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Extended McKean-Vlasov optimal stochastic control applied to
smart grid management *†

Emmanuel GOBET ‡ and Maxime GRANGEREAU §

Abstract

We study the mathematical modeling of the energy management system of a smart grid, related to a aggregated
consumer equipped with renewable energy production (PV panels e.g.), storage facilities (batteries), and connected
to the electrical public grid. He controls the use of the storage facilities in order to diminish the random fluctuations
of his residual load on the public grid, so that intermittent renewable energy is better used leading globally to a
much greener carbon footprint. The optimization problem is described in terms of an extended McKean-Vlasov
stochastic control problem. Using the Pontryagin principle, we characterize the optimal storage control as solution
of a certain McKean-Vlasov Forward Backward Stochastic Differential Equation (possibly with jumps), for which we
prove existence and uniqueness. Quasi-explicit solutions are derived when the cost functions may not be linear-
quadratic, using a perturbation approach. Numerical experiments support the study.

1 Introduction

General context in energy management. The energy sector is currently facing major changes because of the
raising concern about climate change, the search for energy-efficiency and the need to reduce carbon footprint. In
particular, the share of renewable energy (RE for short) production has increased in most industrialized countries
over the last few years, and further effort has to be done to limit the temperature increase well below 2◦ C by 2100,
as targeted by the 2015 Paris agreement. However, even if these renewable energies allow a huge reduction of
carbon footprint during the energy production phase, they raise a major issue: the amount of energy produced is
intermittent and uncertain, as a main difference with more conventional energy production units (coal/gas-fired units,
or nuclear power plants).

Reducing uncertainty of net residual consumption. Since the electricity production has to meet consumption
at all spatial and time scales, the load balancing operations become harder in this uncertain context, this leads to
higher operating costs for the whole electricity system; furthermore, it sometimes lead to ecologically catastrophic
solutions such as the use of coal units to compensate the deficit of clean energy production. See [Mor+14] for
an overview on how to integrate renewables in electricity markets. Therefore, a major challenge is to smooth the
electricity consumption by better predicting RE production and better managing the energy system. We address the
latter in the context of a consumer equipped with its own RE production (e.g. PV panels), and formalize the problem
as a stochastic control problem of McKean-Vlasov (MKV for short) type that we solve theoretically and numerically.
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More specifically, we study a decentralized mechanism aimed at reducing the variability of residual consumption on
the electricity network; thus, operating the network could be done at lower costs and with a lower carbon footprint.
This mechanism is a setting where a consumer has to commit in advance (say T=one day-ahead, to match the usual
working of day-ahead markets) to a predefined load profile and then, he has to command optimally and dynamically
his system according to his stochastic consumption/production. Both the optimal load profile and the optimal control
are the outputs of the stochastic control problem described below. The above model is a simplified prototype of
smart grid (as defined by the European Commission1): our so-called consumer is considered as an association
of small consumers, with possibly individual RE production and individual storage facilities, that we aggregate and
consider as a whole.

General setting and methodology. We take the point of view of a consumer supplied in energy by its own
intermittent sources (PV panels for instance) and by the electrical public grid. We consider the situation where
the non-flexible consumption and the intermittent production are exogenous and can not be predicted perfectly: a
stochastic model should be used for both of them. See [Bad+18] about a recent methodology for deriving a proba-
bilistic forecast for solar irradiance (and thus PV production). To smooth his residual consumption, the consumer can
take advantage of storage facilities (for instance conventional batteries, electrical vehicle batteries, heating network,
flywheel etc) which we consider as a whole. At time t, his control is denoted by ut, the level of storage is represented
by Xu

t , its net consumption on the electrical public grid is Pgrid,ut . The (deterministic) committed profile load is the
curve (Pgrid,com.t : 0 ≤ t ≤ T). Optimal control of a single micro-grid has already been considered in the literature,
without the optimal committed load profile. A popular yet without theoretical optimality guarantee is Model Predic-
tive Control [SSM16]. In discrete-time settings, Stochastic Dynamic Programming [IMM14; Wu+16] and Stochastic
Dual Dynamic Programming [Pac+18] are popular approaches to get theoretical optimality guarantees. Long-term
aging of the battery equipping a micro-grid is taken into account by two-time scales time decomposition in [Car+19].
Continuous time optimal control problems are considered in [Hey+15] in a deterministic setting, and in [Hey+16] in a
stochastic environment. By jointly optimizing with the profile Pgrid,com., we change the nature of the stochastic control
problem, compared to these works. We shall consider general filtrations with processes possibly exhibiting jumps,
to account for sudden variations of solar irradiance or consumption for instance.

In short, in a simplified setting, the optimization criterion takes the form of the following cost functional

E

[∫ T

0

{
CtP
grid,u
t +

µ

2
u2

t +
ν
2

(
Xu

t −
1
2

)2

+ l1
(
P
grid,u
t − P

grid,com.
t

)}
dt +

γ

2

(
Xu

T −
1
2

)2]
,

minimized over admissible controls (ut)t. The first term in the above cost functional is the cost of buying electricity
to the electrical public grid, at a price Ct which can be random. The second term in the cost functional accounts
for a penalization of the use of the storage (e.g. aging cost in the case of a battery). The third and fifth terms are
penalization of the deviation from the desired state of charge of the storage, which we define as 1

2 by convention.
The fourth term is a penalization (through a convex loss function l1) of the deviation of the power supplied by the
electrical public grid Pgrid,u from the commitment profile Pgrid,com.. If the later were exogenously given, it would take
the form of standard stochastic control problem. In our model, it is endogenous and we set

P
grid,com.
t = E

[
P
grid,u
t

]
. (1.1)

This choice is inspired by the quadratic case for l1: indeed, solving the optimal stochastic control for a given Pgrid,com.,
and then minimizing the resulting cost functional over Pgrid,com. would lead to (1.1), as the reader can easily check.
Doing so, we obtain a stochastic control problem of MKV type, see later.

Going back to the applications, once identified the optimal control (ut : 0 ≤ t ≤ T), the consumer can commit
to the profile Pgrid,com. as in (1.1) and then execute the optimal command, so that the variability of its residual
consumption on the electrical public grid is minimized in a consistent way. On the side of the electricity supplier on
the electrical public grid, since the consumption is smoothed, the operating costs are lower and the use of ”brown”
generation units can be likely avoided. We shall highlight that presumably, good loss functions l1 should penalize
more the consumption exceedance than the consumption deficit: indeed, exceedance possibly requires the use of

1http://www.ieadsm.org/publication/functionalities-of-smart-grid-and-smart-meters-eutf/
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extra production units with high carbon footprint, this is clearly to discard as often as possible. A typical example of
loss function would be:

l1(x) = αx2 + α+ max(x, 0)2; (1.2)

see Figure 1 for an example with α+ = 1, α = 1. This choice is somehow related to generalized risk measures
accounting for both left and right tails of the distribution, such as expectiles [Bel+14]. Another point to stress is the
need to account for jumps in the production/consumption dynamics – i.e. the consumption might have discontinuities
as appliances/devices are switched-on/off, the power production by a solar panel might suddenly drop to zero if a
cloud hides the sun. To summarize, in order to fit application needs, we shall consider non quadratic loss functions
and a probabilistic setting of general filtration (allowing jumps).

Figure 1: Loss function l1 penalizing more the consumption exceedance

MKV stochastic control problems: background results. We embed the previous example in a more general
setting:

J(u) := E
[∫ T

0 l
(
t, ω,ut,Xu

t ,E
[
g(t, ω,ut,Xu

t )
])

dt + ψ
(
ω,Xu

T,E
[
k(ω,Xu

T)
])]

s.t. Xu
t = x0 +

∫ t

0 φ(s, ω,us,Xu
s )ds.

 −→ min
u
. (1.3)

The functions l, g, ψ, k, φ depend on time, control, state variable and on the ambient randomness ω, precise as-
sumptions are given later. Note that the control only appears in the drift of the state variable: we could also have
considered a more general model Xu

t = x +
∫ t

0 φ(s, ω,us,Xu
s )ds + Zt where Z is càdlàg semi-martingale (independent

of u), but actually, this extended model is equivalent to the current one by setting X̃u
t = Xu

t −Zt as a new state variable
and by adjusting the (already random) coefficients. Besides, note that the above dynamics for Xu is compatible with
usual battery dynamics [Hus+07], like for example models of the form

d State of charge
dt

= constant · Battery power. (1.4)

The problem (1.3) is of McKean-Vlasov (MKV) type since the distribution of (u,Xu) enters into the functional cost.
But since this is through generalized moments via the functions g and k, the interactions are so-called scalar, which
avoids to use the notion of derivatives with respect to probability measures, while maintaining some interesting
flexibility. For a full account on control of Stochastic Differential Equations (SDE for short) of MKV type and the link
with Mean Field Games, see the recent books [CD18] and in particular Chapter 6 of Volume I. However, in the above
reference, only the distribution of SDE enters in the coefficients, not that of the control as in our setting. We refer to
this more general setting as extended MKV stochastic optimal control.

Studies in such an extended framework are quite unusual in the literature. In [PW16], the general discrete case
is studied. In [Yon13] and very recently in [BP18], both the probability distributions of the state and control variables
appear in the dynamic of the state and the cost function, but only through their first and second order moments
(Linear-Quadratic problems, LQ for short). In [PW18], the cost functional and the dynamic depend both on the joint
probability distribution of the state and control variables, but the authors consider closed-loop controls, which allows
them to consider the probability distribution of the state variable only: in our setting, we do not make any Markovian
assumptions for the characterization of the optimal control. During the preparation of this work (started in 2016),
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we have been aware of the recent preprint [ABVC19] which deals also with the extended MKV stochastic optimal
control, with fully non-linear interaction, Markovian dynamics, in the case of a Brownian filtration.

Our contributions. As a difference with the previous references, we do not restrict ourselves to the LQ setting,
we deal with extended MKV stochastic optimal control, without Markovian assumptions, and we do not assume
that the underlying filtration is Brownian (allowing jump processes). Besides, apart ”expected” results about ex-
istence/uniqueness, we provide some numerical approximations by using some perturbations analysis around the
LQ case. We shall insist that MKV stochastic control is a very recent field and numerical methods are still in their
infancy; see [Ang+19] for a scheme based on tree methods for solving some MKV Forward-Backward SDE (FBSDE
for short) that characterize optimal stochastic controls. Our perturbation approach is different from theirs. As a
consequence, we design an effective numerical scheme to address the problem raised by the optimal management
of storage facilities able to reduce the variability of residual electricity consumption on the electrical public grid, in
the context of uncertain production/consumption of an aggregated consumer. This presumably opens the door to a
wider use of these approaches in real smart grid applications.

Now let us go into the details of mathematical/computational arguments. For characterizing the optimal control,
we follow a quite standard methodology (see e.g.[CD15]), although details are quite different. This is made in three
steps: necessary first order conditions, which become sufficient under additional convexity assumptions, existence
of solutions to the first order equations. The derivation of the first order conditions follows the stochastic Pontryagin
principle, see for instance [Ben88; Pen90; CD15]. This is achieved for general running and terminal cost functions.
In particular, to account for jumps in the production/consumption dynamics, our mathematical analysis is performed
in the context of general filtration. It gives rise to an optimality system (see Theorems 2.2 and 2.3), composed of
a forward degenerate SDE and of a backward SDE (the adjoint equation), with possibly discontinuous martingale
term, and an optimality condition linking the values and probability laws of the state and control variables with the
adjoint variable.

In Section 2.4, we establish that this system of equations has a unique solution under some regularity conditions,
an invertibility assumption and for small time horizon T (see Theorem 2.4). The condition on T is quite explicit from
the proof, which makes the verification on practical examples easy. Here the proof has to be specific and restricted
to small time because of non-Brownian filtration and of non-Markovian dynamics: indeed, we can not invoke neither
a drift-monotony condition, as in [PT99], nor a non-degeneracy condition as in [DG06]. In Section 2.5, we discuss
how the unique solution to the first order condition may or may not be the optimal solution; we provide a counter-
example (Proposition 2.6), which is interesting for its own, we believe that this kind of situation is already known but
we could not find an appropriate reference.

Then we show in Section 2.7 that the necessary optimality conditions established in Theorem 2.3 become
sufficient if we assume some convexity conditions on the Hamiltonian and the terminal cost. We shall highlight
that the usual Hamiltonian [CD15] (when the distribution of the control is not optimized) can not match with our
framework; alternatively, we define a version in expectation (Lemma 2.9). The final optimality result is stated in
Theorem 2.10.

In Section 3, we exemplify our study to the toy model presented in introduction, motivated by practical appli-
cations to smart grid management. To get a tractable and effective solution, we perform a perturbation approach
around the LQ case. We establish error bounds and as an approximation, we select the expansion with the sec-
ond order error terms. Numerical experiments illustrate the performance and accuracy of the method, as well the
behavior on the optimally controlled system.

Long and technical proofs are postponed to Section 4 in order to smooth the reading.

Notations. We list the most common notations used in all this work.
� Numbers, vectors, matrices. R,N,N∗ denote respectively the set of real numbers, integers and positive integers.
The notation |x| stands for the Euclidean norm of a vector x, without further reference to its dimension. For a
given matrix A ∈ Rp

⊗ Rd, A> refers to its transpose. Its norm is that induced by the Euclidean norm, i.e. |A| :=
supx∈Rd,|x|=1 |Ax|. Recall that |A>| = |A|. For p ∈N∗, Idp stands for the identity matrix of size p × p.
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� Functions, derivatives. When a function (or a process) ψ depends on time, we write indifferently ψt(z) or ψ(t, z) for
the value of ψ at time t, where z represents all other arguments of ψ.
For a smooth function g : Rq

7→ Rp, gx represents the Jacobian matrix of g with respect to x, i.e. the matrix
(∂x j gi)i, j ∈ Rp

⊗Rq. However, a subscript xt refers to the value of a process x at time t (and not to a partial derivative
with respect to t). We also introduce ∇x f := f>x .

� Probability. To model the random uncertainty on the time interval [0,T] (T > 0 fixed), we consider a complete
filtered probability space (Ω,F , {Ft}0≤t≤T,P), we assume that the filtration {Ft}0≤t≤T is right-continuous, augmented
with the P-null sets. For a vector/matrix-valued random variable V, its conditional expectation with respect to the
sigma-field Ft is denoted by Et [Z] = E [Z|Ft]. Denote by P the σ-field of predictable sets of [0,T] ×Ω.
All the quantities impacted by the control u are upper-indexed by u, like Zu for instance.
As usually, càdlàg processes stand for processes that are right continuous with left-hand limits. All the martingales
are considered with their càdlàg modifications.

� Spaces. Let k ∈N∗. We define L2([0,T],Rk) (resp. L∞([0,T],Rk)) as the Banach space of deterministic functions
f on [0,T] with values in Rk such that

∫ T

0 | ft|
2dt < +∞ (resp. supt∈[0,T] | f (t)| < +∞). Since the arrival space Rk will be

unimportant, we will skip the reference to it in the notation and write the related norms as

‖ f ‖L2
T

:=
( ∫ T

0
| f (t)|2dt

) 1
2

, ‖ f ‖L∞T := sup
t∈[0,T]

| f (t)|.

Let p ≥ q ≥ 1. The Banach space of Rk-valued random variables X such that E [|X|p] < +∞ is denoted by Lp(Ω,Rk),
or simply Lp

Ω
; the associated norm is

‖X‖Lp
Ω

:= E [|X|p]
1
p .

The Banach spaceHp,q([0,T] ×Ω,Rk) (resp. Hp,q
P

([0,T] ×Ω,Rk)) is the set of all F-progressively measurable (resp.

F-predictable) processes ψ : [0,T]×Ω→ Rk such that
∫ T

0 E
[
|ψt|

q]p/qdt < +∞. Here again we will omit the reference
to Rk, which will be clear from the context. The associated norm is

‖ψ‖Hp,q :=
(∫ T

0
E

[
|ψt|

q]p/qdt
) 1

p

.

The Banach spaceH∞,q
(
[0,T] ×Ω,Rk

)
stands for the elements ofHp,q

(
[0,T] ×Ω,Rk

)
satisfying supt∈[0,T]E

[
|ψt|

q] <
+∞, and the related norm is

‖ψ‖H∞,q([0,T]×Ω,Rk) := sup
t∈[0,T]

E
[
|ψt|

q] 1
q .

We shall most often consider p = q = 2.

2 Stochastic control and MKV-FBSDEs

The aim is to analyze the control problem, about minimizing (1.3). We first discuss the smart grid setting and the
class of admissible controls u; second we derive the first-order condition (Pontryagin principle) which writes as a
MKV-FBSDE; third we derive sufficient conditions for the existence and uniqueness to the above; fourth in the ab-
sence of convexity conditions we provide a counter-example to optimality; last, with suitable convexity assumptions
we establish that the MKV-FBSDE solution characterizes the optimal control.

2.1 Stochastic model and smart grid framework

As explained in introduction, (1.3) may describe the optimal energy management of an aggregated consumer,
with storage facilities (e.g. battery), with his own RE production (e.g. building equipped with solar panel), with a

5



connection to the electrical public grid. The management horizon T is typically short, e.g. 24 hours for reasons
explained in introduction.

The control is made through a Rd-valued vector process u = (ut : 0 ≤ t ≤ T), d ∈ N∗. We consider u as a Ft-
predictable process inH2,2

P
: the intuition behind it is that decisions occurring at time t have to be made in accordance

with the information available up to this time. This is coherent with the smart grid application. In particular, there
has to be a slight delay between sudden events and the decisions taken by the controller, whence the predictability
assumption.

The dynamics of the system are represented by a Rp-valued state variable, denoted by X, which satisfies the
following ODE

Xu
t = x0 +

∫ t

0
φ(s, ω,us,Xu

s )ds. (2.1)

The state variable can include various information in the smart grid application, like for example the state of charge
of the battery (see (1.4)), the PV production, the building electricity consumption, etc. Moreover, the possible
dependence in time of φ(·) is a degree of freedom suitable to account for energy losses over time or aging of the
battery, both impacting the state of charge of the battery.

The cost functional is described byJ(u), given in (1.3). In the smart grid application, Markovian-type costs would
take the form, for instance, l(t, ω,u, x, ḡ) = l̃(t,Zt(ω),u, x, ḡ) where Z would represent a multidimensional stochastic
factor modeling the evolution of the exogenous uncontrolled variables (weather, consumption. . . ), but we also allow
non Markovian models. In the sequel, we omit ω when we write terms inside J(u) and Xu, since it is now clear that
we deal with random coefficients. All in all, the optimal control problem we study is

J(u) := E
[∫ T

0 l
(
t,ut,Xu

t ,E
[
g(t,ut,Xu

t )
])

dt + ψ
(
Xu

T,E
[
k(Xu

T)
])]

s.t. Xu
t = x0 +

∫ t

0 φ(s,us,Xu
s )ds.

 −→ min
u∈H2,2

P

. (2.2)

Last, we summarize the coefficients from the toy example described p.2.

Example 2.1 (Smart grid toy example). Let Pload be the difference between the instantaneous consumer local
consumption and his RE production: we assume this is a process inH2,2([0,T]×Ω,R). The control u ∈H2,2

P
([0,T]×

Ω,R) corresponds to the power supplied by the battery, while the state Xu corresponds to the normalized state of
charge of the battery which dynamics is linear with respect to the control u, see [Hey+15]:

Xu
t = x0 −

1
Emax

∫ t

0
usds.

If Pgrid,u is the power supplied by the electrical public grid, the power balance imposes that

Ploadt− = Pgrid,ut− + ut.

Then set d = p = 1 and

l(t, ω,u, x, ḡ) := Ct−(ω) (Ploadt− (ω) − u) +
µt

2
u2 +

νt

2
(x −

1
2

)2 + l1(Ploadt− (ω) − u − ḡ),

g(t, ω,u, x) := Ploadt− (ω) − u,

ψ(ω, x, k̄) :=
γ

2
(x −

1
2

)2,

k(ω, x) := 0,

φ(t,u, x) := −
u
Emax

.

(2.3)

The time-dependent coefficients µt and νt give the flexibility to include hourly effect in the management. We recall
that the convex loss function l1 may take the form (1.2). Considering the left-hand limit t− in the above definitions is
a technicality to fulfill the following assumptions.
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2.2 Standing assumptions

From now on, we assume the following hypotheses hold. When we refer to a constant, we mean a finite deterministic
constant.

(H.x) x0 ∈ L2
Ω

and is F0-measurable.

(H.l) l : (t, ω,u, x, ḡ) ∈ [0,T] × Ω × Rd
× Rp

× Rq
7→ l(t, ω,u, x, ḡ) ∈ R is P ⊗ B(Rd) ⊗ B(Rp) ⊗ B(Rq)-measurable.

Furthermore, l(·, ·, 0, 0, 0) ∈H1,1, l is continuously differentiable in (u, x, ḡ) with the growth condition

|∇ul(t, ω,u, x, ḡ)| + |∇xl(t, ω,u, x, ḡ)| + |∇ḡl(t, ω,u, x, ḡ)| ≤ C (|u| + |x| + |ḡ|) + C(0)
l (t, ω)

for any (t,u, x, ḡ) ∈ [0,T] ×Rd
×Rp

×Rq a.s., for some constant C and some random process C(0)
l inH2,2.

(H.g) g : (t, ω,u, x) ∈ [0,T] × Ω × Rd
× Rp

7→ g(t, ω,u, x) ∈ Rq is P ⊗ B(Rd) ⊗ B(Rp)-measurable. Furthermore,
g(·, ·, 0, 0) ∈H2,1, g is continuously differentiable in (u, x) and there exist constants Cg,u and Cg,x such that

|∇xg(t, ω,u, x)| ≤ Cg,x and |∇ug(t, ω,u, x)| ≤ Cg,u

for any (t,u, x) ∈ [0,T] ×Rd
×Rp a.s. .

(H.ψ) ψ : (ω, x, k̄) ∈ Ω ×Rp
×Rr

7→ ψ(ω, x, k̄) ∈ R is FT ⊗ B(Rp) ⊗ B(Rr)-measurable. Furthermore, ψ(·, 0, 0) ∈ L1
Ω

, ψ
is continuously differentiable in (x, k̄) and the growth condition

|∇xψ(ω, x, k̄)| + |∇k̄ψ(ω, x, k̄)| ≤ C (|x| + |k̄|) + C(0)
ψ (ω)

holds for any (x, k̄) ∈ Rp
×Rr a.s., for some constant C and some random variable C(0)

ψ in L2
Ω

.

(H.k) k : (ω, x) ∈ Ω × Rp
7→ k(ω, x) ∈ Rr is FT ⊗ B(Rp)-measurable. Furthermore, k(·, 0) ∈ L1

Ω
, k is continuously

differentiable in x and there exists a constant Ck,x such that

|∇xk(ω, x)| ≤ Ck,x

holds for any x ∈ Rp a.s..

(H.φ) φ : (t, ω,u, x) ∈ [0,T] × Ω × Rd
× Rp

7→ φ(t, ω,u, x) ∈ Rp is P ⊗ B(Rd) ⊗ B(Rp)-measurable. Furthermore,
φ(·, ·, 0, 0) ∈H2,2, φ is continuously differentiable in (u, x) and there exist constants Cφ,u and Cφ,x such that

|∇uφ(t, ω,u, x)| ≤ Cφ,u and |∇xφ(t, ω,u, x)| ≤ Cφ,x

hold for any (t,u, x) ∈ [0,T] ×Rd
×Rp a.s..

It is easy to check these conditions in Example 2.1.

As a consequence of (H.φ), the dynamics of Xu in (2.1) writes as a ODE with Lipschitz-continuous stochastic
coefficient: the uniqueness and existence stem from the Cauchy existence theorem for ODE, applied ω by ω. In
addition, we easily show

|Xu
t | ≤ |x0| +

∫ t

0

(
|φ(s, 0, 0)| + Cφ,u|us| + Cφ,x|Xu

s |
)

ds ≤ CT

(
|x0| +

∫ t

0

(
|φ(s, 0, 0)| + Cφ,u|us|

)
ds

)
where the second inequality comes from Gronwall’s lemma. Then one directly shows that, since u and φ(·, 0, 0) are
in H2,2, Xu is in H∞,2 ⊂ H2,2. Then, a careful inspection of the assumptions (H.l)-(H.g)-(H.ψ)-(H.k) shows that it
implies that the cost J(u) is finite.
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2.3 Necessary condition for optimality

For admissible controls u and v, we now provide a representation of the derivative

J̇(u, v) = ∂εJ(u + εv)|ε=0,

using an adjoint process Yu.

Theorem 2.2 (Gâteaux derivatives). Let u ∈H2,2
P

and set ḡu
t := E

[
g(t,ut,Xu

t )
]
. Let L̃u be the unique solution of

L̃u
0 = Idp,

dL̃u
t

dt
= L̃u

t∇xφ(t,ut,Xu
t ).

Then L̃u is invertible and its inverse satisfies (see Lemma 4.1)

(L̃u
0)−1 = Idp,

d(L̃u
t )−1

dt
= −∇xφ(t,ut,Xu

t )(L̃u
t )−1.

Define also Lu := ((L̃u)−1)>. The following Rp-valued process Yu is well defined as a càdlàg process inH∞,2:

Yu
t = Et

[
(L̃u

t )−1L̃u
T

(
∇xψ

(
Xu

T,E
[
k(Xu

T)
])

+ ∇xk(Xu
T)E

[
∇k̄ψ

(
Xu

T,E
[
k(Xu

T)
])])]

+ Et

[∫ T

t
(L̃u

t )−1L̃u
s

(
∇xl(s,us,Xu

s , ḡ
u
s ) + ∇xg(s,us,Xu

s )E
[
∇ḡl(s,us,Xu

s , ḡ
u
s )
])

ds
]
. (2.4)

In particular, there exists a Rp-valued càdlàg martingale Mu in H∞,2, vanishing at time 0, such that (Yu,Mu) is the
unique solution inH∞,2 ×H∞,2 of the following BSDE in (Y,M):

−dYt =
(
∇xφ(t,ut,Xu

t )Yt + ∇xl(t,ut,Xu
t , ḡ

u
t ) + ∇xg(t,ut,Xu

t )E
[
∇ḡl(t,ut,Xu

t , ḡ
u
t )
])

dt − dMt,

YT = ∇xψ
(
Xu

T,E
[
k(Xu

T)
])

+ ∇xk(Xu
T)E

[
∇k̄ψ

(
Xu

T,E
[
k(Xu

T)
])]
. (2.5)

Besides, for any u, v ∈H2,2
P

, the directional derivative J̇(u, v) exists and is given by

J̇(u, v) = E

[∫ T

0

{
lu(t,ut,Xu

t , ḡ
u
t ) + E

[
lḡ(t,ut,Xu

t , ḡ
u
t )
]
gu(t,ut,Xu

t ) + (Yu
t−)>φu(t,ut,Xu

t )
}
vtdt

]
.

The proof is postponed to Subsection 4.1. At the optimal control u (whenever it exists), the above derivative
J̇(u, v) must be 0, in any direction v ∈H2,2

P
. Take for instance v given by:

∀ ∈ [0,T], vt := lu(t,ut,Xu
t , ḡ

u
t ) + E

[
lḡ(t,ut,Xu

t , ḡ
u
t )
]
gu(t,ut,Xu

t ) + (Yu
t−)>φu(t,ut,Xu

t ),

which ensures that v ∈H2,2
P

under our assumptions. This justifies the following statement.

Theorem 2.3 (Necessary condition for optimality). Under the notations and assumptions of Theorem 2.2, if a control
u ∈H2,2

P
is optimal, then there exists a unique couple

(
Xu,Yu

)
∈H∞,2 ×H∞,2 fulfilling (2.1) and (2.4) such that

lu(t,ut,Xu
t , ḡ

u
t ) + E

[
lḡ(t,ut,Xu

t , ḡ
u
t )
]
gu(t,ut,Xu

t ) + (Yu
t−)>φu(t,ut,Xu

t ) = 0 (2.6)

holds dt ⊗ dP-a.e.

2.4 Solvability of the MKV Forward-Backward SDE

Our aim is now to provide sufficient conditions to ensure existence of solution to the system of forward-backward
equations (2.1)-(2.4)-(2.6), which we call MKV-FBSDE. For this, we strengthen previous assumptions.

8



(H.l.2) (H.l) holds and there exist constants Cl∗,? where ∗ stands for x and ḡ, and ? stands for u, x or ḡ such that:

|∇xl(t, ω,u1, x1, ḡ1) − ∇xl(t, ω,u2, x2, ḡ2)| ≤ Clx,u |u1 − u2| + Clx,x|x1 − x2| + Clx,ḡ|ḡ1 − ḡ2|,

|∇ḡl(t, ω,u1, x1, ḡ1) − ∇ḡl(t, ω,u2, x2, ḡ2)| ≤ Clḡ,u |u1 − u2| + Clḡ,x|x1 − x2| + Clḡ,ḡ|ḡ1 − ḡ2|

holds for any (u1,u2, x1, x2, ḡ1, ḡ2) ∈ Rd
×Rd

×Rp
×Rp

×Rq
×Rq, dt × dP-a.e..

(H.g.2) (H.g) holds and g is affine-linear in x, of the form g(t,u, x) = a(g)
t x + b(g)(t,u).

(H.ψ.2) (H.ψ) holds and there exist constants Cψ∗,? where ∗ and ? stand for x or k̄ such that:

|∇xψ(x1, k̄1) − ∇xψ(x2, k̄2)| ≤ Cψx,x|x1 − x2| + Cψx,k̄|k̄1 − k̄2|,

|∇k̄ψ(x1, k̄1) − ∇k̄ψ(x2, k̄2)| ≤ Cψk̄,x|x1 − x2| + Cψk̄ ,k̄|k̄1 − k̄2|

holds for any (x1, x2, k̄1, k̄2) ∈ Rp
×Rp

×Rr
×Rr, dt × dP-a.e..

(H.k.2) (H.k) holds and k is affine-linear in x, of the form k(x) = a(k)x + b(k).

(H.φ.2) (H.φ) holds and the dynamic of Xu is affine-linear in x, given by φ(t,u, x) = a(φ)
t x + b(φ)(t,u).

Observe again that this set of conditions is consistent with Example 2.1. We now aim at establishing the solvability
of the system composed of (2.1), (2.5) and (2.6). We are going to show that this system has a unique solution for
a small enough time horizon T, hence the existence and uniqueness of a solution to the optimal control problem,
under the sufficient conditions of Theorem 2.10.

Theorem 2.4. Assume (H.l.2)-(H.g.2)-(H.ψ.2)-(H.k.2)-(H.φ.2) hold. Assume furthermore that there exists a P ⊗
B(Rp) ⊗ B(Rp) ⊗ B(Rq) ⊗ B(Rq)-measurable function h : (t, ω, x, y, ḡ, λ̄) 7→ h(t, ω, x, y, ḡ, λ̄) ∈ Rd such that

lu(t,ut,Xu
t , ḡ

u
t ) + E

[
lḡ(t,ut,Xu

t , ḡ
u
t )
]
gu(t,ut,Xu

t ) + (Yu
t−)>φu(t,ut,Xu

t ) = 0, dP ⊗ dt − a.e.

⇐⇒ ut = h
(
t,Xu

t ,Y
u
t−, ḡ

u
t ,E

[
∇ḡl(t, ω,ut,Xu

t , ḡ
u
t )
])
, dP ⊗ dt − a.e.. (2.7)

If h is Lipschitz continuous in (x, y, ḡ, λ̄), with Lipschitz constants denoted by Ch,x,Ch,y,Ch,ḡ,Ch,λ̄, and if
(
h(t, ω, 0, 0, 0, 0)

)
(t,ω)∈P

∈

H2,2
P

,

Θ :

H2,2
P
→H2,2

P

u 7→ ũ
,

where

Θ(u)t := ũt = h
(
t, ω,Xu

t ,Y
u
t−, ḡ

u
t ,E

[
∇ḡl(t,ut,Xu

t , ḡ
u
t )
])
, dP ⊗ dt − a.e.,

is well defined and Lipschitz continuous. If moreover,

Ch,ḡCg,u + Ch,λ̄

(
Clḡ,u + Clḡ,ḡCg,u

)
< 1, (2.8)

then for T small enough, Θ is a contraction and therefore has a unique fixed point u?. In that case, there exists a
unique u ∈H2,2

P
satisfying (2.1)-(2.5)-(2.6) and u = u?.

The proof is available in Subsection 4.2. Regarding the proof of a fixed point when the time interval [0,T] is
arbitrary large, observe that, as a difference with [PT99] and [DG06] for instance, in our setting we can rely on
a monotony condition of the drifts, nor a non-degeneracy condition. This is why we shall restrict to small time
condition.

Remark 2.5. If one can exhibit a P ⊗ B(Rp) ⊗ B(Rp) ⊗ B(Rq) ⊗ B(Rq)-measurable function h such that for all
(ũ, x, y, ḡ, λ̄) ∈ Rd

×Rp
×Rp

×Rq
×Rq:

dP ⊗ dt − a.e., lu(t, ω, ũ, x, ḡ) + λ̄>gu(t, ω, ũ, x) + y>φu(t, ω, ũ, x) = 0

⇐⇒ dP ⊗ dt − a.e., ũ = h
(
t, ω, x, y, ḡ, λ̄

)
,

then (2.7) is satisfied with the same function h.
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2.5 Existence and uniqueness of critical point do not necessarily imply existence of a
minimum

If there exists a unique solution to the first order optimality condition (unique critical point), and under other as-
sumptions like continuity, growth properties, it is tempting to conclude that this point is a minimum. However, this
is not necessarily the case in infinite dimension. This section aims at clarifying this fact by providing an example2

where continuity, coercivity and unique critical point are ensured, but without existence of minimum. Therefore, extra
conditions are necessary to get the existence of a minimum, see later the discussion in Section 2.6.

Proposition 2.6. Set

F :

L
2
1 := L2([0, 1],R) 7→ R

u 7→ (‖u‖2
L2

1
− 1)2 +

∫ 1

0 t|ut|
2dt.

Then F satisfies the following properties:

1. Continuity: F is continuous

2. Coercivity: F(u) tends to +∞ when ‖u‖L2
1

tends to +∞

3. Existence and uniqueness of critical point: F is Gateaux-differentiable and has a unique critical point.

However, F does not have a minimum.

The proof is postponed to Subsection 4.3. The function F defined in this example cannot be quasi-convex (and
a fortiori F cannot be convex), since it would then have a minimum, as stated in the next section.

2.6 Existence of an optimal control

We now give sufficient conditions for the existence of an optimal control, i.e. existence of a minimizer of J . In such
a favorable case, and if the necessary optimality conditions (2.1)-(2.4)-(2.6) have a unique solution u∗, then u∗ is the
unique minimum of J . We start with a general result.

Theorem 2.7. Let E be a reflexive Banach space, let F : E→ R be a lower semi-continuous, quasi-convex function
which satisfies the coercivity condition lim‖u‖E→+∞ F(u) = +∞. Then F has a minimum on E.

Proof. We adapt the arguments of [Bre10, Corollary 3.23, pp. 71], where the operator considered is assumed to
be continuous and convex. However, the hypothesis can be relaxed to lower semi-continuity and quasi-convexity
of the function F, since we only need closedness and convexity of the sub-level sets Γ(F)

α := {u ∈ E|F(u) ≤ α} for all
α ∈ R. �

Let us add a few comments. In the finite dimensional case, any lower semi-continuous and coercive function
has a minimum (since any closed and bounded set is compact). In the infinite dimensional case, the example in
Subsection 2.5 illustrates that this may be not the case without the quasi-convexity assumption. Besides, note that
without the coercivity condition, the existence of minimum may not hold, even in finite dimension (take E = R and
F(x) = exp(x)). Moreover, without the lower semi-continuity of F, the result may fail as well (take F : (−∞, 0] 7→ R
defined by F(x) = |x|1x<0 + 1x=0, which is coercive and convex).

Apply the previous result with E = H2,2 and F = J : E is an Hilbert space, thus a reflexive Banach space. The
functional J is continuous, hence lower semi-continuous. Therefore, we have proved the following.

Corollary 2.8. Assume that J defined in (2.2) is quasi-convex and that lim‖u‖H2,2→+∞J(u) = +∞. Then the optimal
control problem has a solution u∗ ∈H2,2

P
.

2Such examples might exist in the literature, but we have not been able to find a reference for this.
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2.7 Sufficient condition for optimality

Let us now give conditions under which the necessary optimality conditions are sufficient. Additionally to (H.x)-
(H.g)-(H.l)-(H.k)-(H.ψ)-(H.φ), we assume the following conditions.

(Conv)

1. The mapping T :

L2
Ω
→ R

X 7→ E
[
ψ(X,E [k(X)])

] is convex.

2. The mapping I :

H2,2
P
×H∞,2 → R

(ũ,X) 7→

∫ T

0 E
[
l
(
t, ũt,Xt,E

[
g (t, ũt,Xt)

])]
dt

is convex.

3. The mapping: φ :

 [0,T] ×Rd
×Rp

→ Rp

(t,u,X) 7→ φ(t,u,X)
is affine-linear in (u,X).

Lemma 2.9. Under (Conv), J is convex. If furthermore, I is strictly convex in ũ, or I is strictly convex in X and φu

has full column rank (which implies p ≥ d) for almost every t in [0,T], then J is strictly convex.

Proof. Under the assumption on φ, u 7→ Xu is affine-linear. This yields the first result using the fact that a compo-
sition of an affine-linear function by a convex function is convex. If I is strictly convex in u then so is J . If φu has
full column rank, u 7→ Xu is an affine-linear injection and if besides I is strictly convex in X, we get that J is strictly
convex. �

Let us emphasize the difference with usual stochastic maximum principle (when distributions do not enter in the
cost functions). In that case, i.e. without the dependence w.r.t. E

[
g (t, ũt,Xt)

]
of the running cost and w.r.t. E [k(X)]

of the terminal cost, the sufficient optimality condition is the affine-linearity in (u,X) of φ, the point-wise convexity in
(u, x) of

(t,u, x) 7→ l(t,u, x),

for any t and the point-wise convexity of ψ in x.
In the current MKV setting, it would be tempting to require:

ξ : (t,u, x) 7→ l(t,u, x,E
[
g(t,u, x)

]
)

to be convex in (u,X) ∈ L2
Ω
× L2

Ω
for any t and

X 7→ ψ(X,E [k(X)])

to be convex in X in L2
Ω

. However, even for the simple linear-quadratic case with d = p = q = 1, i.e.

l(t,u, x, ḡ) = (1 + κ)u2
− κḡ2, g(t,u, x) = u, φ(t,u, x) = u, ψ = 0,

with parameter κ > 0, this fails to be true. Indeed, denoting ζ(u) = ξ(t,u, x), we get:

ζ
(u1 + u2

2

)
−

1
2

(ζ(u1) + ζ(u2)) =
1
4

(
κ(E [u1 − u2])2

− (1 + κ)(u1 − u2)2
)
.

Now if u1 is a Bernoulli random variable with parameter 1
2 , and u2 = −u1, then on the set {ω : u1(ω) = u2(ω) = 0}

of positive probability, the above equals κ
4 > 0, which violates the convexity condition for these ω. On the contrary,

E
[
ζ( u1+u2

2 ) − ζ(u1)+ζ(u2)
2

]
≤ 0 for κ ≥ 0, and it is easy to see that E [ζ(u)] is convex in u, for such κ. This discussion

clarifies better why the correct convexity condition for the integrated Hamiltonian I or the point-wise one H is in
expectation and not ω-wise, as stated in (Conv).

We now summarize all the results for having existence and uniqueness of an optimal stochastic control. This is
one of the main results of this section.
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Theorem 2.10. Assume (H.x)-(H.g)-(H.l)-(H.k)-(H.ψ)-(H.φ)-(Conv) hold.

1. If J defined in (2.2) satisfies the coercivity condition:

lim
‖u‖H2,2→+∞

J(u) = +∞,

then there exists an optimal control u? ∈H2,2
P

, i.e. a minimum of J onH2,2
P

.

2. u? is an optimal control for the problem (2.2) if and only if there exists (X?,Y?) ∈ H∞,2 × H∞,2 such that
(u?,X?,Y?) fulfills (2.1)-(2.5)-(2.6).

3. If J is strictly convex, then it admits at most one minimizer.

Proof. 1. This is a direct consequence of Theorem 2.8 and Lemma 2.9.
2. If (u?,Xu? ,Yu? ) satisfies (2.1)-(2.5)-(2.6), then J̇(u?, v) = 0 for any v ∈ H2,2

P
according to Theorem 2.2. Besides,

under our assumptions, J is convex and therefore, for all v ∈H2,2
P

and t ∈ (0, 1],

J(v) −J(u?) ≥
J(u? + t(v − u?)) −J(u?)

t
.

By taking the limit when t → 0, we obtain J(v) − J(u?) ≥ J̇(u?, v − u?) = 0, hence the optimality of u?. The direct
implication⇒ has been established in Theorem 2.3. �

3 Effective computation and approximation of battery control

3.1 Model/Context

For simplicity, we assume one-dimensional processes (p = q = r = 1), but the results can be easily extended to any
dimension, since the arguments are based on the solution of Linear-Quadratic FBSDE, which are well known (see
[Yon06]). Let us consider the following toy problem:

min
u∈H2,2

P

E

[∫ T

0

{
Ct−P

grid,u
t− +

µ

2
u2

t +
ν
2

(
Xu

t −
1
2

)2

+ l
(
P
grid,u
t− − E

[
P
grid,u
t−

])}
dt +

γ

2

(
Xu

T −
1
2

)2]

s.t.

 Xu
t = x − 1

Emax

∫ t

0 usds,

P
grid,u
t− = Ploadt− − ut.

This model is the same as the one presented in the introduction and has the same interpretation. We consider the
following hypothesis:

(Toy)

1. The parameters µ, ν, γ are deterministic and satisfy µ > 0, ν ≥ 0, γ ≥ 0.

2. The mapping l is deterministic, convex, continuously differentiable with the growth condition |l′(x)| ≤ Cl,x(1 + |x|)
for all x, for some constant Cl,x > 0.

3. Pload ∈H2,2, C ∈H2,2 are F-adapted and càdlàg.

Under assumptions (Toy), (H.x)-(H.g)-(H.l)-(H.k)-(H.ψ)-(H.φ)-(Conv) hold. Besides, one can show the strict con-
vexity of J . Then, it remains to apply Theorem 2.10 to conclude the following.

Proposition 3.1. Under assumptions (Toy), there exists a unique optimal control u ∈ H2,2
P

. Besides, there exist
unique processes Xu

∈ H∞,2 and Yu
∈ H∞,2 such that (u,Xu,Yu) satisfies the following McKean-Vlasov Forward

Backward SDE:
Xu

t = x − 1
Emax

∫ t

0 usds,

Yu
t = Et

[∫ T

t ν(Xu
s −

1
2 )ds + γ

(
Xu

T −
1
2

)]
,

µut − Ct− − l′
(
Ploadt− − ut − E

[
Ploadt− − ut

])
+ E

[
l′
(
Ploadt− − ut − E

[
Ploadt− − ut

])]
=

Yu
t−
Emax

.

(3.1)

12



Although we can derive specific results for the control problem under assumption (Toy) (see Propositions 3.1
and 3.4), solving explicitly the system (3.1) remains difficult for general convex l. To get approximation results, we
consider a specific form of l.

(ToyBis) The mapping l is given by l(x) := λ
2 x2 +

ε(λ+µ)
2 (x+)2 with λ ≥ 0, |ε| < 1.

From the application point of view, we remind that we want to penalize more consumption excess (compared to
the commitment) than consumption deficit. The asymmetry parameter ε should thus be taken non-negative. Under
assumptions (Toy) and (ToyBis), the last equation in (3.1) writes:

(λ + µ)ut − λE [ut] − Ct− − λ(Ploadt− − E
[
Ploadt−

]
) − ε(λ + µ)

(
Ploadt− − ut − E

[
Ploadt− − ut

])
+

+ ε(λ + µ)E
[(
Ploadt− − ut − E

[
Ploadt− − ut

])
+

]
=

Yu
t−

Emax
.

We now provide a first order expansion of the solution of this problem with respect to the parameter ε→ 0.

3.2 Computation of first order expansion

3.2.1 Preliminary result

The computation of a first order expansion of the solution of the MKV FBSDE (3.1) will rely extensively on the
following result.

Proposition 3.2. Let a, b, c, e, f , g be deterministic real parameters with a > 0, g > 0, b ≥ 0 and e ≥ 0. Let (ht)t be a
stochastic process inH2,2

P
and x0 ∈ L2(Ω) be F0-measurable. Define:

θt :=


1
2

(
1 + e

√
ag
b

)
exp(

√
abg(T − t)) + 1

2

(
1 − e

√
ag
b

)
exp(

√
abg(t − T)) if b > 0,

eag(T − t) + 1 i f b = 0,
(3.2)

pt := −
dθt

dt
1

agθt
, (3.3)

πt =
1
θt

(
f −

∫ T

t
(apsEt [hs] − c)θsds

)
. (3.4)

Define x, y and v by: 
xt = x0

θt
θ0
−

∫ t

0 (agπs + ahs)
θt
θs

ds,

yt = ptxt + πt,

vt = gptxt + gπt− + ht.

(3.5)

Then (x, y, v) is a solution inH∞,2 ×H∞,2 ×H2,2
P

of the Forward-Backward system:
xt = x0 −

∫ t

0 avsds,

yt = Et

[∫ T

t (bxs + c)ds + exT + f
]
,

vt = gyt− + ht.

(3.6)

Besides, for T small enough, this solution to (3.6) is the unique one inH∞,2 ×H∞,2 ×H2,2
P

.

The proof is postponed to Subsection 4.4.

Remark 3.3. Uniqueness of the solution of the FBSDE (3.6) could be proved for arbitrary time horizon T, using the
fact that (3.6) characterizes the solution of a (linear-quadratic) stochastic control which has a unique solution (as
the associated cost function is continuous, convex and coercive [Bre10, Corollary 3.23, pp. 71]).
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3.2.2 Average processes

We introduce the following notations for the average (in the sense of expectation) of the solutions of (3.1):

ū := E [u], X̄ := E [Xu], Ȳ := E [Yu], C̄ := E [C].

By taking the expectation in (3.1), we immediately get the following simple but remarkable result: the average
processes do not depend on l.

Proposition 3.4. Assume (Toy), (ū, X̄, Ȳ) solves
X̄t = E [x] − 1

Emax

∫ t

0 ūsds,

Ȳt =
∫ T

t ν(X̄s −
1
2 )ds + γ

(
X̄T −

1
2

)
,

ūt = Ȳt−
µEmax

+ C̄t−
µ .

(3.7)

In particular, (ū, X̄, Ȳ) does not depend on l.

Note that the FBSDE (3.7) is explicitly solvable, as a particular case of Equation (3.6) with x0 := x, a = 1
Emax

, b = ν,

c = − ν2 , e = γ, f = −
γ
2 , g = 1

µEmax
and ht = C̄t−

µ .

3.2.3 Notations

From now on, assume that (Toy) and (ToyBis) hold. From Proposition 3.4, (ū, X̄, Ȳ) does not depend on ε. We
denote the processes u, Xu and Yu by u(ε), X(ε) and Y(ε) respectively to insist on the dependency w.r.t. the parameter
ε. (u(ε),X(ε),Y(ε)) satisfies (3.1) with l′(x) = λx + ε(λ + µ)x+.

For the ease of the proofs, let us define the recentered processes

u∆,(ε) := u(ε)
− ū, X∆,(ε) := X(ε)

− X̄, Y∆,(ε) := Y(ε)
− Ȳ,

Pload,∆ := Pload − E
[
Pload

]
, C∆ := C − E [C].

Then, (u∆,(ε),X∆,(ε),Y∆,(ε)) satisfies:
X∆,(ε)

t = x − E [x] − 1
Emax

∫ t

0 u∆,(ε)
s ds,

Y∆,(ε)
t = Et

[∫ T

t νX∆,(ε)
s ds + γX∆,(ε)

T

]
,

µu∆,(ε)
t − C∆

t− − λ
(
Pload,∆t− − u∆,(ε)

t

)
− ε(λ + µ)

(
Pload,∆t− − u∆,(ε)

t

)
+

+ ε(λ + µ)E
[(
Pload,∆t− − u∆,(ε)

t

)
+

]
=

Y∆,(ε)
t−
Emax

.

(3.8)

We now seek a first order expansion of the solution of (3.1) w.r.t. ε, as ε → 0, and equivalently, as the average
processes do not depend on ε (see Proposition 3.4), we will perform it for the recentered processes, by showing

u∆,(ε) = u∆,(0) + εu̇ + o(ε), X∆,(ε) = X∆,(0) + εẊ + o(ε), Y∆,(ε) = Y∆,(0) + εẎ + o(ε),

where u̇, Ẋ and Ẏ are suitable processes in H2,2
P
×H2,2

×H2,2 (independent of ε) and the convergence o(ε)/ε → 0
as ε→ 0 holds inH2,2-norm.

Proposition 3.5. Assume (Toy) and (ToyBis). Then (u∆,(0),X∆,(0),Y∆,(0)) satisfies:
X∆,(0)

t = x − E [x] − 1
Emax

∫ t

0 u∆,(0)
s ds,

Y∆,(0)
t = Et

[∫ T

t νX∆,(0)
s ds + γX∆,(0)

T

]
,

u∆,(0)
t =

Y∆,(0)
t−

(λ+µ)Emax
+
C∆

t−+λPload,∆t−
λ+µ .

(3.9)

Observe that the FBSDE (3.9) is known in a closed form, as a particular case of Equation (3.6) with x0 := x−E [x],

a = 1
Emax

, b = ν, c = 0, e = γ, f = 0, g = 1
(λ+µ)Emax

and ht =
C∆

t−+λPload,∆t−
λ+µ .
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Proposition 3.6. Assume (Toy) and (ToyBis). Define the finite differences

u̇(ε) :=
u∆,(ε)

− u∆,(0)

ε
, Ẋ(ε) :=

X∆,(ε)
− X∆,(0)

ε
, Ẏ(ε) :=

Y∆,(ε)
− Y∆,(0)

ε
,

which solve 
Ẋ(ε)

t = − 1
Emax

∫ t

0 u̇(ε)
s ds,

Ẏ(ε)
t = Et

[∫ T

t νẊ(ε)
s ds + γẊ(ε)

T

]
,

u̇(ε)
t =

Ẏ(ε)
t−

(λ+µ)Emax
+

(
Pload,∆t− − u∆,(ε)

t

)
+
− E

[(
Pload,∆t− − u∆,(ε)

t

)
+

]
.

(3.10)

Besides, for small enough time horizon T, (u̇(ε), Ẋ(ε), Ẏ(ε)) is uniformly bounded inH2,2
P
×H2,2

×H2,2 as ε→ 0.
Define (u̇, Ẋ, Ẏ) as a solution (unique when T is small enough) to

Ẋt = − 1
Emax

∫ t

0 u̇sds,

Ẏt = Et

[∫ T

t νẊs + γẊTds
]
,

u̇t = Ẏt−
(λ+µ)Emax

+
(
Pload,∆t− − u∆,(0)

t

)
+
− E

[(
Pload,∆t− − u∆,(0)

t

)
+

]
.

(3.11)

Then, for small enough time horizon T, the finite differences (u̇(ε), Ẋ(ε), Ẏ(ε)) are close (at order 1 in ε) to (u̇, Ẋ, Ẏ):

‖u̇(ε)
− u̇‖H2,2

P

+ ‖Ẋ(ε)
− Ẋ‖H2,2 + ‖Ẏ(ε)

− Ẏ‖H2,2 = O(ε).

The proof is postponed to Subsection 4.5. Note again that the FBSDE (3.11) is explicitly solvable, as a particular
case of Equation (3.6) with x0 := 0, a = 1

Emax
, b = ν, c = 0, e = γ, f = 0, g = 1

(λ+µ)Emax
and ht =

(
Pload,∆t− − u∆,(0)

t

)
+
−

E
[(
Pload,∆t− − u∆,(0)

t

)
+

]
.

Collecting all the previous results, we get the following theorem, which fully characterizes the first order expansion
of the solution to the control problem.

Theorem 3.7. Assume (Toy) and (ToyBis) hold. For small enough time horizon T, the unique solution (u(ε),X(ε),Y(ε))
inH2,2

P
×H2,2

×H2,2 of (3.1) can be expanded at first order w.r.t. ε (with error of second order as ε→ 0):

u(ε) = ū + u∆,(0) + εu̇ + O(ε2), X(ε) = X̄ + X∆,(0) + εẊ + O(ε2), Y(ε) = Ȳ + Y∆,(0) + εẎ + O(ε2),

where errors O(ε2) are measured in H2,2-norm, with (ū, X̄, Ȳ) solution of (3.7), (u∆,(0),X∆,(0),Y∆,(0)) solution of (3.9)
and (u̇, Ẋ, Ẏ) solution of (3.11).

We shall emphasize that all terms in these expansions are solutions of FBSDEs of the form (3.6) for different
input parameters (see Table 1) and thus they are explicitly solvable.

For other problems with more regularity (notice that x 7→ (x+)2 is not twice continuously differentiable), the
previous approach could actually be extended to a second order expansion or even higher order, but it would lead
to more and more nested FBSDEs: on the mathematical side, there is no hard obstacle to derive these equations
under appropriate regularity conditions. The concerns would be rather on the computational side since it would
require larger and larger computational time.

3.3 Effective simulation of first order expansion of optimal control

3.3.1 Models for random uncertainties

We assume the electricity price C is constant (C̄ = C and C∆ = 0), and we suppose Pload is given by Pload = Pcons−Psun,
where Pcons and Psun are two independent scalar SDEs3, representing respectively the consumption and the photo-
voltaic power production. For the consumption Pcons, we use the jump process:

dPconst = −ρcons(Pconst − pcons,reft )dt + hconsdNconst , (3.12)

3we consider Brownian SDEs for simplicity, but note that the current setting allows more general processes.
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where Ncons is a compensated Poisson Process with intensity λcons. Regarding the PV production, we follow
[Bad+18] by setting Psun = Psun,maxXsun where Psun,max : [0,T] 7→ R is a deterministic function (the clear sky model) and
Xsun solves a Fisher-Wright type SDE which dynamics is

dXsunt = −ρsun(Xsunt − xsun,reft )dt + σsun(Xsunt )α(1 − Xsunt )βdWt, (3.13)

with α, β ≥ 1/2. As proved in [Bad+18], there is a strong solution to the above SDE and the solution Xsun takes values
in [0, 1].

Since the drifts are affine-linear, the conditional expectation of the solution is known in closed forms (this property
is intensively used in [BSS05]):

Et
[
Psuns

]
=

(
Psunt

Psun,maxt
exp(−ρsun(s − t)) +

∫ s

t
ρsunxsun,refτ exp(−ρsun(s − τ))dτ

)
Psun,maxs , (3.14)

Et
[
Pconss

]
= Pconst exp(−ρcons(s − t)) +

∫ s

t
ρconspcons,refτ exp(−ρcons(s − τ))dτ, (3.15)

for s ≥ t. This will allow us to speed up computations of the conditional expectations Et

[
Ploads

]
as required when

deriving the optimal control.

3.3.2 FBSDE Parameters

Algorithm 1 Sample of a path of (x, y, v), solution of (3.6)

1: Inputs: x0 ∈ L2
Ω
, a > 0, b ≥ 0, c ∈ R, e ≥ 0, f ∈ R, g > 0, h ∈H2,2

P
, NT > 0

2: Sample x0 and set X(0)← x0. Set τ = T
NT

.
3: for n = 0, ...,NT − 1 do
4: Compute the conditional expectations (Enτ[hs])nτ≤s≤T

5: Compute π(nτ) by numerical integration, as given in (3.4)
6: Compute p(nτ) as in (3.3)
7: v(nτ)← gp(nτ)X(nτ) + gπ(nτ) + h(nτ)
8: x((n + 1)τ)← x(nτ) − av(nτ)τ
9: end for

10: return (x, y, v)

Proposition 3.2 is repeatedly used to solve the affine-linear FBSDEs (ū, X̄, Ȳ),
(u∆,(0),X∆,(0),Y∆,(0)) and (u̇, Ẋ, Ẏ) arising in the first order expansion of the optimal control w.r.t. ε (see Theorem
3.7). In Algorithm 1 we give the pseudo-code of the scheme used to compute solutions of the FBSDE of the form
(3.6).

In Table 1, we give the correspondence between the input parameters (a, b, c, d, e, f , g, ht) for the generic FB-
SDE of Proposition 3.2 and the parameters defining the 3 FBSDEs. Merged columns indicate common values of
parameters. As the data involved in the system defining (ū, X̄, Ȳ) is deterministic, one only needs to perform numer-
ical integrations to compute π and therefore (ū, X̄, Ȳ). For (u∆,(0),X∆,(0),Y∆,(0)) and (u̇, Ẋ, Ẏ), it becomes a bit more
involved. Let us provide some details on the implementation.

• For the computation of (u∆,(0),X∆,(0),Y∆,(0)), the conditional expectations (Enτ[hs])nτ≤s≤T are given by affine-
linear combinations of Pconsnτ and Psunnτ with deterministic coefficients, depending on s and n, by assumption on
our models for Pcons and Psun (see (3.14)-(3.15)). Therefore, π(nτ) is also given by an affine-linear combination
of Pconsnτ and Psunnτ with deterministic coefficients. This allows to speed up Steps 4 and 5 in Algorithm 1.

• For the computation of (u̇, Ẋ, Ẏ), the conditional expectations
(
Enτ

[(
Pload,∆s − u∆,(0)

s

)
+

])
nτ≤s≤T

at Step 4 is es-
timated by Monte-Carlo methods. The procedure for doing so is given in Algorithm 2. This Step 4 has a
complexity of order O((NT − n)M0), which is the most costly Step in the loop of Algorithm 1; hence sampling
(u̇, Ẋ, Ẏ) has a computational cost of order O(N2

TM0).
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(ū, X̄, Ȳ) (u∆,(0),X∆,(0),Y∆,(0)) (u̇, Ẋ, Ẏ)

a 1
Emax

b ν

c −ν
2 0

e γ

f −γ
2 0

g 1
µEmax

1
(λ+µ)Emax

ht
C̄t−
µ

C∆
t−+λPload,∆t−
λ+µ

(
Pload,∆t− − u∆,(0)

t

)
+
− E

[(
Pload,∆t− − u∆,(0)

t

)
+

]
Table 1: Table of parameters needed to compute the expansion terms

Algorithm 2 Evaluation of
(
Enτ

[(
Pload,∆s − u∆,(0)

s

)
+

])
s=nτ,...,NTτ

1: Inputs: n < NT, X∆,(0)
nτ , Psunnτ , Ploadnτ , M0 > 0

2: Initialization: (R[n],R[n + 1], ...,R[NT])← (0, 0, ..., 0).
3: Compute u∆,(0)(nτ) using a similar procedure as in Algorithm 1.
4: R[n]←

(
Pload,∆nτ − u∆,(0)

nτ

)
+
.

5: for m = 1, ...,M0 do
6: for k = n + 1, ...,NT do
7: Sample (Pconskτ , Psunkτ ) conditionally to (Pcons(k−1)τ, P

sun
(k−1)τ) using (3.12)-(3.13), independently from all other random

variables simulated so far.
8: Compute u∆,(0)

kτ with Steps 5 to 8 of Algorithm 1 with the data of the FBSDE (3.9). Compute X∆,(0)
kτ .

9: R[k]← R[k] + 1
M0

(
Pload,∆kτ − u∆,(0)

kτ

)
+

10: end for
11: end for
12: return (R[n],R[n + 1], ...,R[NT])

3.3.3 Numerical values of parameters

We report the values chosen for the next experiments.

Parameters for smart grid. We consider the following values for the time horizon, the size of the storage system and
the initial value of its normalized state of charge.

Parameter T Emax x0

Value 24 h 200 kWh 0.5

Parameters for uncertain consumption/production. The following table gives the values of the parameters used in
the modeling of the underlying exogenous stochastic processes impacting the system.
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Psun ρsun 0.75h−1

xsun,reft 0.5

σsun 0.8

α 0.8

β 0.7

Psun,max see Figure 2a

Pcons ρcons 0.9h−1

pcons,ref see Figure 2b

hcons 5 kW

λcons 0.5 h−1

In Figure 2, we plot the time-evolution of the deterministic functions Psun,max and pcons,ref, 10 independent samples
of processes Psun and Pcons, and the time-evolution of quantiles (computed with M1 = 100000 i.i.d. simulations).

Parameters of input data and optimization problem. The values of the parameters of the optimization problem are
chosen such that:

1. the state of charge of the battery remains close to a reference level, which we set to 0.5,

2. we observe a clear reduction of the random fluctuation of Pgrid on the time interval.

The following table gives the values of the parameters of the cost functional of the control problem.

Parameter ε λ µ ν γ C

Value 0.2 0.49 0.01 0.1 500 0.27

Unit - euros.kW−2.h−1 euros.kW−2.h−1 euros.h−1 euros euros.kW.h−1

Time discretization. The average processes (ū, X̄) are computed explicitly (up to numerical integration), while the
recentered processes (u∆,(0),X∆,(0)) and first order correction processes (u̇, Ẋ) are computed using discretization
schemes (detailed in Algorithms 1 and 2) with time-step equal to 0.5h.

Monte-Carlo simulations. To compute the first order correction, we need Monte-Carlo estimations, as explained in
Algorithm 2. We choose M0 = 4000. For assessing the statistical performances of the optimal control associated
to a symmetric loss function (ε = 0), we consider M1 = 100000 macro-runs. Among those M1 trajectories, we only
consider the first M2 = 4000 trajectories for the computation of the first order corrections associated to ε = 0.2.

3.3.4 Results from the experiments

Computational time. The simulations have been performed on Python 3.7, with an Intel-Core i7 PC at 2.1 GHz with
16 Go memory. We have computed the optimal control associated to a symmetric penalization of deviations of Pgrid

from its average (ε = 0) and for M1 = 100000 i.i.d. simulations, which takes about 3 seconds. The computation of
the first order correction when ε = 0.2 for M2 = 4000 i.i.d. simulations takes about 80 minutes.

Reduction of fluctuations. We plot the time-evolution of quantiles (see Figure 3) of the power supplied by the network
in 3 cases: using no flexibility, with optimal control of the battery with ε = 0, and with the approximated optimal control
associated to ε = 0.2 respectively. The comparison of the first graph with the two others shows that the quantiles
are much closer to each other in the case of storage use, meaning that the variability of the power supplied by the
grid has been much reduced, as expected. However, the difference between the optimal control with symmetric and
asymmetric loss functions is not much visible on these plots.

Impact of first order correction. Overall, the effect of the first order correction u̇ (which has theoretically an average
value of 0), is to lower the probability of large upper deviations of Pgrid from its expectation. This is quite visible if
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(a) Time evolution of Psun,max, accounting for clear sky model (b) Time evolution of pcons,ref, accounting for intraday peaks

(c) Example trajectories of Psun (d) Example trajectories of Pcons

(e) Time evolution of quantiles of Psun (f) Time evolution of quantiles of Pcons

Figure 2: Graphical statistics of the evolution of Psun and Pcons

we plot the time-evolution of quantiles of the deviations Pgrid(t) − E
[
Pgrid(t)

]
for the case ε = 0, in green in Figure

4, refered as ”LQ” and ε = 0.2, in red, refered as ”First Order Correction”. In Figure 4, we have represented from
top to bottom, the quantiles of Pgrid(t) − E

[
Pgrid(t)

]
associated to levels 99%, 95%, 80%, 50%, 20%, 5% and 1%. We

observe that the empirical estimations of the lower quantiles are left unchanged, while the upper quantiles 99% and
95% have been notably decreased, which was the effect sought by the choice of this loss function. To have a even
more clear visualization of the change of distribution of the deviations Pgrid − E

[
Pgrid

]
, we have represented the

empirical histograms of Pgrid(T) − E
[
Pgrid(T)

]
for both cases ε = 0 in Figure 5a (M1 = 100000 i.i.d. simulations) and

19



(a) Without flexibility

(b) With controlled flexibility (ε = 0) (c) With controlled flexibility (ε = 0.2)

Figure 3: Quantiles of Pgrid as a function of time

Figure 4: Time evolution of quantiles of deviations Pgrid − E
[
Pgrid

]
ε = 0.2 in Figure 5b (M2 = 4000 i.i.d. simulations). Observe that the impact of the first order term is to break the
symmetry of the distribution around 0, and to reduce the probability of the highest values of Pgrid(T) − E

[
Pgrid(T)

]
.

These results suggest that we have reached our goal of reducing the probability of high upper deviations of Pgrid

from its average.
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(a) Symmetric penalization (ε = 0) (b) Asymmetric penalization (ε = 0.2)

Figure 5: Empirical histograms of deviations Pgrid(T) − E
[
Pgrid(T)

]
Distribution of state of charge of the battery. As the first order correction term has only minor impact on the distri-
bution of the state of charge of the storage system, we only consider the case with ε = 0 in this paragraph. Figure
6 shows the time-evolution of the quantiles 95%, 50%, 5% of the state of charge of the battery with ε = 0 (computed
using M1 = 100000 i.i.d. simulations) for several initial conditions on the state of charge of the battery, namely
x0 = 0.75, x0 = 0.5 and x0 = 0.25. What we observe is that independently on the initial condition chosen, the state of
charge remains between 0.15 and 0.75 with high probability. Besides, the terminal distribution of the state of charge
is quite independent from the initial condition: the terminal values of the quantiles (levels 95%, 50%, 5%) of the state
of charge are almost the same, for all initial conditions x0 = 0.75, x0 = 0.5 and x0 = 0.25. This is presumably due to
the term in the cost functional which penalizes the deviations of state of charge from a medium value (here 1/2).

Figure 6: Time evolution of the empirical quantiles 95%, 50%, 5% of the state of charge of the storage system

Simulation-based bound on approximation error of first order expansion. Following the proof of Proposition 3.6, with
our choice of parameters, we obtain an upper bound on the error in the approximation of the optimal control u(ε):

‖u(ε)
− ū − u∆,(0)

− εu̇‖H2,2 = ε‖u̇(ε)
− u̇‖H2,2

≤
4ε2

(1 − α(T))(1 − α(T) − 2ε)
‖(Pload,∆ − u∆,(0))+‖H2,2 .

We would like to obtain a bound on the relative error committed ‖u(ε)
−ū−u∆,(0)

−εu̇‖H2,2

‖u(ε)‖H2,2
. To do this, we have by triangular
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inequality:

‖u(ε)
− ū − u∆,(0)

− εu̇‖H2,2

‖u(ε)‖H2,2
≤

‖u(ε)
− ū − u∆,(0)

− εu̇‖H2,2∣∣∣‖ū + u∆,(0) + εu̇‖H2,2 − ‖u(ε) − ū − u∆,(0) − εu̇‖H2,2

∣∣∣
≤

4ε2

(1 − α(T))(1 − α(T) − 2ε)
‖(Pload,∆ − u∆,(0))+‖H2,2∣∣∣‖ū + u∆,(0) + εu̇‖H2,2 − ‖u(ε) − ū − u∆,(0) − εu̇‖H2,2

∣∣∣
≤

4ε2
‖(Pload,∆ − u∆,(0))+‖H2,2

(1 − α(T))(1 − α(T) − 2ε)‖ū + u∆,(0) + εu̇‖H2,2 − 4ε2‖(Pload,∆ − u∆,(0))+‖H2,2
.

In the last inequality, we used the fact that ‖u(ε)
− ū − u∆,(0)

− εu̇‖H2,2 is asymptotically small compared to ‖ū + u∆,(0) +

εu̇‖H2,2 when ε goes to 0, as well as the previous bound on ‖u(ε)
− ū−u∆,(0)

−εu̇‖H2,2 . Hence we obtain an upper bound
which depends only on quantities which can be estimated by simulations in the algorithm. This is very convenient
to assess the relative accuracy of our approximation. The left-hand-side in the last inequality is estimated using the
M2 = 4000 simulations of the first order expansion and we find a value of 0.03. In other words, the relative error is
smaller than 3% when taking the first order expansion of the control instead of its true value. Note that we do not
take into account errors due to the time discretization or due to residual noise in the Monte-Carlo estimations.

4 Proofs

4.1 Proof of Theorem 2.2

a) Observe first that, in view of (H.φ) and Lemma 4.1, L̃u and (L̃u)−1 are uniformly bounded by a constant dt×dP-a.e
(take A : (t, ω) 7→ ∇xφ(t, ω,ut,Xu

t )). Therefore, and owing to (H.x)-(H.g)-(H.l)-(H.k)-(H.ψ)-(H.φ), the random variable
inside the conditional expectation defining Yu in (2.4) is bounded by

ΓT :=CT

(
C(0)
ψ + |Xu

T | + E [|k(0)|] + E
[
|Xu

T |
])

+ CT

∫ T

0

(
C(0)

l (s) + |Xu
s | + |us| + E

[
|g(s, 0, 0)|

]
+ E [|us|] + E

[
|Xu

s |
]
+ E

[
C(0)

l (s)
])

ds

for some constant CT depending on the bounds in (H.x)-(H.g)-(H.l)-(H.k)-(H.ψ)-(H.φ). Hence by the Cauchy Schwartz
inequality, for some other constant CT:

E
[
|ΓT |

2
]
≤CT

(
E

[(
C(0)
ψ

)2
]

+ E
[
|Xu

T |
2
]

+ E [|k(0)|]2
)

+ CT

∫ T

0

(
E

[(
C(0)

l (s)
)2
]

+ E
[
|g(s, 0, 0)|

]2 + E
[
|us|

2
]

+ E
[
|Xu

s |
2
])

ds.

Note that this bound is finite and independent from t (since C(0)
ψ ∈ L

2
Ω

, Xu
∈ H∞,2 ⊂ H2,2, k(0) ∈ L1, C(0)

l ∈ H
2,2,

g(·, 0, 0) ∈H2,1 and u ∈H2,2). Consequently Yu
∈H∞,2.

b) Now observe that, by definition of Yu,

Nu
t := L̃u

t Yu
t +

∫ t

0
L̃u

s

(
∇xl(s,us,Xu

s , ḡ
u
s ) + ∇xg(s,us,Xu

s )E
[
∇ḡl(s,us,Xu

s , ḡ
u
s )
])

ds = Et

[
Nu

T

]
, (4.1)

with Nu
T square integrable (using the same arguments as before) and therefore, Nu is a càdlàg martingale in H∞,2.

As a by-product, we obtain that Yu is a semi-martingale, which dynamics has now to be identified.
c) To justify that Yu defined in (2.4) solves the BSDE (2.5) for some Mu, left-multiply both sides of (4.1) by (L̃u

t )−1,
then apply the integration by parts formula in [Pro03, Corollary 2, p. 68] to (L̃u)−1Nu and use the fact that (L̃u)−1 is
continuous with finite variations. After reorganizing terms and using that Nu has countable jumps, we retrieve (2.5)
with Mu

t :=
∫ t

0+ (L̃u
s )−1dNu

s (which is also a càdlàg martingale inH∞,2, see [Pro03, Theorem 20 p.63, Corollary 3 p.73,
Theorem 29 p.75]).
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d) We now claim that the solution (Y,M) to (2.5) is unique inH∞,2 ×H∞,2, and thus given by (Yu,Mu). In fact, the
uniqueness is a classical result for linear BSDE, see for instance [EPQ97, Theorem 5.1 with p = 2] in our context of
general filtration.

e) Let us now prove the last claim about J̇(u, v). We first study the differentiability properties of Xu+εv with
respect to ε. In the following computations we use different constants which we denote generically by C (although
their values may change from line to line), they do not depend on u, v, ε, they only depend on T > 0 and on the
bounds from the assumptions (H.x)-(H.g)-(H.l)-(H.k)-(H.ψ)-(H.φ). At this point of the proof, it is more convenient to
work with Jacobian matrices than with gradients (as in the statement). Only at the very end are we going to make
the link with Yu and go back to the gradient notation.
Set θu

t := (t,ut,Xu
t ) and let Ẋu,v

t be the solution to the following linear equation

Ẋu,v
t :=

∫ t

0

[
φu(θu

s )vs + φx(θu
s )Ẋu,v

s

]
ds =

∫ t

0
(Lu

t )−1Lu
sφu(θu

s )vsds, (4.2)

since it can be noticed that Lu is the unique solution of

Lu
0 = Idp,

dLu
t

dt
= −Lu

t φx(θu
t ),

using Lemma 4.1 and ∇xφ = (φx)>. Note, whenever useful, that
∫ T

0 |vs|
2ds < +∞ a.s. since v ∈H2,2.

For ε , 0, set ∆Xu,v,ε
t := Xu+εv

t −Xu
t

ε and RXu,v,ε
t := ∆Xu,v,ε

t − Ẋu,v
t : we claim that a.s. RXu,v,ε

t → 0 as ε → 0, i.e. Ẋu,v
t is

the derivative of Xu+εv
t at ε = 0. To justify this, we proceed in a few steps. First the Taylor formula equality gives, for

smooth ϕ,

ϕ(z, x′) − ϕ(z, x) =
( ∫ 1

0
ϕx(z, x + λ(x′ − x))dλ

)
(x′ − x) := ϕx(z, [x, x′])(x′ − x);

applying that to φx and φu, we obtain

∆Xu,v,ε
t =

∫ t

0

[
φx(s,us + εvs, [Xu

s ,X
u+εv
s ])∆Xu,v,ε

s + φu(s, [us,us + εvs],Xu
s )vs

]
ds

= (Lu,v,ε
t )−1

∫ t

0
Lu,v,ε

s φu(s, [us,us + εvs],Xu
s )vsds (4.3)

where Lu,v,ε is the unique solution of

Lu,v,ε
0 = Idp,

dLu,v,ε
t

dt
= −Lu,v,ε

t

(
φx(t,ut + εvt, [Xu

t ,X
u+εv
t ])

)
.

By hypothesis on φx, Lu and (Lu)−1 are dt × dP-a.e. uniformly bounded by a constant. Besides, (t, ω) 7→
φx(t,ut + εvt, [Xu

t ,X
u+εv
t ]) satisfies the hypothesis of Lemma 4.1 with a constant C independent from ε. Therefore

Lu,v,ε is invertible and Lu,v,ε and (Lu,v,ε)−1 are dt×dP-a.e. uniformly bounded by a constant independent from ε. From
(4.2)-(4.3) and using the fact that φu and φu(·, [u,u + εv],Xu) are dt × dP-a.e. bounded by a constant independent
from ε (by hypothesis on φu), we derive

|∆Xu,v,ε
t | + |Ẋu,v

t | ≤ C
∫ t

0
|vs|ds, (4.4)

where C is a constant independent from ε. With similar arguments, we can represent the residual error RXu,v,ε as
follows:

RXu,v,ε
t =

∫ t

0

(
ηu,v,ε

s + φx(s,us,Xu
s )RXu,v,ε

s

)
ds =

∫ t

0
(Lu

t )−1Lu
s η

u,v,ε
s ds,

with Lu as before and

ηu,v,ε
t := αu,v,ε

t ∆Xu,v,ε
t + βu,v,ε

t vt,
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αu,v,ε
t := φx(t,ut + εvt, [Xu

t ,X
u+εv
t ]) − φx(t,ut,Xu

t ),

βu,v,ε
t := φu(t, [ut,ut + εvt],Xu

t ) − φu(t,ut,Xu
t ).

By boundedness of Lu and (Lu)−1, and by (4.4), we have:

sup
t∈[0,T]

|RXu,v,ε
t | ≤ C

(∫ T

0
|αu,v,ε

t |dt
) (∫ T

0
|vt|dt

)
+ C

∫ T

0
|βu,v,ε

t ||vt|dt,

for some constant C > 0.
By continuity of the state with respect to the control and continuous differentiability of φ with respect to (u, x),

αu,v,ε and βu,v,ε converge point-wise to 0 when ε goes to 0 and are uniformly bounded by assumption on φ. Therefore(∫ T

0 |α
u,v,ε
t |dt

)
converges to 0 as ε goes to 0, by Lebesgue’s domination theorem. Besides, |βu,v,ε

||v| converges point-

wise to 0 since {s ∈ [0,T] : |vs| < +∞} has a full Lebesgue measure (recall that a.s.
∫ T

0 |vs|
2ds < +∞) and is

dominated by |v|, which is a.s. integrable. Applying again Lebesgue’s domination theorem yields the convergence
of

∫ T

0 |β
u,v,ε
t ||vt|dt to 0 when ε goes to 0.

Putting everything together, one gets that a.s. supt∈[0,T] |RXu,v,ε
t | → 0 as ε→ 0, i.e. ∂εXu+εv

t

∣∣∣
ε=0

= Ẋu,v
t a.s.

f) We now switch to the differentiability of J(u + εv) w.r.t. ε at ε = 0. Similar arguments as before yield

|∂εXu+εv
t | ≤ C

∫ t

0
|vs|ds, (4.5)

and for ε ∈ [−1, 1],

|Xu+εv
t | ≤ |Xu

t | + |ε∆Xu,v,ε
t | ≤ |Xu

t | + |∆Xu,v,ε
t | ≤ |Xu

t | + C
∫ t

0
|vs|ds (4.6)

dt × dP-a.e. for a constant C independent from ε ∈ [−1, 1].
The above, combined with Xu

∈H∞,2, u ∈H2,2, the smoothness of the functions l, g, ψ, k with the bounds on their
derivatives (assumptions (H.l)-(H.g)-(H.ψ)-(H.k)) allow to apply the Lebesgue differentiation theorem and to obtain

J̇(u, v) = E

[ ∫ T

0

(
lu(θu

t , ḡ
u
t )vt + lx(θu

t , ḡ
u
t )Ẋu,v

t + lḡ(θu
t , ḡ

u
t )E

[
gu(θu

t )vt + gx(θu
t )Ẋu,v

t

])
dt

+ ψx

(
Xu

T,E
[
k(Xu

T)
])

Ẋu,v
T + ψk̄

(
Xu

T,E
[
k(Xu

T)
])
E

[
kx(Xu

T)Ẋu,v
T

]]
.

Using Fubini’s theorem and reorganizing terms, we get

J̇(u, v) = E

[ ∫ T

0

({
lu(θu

t , ḡ
u
t ) + E

[
lḡ(θu

t , ḡ
u
t )
]
gu(θu

t )
}
vt

+
{
lx(θu

t , ḡ
u
t ) + E

[
lḡ(θu

t , ḡ
u
t )
]
gx(θu

t )
}
Ẋu,v

t

)
dt

+
{
ψx

(
Xu

T,E
[
k(Xu

T)
])

+ E
[
ψk̄

(
Xu

T,E
[
k(Xu

T)
])]

kx(Xu
T)

}
Ẋu,v

T

]
.

Apply now the Itô lemma to Yu
t · Ẋ

u,v
t between t = 0 and t = T, with

Yu
T · Ẋ

u,v
T =

{
ψx

(
Xu

T,E
[
k(Xu

T)
])

+ E
[
ψk̄

(
Xu

T,E
[
k(Xu

T)
])]

kx(Xu
T)

}
Ẋu,v

T , Yu
0 · Ẋ

u,v
0 = 0,

note that Ẋu,v has finite variations, combine with (2.5) and (4.2), and take the expectation: it gives

J̇(u, v) = E

[∫ T

0

{
lu(θu

t , ḡ
u
t ) + E

[
lḡ(θu

t , ḡ
u
t )
]
gu(θu

t ) + (Yu
t )>φu(θu

t )
}
vtdt

]
.

The formula is also valid for Yu
t− since the jumps of Yu are countable. Theorem 2.2 is proved. �
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4.2 Proof of Theorem 2.4

In the proof, T ≤ 1 and C denotes a generic (deterministic) constant which only depends on the bounds in the
hypothesis (and not on T). For u(1) and u(2) inH2,2, if a process or variable Fu depends on u we write F(1) := Fu(1) and
F(2) := Fu(2) . Besides, for any function, operator or process F which depends on u, Xu,..., we write ∆F := F(2)

− F(1).
The proof is decomposed into several steps.

1. First, notice that by our assumptions on φ, Lu (resp. L̃u = ((Lu)−1)>) (defined in Theorem 2.2) is independent
from u, therefore, we simply write L (resp. L̃) instead. Using Lemma 4.1, L and L̃ are bounded by constants.

2. Consider the application

Θ(X) :

H2,2
P
→H∞,2

u 7→ Xu
.

It is well-defined, since we have already seen that Xu
∈H∞,2 whenever u ∈H2,2

P
. We want to show that Θ(X) is

Lipschitz continuous and its Lipschitz constant is such that

CΘ(X),u(T) = O
(√

T
)

(T→ 0).

Using assumption (H.φ.2) and computations as in (4.2):

∆Xt =

∫ t

0
∆φsds =

∫ t

0

(
a(φ)

s ∆Xs + b(φ)(s,u(2)
s ) − b(φ)(s,u(1)

s )
)

ds

=

∫ t

0
(Lt)−1Ls(b(φ)(s,u(2)

s ) − b(φ)(s,u(1)
s ))ds.

Therefore by assumption on φ, we get

|∆Xt|
2
≤ C

(∫ T

0
|∆us|ds

)2

≤ CT
∫ T

0
|∆us|

2ds,

whence, ‖∆X‖2
H∞,2
≤ CT‖∆u‖2

H2,2 and the Lipschitz continuity of Θ(X) as announced.

3. Now consider

Θ(Y) :

H2,2
P
→H∞,2

u 7→ Yu
,

with Yu as in (2.4). Theorem 2.2 guarantees that Θ(Y) is well defined. Let us prove that it is Lipschitz continuous
and its Lipschitz constant is such that

CΘ(Y),u(T) = O
(√

T
)

(T→ 0).

Using the hypothesis on φ, g and k and the notation θu
s = (s,us,Xu

s ), we get dP ⊗ dt − a.e.

∆Yt =Et

[
L̃−1

t L̃T

(
∇xψ(X(2)

T ,E
[
k(X(2)

T )
]
) − ∇xψ(X(1)

T ,E
[
k(X(1)

T )
]
)
)]

+ Et

[
L̃−1

t L̃T(a(k))>E
[
∇k̄ψ(X(2)

T ,E
[
k(X(2)

T )
]
) − ∇k̄ψ(X(1)

T ,E
[
k(X(1)

T )
]
)
]]

+ Et

[∫ T

t
L̃−1

t L̃s

(
∇xl(θ(2)

s ,E
[
g(θ(2)

s )
]
) − ∇xl(θ(1)

s ,E
[
g(θ(1)

s )
]
)
)

ds
]

+ Et

[∫ T

t
L̃−1

t L̃s(a
(g)
s )>E

[
∇ḡl(θ(2)

s ,E
[
g(θ(2)

s )
]
) − ∇ḡl(θ(1)

s ,E
[
g(θ(1)

s )
]
)
]
ds

]
.

Now, owing to assumptions, the Cauchy-Schwartz inequality, the previous estimate on L̃, on its inverse and
‖∆X‖H∞,2 , the inequality ‖ · ‖H2,2 ≤

√
T‖ · ‖H∞,2 , one gets:

‖∆Y‖2
H∞,2
≤ C

(
E

[
|∆XT |

2
]

+ T
{
‖∆u‖2

H2,2 + ‖∆X‖2
H2,2

})
≤ CT‖∆u‖2

H2,2 .

This yields the Lipschitz continuity of Θ(Y) with CΘ(Y),u(T) = O
(√

T
)

(T→ 0).
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4. Our goal is to prove that:

Θ :

H2,2
P
→H2,2

P

u 7→ ũ
,

with

ũt = h
(
t,Xu

t ,Y
u
t−, ḡ

u
t ,E

[
∇ḡl(t,ut,Xu

t , ḡ
u
t )
])
,

Xu = Θ(X)(u), Yu = Θ(Y)(u), ḡu
t = E

[
g(t,ut,Xu

t )
]

is well defined, Lipschitz continuous and its Lipschitz constant satisfies:

CΘ,u(T) = Ch,ḡCg,u + Ch,λ̄

(
Clḡ,u + Clḡ,ḡCg,u

)
+ O (T) (T→ 0).

By construction, ũ is predictable. Besides, for u ∈H2,2
P

,

E

[∫ T

0
|ũs|

2ds
]
≤ E

[ ∫ T

0

(
|h(s, 0, 0, 0, 0)| + (Ch,ḡ + Ch,λ̄Clḡ,ḡ)E

[
|g(s, 0, 0)|

]
+ Ch,x|Xu

s |

+ Ch,y|Yu
s | +

(
Ch,ḡCg,u + Ch,λ̄

(
Clḡ,u + Clḡ,ḡCg,u

))
E [|us|]

+
(
Ch,ḡCg,x + Ch,λ̄

(
Clḡ,x + Clḡ,ḡCg,x

))
E

[
|Xu

s |
])2

ds
]
.

Using Minkowski’s inequality, this shows that the right-hand side is finite since g(·, 0, 0) ∈H2,1, h(·, 0, 0, 0, 0),Xu,Yu

and u are inH2,2, whence the well-posedness of Θ. Similar computations give

‖∆ũ‖H2,2 ≤

(
E

[ ∫ T

0

(
Ch,x|∆Xs| +

(
Ch,ḡCg,u + Ch,λ̄

(
Clḡ,u + Clḡ,ḡCg,u

))
E [|∆us|]

+ Ch,y|∆Ys| +
(
Ch,ḡCg,x + Ch,λ̄

(
Clḡ,x + Clḡ,ḡCg,x

))
E [|∆Xs|]

)2

ds
])1/2

.

Again, from Minkowski’s inequality it follows that

‖∆ũ‖H2,2 ≤

(
Ch,ḡCg,u + Ch,λ̄

(
Clḡ,u + Clḡ,ḡCg,u

) )
‖∆u‖H2,2 + C

(
‖∆X‖H2,2 + ‖∆Y‖H2,2

)
.

Using ‖·‖H2,2 ≤
√

T‖·‖H∞,2 and our estimates on ‖∆X‖H∞,2 and ‖∆Y‖H∞,2 , we obtain that Θ is Lipschitz continuous
and its Lipschitz constant satisfies:

CΘ,u(T) ≤ Ch,ḡCg,u + Ch,λ̄

(
Clḡ,u + Clḡ,ḡCg,u

)
+ O (T) (T→ 0).

5. Under assumption (2.8), for T small enough, Θ is a contraction in the complete space H2,2
P

and has therefore
a unique fixed point u inH2,2

P
.

6. To conclude, notice (2.1) - (2.4) - (2.6) are satisfied by (u,Xu,Yu) with Xu = Θ(X)(u) and Yu = Θ(Y)(u) if and only
if u is a fixed point of Θ. �

4.3 Proof of Proposition 2.6

� The continuity and coercivity of F are obvious. Similar computations as in the proof of Theorem 2.2 show that F is
Gateaux-differentiable and that the Gateaux-derivative of F at u in direction v is given by:

Ḟ(u, v) = 4(‖u‖2
L2

1
− 1)

∫ 1

0
utvtdt + 2

∫ 1

0
tutvtdt :=

∫ 1

0
F (u)tvtdt,

26



where F : L2
1 7→ L

2
1 is defined by F (u) : t 7→

(
4(‖u‖2

L2
1
− 1) + 2t

)
ut.

� Let us identify the critical points u? ∈ L2
1: for such element, we must have Ḟ(u?,L(u?)) =

∫ 1

0 |F (u?)t|
2dt = 0, which

implies (4(‖u?‖2
L2

1
− 1) + 2t)u?t = 0 a.e. on [0, 1]. Clearly, it leads to u?t = 0 a.e. on [0, 1] and therefore, 0 is the unique

critical point of F.
� Let us show that infu∈L2

1
F(u) = 0. Since F takes values in R+, it is enough to exhibit a sequence u(n)

∈ L2
1 s.t.

F(u(n))→ 0 as n→ +∞. Define, ∀n ∈N,

u(n) : t 7→
√

n + 1I[0, 1
n+1 ](t).

Then, ∫ 1

0
|u(n)

t |
2dt = 1,

∫ 1

0
t|u(n)

t |
2dt =

∫ 1/(n+1)

0
(n + 1)tdt =

1
2(n + 1)

,

therefore F(u(n)) = 1
2(n+1) → 0, as it was sought.

� Last, we prove that the minimum is not achieved. Assume the contrary with the existence of u? ∈ L2
1 s.t. F(u?) = 0.

We must have ‖u?‖L2
1

= 1 and t|u?t |
2 = 0 a.e. on [0, 1]: the second condition requires u? = 0 which is incompatible

with the first condition. We are done, F does not have a minimum. �

4.4 Proof of Proposition 3.2

Usual results about the solution to affine-linear FBSDEs hold for Brownian filtration, see [Yon06] for instance. Here,
we consider more general filtrations, but the arguments are quite similar. For the sake of completeness, we give the
proof.

The function θ is the unique solution of the following affine-linear second order ODE
d2θt
dt2 − bagθt = 0 for t ∈ [0,T],

θT = 1,
dθt
dt |t=T = −eag,

and does not vanish on [0,T] according to the sign conditions on the coefficients. We can therefore define p as in
(3.3). Besides, p and θ are continuous and bounded on [0,T]. By standard arguments, one can check that p is the
unique solution of the following Riccati ODE:  dpt

dt − agp2
t + b = 0,

pT = e.
(4.7)

Define the following BSDE: −dπ̃t = −(agptπ̃t + aptht − c)dt − dMt,

π̃T = f ,

which has a unique solution inH∞,2×H∞,2 (see [EPQ97, Theorem 5.1 with p = 2]) in our context of general filtrations.

By the integration by parts formula applied to π̃t exp
(∫ T

t agpsds
)

(see [Pro03, Corollary 2, p.68]), we get that π̃ is

also given by:

π̃t = Et

[
f exp

(
−

∫ T

t
agpτdτ

)
−

∫ T

t
(apshs − c) exp

(
−

∫ s

t
agpτdτ

)
ds

]
= Et

[
f exp

(∫ T

t

dθτ
dt

1
θτ

dτ
)
−

∫ T

t
(apshs − c) exp

(∫ s

t

dθτ
dt

1
θτ

dτ
)

ds
]

= Et

[
f
θT

θt
−

∫ T

t
(apshs − c)

θs

θt
ds

]
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=
1
θt

(
f −

∫ T

t
(apsEt [hs] − c)θsds

)
= πt,

where we used the definitions of p and π.
We deduce that the process π also has the following representation:

πt = Et

[
f −

∫ T

t
(agpsπs + apshs − c)ds

]
. (4.8)

Since θ and p are bounded on [0,T], we easily prove that π ∈ H∞,2. From that and our assumptions on the data of
the problem, it is clear that (x, y, v) as defined in (3.5) belong to H∞,2 ×H∞,2 ×H2,2

P
. In particular, v is predictable

since x is continuous by construction.
We now prove that (x, y, v) defined by (3.5) solves (3.6). By definition of y and v in (3.5), we can check that:

vt = gyt− + ht.

Define x̃ the unique solution of the following affine-linear ODE:

x̃t := x0 −

∫ t

0
(agpsx̃s + agπs + ahs)ds. (4.9)

It is also given by:

x̃t = x0 exp
(
−

∫ t

0
agpτdτ

)
−

∫ t

0

{
(agπs + ahs) exp

(
−

∫ t

s
agpτdτ

)}
ds

= x0 exp
(∫ t

0

dθτ
dt

1
θτ

dτ
)
−

∫ t

0

{
(agπs + ahs) exp

(∫ t

s

dθτ
dt

1
θτ

dτ
)}

ds

= x0
θt

θ0
−

∫ t

0
(agπs + ahs)

θt

θs
ds

= xt;

hence, x is the unique solution of (4.9). Since π has countably many jumps and changing the Lebesgue integral is
left unchanged by changing the integrand at countably many points, we then get by definition of v:

xt = x0 −

∫ t

0
avsds.

It remains to show that the second equation in (3.6) is verified. Using that p is solution of (4.7), π verifies (4.8) and
x is solution of (4.9), we get:

yt = ptxt + πt

= Et

[
pTxT −

∫ T

t

(
dps

ds
xs +

dxs

ds
ps

)
ds + πT −

∫ T

t
(agpsπs + apshs − c)ds

]
= Et

[
exT + f +

∫ T

t

{
−(agp2

s − b)xs + (agpsxs + agπs + ahs)ps − (agpsπs + apshs − c)
}

ds
]

= Et

[
exT + f +

∫ T

t
(bxs + c) ds

]
.

This shows that (v, x, y) is a solution of (3.6) inH∞,2 ×H∞,2 ×H2,2
P

.
The uniqueness of the solution for small time T follows from a fixed point argument as in the proof of Theorem 2.4.
We do not repeat the arguments here. �
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4.5 Proof of Proposition 3.6

� By definition of u̇(ε), Ẋ(ε) and Ẏ(ε), they are clearly solutions of (3.10). Let us turn to uniform boundedness. The
first two equations yield:

‖Ẋ(ε)
‖H2,2 ≤

√
T

Emax
‖u̇(ε)
‖H2,2 , ‖Ẏ(ε)

‖H2,2 ≤
νT + γ

√
T

Emax
‖u̇(ε)
‖H2,2 .

This can be easily proved following the arguments given in the proof of Theorem 2.7, details are left to the reader.
From the last equation of (3.10) and the 1-Lipschitz continuity of x→ x+, we get:

‖u̇(ε)
‖H2,2 ≤

1
(λ + µ)Emax

‖Ẏ(ε)
‖H2,2 + 2‖(Pload,∆ − u∆,(ε))+‖H2,2

≤
νT + γ

√
T

(λ + µ)E2
max
‖u̇(ε)
‖H2,2 + 2‖(Pload,∆ − u∆,(0))+‖H2,2 + 2ε‖u̇(ε)

‖H2,2 .

When T and ε are small, such that,

α(T) + 2ε :=
νT + γ

√
T

(λ + µ)E2
max

+ 2ε < 1,

we obtain

‖u̇(ε)
‖H2,2 ≤

2‖(Pload,∆ − u∆,(0))+‖H2,2

1 − α(T) − 2ε
,

whence the uniform boundedness of u̇(ε) as ε→ 0, provided α(T) < 1.
� Now we prove the convergence of (u̇(ε), Ẋ(ε), Ẏ(ε)) to (u̇, Ẋ, Ẏ) inH2,2-norms as ε→ 0. Similarly as before, we have:

‖Ẋ(ε)
− Ẋ‖H2,2 ≤

√
T

Emax
‖u̇(ε)

− u̇‖H2,2 , ‖Ẏ(ε)
− Ẏ‖H2,2 ≤

νT + γ
√

T
Emax

‖u̇(ε)
− u̇‖H2,2 .

Besides, the last equations in (3.10) and (3.11) as well as the 1-Lipschitz continuity of x→ x+ give:

‖u̇(ε)
− u̇‖H2,2 ≤

1
(λ + µ)Emax

‖Ẏ(ε)
− Ẏ‖H2,2 + 2‖u∆,(ε)

− u∆,(0)
‖H2,2

≤
νT + γ

√
T

(λ + µ)E2
max
‖u̇(ε)

− u̇‖H2,2 + 2ε‖u̇(ε)
‖H2,2

= α(T)‖u̇(ε)
− u̇‖H2,2 + 2ε‖u̇(ε)

‖H2,2 .

For T small enough s.t. α(T) < 1 and and for ε < 1−α(T)
2 , we thus obtain:

‖u̇(ε)
− u̇‖H2,2 ≤

2ε
1 − α(T)

‖u̇(ε)
‖H2,2 ≤

4ε
(1 − α(T))(1 − α(T) − 2ε)

‖(Pload,∆ − u∆,(0))+‖H2,2 .

This completes the proof. �

4.6 Boundedness of solutions to linear ODE with bounded stochastic coefficient

This following result is used in the proof of Theorems 2.2 and 2.4.

Lemma 4.1. Let A : [0,T] ×Ω 7→ Rp
× Rp be a random matrix-valued process. Suppose there exists a constant C

such that |A(t, ω)| ≤ C, dt × dP-a.e. .
Let R and L be the unique (continuous) solutions of the following linear ODEs: dLt

dt = LtAt,

L0 = Idp,
and

 dRt
dt = −AtRt,

R0 = Idp.

Then, L and R are invertible with L−1 = R. Besides, |Lt| and |Rt| are uniformly bounded on [0,T] by exp(CT).
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Proof. A direct computation shows that

dt × dP-a.e.,
d(LtRt)

dt
= 0,

thus ∀t ∈ [0,T], LtRt = L0R0 = Idp. Therefore R and L are invertible with R = L−1. Let us now turn to the uniform
boundedness. Let v ∈ Rp, we have

d|L>t v|2

dt
= v>Lt(At + A>t )L>t v ≤ |At + A>t | |L

>

t v|2≤ 2C |L>t v|2, dt × dP-a.e..

Therefore, by integration, |L>t v|2 ≤ |v|2 exp (2CT) for t ∈ [0,T], which yields sup0≤t≤T |L
>

t |
2
≤ exp (2CT) . This proves

exp (CT) ≥ sup0≤t≤T |L
>

t | = sup0≤t≤T |Lt|, whence the announced bound for L. For bounding |R| start from d|Rtv|2
dt and

proceed similarly. �

5 Conclusion

In this work, we have identified the optimal control of storage facilities of a smart grid under uncertain consump-
tion/production, in order to reduce the stochastic fluctuations of the residual consumption on the electrical public grid.
It has been possible thanks to the resolution of a new extended McKean-Vlasov stochastic control problem, using
Pontryagin principle and Forward Backward Stochastic Differential Equations. For situations where the costs are
close to quadratic functions, we have derived quasi-explicit formulas for the control, using perturbation arguments.

In further works, we will consider subsequent issues like more realistic dynamics of the battery flow accounting
with aging/boundary effect, sizing of the smart grid and of the storage/production capacities, risk aggregation of
optimized smart grids with dependent solar productions, impact of model mis-specification on the optimal solution
(risk model).
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