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Equilibrium shape of an anisotropic crystal confined between two planar parallel walls

Jean-Christophe Geinard and Patrick Oswald
Ecole Normale Supiure de Lyon, 69364 Lyon Cedex 07, France
(Received 15 October 1996

Experimentally, the surface-free-energy anisotropy of a crystal-liquid interface is usually inferred from the
surface-shape anisotropy of a solid germ at equilibrium with the melt. However, the crystal is usually not free.
For example, in thin samples, the crystal touches the two limiting glass plates: Here, we analyze theoretically
how the shape anisotropy of the crystal depends on the wetting conditions in this particular geometry. We
calculate the equilibrium shape of an anisotropic cry&filniaxial, cubic, or hexagonal symmekryonfined
between two planar parallel walls as a function of its size and of the wetting conditions on the walls. We find
an analytic solution for the shape of the meniscus in the sample thickness and its anisotropy in the midplane
parallel to the walls in the limit of very large radius and vanishing surface tension anisotropy. In other cases,
a numerical solution is given. Neglecting the meniscus effect leads to errors as large as 25% for the inferred
anisotropy.[S1063-651X97)08904-9

PACS numbd(s): 68.10.Cr, 68.35.Bs

[. INTRODUCTION many materialgsuch as plastic crystals or liquid crystais
often deduced from measurements of the equilibrium shape
The shape of an isolated crystal in equilibrium with its of germs sandwiched between two glass plates. It is usually
melt or its vaporand, more generally of a germ of phase 1 in@ssumed that the shape anisotropy is equal to that of the
equilibrium with phase Ris deeply related to its surface Surface free energy. This is only true when (@®) Wulff

properties and is usually obtained by minimizing its total CONStruction appliesi.e., when the angle between the inter-

surface free energy. Such a minimization leads to the famou{ icserggglttzs)élsmr:tcl)?%g;lggsnéjstﬁg:jea:stﬁg)rgggérﬂ?ervglj’;’e that
geometrical Wulff construction that allows us to construct

the equilibrium shape of the crystal from its three- both anisotropies are equal. Our goal, here, is to calculate for

di : 3D) pol lotv(A). H < th ¢ materials of classical crystalline symmetries, how the shape
imensional3D) polar ploty(n). Hereyis the surface en-  ,hishr0py of a germ depends on its size, on the surface

ergy andn is the unit vector normal to the interfa¢g—5].  (gngjon anisotropy, and on the contact angle of the interface
On the other hand, this construction does not apply when thg;ith the limiting walls. We shall show that in typical experi-
crystal is in contact with a wall, which is usually the case inmental situations neglecting the effects of anisotropy upon
experiments. In practice, the crystal lies on a substrate or ithe meniscus can lead to errors of the order of 10%.
sandwiched between two parallel glass plates. In studies of we also emphasize that solving this problem is important
the shape of liquid crystal domains, the latter geometry isn the study of crystal growth. Indeed, it is known that the
often used because the glass can be treated in order to origntrginal stability constant™ of a stationary growing den-
the molecules. Having well-defined boundary conditions ordrite is a universal function of the surface energy anisotropy
the glass plates is crucial for obtaining a monodonta@, a € [19-22. Thus, an accurate measurementas of a great
domain in which the director field has everywhere the samémportance to compare the experimental results with the the-
orientation. Also, the presence of the plates prevents germ)retical predictions. This is particularly important since there
distorsion effects such as boojums in nematic liquid crystal®ften exists a discrepancy between experimental and theoret-
[6,7], focal conics in smectic liquid crysta]8—11] (the fa-  ical values ofc™* (calculated by using the experimental value
mous “b#onnets de Friedel'[9]), or developable domains Of € [23,24. _ _

in columnar mesophas¢&2—14. In these latter cases, the 1€ organization of this paper is as follows: In Sec. I,
problem is much more difficult to treat because elasticity’V® formulate the general problem of finding the equilibrium
must be taken into account in the calculatibs]. One con-  Snape of an anisotropic germ in contact with two parallel

sequence is that the Wulff construction cannot be applied ipi2nar surfaces. We calculate, in Sec. lll, an analytical ex-
its usual form[16,17. pression of the shape anisotropy of the germ in the limit of

In the following, we assume that the materfal crystal, vanishing surface energy anisotropy>0 andpo—c where

liquid crystal, or simple liquitlis sandwiched between two PO Is the mean radius of the germ in the midplane parall_el to
planar parallel walls that impose a well-defined orientation.the walls. Next, we compute, in Sec. IV, the _shape_amsot-
opy of a germ of finite radiupy but of vanishing anisot-

For this reason, we completely neglect elastic effects, but wE Finall . in Sec. \V al it
take into account the wetting conditions on the two limiting ropy. Finally, we give, in Sec. V, some numerical results

surfaces. Our purpose is to find the equilibrium shape of thé)btained for germs of both finite radius and finite surface

germ in these conditions. We again point out that, in the"Nergy anisotropy.

confined 3D.c_:as_e, the Wulff construction cannot'be. used and Il. GENERAL FORMULATION OF THE PROBLEM
that the equilibrium shapes are no longer self-similar.

Solving this problem theoretically is important for practi-  We consider the case of an anisotropic mateaatrystal
cal reasons because the surface-free-energy anisotropy of a liquid crysta), in equilibrium with a liquid(its melt for

1063-651X/97/564)/44428)/$10.00 55 4442 © 1997 The American Physical Society
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z We also scale all the surface free energiesyhy the mean
value ofy(Nn) over all the possible orientations and we define

= y\pA(1+p2)+pl. (5)

By definition, the volumeV of the crystal is given by

- 2w (12 p2(6,z
woow v:f f 102 454, ©)
‘ o J-12 2
o ’ The equilibrium shape of the crystal minimizes the surface
Liquid / Crystal : free energ)E;. If the volumeV is constant, the functional to
| minimize isEs— AV, where\ is a Lagrange multiplier. This
gives

FIG. 1. Schematic representation of the meniscus. SE.—\&V=0. @)

examplg, confined between two parallel planes separated by straightforward calculation shows tha{6,z) obeys the
a distanced (Fig. 1). We describe the interface in cylindrical ,qjume equation

coordinates @, ,i,,k). Because the sample thicknessof

the sample is the only length scale, all lengths scalel by d¢ d ¢ iﬁ_)\ o ®
Thus, the boundaries are at = ;. We define the interface gp dbap, dzap, P
points via two variable® and z:
with the two boundary conditions
OM=p(6,2)0,+zk 1) 9

. . . o . —(6,=3)+Ayp(6,+3)=0. 9)
The interface is characterized by its anisotropic surface free p;
energyy(n), wheren is the unit vector normal to the inter-

These boundary conditions give the contact angjei.e.,

the angle between the nornmalto the interface and the lim-

L iting walls (Fig. 1)].

PUr— Pl ppZR_ ) The problem now consists in solving this set of equations

Vp2(1+pd)+p5 for a given functiony(n). Equation(8) expresses, in cylin-
drical coordinates, the local mechanical equilibrium of the

We assume, for simplicity, that the wetting conditions are thenterface and can be rewritten in the usual fdi2]:

same on both surfaces and that one of the crystallographic

face:

n=

axis is perpendicular to the limiting walls. Let (ys) be y+v" Yty 10
the surface free energies of the crystajuid) with the sub- Ry R =-\ (10
strate. In the following, we assume that both quantities are 1 2

constant. The total surface free energy, calculated inside Rhere (1) and (I1,) are the two principal planes of curva-
cylinder of arbitrary radius, surrounding the meniscus, is ture and, R, and®,, the two principal radii of curvature.

given by Each second derivative of the surface free energy is calcu-
o (12 27 [ p(01/2 lated with respect to a polar angle takgr_1 in the considered
Es:f j deJrf f Yest d6 dr plane of curvature. The boundary conditiof®, known as
0o J-12 o Jo the Young relation3,25], relate the contact angle to the
or 1 ) B surface free energies on the limiting walls.
T 0 T (p(6,—1/2) . . .
+J f el d6 dH.f J yed d6 dr Let us now determine the surface-shape anisotropy in the
0 Jp(6.1/2 o Jo limiting case of vanishing surface-free-energy anisotropy
and large radius.

27 (r
+J fo visf dé dr, (3
0 Jp(6,-12) ll. ASYMPTOTIC BEHAVIOR AT LARGE RADIUS  py—®
AND SMALL ANISOTROPY €—0
wheredS= \p?(1+p2) +p2 d# dz. The calculation of the
last four integrals gives We assume that the mean radpysof the meniscus in the
plane z=0 is much larger than the sample thickness
20 U2 27 p2(6,5)+p2(6,— %) (po>1). We assume the following form fer(0,z) (Fig. 2):
Es:f f 7dS+Ayf
o J-1e 0 2 p(0,2)=rp(0)+r1(8,v)co—r(6,0). (11)
+2777|sr§, (4)  The polar anglev satisfies in each planeé= const the rela-
tion

whereA y= y.s— vis . Below, we consider only the excess of
surface free energy and thus neglect the last term inN4q. z=r(0,v)sinv. (12
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a plane {I,) a plane of symmetry of the crysté@l=kx/n

(P) ez)\% (k intege). For a given value of, the corresponding plane

(IT,) is the plane perpendicular tdI;) that contains the
- ev normal n to the interface. The two surface stiffnesses are
t then
rp(®)
n (y+9)n,=| v+ T—tam% (13
( 1) ' B=km/n
(I1p)

and

FIG. 2. Schematic representation of the meniscus in a plane of
symmetryd=Kkm/n. 11, andlIl, are two principal planes of curva-
ture.

(‘)’+ 7,’)H2: (7+ yaa)ﬁ:kw/n '

wherea is the angle between the normmaand the horizontal

With this choice, the horizontal and the vertical scales arelane P) and g is the angle thah makes with thex axis in
decoupled becausg, scales likep, whereasr; scales like the horizontal planeK) [the plane [I,) being chosen as a
the thickness(for ay#0). The position p(6,0)=r,(6) plane of symmetry of the cryst@#= 6]. The radius of cur-
—r.(6,0) of the origin of the vector; is a priori not known vaturefR; can also be expressed as a function of the radius of
and can be later deduced from the solution we determineurvaturefR;, in the horizontal planeR):
below. We point out that experimentallifig. 3) the contour
of the germ the most contrasted in the microscope corre- Ry,
sponds to the vertical part of the meniscus described by the Ri=——. 14
functionr (). Cos

In Sec. lll A, we determine the shapg 4,v) of the me-
niscus in a vertical planeé= const) chosen as a plane of If we remember thap,=0 in a symmetry plane, we have
symmetry of the crystal, and we show that the wetting con-
ditions on the limiting walls impose a relation between the Rn=p+pos="p(0)+15(6). (15)
Lagrange parameter and the radius of curvature of the me-
niscus in the horizontal plane. We then use this result tQ
determiner ,(6) in the limit of vanishing surface-free-energy The second equality is valid if/r,<1 (which can be

anisotropy. checkeda posterior). As for fR,, it |s given by the usual
relation:
A. Shape of the meniscus in a vertical plane ,
re+ry
From now on, we assume that the crystal haséld R,= t—,ztm) , (16)
axis perpendicular to the limiting walls. Here, we choose as (1419 o=Kka/n

where primes denote the derivatives with respect.taVe
can now rewrite the local equilibrium equatigfO) in a
plane of symmetryIl,):

y cofa+ yg—y,Sina cosy
RCosy

Y+ Yaa
R,

)ﬂ=kw/n B=km/n

=—NA\. a7

For a givend (or B), ri(6,v) satisfies this differential equa-
tion in which R, and N\ remain constant. To first order in
250um ri/ry, this equation becomes

TS

FIG. 3. Experimental observation of a columnar hexagonal me- Yy coa+ Yag— v,SiNa CoOsy
sophase through the microscope. The “Becke” I{8€] surround- (YF Yaa) | 1~ AR, cosx
ing the germ follows the vertical part of the meniscus. The material
is the discotic liquid crystal HET (hexa-ester of triphenylene R,
[28]. It is sandwiched between two parallel glass plates that anchor
the molecular columng.e., theCg axis) perpendicular to them. The
sample thicknesd is close to 3um and the radiup, equals 30 _
um. The contact angley, is about 60°. The shape anisotropy  Let () be a solution(even, for symmetry reasont® the
measured on such a photograph is small, of the ordencf® °. following equation:

B=km/n
=—\. (18
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- ~ ycoSa+ ygg— y,Sina Cosx
+yr=| (y+ 1— . 19
Yt vie=|(y vaa)( N, Cos i (19
B=km/n

We emphasize thaj,(«) is defined modulo a function of G(a). We now sketch the analytical calculation of the shape
the form A cosr, which does not play any role. Then, the anisotropy of the gerng, as a function ofe, and «g in the
shape of the meniscus in a plane of symméigyis given by  limit ,—0.
solving the generic equation (i) First, we calculate for each value bf(in practice for
k=0 andk=1) the value of the contact angle,, by Eq.
(24).

(i) Second, we integrate the second-order differential
equation[Eq. (19)] for each value ok. Recall that by defi-
nition of r,(6), we have

Vet Ve
R,

-\ (20

Its solution is[2,4,5]

1 = — Rn=pol 1+ er(—1)*(1—n?)]. (27)
r(v) ==+ 7@+ % a), (21) ’
(iii) Third, we substitute forry, andy, from the previous
7 (a) calculations into the geometrical relatidi&q. (23)]. This
v=q+arctan a) (220  gives two equations of the foritto first order in 1p,)

This solution must satisfy the geometrical conditid) on
the wallz= 1 (idem on the opposite ohevhich gives, using
Egs.(21) and(22),

1
_)\:2A7+%[f(er,'l-EnyaO)ig(er,]vfnucVO)]' (28)

We defineay as the contact angle calculated in the limit
€,=0. According to Egs(24) and (26), this angle is the

(23)  solution of the equation

_ . —_ A
Vil @oi) Sinagy+ Yy ( o) COS = — 5

F(ag)sinag+F' (ag)coseyg=AYy. (29

where aq is the contact anglédepending on thé plane

chosen given by the generalized Young relatig®,25]: o
At equilibrium, A\ must be a constant so tHaee Eq(28)]

o o
Y C(Ok,k H)SintOK‘I‘ ’y, aOkvk ﬁ) COS‘aOkZA‘y. (24) 6 — ‘ .

For a given value of the radius of curvatu¥, in the & 4;\\ S
horizontal plane ), the shape(v) of the meniscus inthe & ¢ \ &
vertical plane [I,) is determined by Eqs(21) and (22), ’@ I ?
where A must satisfy the boundary conditidiEq. (23)]. < 2T -

Thus, in the limit of largepy, we have determined a relation
between\ andfi,,. We emphasize that, up to this point, we o
have made no assumption as to the exact form of the surface -50

free energyy.

of T T T
B. Shaper ,(6) of the meniscus in the horizontal plane : ]

in the limit of vanishing anisotropy or E

To continue the calculation analytically, we now need to
assume that the shape of the germ can be written in the for
(first term of the Fourier expansipn

)/ €6lmax (%)

my
K3

[(e's-

10 f

s ]

(e)

(€4—es)/ey (%)

(25 '20:“.\..‘\”.\‘..:

-0.2 0 0.2

[ &y

rp(0)=po(1+ecomd) with e <1.

This will be the case if the surface free energy can similarly

be rewritten in the form FIG. 4. Shape anisotropy at large radjus— o and vanishing

anisotropye,— 0. Relative anisotropye;— €g)/ €5 Of a hexagonal
crystal when its twofold anisotropy,=0.1 (a) and e,=—0.1 (b).
Maximal value of €;—e€g)/€g (reached whemy==*7/2) as a
function of €, (). Relative anisotropyd),— €4)/ €, of a cubic crys-
tal as a function of the contact angilg (d).

v(B,a)=F(a)+ €,G(a)cong, (26)

with F(0)=G(0)=1 ande,<1. Note that we do not make
any further assumptions about the exact form~¢tr) and
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g(€), €n,ap)=0. (30) y(a,B)=1+ e,[4{coda(codB+sin'B) +sinta}— 3]
This equation formally gives the shape anisotragjyas a =(1-3es+ 3escosatdegsin'a)
function of €, and of the contact angle,. Notice that\ + €4(costa)cos4B, (33
tends to—2Ay (in units of y,/d) at infinite radius. Let us

now consider a few examples for which we have done thénd we calculate
complete calculation.

! .
. €47 €4 1 4ay—sindag
o _ . _ lim =— - . (34
1. Uniaxial crystal in planar orientation po— €4 8 2ap+ sin2ag
€4—0

The simplest case corresponds to a uniaxial cry@tal
example, a nematic liquid crystal in planar orientatid®et-  The shape anisotropy is now different from the surface en-
ting thex axis parallel to theC,, axis, we have a surface free ergy anisotropy and depends on the contact aagléut not
energy that is on its sign. We also see that the correctioa,(- €,)/ €, has

, a maximum equal to 25% fowg= = /2. This function is
y(a,B)=(1—e,Sirfa)+ e,(coga)cosPB. (3D plotted in Fig. 4 versus,.

The calculation shows that, in this case, the shape anisotropy 3. Hexagonal crystal

equals the surface energy anisotropy: Finally, we did the calculation for a hexagonal crystal

whoseCg axis is perpendicular to the walls. Theaxis is

! —
lim A =0. (32 f[ake_n parallel to £, axi_s. An example of this type is shown
po—e €2 in Fig. 3: the crystal is a columnar hexagonal mesophase
€—0 oriented with the columns perpendicular to the glass plates.

For such a system the surface energy is

2. Cubic crystal y(a,B)=(1+€,)siPa+(1— €,)(1+ e5c0s68)coSa

Another interesting case is that of a cubic crystal with a ]
C, axis perpendicular to the walls. Many plastic crystals, =[(1+€y)sirfa+(1-€)cosa]

such as succinonitrile or pivalic acitommonly used in n 1- e,)coLalcos 35
growth experimenjs have cubic symmetry. By taking the €6l (1~ ) a]coses, 39
x axis parallel to &C, axis, we havd24] and the correction to the shape anisotropy is given by
|

i Gé_ﬁs 4a’0+ 3625in2ao_sin4a0_625in&¥0

lim =€y 2 7% - - 7 . . (36)

oo €6 4(2—3€5) apt(4+8e,— 15€5)Sin2up+ (4— 3€,) €,SiNda g+ €55iN6ag

eg—0

The shape anisotropy thus dependsegrand on the contact the shape anisotropy to be small, we write

angleay. It is plotted as a function ofiy and e, in Fig. 4.

Notice that to first order ireg, the shape anisotropy equals p(6,2)=ro(2)[1+ €,r 1(2)coNb]. (37
the surface-free-energy anisotrofyr, for e,=0. Whene,
#0, the result does not depend on the sign of the conta
angleag, and the relative variatione{,— €¢)/ €5 is maximal
when one of the two phases completely wets the other,
when ag= = 7/2). This variation equals 20% for the maxi-

i —+1 1
mal value ofe, (i.e., &= 3). We recall that for|e;|>3 conditions that are independentra{z). This zero-order so-

there exists an angular point on the meniscus profile. : ! . . )
. : ; lution describes the isotropic meniscus. It, and the Lagrange
In conclusion, we have determined the shift between the . :
arametei\, corresponding to a given value pf,, are ob-

surfgcg-free-energy anisotropy and Fhe Sh.a pe anisotropy Rined by using a classical shooting metfj@6]. Knowing
the limit of large radiusp, and vanishing anisotropy,. In

: . ro(z), we then solve the second differential equation in
Sec_. v, we com_pgte shape anisotrogyas function of the r.(z) with the corresponding boundary conditions. The same
radiuspg in the limit e,<<1.

shooting method can be used, the unknown parameter being
now r,(0) (i.e., €).

For a uniaxial crystal in planar orientation, the shape an-
isotropy equals that of the surface free energy fongll The

Let us now consider the case of a crystal of finite radiusexpansion(which we shall not give hejeshows thatr,(z)
po and of vanishingly small anisotrops,— 0. As we expect =1 is the solution fore,—0. For a cubic or a hexagonal

Céy definition, we havee/ = €,r,(0) andpy=ry(0). Tocal-
culate €/, we replacep(#6,z) in Egs. (8) and (9) and we
expand them ire, ande, to first order. This procedure gives
a second-order differential equation figg(z) and boundary

IV. ASYMPTOTIC BEHAVIOR FOR VANISHINGLY
SMALL ANISOTROPY AND FINITE RADIUS
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8of _ ok

ﬂl, AAAAAAAAAAAAAA logl = 30 degrees
a0l i

1

|

(e4' —€4) /ey (7)

AS - T T T e e e o o b

. . . . . . . . ‘ laol = 45 degrees
1 2 3 4 5 6 7 8 9 10
Po
FIG. 5. Relative shape anisotropy,(- €,)/ €, (%) of a cubic U S 6'0 R 8'0 TR
- P . . 20 40 100
crystal calculated in the limig,—0. Its value, indicated on each 0
level line, is equal to zero on the two solid lines. Po

crystal (Figs. 5 and § the numerical results show that the ~ F/C: 7. Behavior of &= es)/ e, (%) as a function of the radius
relative difference between the shape anisotropy and the s@%!iﬁgéfc;ghghﬁnzzl'2()';?;3 %':]’g;he (lj'me"tnf’jo;]: |E)Enq'-fj3;s)2{e J
face energy anisotropyef,— €,)/ €, is usually small(of the D o= g

; . lines, toag<<0.) Note that €, — €4)/ €, tends to its asymptotic value
order of a few %. The asymptotic value corresponding to like 1/p0a° ) €—elles ymp

po— is reached(to +1%) when the radiugp, is larger
than about 20 times the sample thicknéSig. 7). For small
radii pg, the coupling between the in-plane curvature and the
curvature in the thickness is asymmetricag. As a conse-
guence, the correction depends on the sigapfThe results
are given only forpy>0.5 because the meniscus can be lin-
early unstable when the radiyg is smaller than typically
the half distance between the limiting wal&7].

V. CRYSTAL OF FINITE ANISOTROPY €, AND OF
FINITE RADIUS py

In this last section, we extend the numerical method of
Sec. IV to the case of a uniaxial crystal of planar orientation
[see Eq.(31)]. Equations(8) and (9) are expanded to third
order ine and yield four second-order differential equations
for ther;(2):

[

p(6,2)=ro(2) 1+k21 ekr(z)cokned | . (38)

A shooting method is used to determine the midplane values
r;(0), which satisfy the boundary conditions on the limiting
walls. The numerical results show that the error made in
solving this problem td(m), scales likee} .

We have previously shown that the shape anisotropy
tends to the surface-free-energy anisotropy wagenr 0. The
numerical resultsFig. 8 now show that &,—e,)/ e, re-
mains smalla few %9 even for largee,. They also confirm
that, as expected, the difference scales kke

(b) Po VI. CONCLUDING REMARKS

FIG. 6. Relative shape anisotropys— €g)/ €5 (%) of a hexago- The equilibrium shape of an anisotropic crystal confined
nal crystal in the limitegz— 0. (8) €,=0.1. (b) e,=—0.1. between two planar parallel walls depends on its wetting
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S R A R R T T larger than about 20 times the sample thickness. We empha-
2o @ 21 &) size that the shape of the meniscus in this limit is again
I ] self-similar. On the other hand, the asymptotic value/pis
ok . different from the value of the anisotropy of the energy per

[ ] unit length of the meniscus. Indeed, one could be tempted to
calculate the energl(8) per unit length(integrated over the
thicknes$ of a straight meniscus and then to use the corre-
L ] 1 sponding 2D Wulff construction. This procedure leads to a
ST e e B e wrong result because curving the meniscus in the midplane

20 e while keeping its shape unchanged in the thickness does not

maintain a constant pressure differelcB= —\ across the
whole interface.

Experimentally, we observed that a germ’s anisotropy
usually does not depend on its size and on the sign of the
contact anglgby taking a germ of solid in the liquid and a
droplet of liquid in the solid We wrongly concluded that the
wetting condition had no effect on our measurement of
. ] I ] surface-free-energy anisotrof88]. Howeuver, in the discotic
B bl b A0 B s liquid crystal shown in Fig. 3, the radii of the gerrtypi-

oo (;io( d;gre::) o o 602 o cally 20-50um) are larger than the sample thicknésgpi-
cally 2-10 um for Ref.[28]) and the asymptotic value is

FIG. 8. Numerical results for an uniaxial crystal in planar ori- Fé@ched within a few percent. The experimental errors do not
entation.(a) Relative shape anisotropy)— €,)/ e, as a function of ~ allow us to determine the dependence of the shape anisot-
the radiusp, for a;y= +45° (short-dashed line ap=—45° (long- ~ fopy on the radius and on the contact angle. The present
dashed ling and e,==0.1. The solid lines give the asymptotic Work shows that our systematic error on the valuesgfor
values at large radiup,—=. (b) Asymptotic value of ¢  the hexagonal phaséig. 7) is of about 5% €,~0.1) and
—€,)l €, as a function of, for |ay| =45° andpy—x. (c) Relative  thus negligible: This small systematic error cannot explain
shape anisotropyet,—€,)/ €, as a function ofaq for e, for e, the discrepancy between the experimental value of the sta-
=0.1 andpo=1 (squares po= 10 (circles, andp,— < (solid line). bility constant of the dendrites3,=0.041 and its “theoret-

(d) (€2~ €2)/ e as a function ofe; for |ao|=45° andpo=1. ical” value o3p=0.033[29]. Useful analytical expressions

of the asymptotic value of the shape anisotropy are provided

in the present article.

For finite anisotropy, the discrepancy between the shape

conditions and on the shape of the meniscus that forms in thenisotropy and the surface energy anisotropy is about 10%.
sample thickness. The anisotropy of the vertical part of thérhis discrepancy is however not large enough to explain the
meniscus, which is observable in the microscope, does natften encountered disagreement between the experimental
equal the surface-free-energy anisotropy in the plane of thand theoretical values of the stability constant of stationary
limiting walls and depends on the size of the germ. dendrites.

When the radius of the germ is much larger than the
sample thickness and when the anisotropy vanishes, the
shape anisotropy tends to an asymptotic value that depends
on the contact angle but not on its sign. In addition, this This work has been supported by DRET Contract No.
asymptotic value is reached within 1% when the ragigiss  95.1117.

(e2'—€2)/ €2 (%)
(e2'—€2)/ €2 (%)

po >> 1

- g F |l = 45 degrees

(ex'—¢€2) /€2 (%)
(e2'~€z) /€2 (%)

.3:— e = +0.1 a —_
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