TC ′Σ
2

η + τ




2

η + τ
CΣT

TC ′Σ
2

η − τ

Λϕ

=


4

η2 − τ 2
− CΣTTC

′
Σ 0

0
4

η2 − τ 2
− TC ′ΣCΣT

Λϕ ∈ H1/2(Σ;C2).

Now we use that TT = TT is the multiplication operator with the constant function
1 and that CΣC

′
Σ − 1, C ′ΣCΣ − 1 ∈ Ψ−∞Σ by Proposition 2.9. We then obtain from

the last line that
4− η2 + τ 2

η2 − τ 2
Λϕ+ Ψ̃ϕ ∈ H1/2(Σ;C2)
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with some Ψ̃ ∈ Ψ−∞Σ and hence 4−η2+τ2

η2−τ2 Λϕ ∈ H1/2(Σ;C2). Since η2 − τ 2 6= 4 by

assumption, this implies Λϕ ∈ H1/2(Σ;C2) and thus, ϕ ∈ H1(Σ;C2). We have
shown (4.14). This completes the proof of (i)

(ii) We consider the case η = τ , the other one being similar. Recall that Θ+ is the
maximal operator in L2(Σ) associated to the periodic pseudodifferential operator

θ+ = −1

2
Λ
(1

η
+ Π+(Cζ + Cζ̄)Π

∗
+

)
Λ.

Using Proposition 3.5 we find for ϕ ∈ dom Θ+ that

Θ+ϕ = − 1

2η
Λ2ϕ− 1

2
Π+

(
0 ΛCΣTΛ

ΛTC ′ΣΛ 0

)
Π∗+ϕ+ Ψ̂ϕ = − 1

2η
Λ2ϕ+ Ψ̂ϕ

with some symmetric operator Ψ̂ ∈ Ψ0
Σ. This implies dom Θ+ = dom Λ2 = H1(Σ;C)

and since Λ2 is self-adjoint we conclude that also Θ+ is self-adjoint in L2(Σ).

After the preparatory considerations in Lemma 4.5 we are now ready to show
the self-adjointness of Aη,τ for non-critical interaction strengths. To formulate the
result we recall the definitions of the free Dirac operator A0 from (3.1), of Φz and
Φ′z from (3.8) and (3.7), and of Cz in (3.11), respectively.

Theorem 4.6. Assume that η, τ ∈ R with η2 − τ 2 6= 4 and (η, τ) 6= (0, 0). Then
the operator Aη,τ is self-adjoint in L2(R2;C2) with domAη,τ ⊂ H1(R2 \ Σ;C2).
Moreover, for all z ∈ res(Aη,τ )∩ res(A0) the operator σ0 + (ησ0 + τσ3)Cz is bounded
and boundedly invertible in H1/2(Σ;C2) and

(Aη,τ − z)−1 = (A0 − z)−1 − Φz

(
σ0 + (ησ0 + τσ3)Cz

)−1
(ησ0 + τσ3)Φ′z̄ (4.15)

holds.

Proof. First, according to Theorem 2.12 the self-adjointness of Θ and Θ± in
L2(Σ;C2) and L2(Σ), respectively, implies the self-adjointness of Aη,τ in L2(R2;C2).
In addition, since dom Θ = H1(Σ;C2) and dom Θ± = H1(Σ), Lemma 3.8 yields
domAη,τ ⊂ H1(R2 \ Σ;C2).

It remains to show the Krein type resolvent formula in (4.15). First, for |η| 6= |τ |
we have by Theorem 2.12 that Θ−Mz, z ∈ res(Aη,τ )∩res(A0), is boundedly invertible
in L2(Σ;C2) and

(Aη,τ − z)−1 = (A0 − z)−1 +Gz

(
Θ−Mz

)−1
G∗z̄.

Taking the special form of Θ and Mz = Λ
(
Cz− 1

2

(
Cζ +Cζ̄

))
Λ into account and using

1
η2−τ2 (ησ0 − τσ3) = (ησ0 + τσ3)−1, we find

Θ−Mz = −Λ

[
1

η2 − τ 2
(ησ0 − τσ3) +

1

2
(Cζ + Cζ̄)

]
Λ− Λ

(
Cz −

1

2

(
Cζ + Cζ̄

))
Λ

= −Λ

[
1

η2 − τ 2
(ησ0 − τσ3) + Cz

]
Λ

= −Λ(ησ0 + τσ3)−1
(
σ0 + (ησ0 + τσ3)Cz

)
Λ.

(4.16)
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As Θ−Mz is a bijective operator in L2(Σ;C2) defined on dom Θ = H1(Σ;C2) this
implies that σ0 + (ησ0 + τσ3)Cz is bijective in H1/2(Σ;C2). In particular, the inverse
(σ0 +(ησ0 + τσ3)Cz)

−1 is well-defined and bounded in H1/2(Σ;C2). Using Gz = ΦzΛ
and G∗z̄ = ΛΦ′z̄ we get

Gz

(
Θ−Mz

)−1
G∗z̄ = −ΦzΛΛ−1

(
σ0 + (ησ0 + τσ3)Cz

)−1
(ησ0 + τσ3)Λ−1ΛΦ′z̄

= −Φz

(
σ0 + (ησ0 + τσ3)Cz

)−1
(ησ0 + τσ3)Φ′z̄,

(4.17)

which leads to (4.15).
The proof of (4.15) for |η| = |τ | 6= 0 is similar as above. First, one notes in the

same way as in (4.16) that

Θ±−Π±MzΠ
∗
± = −Λ

(
1

2η
+Π±CzΠ

∗
±

)
Λ = − 1

2η
Π±Λ

(
σ0 +2ηΠ∗±Π±Cz

)
ΛΠ∗±, (4.18)

which implies with 2ηΠ∗±Π± = ησ0 + τσ3

Π∗±(Θ± − Π±MzΠ
∗
±)−1Π± = Λ−1Π∗±

(
Π±(σ0 + 2ηΠ∗±Π+Cz)Π

∗
±
)−1

2ηΠ±Λ−1

= Λ−1
(
Π∗±Π±(σ0 + 2ηΠ∗±Π+Cz)

)−1
2ηΠ∗±Π±Λ−1

= Λ−1
(
σ0 + (ησ0 + τσ3)Cz

)−1
(ησ0 + τσ3)Λ−1.

With this observation and the same ideas as above one shows (4.15) also in the case
|η| = |τ |. This finishes the proof of this theorem.

In the following proposition we discuss the basic spectral properties of Aη,τ :

Proposition 4.7. Let η, τ ∈ R be such that η2 − τ 2 6= 4. Then the following holds:

(i) For the essential spectrum of Aη,τ we have

specess(Aη,τ ) =
(
−∞,−|m|

]
∪
[
|m|,∞

)
.

In particular, for m = 0 we have spec(Aη,τ ) = specess(Aη,τ ) = R.

(ii) Assume m 6= 0. Then z ∈ (−|m|, |m|) is a discrete eigenvalue of Aη,τ if and
only if there exists ϕ ∈ H1/2(Σ;C2) such that

(
σ0 + (ησ0 + τσ3)Cz

)
ϕ = 0.

(iii) If m 6= 0, then Aη,τ has at most finitely many eigenvalues in
(
− |m|, |m|

)
.

Proof. Item (i) is a direct consequence of (4.15). In fact, by (3.7) and Theorem 4.6
the operator(

σ0 + (ησ0 + τσ3)Cz
)−1

(ησ0 + τσ3)Φ′z̄ : L2(R2;C2)→ H1/2(Σ;C2)

is bounded. Since the embedding H1/2(Σ;C2) ↪→ H−1/2(Σ;C2) is compact and
Φz : H−1/2(Σ;C2) → L2(R2;C2) is bounded by definition, we conclude from (4.15)
that the resolvent difference

(Aη,τ − z)−1 − (A0 − z)−1 = −Φz

(
σ0 + (ησ0 + τσ3)Cz

)−1
(ησ0 + τσ3)Φ′z̄
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is a compact operator. Hence, specess(Aη,τ ) = specess(A0) = (−∞,−|m|]∪ [|m|,∞).
Next, we prove assertion (ii) for |η| 6= |τ |. First we note that by Theorem 2.12

a number z ∈ res(A0) is an eigenvalue of Aη,τ if and only if zero is an eigenvalue of
Θ −Mz. Using (4.16) this means that z ∈ res(A0) is an eigenvalue of Aη,τ if and
only if there exists ψ ∈ dom Θ = H1(Σ;C2) such that

−Λ(ησ0 + τσ3)−1
(
σ0 + (ησ0 + τσ3)Cz

)
Λψ = 0,

i.e. if and only if ϕ := Λψ ∈ H1/2(Σ;C2) satisfies(
σ0 + (ησ0 + τσ3)Cz

)
ϕ = 0.

The proof of item (ii) for |η| = |τ | is similar, one just has to use (4.18) instead
of (4.16).

Finally, assertion (iii) is an immediate consequence of Proposition 3.2, as
domAη,τ ⊂ H1(R2 \ Σ;C2) by Theorem 4.6.

Finally, we provide some symmetry relations for the point spectrum of Aη,τ ,
which can be seen as consequences of commutator relations of Aη,τ . The following
results are the two dimensional analogues of [7, Proposition 4.2].

Proposition 4.8. Let η, τ ∈ R and assume that η2 − τ 2 6= 4. Then the following
holds:

(i) If |η| 6= |τ |, then z ∈ specp(A−4η/(η2−τ2),−4τ/(η2−τ2)) if and only if z ∈
specp(Aη,τ ).

(ii) z ∈ specp(Aη,τ ) if and only if −z ∈ specp(A−η,τ ).

Proof. (i) Consider the unitary and self-adjoint operator

U : L2(Ω+;C2)⊕L2(Ω−;C2)→ L2(Ω+;C2)⊕L2(Ω−;C2), U(f+⊕f−) = f+⊕(−f−).

We claim that
Aη,τ = UA−4η/(η2−τ2),−4τ/(η2−τ2)U. (4.19)

For this purpose we note first that f = f+⊕ f− ∈ H1(Ω+;C2)⊕H1(Ω−;C2) belongs
to domAη,τ , if and only if

−i(σ · ν)
(
TD+f+ − TD−f−

)
=

1

2
(ησ0 + τσ3)

(
TD+f+ + TD−f−

)
, (4.20)

which is equivalent to

−i(σ · ν)
(
TD+ (Uf)+ + TD− (Uf)−

)
=

1

2
(ησ0 + τσ3)

(
TD+ (Uf)+ − TD− (Uf)−

)
.

By multiplying the last equation with (ησ0 + τσ3)−1 = 1
η2−τ2 (ησ0 − τσ3) and using

(1.5) we find that f ∈ domAη,τ if and only if

−i(σ · ν)
1

η2 − τ 2
(ησ0 + τσ3)

(
TD+ (Uf)+ + TD− (Uf)−

)
=

1

2

(
TD+ (Uf)+ − TD− (Uf)−

)
,
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which is equivalent to

− 4

η2 − τ 2
(ησ0 + τσ3)

1

2

(
TD+ (Uf)+ + TD− (Uf)−

)
= −i(σ · ν)

(
TD+ (Uf)+ − TD− (Uf)−

)
i.e. Uf ∈ domA−4η/(η2−τ2),−4τ/(η2−τ2). Hence, we have shown the equality
domAη,τ = domA−4η/(η2−τ2),−4τ/(η2−τ2)U . Moreover, a straightforward calculation
shows UAη,τf = A−4η/(η2−τ2),−4τ/(η2−τ2)Uf for any f ∈ domAη,τ . This gives (4.19),
which yields (i).

(ii) Define the nonlinear charge conjugation operator

Cf = σ1f, f ∈ L2(R2;C2).

Then we see immediately C2f = f for all f ∈ L2(R2;C2). We claim that

CAη,τ = −A−η,τC, (4.21)

which yields then the claim of statement (ii). To prove (4.21), we note first by taking
the complex conjugate of equation (4.20) that f ∈ domAη,τ if and only if

i(σ · ν)
(
TD+f+ − TD−f−

)
=

1

2
(ησ0 + τσ3)

(
TD+f+ + TD−f−

)
, (4.22)

where σ = (σ1, σ2) and σj is the matrix with the complex conjugate entries of σj.
By multiplying this equation by σ1 and using (1.5), σ1 = σ1, and σ2 = −σ2 we find
that (4.22) is equivalent to

i(σ · ν)
(
TD+ (σ1f+)− TD− (σ1f−)

)
=

1

2
(ησ0 − τσ3)

(
TD+ (σ1f+) + TD− (σ1f−)

)
,

i.e. Cf ∈ domA−η,τ . Moreover, using again (1.5) and σ2 = −σ2 we get

(−iσ · ∇+mσ3)Cf = (−iσ · ∇+mσ3)σ1f

= σ1(−iσ · ∇ −mσ3)f

= −σ1(−iσ · ∇+mσ3)f

= −C
(
− iσ · ∇+mσ3)f

)
,

which implies (4.21).

4.3 Critical case

In this subsection we study the self-adjointness and the spectral properties of Aη,τ for
the critical interaction strengths, i.e. when η2−τ 2 = 4. To show the self-adjointness
of Aη,τ we prove that the corresponding operator Θ in Proposition 4.3 is self-adjoint
in L2(Σ;C2).

Lemma 4.9. Let η, τ ∈ R be such that η2 − τ 2 = 4. Then the operator Θ is
self-adjoint in L2(Σ;C2) and the restriction of Θ onto H1(Σ;C2) is essentially self-
adjoint in L2(Σ;C2).
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Remark 4.10. According to Lemma 4.9 the operator Θ is essentially self-adjoint on
H1(Σ;C2). It will turn out later in the proof of Proposition 4.12 that specess(Θ) is
non-empty. Hence, one has dom Θ 6⊂ Hs(Σ;C2) for all s > 0.

Proof of Lemma 4.9. As in the proof of Lemma 4.5 we consider the restriction Θ1 :=
Θ � H1(Σ;C2). It follows in the same way as in the proof of Lemma 4.5 that Θ1 is a
symmetric operator in L2(Σ;C2) and together with Lemma 2.4 we see Θ1 ⊂ Θ∗1 ⊂ Θ.
To see Θ ⊂ Θ1, which then implies the claims, we will show (the slightly stronger
fact) that

dom Θ = dom Θ1. (4.23)

For this we consider the associated periodic pseudodifferential operator θ defined
in (4.7) and recall that with the aid of Proposition 3.5 we have

θ = −1

2
υ + Ψ, where υ =


2

η + τ
Λ2 ΛCΣTΛ

ΛTC ′ΣΛ
2

η − τ
Λ2

 , (4.24)

with some operator Ψ ∈ Ψ0
Σ, which is symmetric and hence self-adjoint in L2(Σ;C2).

In the following we denote by Υ the maximal realization of υ in L2(Σ;C2), that is

Υϕ = υϕ, dom Υ =
{
ϕ ∈ L2(Σ;C2) : υϕ ∈ L2(Σ;C2)

}
= dom Θ,

and Υ1 = Υ � H1(Σ;C2). Note that dom Υ1 = dom Θ1. In the same way as in
Subsection 2.2 we use the Schur complement to decompose υ (on a formal level
in the sense of periodic pseudodifferential operators without specification of the
operator domains) as

υ =

(
1 0

η + τ

2
ΛTC ′ΣΛ−1 1

) 2

η + τ
Λ2 0

0 S(υ)

(1 η + τ

2
Λ−1CΣTΛ

0 1

)
, (4.25)

where the Schur complement has the form

S(υ) =
2

η − τ
Λ2 − η + τ

2
ΛTC ′ΣΛ(Λ2)−1ΛCΣTΛ =

2

η − τ
Λ2 − η + τ

2
ΛTC ′ΣCΣTΛ.

Using that C ′ΣCΣ = 1 + R with R ∈ Ψ−∞Σ , see Proposition 2.9, we can rewrite this
expression as

S(υ) =
2

η − τ
Λ2 − η + τ

2
ΛTTΛ− η + τ

2
ΛTRTΛ = −η + τ

2
ΛTRTΛ ∈ Ψ−∞Σ ,

where we used in the last step that TT is the multiplication operator with the
constant function 1 and η2 − τ 2 = 4. From this, (4.25), and dom Λ2 = H1(Σ) we
obtain now

dom Θ = dom Υ =

{
(ϕ1, ϕ2)> ∈ L2(Σ;C2) : ϕ1 +

η + τ

2
Λ−1CΣTΛϕ2 ∈ H1(Σ)

}
.
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Let us now consider the operator realizations Θ1,Υ1 of θ, υ and their closures Θ1,Υ1

in L2(Σ;C2). We leave it to the reader to check that the assumptions in Proposi-
tion 2.10 are satisfied when each entry of the pseudodifferential operators in the
matrix representation of υ in (4.24) is defined on H1(Σ); in particular, note that
the upper left corner is a boundedly invertible self-adjoint operator in L2(Σ) with
domain H1(Σ). Then it follows from Proposition 2.10 that dom S(Ξ1) = L2(Σ) and

dom Θ1 = dom Ξ1

=

{
(ϕ1, ϕ2)> ∈ L2(Σ;C2) : ϕ1 +

η + τ

2
Λ−1CΣTΛϕ2 ∈ H1(Σ)

}
= dom Θ

hold. Hence, we have shown (4.23), which finishes the proof of this proposition.

With Lemma 4.9 we are now ready to show the self-adjointness of Aη,τ for critical
interaction strengths. To formulate the result we recall the definitions of the free
Dirac operator A0 from (3.1), of Φz and Φ′z from (3.8) and (3.7), and of Cz in (3.11),
respectively.

Theorem 4.11. Assume that η, τ ∈ R with η2 − τ 2 = 4. Then the operator Aη,τ is
self-adjoint in L2(R2;C2) and the restriction to domAη,τ ∩H1(R2 \Σ;C2) is essen-
tially self-adjoint in L2(R2;C2). Moreover, for all z ∈ res(Aη,τ )∩res(A0) the operator
σ0 + (ησ0 + τσ3)Cz admits a bounded inverse from H1/2(Σ;C2) to H−1/2(Σ;C2) and

(Aη,τ − z)−1 = (A0 − z)−1 − Φz

(
σ0 + (ησ0 + τσ3)Cz

)−1
(ησ0 + τσ3)Φ′z̄ (4.26)

holds.

Proof. First, according to Theorem 2.12 the self-adjointness of Θ in L2(Σ;C2) im-
plies the self-adjointness of Aη,τ in L2(R2;C2), and the essential self-adjointness of
Θ1 = Θ � H1(Σ;C2) in L2(Σ;C2) implies the essential self-adjointness of the restric-
tion of Aη,τ to domAη,τ ∩H1(R2 \ Σ;C2) in L2(R2;C2). For the latter observation
we have also used that by Lemma 3.8

S∗ � ker(Γ1 −Θ1Γ0) = Aη,τ �
(

domAη,τ ∩H1(R2 \ Σ;C2)
)
.

It remains to verify the Krein type resolvent formula in (4.26). By Theorem 2.12
we have that Θ−Mz is boundedly invertible in L2(Σ;C2) and

(Aη,τ − z)−1 = (A0 − z)−1 +Gz

(
Θ−Mz

)−1
G∗z̄.

Taking the special form of Θ and Mz = Λ
(
Cz − 1

2

(
Cζ + Cζ̄

))
Λ into account we find

with a similar calculation as in (4.16)-(4.17) that

(Θ−Mz)
−1 = −Λ−1

(
σ0 + (ησ0 + τσ3)Cz

)−1
(ησ0 + τσ3)Λ−1.

As (Θ −Mz)
−1 is bounded in L2(Σ;C2) we deduce that (σ0 + (ησ0 + τσ3)Cz)

−1 is
bounded from H1/2(Σ;C2) to H−1/2(Σ;C2). Using Gz = ΦzΛ and G∗z̄ = ΛΦ′z̄ we get

Gz

(
Θ−Mz

)−1
G∗z̄ = −ΦzΛΛ−1

(
σ0 + (ησ0 + τσ3)Cz

)−1
(ησ0 + τσ3)Λ−1ΛΦ′z̄

= −Φz

(
σ0 + (ησ0 + τσ3)Cz

)−1
(ησ0 + τσ3)Φ′z̄,

and thus (4.26).
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In the next proposition we analyze the essential spectrum of the self-adjoint
operator Θ. Note that our assumption η2 − τ 2 = 4 implies |τ | < |η|, and hence
− τ
η
m ∈ (−|m|, |m|).

Proposition 4.12. Let η, τ ∈ R be such that η2 − τ 2 = 4 and let m 6= 0. Then for
z ∈ (−|m|, |m|) one has 0 ∈ specess(Mz −Θ) if and only if z = − τ

η
m.

Proof. Throughout the proof we assume that z ∈ (−|m|, |m|). In particular, Mz is
a bounded self-adjoint operator in L2(Σ;C2). Recall that

Mz −Θ = Λ
1

η2 − τ 2
(ησ0 − τσ3)Λ + ΛCzΛ,

and using Proposition 3.5 we decompose this self-adjoint operator in Mz − Θ =
Ξ1 + Ξ2, where

Ξ1 :=


1

η + τ
Λ2 +

`

4π
(z +m)1

1

2
ΛCΣTΛ

1

2
ΛTC ′ΣΛ

1

η − τ
Λ2 +

`

4π
(z −m)1


and Ξ2 ∈ Ψ−1

Σ is a compact self-adjoint operator in L2(Σ;C2). We note that Ξ1

defined on dom(Mz −Θ) = dom Θ is a self-adjoint operator in L2(Σ;C2). It follows
that specess(Mz −Θ) = specess(Ξ1) and, in particular,

0 ∈ specess(Mz −Θ) if and only if 0 ∈ specess(Ξ1).

In the following we will show that 0 ∈ specess(Ξ1) if and only if z = − τ
η
m. For

this, the Schur complement of Ξ1 and Proposition 2.10 will be used. To proceed, we
shall use the operator Λ ∈ Ψ

1/2
Σ from (2.8) (see also (2.7)). Recall also that Λ2 ≥ c2

0

for c0 > 0. Now we choose c0 such that c2
0 >

|m|`
2π
|η + τ |. Then the upper left corner

of Ξ1
1

η + τ
Λ2 +

`

4π
(z +m)1

is boundedly invertible in L2(Σ). We leave it to the reader to check that the other
assumptions in Proposition 2.10 are also satisfied for the block operator matrix Ξ1.
Therefore, we have 0 ∈ specess(Ξ1) if and only if 0 ∈ specess(S), where S := S(Ξ1) is
the Schur complement

S =
1

η − τ
Λ2 +

`(z −m)

4π
1− η + τ

4
ΛTC ′ΣΛ

(
Λ2 +

`(z +m)(η + τ)

4π
1

)−1

ΛCΣTΛ.

To simplify the last summand in the above expression of S we use the identity

(Λ2 + a1)−1 = Λ−2 − aΛ−1(Λ2 + a1)−1Λ−1 = Λ−2 − aΛ−2(Λ2 + a1)−1 (4.27)

and rewrite S = S1 + S2 with

S1 =
1

η − τ
Λ2 +

`(z −m)

4π
1− η + τ

4
ΛTC ′ΣCΣTΛ
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and

S2 =
(η + τ)2

4
· `(z +m)

4π
ΛTC ′Σ

(
Λ2 +

`(z +m)(η + τ)

4π
1

)−1

CΣTΛ.

By Proposition 2.9 one has C ′ΣCΣ = 1 +K1 with K1 ∈ Ψ−∞Σ , so

η + τ

4
ΛTC ′ΣCΣTΛ =

η + τ

4
Λ2 +K2

with K2 ∈ Ψ−∞Σ . This gives because of η2 − τ 2 = 4

S1 =
1

η − τ
Λ2 +

`(z −m)

4π
1− η + τ

4
Λ2 −K2 =

`(z −m)

4π
1−K2.

In order to deal with S2 we use again the identity (4.27), which gives

4

(η + τ)2
· 4π

`(z +m)
S2 = ΛTC ′Σ

(
Λ2 +

`(z +m)(η + τ)

4π
1

)−1

CΣTΛ = K3 +K4,

where
K3 = ΛTC ′ΣΛ−2CΣTΛ

and

K4 = −`(z +m)(η + τ)

4π
ΛTC ′ΣΛ−2

(
Λ2 +

`(z +m)(η + τ)

4π
1

)−1

CΣTΛ.

Using Proposition 2.2 one finds that K4 ∈ Ψ−1
Σ and hence this operator is compact

in L2(Σ;C2). In order to simplify K3 we note first that

K5 := TC ′ΣΛ−2 − Λ−2TC ′Σ ∈ Ψ−2
Σ

by Proposition 2.2 (ii). Hence,

K3 = ΛΛ−2TC ′ΣCΣTΛ + ΛK5CΣTΛ =: ΛΛ−2TC ′ΣCΣTΛ +K6

with K6 ∈ Ψ−1
Σ . Using again C ′ΣCΣ − 1 ∈ Ψ−∞, see Proposition 2.9, we arrive at

K3 = 1 +K7 with K7 ∈ Ψ−1
Σ . With this we find

S2 =
(η + τ)2

4
· `(z +m)

4π
(K3 +K4) =

(η + τ)2

4
· `(z +m)

4π
1 +K8

with K8 ∈ Ψ−1
Σ . Using this in the expression of the Schur complement S we conclude,

with some K9 ∈ Ψ−1
Σ , that

S = S1 + S2

=
(`(z −m)

4π
+

(η + τ)2

4
· `(z +m)

4π

)
1 +K9

=
`

4π

[((η + τ)2

4
+ 1
)
z +

((η + τ)2

4
− 1
)
m
]
1 +K9.
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As K9 is compact and symmetric, it does not influence the essential spectrum, and
we have

0 ∈ specess(S) if and only if z = −(η + τ)2 − 4

(η + τ)2 + 4
m.

With η2 − τ 2 = 4 we can simplify the last expression to

(η + τ)2 − 4

(η + τ)2 + 4
=
η2 + τ 2 + 2ητ − η2 + τ 2

η2 + τ 2 + 2ητ + η2 − τ 2
=

2τ 2 + 2ητ

2η2 + 2ητ
=

2τ(η + τ)

2η(η + τ)
=
τ

η
.

Hence, 0 ∈ specess(S) if and only if z = −τ
η
m. This finishes the proof of this

proposition.

We are now ready to describe the spectral properties of Aη,τ for critical interac-
tion strengths. Compared to Proposition 4.7, the following theorem shows that the
spectral properties of Aη,τ differ significantly from the non-critical case.

Theorem 4.13. Let η, τ ∈ R be such that η2 − τ 2 = 4. Then the following holds:

(i) The essential spectrum of Aη,τ is

specess(Aη,τ ) =
(
−∞,−|m|

]
∪
{
− τ

η
m
}
∪
[
|m|,+∞

)
.

In particular, for m = 0 we have spec(Aη,τ ) = specess(Aη,τ ) = R.

(ii) Assume m 6= 0. Then z /∈ specess(Aη,τ ) is a discrete eigenvalue of Aη,τ if and
only if there exists ϕ ∈ H−1/2(Σ;C2) such that

(
σ0 + (ησ0 + τσ3)Cz

)
ϕ = 0.

(iii) For all s > 0 we have domAη,τ 6⊂ Hs(R2 \ Σ;C2).

Remark 4.14. Item (ii) in the above theorem is slightly weaker as Proposition 4.7 (ii),
since one has to search for eigenfunctions ϕ of the Birman-Schwinger operator σ0 +
(ησ0 + τσ3)Cz in the larger space H−1/2(Σ;C2). However, as there is no Sobolev
regularity in domAη,τ the smoothness of the eigenfunctions of σ0 + (ησ0 + τσ3)Cz
can not be improved.

Proof of Theorem 4.13. In order to verify assertion (i) we note that the inclusion(
−∞,−|m|

]
∪
[
|m|,∞

)
⊂ specess(Aη,τ ) (4.28)

can be shown in the same way as in [9, Theorem 5.7 (i)], where the three dimensional
situation is discussed. In fact, for a fixed z ∈ (−∞,−|m|) ∪ (|m|,∞) one verifies
that

fn(x1, x2) :=
1

n
χ

(
1

n
|x− yn|

)
ei
√
z2−m2x1

(√
z2 −m2σ1 +mσ3 + zσ0

)
ζ

is a singular sequence for Aη,τ and z. Here χ : R → [0, 1] is a C∞-function such
that χ(t) = 1 for |t| ≤ 1

2
and χ(t) = 0 for |t| ≥ 1, ζ ∈ C2 is chosen such that

(
√
z2 −m2σ1 + mσ3 + zσ0)ζ 6= 0, R > 0 is such that R3 \ B(0, R) ⊂ Ω−, and
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yn := (R + n2, 0), n ∈ N. The reader is referred to the proof of [9, Theorem 5.7 (i)]
for more details. Moreover, according to Theorem 2.12 we have z ∈ specess(Aη,τ ) ∩
(−|m|, |m|) if and only if 0 ∈ specess(Θ−Mz), that is, by Proposition 4.12 we have
z ∈ specess(Aη,τ ) ∩ (−|m|, |m|) if and only if z = − τ

η
m. Together with (4.28) this

implies (i).
To prove item (ii) we note first that by Theorem 2.12 a point z ∈ res(A0) is an

eigenvalue of Aη,τ if and only if zero is an eigenvalue of Θ −Mz. Using a similar
calculation as in (4.16) this shows that z ∈ res(A0) is an eigenvalue of Aη,τ if and
only if there exists ψ ∈ dom Θ ⊂ L2(Σ;C2) such that

−Λ(ησ0 + τσ3)−1
(
σ0 + (ησ0 + τσ3)Cz

)
Λψ = 0,

i.e. if and only if ϕ := Λψ ∈ H−1/2(Σ;C2) satisfies
(
σ0 + (ησ0 + τσ3)Cz

)
ϕ = 0.

Eventually, since domAη,τ is independent of m, it suffices to prove state-
ment (iii) for m 6= 0. In this case the claim is a consequence of Proposition 3.2, as
specess(Aη,τ ) ∩ (−|m|, |m|) 6= ∅.

Finally, we state several symmetry relations in the spectrum of Aη,τ . The follow-
ing proposition is the counterpart of Proposition 4.8 for critical interaction strengths.

Proposition 4.15. Let η, τ ∈ R and assume that η2 − τ 2 = 4. Then the following
holds:

(i) z ∈ specp(Aη,τ ) if and only if z ∈ specp(A−η,−τ ).

(ii) z ∈ specp(Aη,τ ) if and only if −z ∈ specp(A−η,τ ).

Proof. In the following set A1
η,τ := Aη,τ � (domAη,τ ∩ H1(R2 \ Σ;C2)). Then

by Theorem 4.11 the operator A1
η,τ is essentially self-adjoint in L2(R2;C2) and, in

particular, A1
η,τ = Aη,τ .

(i) Consider the unitary and self-adjoint mapping

U : L2(Ω+;C2)⊕L2(Ω−;C2)→ L2(Ω+;C2)⊕L2(Ω−;C2), U(f+⊕f−) = f+⊕(−f−).

As in the proof of Proposition 4.8 (i) one verifies A1
η,τ = UA1

−η,−τU . By taking
closures we find Aη,τ = UA−η,−τU and hence the claim follows.

(ii) Consider the nonlinear charge conjugation operator

Cf = σ1f, f ∈ L2(R2;C2).

Then C2f = f for f ∈ L2(R2;C2) and in the same way as in the proof of
Proposition 4.8 (ii) one obtains CA1

η,τ = −A1
−η,τC. Taking closures leads to

CAη,τ = −A−η,τC, which implies (ii).
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4.4 Sketch of the proof of Theorem 1.3

To prove Theorem 1.3 we use similar constructions as in the case of one loop. We
give some comments on necessary modifications in this subsection. Let N ≥ 1
and let Σj, j ∈ {1, . . . , N}, be non-intersecting C∞-smooth loops with normals νj.

We set Σ :=
⋃N
j=1 Σj, and for f ∈ H(σ,R2 \ Σ) we denote its Dirichlet traces from

Lemma 3.1 on the two sides of Σj by TD±,jf , where − corresponds to the side to which

νj is directed. The Sobolev spaces on Σ are defined by Hs(Σ) :=
⊕N

j=1H
s(Σj), and

for ϕ ∈ Hs(Σ) we denote by ϕj its restriction on Σj. Furthermore, if Λj denotes

the isomorphism defined in (2.8) on Σj, then we set Λ :=
⊕N

j=1 Λj. As in the case

of one loop one starts with the symmetric operator S := A0 � H1
0 (R2 \ Σ;C2). For

z ∈ res(A0) and ϕ ∈ L2(Σ;C2) we introduce

Φzϕ(x) =

∫
Σ

φz(x− y)ϕ(y) ds(y), x ∈ R2 \ Σ.

As for the single loop in Proposition 3.3 one shows that Φz extends to a bounded
map Φz : H−1/2(Σ;C2) → L2(R2;C2) with ran Φz = ker(S∗ − z). The associated
principal value operator Cz,(

Czϕ
)
(x) := p.v.

∫
Σ

φz(x− y)ϕ(y) ds(y), ϕ ∈ C∞(Σ;C2), x ∈ Σ,

has a block structure of the form

(Czϕ)j(x) := Cjzϕj(x) +
∑
k 6=j

(Kj,k
z ϕk)(x), ϕ ∈ C∞(Σ;C2), x ∈ Σj, (4.29)

(Cjzϕj)(x) = p.v.

∫
Σj

φz(x− y)ϕj(y) ds(y), x ∈ Σj, (4.30)

(Kj,k
z ϕk)(x) =

∫
Σk

φz(x− y)ϕk(y) ds(y), x ∈ Σj. (4.31)

The operators Cjz are the same as in the one loop case, while the operators Kj,k
z have

smooth integral kernels; hence, they define bounded operators from Hs(Σk,C2) to
H t(Σj,C2) for any s, t ∈ R. With the help of Proposition 3.6 one can show now the
trace equality

TD±,jΦzϕ = ∓ i

2
(σ · νj)ϕj +

(
Czϕ

)
j
.

The construction of the boundary triple takes then literally the same form as for
a single loop. Let ζ ∈ res(A0) be fixed and set (TD±f) := (TD±,jf)Nj=1. Then
{L2(Σ;C2),Γ0,Γ1} with

Γ0f = iΛ−1(σ · ν)
(
TD+f − TD−f),

Γ1f =
1

2
Λ
(

(TD+f+ + TD−f−)− (Cζ + Cζ̄)ΛΓ0f
)
,
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is a boundary triple for S∗. The corresponding γ-field G and Weyl function M are
z 7→ Gz = ΦzΛ and

z 7→Mz = Λ
(
Cz −

1

2

(
Cζ + Cζ̄

))
Λ.

Assume first that |ηj| 6= |τj| for any j. We define the linear operator Θ in
L2(Σ;C2) by

Θ = −Λ

[
Ξ +

1

2
(Cζ + Cζ̄)

]
Λ, (Ξϕ)j :=

1

η2
j − τ 2

j

(ηjσ0 − τjσ3)ϕj,

on its maximal domain in L2(Σ;C2). Then the operator AΣ,P defined in (1.3) cor-
responds to the boundary condition Γ1f = ΘΓ0f . Using (4.29) one sees that Θ can

be written as Θ =
⊕N

j=1 Θj + Θ̃, where Θj is the operator in L2(Σj;C2) acting as

Θj = −Λj

[
1

η2
j − τ 2

j

(ηjσ0 − τjσ3) +
1

2
(Cjζ + C

j

ζ̄
)

]
Λj,

with maximal domain, while Θ̃ is a bounded operator from Hs(Σ,C2) to H t(Σ,C2)
for any s, t ∈ R which is self-adjoint in L2(Σ;C2). Hence, the self-adjointness of Θ is
determined by the self-adjointness of

⊕N
j=1 Θj, and each Θj is exactly of the form as

in the single-loop case. Hence, Θj is self-adjoint by Lemma 4.5 and Lemma 4.9 and
thus, also Θ is self-adjoint in L2(Σ;C2). This implies also the statements concerning
the domain regularity.

In order to study the essential spectrum we decompose Mz to blocks as in (4.29)
and remark that the terms Kj,k

z produce compact remainders, which do not influence
the essential spectrum. Hence, the condition 0 ∈ specess(Mz −Θ) is equivalent to

0 ∈ specess

(
N⊕
j=1

(
Λj

1

η2
j − τ 2

j

(ηjσ0 − τjσ3)Λj + ΛjC
j
zΛj

))
.

As each of the terms on the right-hand side is covered by the analysis of the single-
loop case, the statement on the essential spectrum of Mz − Θ and thus, with the
help of Theorem 2.12, also of AΣ,P, follows.

If for some j one has |ηj| = |τj|, then the analysis can be done in a similar way
following the strategy from Section 4.2. The details are left to the reader.
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