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We revisit occurrence typing, a technique to refine the type of variables occurring in type-cases and, thus,

capture some programming patterns used in untyped languages. Although occurrence typing was tied from

its inception to set-theoretic types—union types, in particular—it never fully exploited the capabilities of these

types. Here we show how, by using set-theoretic types, it is possible to develop a general typing framemork

that encompasses and generalizes several aspects of current occurrence typing proposals and that can be

applied to tackle other problems such as the inference of intersection types for functions and the optimization

of the compilation of gradually typed languages.

CCS Concepts: • Theory of computation → Type structures; Program analysis; • Software and its engi-

neering→ Functional languages;

1 INTRODUCTION
Typescript and Flow are extensions of JavaScript that allow the programmer to specify in the code

type annotations used to statically type-check the program. For instance, the following function

definition is valid in both languages

function foo(x : number | string) {
(typeof(x) === "number")? x++ : x.trim() (1)

}

Apart from the type annotation (in red) of the function parameter, the above is standard JavaScript

code defining a function that checks whether its argument is an integer; if it is so, then it returns the

argument’s successor (x++), otherwise it calls the method trim() of the argument. The annotation

specifies that the parameter is either a number or a string (the vertical bar denotes a union type).

If this annotation is respected and the function is applied to either an integer or a string, then

the application cannot fail because of a type error (trim() is a string method of the ECMAScript

5 standard that trims whitespaces from the beginning and end of the string) and both the type-

checker of TypeScript and the one of Flow rightly accept this function. This is possible because

both type-checkers implement a specific type discipline called occurrence typing or flow typing:
1

as a matter of fact, standard type disciplines would reject this function. The reason for that is

that standard type disciplines would try to type every part of the body of the function under

the assumption that x has type number | string and they would fail, since the successor is not

defined for strings and the method trim() is not defined for numbers. This is so because standard

disciplines do not take into account the type test performed on x. Occurrence typing is the typing

technique that uses the information provided by the test to specialize—precisely to refine—the type

of x in the branches of the conditional: since the program tested that x is of type number, then we

can safely assume that x is of type number in the “then” branch, and that it is not of type number
(and thus deduce from the type annotation that it must be of type string) in the “else” branch.

Occurrence typing was first defined and formally studied by Tobin-Hochstadt and Felleisen

[2008] to statically type-check untyped Scheme programs, and later extended by Tobin-Hochstadt

and Felleisen [2010] yielding the development of Typed Racket. From its inception, occurrence

typing was intimately tied to type systems with set-theoretic types: unions, intersections, and

1
TypeScript calls it “type guard recognition” while Flow uses the terminology “type refinements”.
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negation of types. Union was the first type connective to appear, since it was already used by

Tobin-Hochstadt and Felleisen [2008] where its presence was needed to characterize the different

control flows of a type test, as our foo example shows: one flow for integer arguments and

another for strings. Intersection types appear (in limited forms) combined with occurrence typing

both in TypeScript and in Flow and serve to give, among other, more precise types to functions

such as foo. For instance, since ++ returns an integer and trim() a string, then our function

foo has type (number|string)→(number|string).2 But it is clear that a more precise type

would be one that states that foo returns a number when it is applied to a number and returns a

string when it is applied to a string, so that the type deduced for, say, foo(42) would be number
rather than number|string. This is exactly what the intersection type (number→number) &
(string→string) states (intuitively, an expression has an intersection of type, noted &, if and
only if it has all the types of the intersection) and corresponds in Flow to declaring foo as follows:

var foo : (number => number) & (string => string) = x => {
(typeof(x) === "number")? x++ : x.trim() (2)

}

For what concerns negation types, they are pervasive in the occurrence typing approach, even

though they are used only at meta-theoretic level,
3
in particular to determine the type environment

when the type case fails. We already saw negation types at work when we informally typed the “else”

branch in foo, for which we assumed that x did not have type number—i.e., it had the (negation)

type ¬number—and deduced from it that x then had type string—i.e., (number|string)&¬number
which is equivalent to the set-theoretic difference (number|string)\ number and, thus, to string.

The approaches cited above essentially focus on refining the type of variables that occur in an

expression whose type is being tested. They do it when the variable occurs at top-level in the

test (i.e., the variable is the expression being tested) or under some specific positions such as in

nested pairs or at the end of a path of selectors. In this work we aim at removing this limitation

on the contexts and develop a general theory to refine the type of variables that occur in tested

expressions under generic contexts, such as variables occurring in the left or the right expressions of

an application. In other words, we aim at establishing a formal framework to extract as much static

information as possible from a type test. We leverage our analysis on the presence of full-fledged

set-theoretic types connectives provided by the theory of semantic subtyping. Our analysis will

also yield three byproducts. First, to refine the type of the variables we have to refine the type of

the expressions they occur in and we can use this information to improve our analysis. Therefore

our occurrence typing approach will refine not only the types of variables but also the types of

generic expressions (bypassing usual type inference). Second, the result of our analysis can be used

to infer intersection types for functions, even in the absence of precise type annotations such as the

one in the definition of foo in (2). Third, we show how to combine occurrence typing with gradual

typing, and in particular how the former can be used to optimize the compilation of the latter.

We focus our study on conditionals that test types and consider the following syntax: (e ∈ t)?e:e
(e.g., in this syntax the body of foo is rendered as (x ∈ Int)?x + 1:(trim x)). In particular, in this

introduction we concentrate on applications, since they constitute the most difficult case and many

other cases can be reduced to them. A typical example is the expression

(x1x2 ∈ t)?e1:e2 (3)

2
Actually, both Flow and TypeScript deduce as return type number|string|void, since they track when operations may

yield void results. Considering this would be easy but also clutter our presentation, which is why we omit such details.

3
At the moment of writing there is a pending pull request to add negation types to the syntax of TypeScript, but that is all.
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where xi ’s denote variables, t is some type, and ei ’s are generic expressions. Depending on the

actual t and on the static types of x1 and x2, we can make type assumptions for x1, for x2, and
for the application x1x2 when typing e1 that are different from those we can make when typing

e2. For instance, suppose x1 is bound to the function foo defined in (2). Thus x1 has type (Int →
Int)∧(String → String) (we used the syntax of the types of Section 2 where unions and intersections
are denoted by ∨ and ∧ and have priority over→ and ×, but not over ¬). Then it is not hard to see

that the expression
4

let x1 = foo in (x1x2 ∈ Int)?((x1x2) + x2):42 (4)

is well typed with type Int: when typing the branch “then” we know that the test x1x2 ∈ Int
suceeded and that, therefore, not only x1x2 is of type Int, but also that x2 is of type Int: the other
possibility, x2 : String, would have made the test fail. For (4) we reasoned only on the type of

the variables in the “then” branch but we can do the same on the “else” branch as shown by the

following expression, where @ denotes string concatenation

(x1x2 ∈ Int)?((x1x2) + x2):((x1x2) @x2) (5)

If the static type of x1 is (Int → Int) ∧ (String → String) then x1x2 is well typed only if the static

type of x2 is (a subtype of) Int ∨ String and from that it is not hard to deduce that (5) has type

Int∨String. Let us see this in detail. The expression in (5) is typed in the following type environment:

x1 : (Int → Int)∧ (String → String),x2 : Int∨String. All we can deduce is then that the application

x1x2 has type Int∨ String which is not enough to type either the “then” branch or the “else” branch.

In order to type the “then” branch (x1x2) + x2 we must be able to deduce that both x1x2 and x2 are
of type Int. Since we are in the “then” branch, then we know that the type test succeeded and that,

therefore, x1x2 has type Int. Thus we can assume in typing this branch that x1x2 has both its static

type and type Int and, thus, their intersection: (Int∨ String) ∧ Int, that is Int. For what concerns x2
we use the static type of x1, that is (Int → Int) ∧ (String → String), and notice that this function

returns an Int only if its argument is of type Int. Reasoning as above we thus deduce that in the

“then” branch the type of x2 is the intersection of its static type with Int: (Int ∨ String) ∧ Int that
is Int. To type the “else” branch we reason exactly in the same way, with the only difference that,

since the type test has failed, then we know that the type of the tested expression is not Int. That is,
the expression x1x2 can produce any possible value barring an Int. If we denote by 1 the type of all

values and by \ the set difference, then this means that in the else branch we know that x1x2 has
type 1\Int—written ¬Int—, that is, it can return values of any type barred Int. Reasoning as for the

“then” branch we then assume that x1x2 has type (Int ∨ String) ∧ ¬Int (i.e., (Int ∨ String) \ Int, that
is, String), that x2 must be of type String for the application to have type ¬Int and therefore we

assume that x2 has type (Int ∨ String) ∧ String (i.e., again String).
We have seen that we can specialize in both branches the type of the whole expression x1x2,

the type of the argument x2, but what about the type of x1? Well, this depends on the type of x1
itself. In particular, if instead of an intersection type x1 is typed by a union type, then the test may

give us information about the type of the function in the various branches. So for instance if in

the expression in (3) x1 is of type, say, (s1 → t) ∨ (s2 → ¬t), then we can assume that x1 has type
(s1 → t) in the branch “then” and (s2 → ¬t) in the branch “else”. As a more concrete example, if

x1 : (Int∨String → Int) ∨ (Bool∨String → Bool) and x1x2 is well-typed, then we can deduce for

(x1x2 ∈ Int)?(x1(x1x2) + 42):not(x1(x1x2)) (6)

4
This and most of the following expressions are just given for the sake of example. Determining the type in each branch of

expressions other than variables is interesting for constructors but less so for destructors such as applications, projections,

and selections: any reasonable programmer would not repeat the same application twice, (s)he would store its result in a

variable. This becomes meaningful with constructor such as pairs, as we do for instance in the expression in (11).



1:4 Giuseppe Castagna, Victor Lanvin, Mickaël Laurent, and Kim Nguyen

the type Int ∨ Bool: in the “then” branch x1 has type Int∨String → Int and x1x2 is of type Int; in
the “else” branch x1 has type Bool∨String → Bool and x1x2 is of type Bool.
Let us recap. If e is an expression of type t0 and we are trying to type (e ∈ t)?e1:e2, then we

can assume that e has type t0 ∧ t when typing e1 and type t0 \ t when typing e2. If furthermore

e is of the form e ′e ′′, then we may also be able to specialize the types for e ′ (in particular if its

static type is a union of arrows) and for e ′′ (in particular if the static type of e ′ is an intersection of

arrows). Additionally, we can repeat the reasoning for all subterms of e ′ and e ′′ as long as they are

applications, and deduce distinct types for all subexpressions of e that form applications. How to do

it precisely—not only for applications, but also for other terms such as pairs, projections, records

etc—is explained in the rest of the paper but the key ideas are pretty simple and are explained next.

1.1 Key ideas
First of all, in a strict language we can consider a type as denoting the set of values of that type and

subtyping as set-containment of the denoted values. Imagine we are testing whether the result of

an application e1e2 is of type t or not, and suppose we know that the static types of e1 and e2 are t1
and t2 respectively. If the application e1e2 is well typed, then there is a lot of useful information

that we can deduce from it: first, that t1 is a functional type (i.e., it denotes a set of well-typed
lambda-abstractions, the values of functional type) whose domain, denoted by dom(t1), is a type
denoting the set of all values that are accepted by any function in t1; second that t2 must be a

subtype of the domain of t1; third, we also know the type of the application, that is the type that

denotes all the values that may result from the application of a function in t1 to an argument in

t2, type that we denote by t1 ◦ t2. For instance, if t1 = Int → Bool and t2 = Int, then dom(t1) = Int
and t1 ◦ t2 = Bool. Notice that, introducing operations such as dom() and ◦ is redundant when

working with simple types, but becomes necessary in the presence of set-theoretic types. If for

instance t1 is the type of (2), that is, t1 = (Int→Int) ∧ (String→String), then dom(t) = Int∨ String,
that is the union of all the possible input types, while the precise return type of such a function

depends on the type of the argument the function is applied to: either an integer, or a string, or

both (i.e., the argument has union type Int ∨ String). So we have t1 ◦ Int = Int, t1 ◦ String = String,
and t1 ◦ (Int ∨ String) = Int ∨ String (see Section 2.5.2 for the formal definition of ◦).

What we want to do is to refine the types of e1 and e2 (i.e., t1 and t2) for the cases where the test
that e1e2 has type t succeeds or fails. Let us start with refining the type t2 of e2 for the case in which

the test succeeds. Intuitively, we want to remove from t2 all the values for which the application

will surely return a result not in t , thus making the test fail. Consider t1 and let s be the largest
subtype of dom(t1) such that

t1 ◦ s ≤ ¬t (7)

In other terms, s contains all the arguments that make any function in t1 return a result not in t .
Then we can safely remove from t2 all the values in s or, equivalently, keep in t2 all the values of
dom(t1) that are not in s . Let us implement the second viewpoint: the set of all elements of dom(t1)
for which an application does not surely give a result in ¬t is denoted t1 ‚ t (read, “t1 worra t”)
and defined as min{u ≤ dom(t1) | t1 ◦ (dom(t1) \ u) ≤ ¬t}: it is easy to see that according to this

definition dom(t1) \ (t1 ‚ t) is the largest subset of dom(t1) satisfying (7). Then we can refine the

type of e2 for when the test is successful by using the type t2 ∧ (t1 ‚ t): we intersect all the possible
results of e2, that is t2, with the elements of the domain that may yield a result in t , that is t1 ‚ t .
It is now easy to see how to refine the type of e2 for when the test fails: simply use all the other

possible results of e2, that is t2 \ (t1 ‚ t). To sum up, to refine the type of an argument in the test of

an application, all we need is to define t1 ‚ t , the set of arguments that when applied to a function

of type t1 may return a result in t ; then we can refine the type of e2 as t
+
2
=
def t2 ∧ (t1 ‚ t) in the

“then” branch (we call it the positive branch) and as t−
2
=
def t2 \ (t1 ‚ t) in the “else” branch (we call it
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the negative branch). As a side remark note that the set t1 ‚ t is different from the set of elements

that return a result in t (though it is a supertype of it). To see that, consider for t the type String
and for t1 the type (Bool → Bool) ∧ (Int → (String ∨ Int)), that is, the type of functions that when
applied to a Boolean return a Boolean and when applied to an integer return either an integer or a

string; then we have that dom(t1) = Int ∨ Bool and t1 ‚ String = Int, but there is no (non-empty)

type that ensures that an application of a function in t1 will surely yield a String result.
Once we have determined t+

2
, it is then not very difficult to refine the type t1 for the positive

branch, too. If the test succeeded, then we know two facts: first, that the function was applied to a

value in t+
2
and, second, that the application did not diverge and, thus, returned a result in t1◦ t

+
2

(which is a subtype of t1◦ t2). Therefore, we can exclude from t1 all the functions that when applied

to an argument in t+
2
either diverge or yield a result not in t1 ◦ t

+
2
. Both of these things can be

obtained simply by removing from t1 the functions in (t+
2
→ ¬(t1◦ t

+
2
)), that is, we refine the type of

e1 in the “then” branch as t+
1
= t1 \ (t

+
2
→ ¬(t1◦ t

+
2
))). The fact that this removes the functions that

applied to t+
2
arguments yield results not in t1◦ t

+
2
should be pretty obvious. That this also removes

functions diverging on t+
2
arguments is subtler and deserves some explanation. In particular, the

interpretation of a type t → s is the set of all functions that when applied to an argument of type t
either diverge or return a value in s . As such the interpretation of t → s contains all the functions
that diverge (at least) on t . Therefore removing t → s from a type u removes from u not only all

the functions that when applied to a t argument return a result in s , but also all the functions that

diverge on t . Ergo t1 \ (t
+
2
→ ¬(t1◦ t

+
2
)) removes, among others, all functions in t1 that diverge on

t+
2
. Let us see all this on our example (6), in particular, by showing how this technique deduces that

the type of x1 in the positive branch is (a subtype of) Int∨String → Int. Take the static type of x1,
that is (Int∨String → Int) ∨ (Bool∨String → Bool) and intersect it with (t+

2
→ ¬(t1◦ t

+
2
)), that is,

String → ¬Int. Since intersection distributes over unions we obtain

((Int∨String→Int) ∧ ¬(String→¬Int)) ∨ ((Bool∨String→Bool) ∧ ¬(String→¬Int))

and since (Bool∨String→Bool) ∧ ¬(String→¬Int) is empty (because String → ¬Int contains
Bool∨String → Bool), then what we obtain is the left summand, a strict subtype of Int∨String →

Int, namely the functions of type Int∨String→Intminus those that diverge on all String arguments.

This is essentially what we formalize in Section 2, in the type system by the rule [PAppL] and in

the typing algorithm with the case (19) of the definition of the function Constr.

1.2 Technical challenges
In the previous section we outlined the main ideas of our approach to occurrence typing. However,

devil is in the details. So the formalization we give in Section 2 is not so smooth as we just outlined:

wemust introduce several auxiliary definitions to handle some corner cases. This section presents by

tiny examples the main technical difficulties we had to overcome and the definitions we introduced

to handle them. As such it provides a kind of road-map for the technicalities of Section 2.

Typing occurrences. As it should be clear by now, not only variables but also generic expression

are given different types in the “then” and “else” branches of type tests. For instance, in (5) the

expression x1x2 has type Int in the positive branch and type Bool in the negative one. In this specific

case it is possible to deduce these typings from the refined types of the variables (in particular,

thanks to the fact that x2 has type Int the positive branch and Bool in the negative one), but this is

not possible in general. For instance, consider x1 : Int → (Int ∨ Bool), x2 : Int, and the expression

(x1x2 ∈ Int)?...x1x2...:...x1x2... (8)

It is not possible to specialize the type of the variables in the branches. Nevertheless, we want to be

able to deduce that x1x2 has type Int in the positive branch and type Bool in the negative one. In
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order to do so in Section 2 we will use special type environments that map not only variables but

also generic expressions to types. So to type, say, the positive branch of (8) we extend the current

type environment with the hypothesis that the expression x1x2 has type Int.
When we test the type of an expression we try to deduce the type of some subexpressions

occurring in it. Therefore we must cope with subexpressions occurring multiple times. A simple

example is given by using product types and pairs as in ((x ,x) ∈ t1 × t2)?e1:e2. It is easy to see that
the positive branch e1 is selected only if x has type t1 and type t2 and deduce from that that x must be

typed in e1 by their intersection, t1 ∧ t2. To deal with multiple occurrences of a same subexpression

the type inference system of Section 2 will use the classic rule for introducing intersections [Inter],

while the algorithmic counterpart will use the operator Refine() that intersects the static type of
an expression with all the types deduced for the multiple occurrences of it.

Type preservation. We want our type system to be sound in the sense of Wright and Felleisen

[1994], that is, that it satisfies progress and type preservation. The latter property is challenging

because, as explained just above, our type assumptions are not only about variables but also about

expressions. Two corner cases are particularly difficult. The first is shown by the following example

(e(42) ∈ Bool)?e:... (9)

If e is an expression of type Int → t , then, as discussed before, the positive branch will have type

(Int → t) \ (Int → ¬Bool). If furthermore the negative branch is of the same type (or of a subtype),

then this will also be the type of the whole expression in (9). Now imagine that the application e(42)
reduces to a Boolean value, then the whole expression in (9) reduces to e ; but this has type Int → t
which, in general, is not a subtype of (Int → t) \ (Int → ¬Bool), and therefore type is not preserved
by the reduction. To cope with this problem, in Section 2 we resort to type schemes a technique

introduced by Frisch et al. [2008] to type expressions by sets of types, so that the expression in (9)

will have both the types at issue.

The second corner case is a modification of the example above where the positive branch is e(42),
e.g., (e(42) ∈ Bool)?e(42):true. In this case the type deduced for the whole expression is Bool,
while after reduction we would obtain the expression e(42) which is not of type Bool but of type t
(even though it will eventually reduce to a Bool). This problem will be handled in the proof of type

preservation by considering parallel reductions (e.g, if e(42) reduces in a step to, say, false, then
(e(42) ∈ Bool)?e(42):true reduces in one step to (false ∈ Bool)?false:true): see Appendix A.2.

Interdependence of checks. The last class of technical problems arise from the mutual dependence

of different type checks. In particular, there are two cases that pose a problem. The first can be

shown by two functions f and д both of type (Int → Int) ∧ (1 → Bool), x of type 1 and the test:

((f x ,д x) ∈ Int × Bool)? ... : ... (10)

If we independently check f x against Int andд x against Boolwe deduce Int for the first occurrence
of x and 1 for the second. Thus we would type the positive branch of (10) under the hypothesis that

x is of type Int. But if we use the hypothesis generated by the test of f x , that is, that x is of type

Int, to check д x against Bool, then the type deduced for x is 0—i.e., the branch is never selected.

In other words, we want to produce type environmments for occurrence typing by taking into

account all the available hypotheses, even when these hypotheses are formulated later in the flow

of control. This will be done in the type systems of Section 2 by the rule [Path] and will require at

algorithmic level to look for a fix-point solution of a function, or an approximation thereof.

Finally, a nested check may help refining the type assumptions on some outer expressions. For

instance, when typing the positive branch e of

((x ,y) ∈ ((Int ∨ Bool) × Int))?e:... (11)
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we can assume that the expression (x ,y) is of type (Int∨Bool)×Int and put it in the type environment.

But if in e there is a test like (x ∈ Int)?(x ,y):(...) then we do not want use the assumption in

the type environment to type the expression (x ,y) occurring in the inner test (in red). Instead we

want to give to that occurrence of the expression (x ,y) the type Int × Int. This will be done by
temporary removing the type assumption about (x ,y) from the type environment and by retyping

the expression without that assumption (see rule [EnvA] in Section 2.5.4).

Outline. In Section 2 we formalize the ideas presented in this introduction: we define the types and

expressions of our system, their dynamic semantics and a type system that implements occurrence

typing together with the algorithms that decide whether an expression is well typed or not. Section 3

extends our formalism to record types and presents two applications of our analysis: the inference

of arrow types for functions and a static analysis to reduce the number of casts inserted by a

compiler of a gradually-typed language. Practical aspects are discussed in Section 4 where we

give several paradigmatic examples of code typed by our prototype implementation, that can be

interactively tested at https://occtyping.github.io/. Section 5 presents related work. A discussion of

future work concludes this presentation. For space reasons several technical definitions and all the

proofs are omitted from this presentation and can be found in the appendix available online.

2 LANGUAGE
In this section we formalize the ideas we outlined in the introduction. We start by the definition of

types followed by the language and its reduction semantics. The static semantics is the core of our

work: we first present a declarative type system that deduces (possibly many) types for well-typed

expressions and then the algorithms to decide whether an expression is well typed or not.

2.1 Types
Definition 2.1 (Types). The set of types Types is formed by the terms t coinductively produced

by the grammar:

Types t ::= b | t → t | t × t | t ∨ t | ¬t | 0

and that satisfy the following conditions

• (regularity) every term has a finite number of different sub-terms;

• (contractivity) every infinite branch of a term contains an infinite number of occurrences of

the arrow or product type constructors.

We use the following abbreviations: t1 ∧ t2 =
def

¬(¬t1 ∨ ¬t2), t1 \ t2 =
def t1 ∧ ¬t2, 1 =

def

¬0. b ranges

over basic types (e.g., Int, Bool), 0 and 1 respectively denote the empty (that types no value) and

top (that types all values) types. Coinduction accounts for recursive types and the condition on

infinite branches bars out ill-formed types such as t = t ∨ t (which does not carry any information

about the set denoted by the type) or t = ¬t (which cannot represent any set). It also ensures that

the binary relation ▷ ⊆ Types
2
defined by t1 ∨ t2 ▷ ti , t1 ∧ t2 ▷ ti , ¬t ▷ t is Noetherian. This

gives an induction principle on Types that we will use without any further explicit reference to

the relation.
5
We refer to b, ×, and → as type constructors and to ∨, ∧, ¬, and \ as type connectives.

The subtyping relation for these types, noted ≤, is the one defined by Frisch et al. [2008] to which

the reader may refer. A detailed description of the algorithm to decide it can be found in [Castagna

2019]. For this presentation it suffices to consider that types are interpreted as sets of values (i.e.,

either constants, λ-abstractions, or pairs of values: see Section 2.2 right below) that have that type,

and that subtyping is set containment (i.e., a type s is a subtype of a type t if and only if t contains
all the values of type s). In particular, s → t contains all λ-abstractions that when applied to a

5
In a nutshell, we can do proofs by induction on the structure of unions and negations—and, thus, intersections—but arrows,

products, and basic types are the base cases for the induction.

https://occtyping.github.io/
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value of type s , if their computation terminates, then they return a result of type t (e.g., 0 → 1 is

the set of all functions
6
and 1 → 0 is the set of functions that diverge on every argument). Type

connectives (i.e., union, intersection, negation) are interpreted as the corresponding set-theoretic

operators (e.g., s ∨ t is the union of the values of the two types). We use ≃ to denote the symmetric

closure of ≤: thus s ≃ t (read, s is equivalent to t ) means that s and t denote the same set of values

and, as such, they are semantically the same type.

2.2 Syntax
The expressions e and valuesv of our language are inductively generated by the following grammars:

Expr e ::= c | x | ee | λ∧i∈I si→tix .e | πje | (e, e) | (e∈t) ? e : e

Values v ::= c | λ∧i∈I si→tix .e | (v,v)
(12)

for j = 1, 2. In (12), c ranges over constants (e.g., true, false, 1, 2, ...) which are values of basic

types (we use bc to denote the basic type of the constant c); x ranges over variables; (e, e) denote
pairs and πie their projections; (e∈t) ? e1 : e2 denotes the type-case expression that evaluates either

e1 or e2 according to whether the value returned by e (if any) is of type t or not; λ∧i∈I si→tix .e is
a value of type ∧i ∈I si → ti and denotes the function of parameter x and body e . An expression

has an intersection type if and only if it has all the types that compose the intersection. Therefore,

intuitively, λ∧i∈I si→tix .e is a well-typed value if for all i∈I the hypothesis that x is of type si implies

that the body e has type ti , that is to say, it is well typed if λ∧i∈I si→tix .e has type si → ti for all
i ∈ I . Every value is associated to a type: the type of c is bc ; the type of λ∧i∈I si→tix .e is ∧i ∈I si → ti ;
and, inductively, the type of a pair of values is the product of the types of the values.

2.3 Dynamic semantics
The dynamic semantics is defined as a classic left-to-right call-by-value reduction for a λ-calculus
with pairs, enriched with specific rules for type-cases. We have the following notions of reduction:

(λ∧i∈I si→tix .e)v { e{x 7→ v}
πi (v1,v2) { vi i = 1, 2

(v∈t) ? e1 : e2 { e1 v ∈ t
(v∈t) ? e1 : e2 { e2 v < t

The semantics of type-cases uses the relation v ∈ t that we informally defined in the previous

section. We delay its formal definition to Section 2.5.1 (where it deals with some corner cases for

negated arrow types). Contextual reductions are defined by the following evaluation contexts:

C[] ::= [ ] | Ce | vC | (C, e) | (v,C) | πiC | (C∈t) ? e : e

As usual we denote by C[e] the term obtained by replacing e for the hole in the context C and we

have that e { e ′ implies C[e] { C[e ′].

2.4 Static semantics
While the syntax and reduction semantics are, on the whole, pretty standard for the type system,

we will have to introduce several unconventional features that we anticipated in Section 1.2 and

are at the core of our work. Let us start with the standard part, that is the typing of the functional

core and the use of subtyping, given by the following typing rules:

[Const]

Γ ⊢ c : bc
[App]

Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2
[Abs+]

∀i ∈I Γ,x : si ⊢ e : ti

Γ ⊢ λ∧i∈I si→tix .e :
∧

i ∈I si → ti

[Sel]

Γ ⊢ e : t1 × t2

Γ ⊢ πie : ti
[Pair]

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ (e1, e2) : t1 × t2
[Subs]

Γ ⊢ e : t t ≤ t ′

Γ ⊢ e : t ′
6
Actually, for every type t , all types of the form 0→t are equivalent and each of them denotes the set of all functions.
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These rules are quite standard and do not need any particular explanation besides those already

given in Section 2.2. Just notice that we used a classic subsumption rule (i.e., [Subs]) to embed

subtyping in the type system. Let us next focus on the unconventional aspects of our system, from

the simplest to the hardest.

The first unconventional aspect is that, as explained in Section 1.2, our type assumptions are about

expressions. Therefore, in our rules the type environments, ranged over by Γ, map expressions—

rather than just variables—into types. This explains why the classic typing rule for variables is

replaced by a more general [Env] rule defined below:

[Env]

Γ ⊢ e : Γ(e)
e ∈ dom(Γ) [Inter]

Γ ⊢ e : t1 Γ ⊢ e : t2

Γ ⊢ e : t1 ∧ t2
The [Env] rule is coupled with the standard intersection introduction rule [Inter] which allows

us to deduce for a complex expression the intersection of the types recorded by the occurrence

typing analysis in the environment Γ with the static type deduced for the same expression by using

the other typing rules. This same intersection rule is also used to infer the second unconventional

aspect of our system, that is, the fact that λ-abstractions can have negated arrow types, as long as

these negated types do not make the type deduced for the function empty:

[Abs-]

Γ ⊢ λ∧i∈I si→tix .e : t

Γ ⊢ λ∧i∈I si→tix .e : ¬(t1 → t2)
((∧i ∈I si → ti ) ∧ ¬(t1 → t2)) ; 0

As explained in Section 1.2, we need to be able to deduce for, say, the function λInt→Intx .x a type

such as (Int → Int) ∧ ¬(Bool → Bool) (in particular, if this is the term e in equation (9) we need

to deduce for it the type (Int → t) ∧ ¬(Int → ¬Bool), that is, (Int → t) \ (Int → ¬Bool) ). But the
sole rule [Abs+] above does not allow us to deduce negations of arrows for abstractions: the rule

[Abs-] makes this possible. As an aside, note that this kind of deduction was already present in the

system by Frisch et al. [2008] though in that system this presence was motivated by the semantics

of types rather than, as in our case, by the soundness of the type system.

Rules [Abs+] and [Abs-] are not enough to deduce for λ-abstractions all the types we wish. In
particular, these rules alone are not enough to type general overloaded functions. For instance,

consider this simple example of a function that applied to an integer returns its successor and

applied to anything else returns true:

λ(Int→Int)∧(¬Int→Bool)x . (x∈Int) ?x + 1 : true

Clearly, the expression above is well typed, but the rule [Abs+] alone is not enough to type it. In

particular, according to [Abs+] we have to prove that under the hypothesis that x is of type Int the
expression ((x∈Int) ?x + 1 : true) is of type Int, too. That is, that under the hypothesis that x has

type Int∧ Int (we apply occurrence typing) the expression x +1 is of type Int (which holds) and that

under the hypothesis that x has type Int \ Int, that is 0 (we apply once more occurrence typing),

true is of type Int (which does not hold). The problem is that we are trying to type the second case

of a type-case even if we know that there is no chance that, when x is bound to an integer, that

case will be ever selected. The fact that it is never selected is witnessed by the presence of a type

hypothesis with 0 type. To avoid this problem (and type the term above) we add the rule [Efq]

(ex falso quodlibet) that allows the system to deduce any type for an expression that will never be

selected, that is, for an expression whose type environment contains an empty assumption:

[Efq]

Γ, (e : 0) ⊢ e ′ : t
Once more, this kind of deduction was already present in the system by Frisch et al. [2008] to type

full fledged overloaded functions, though it was embedded in the typing rule for the type-case.

Here we need the rule [Efq], which is more general, to ensure the property of subject reduction.
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Finally, there remains one last rule in our type system, the one that implements occurrence

typing, that is, the rule for the type-case:

[Case]

Γ ⊢ e : t0 Γ ⊢Enve,t Γ1 Γ1 ⊢ e1 : t
′ Γ ⊢Enve,¬t Γ2 Γ2 ⊢ e2 : t

′

Γ ⊢ (e∈t) ? e1 : e2 : t
′

The rule [Case] checks whether the expression e , whose type is being tested, is well-typed and

then performs the occurrence typing analysis that produces the environments Γi ’s under whose
hypothesis the expressions ei ’s are typed. The production of these environments is represented

by the judgments Γ ⊢Enve,(¬)t Γi . The intuition is that when Γ ⊢Enve,t Γ1 is provable then Γ1 is a version

of Γ extended with type hypotheses for all expressions occurring in e , type hypotheses that can
be deduced assuming that the test e ∈ t succeeds. Likewise, Γ ⊢Enve,¬t Γ2 (notice the negation on t )
extends Γ with the hypothesis deduced assuming that e ∈ ¬t , that is, for when the test e ∈ t fails.

All it remains to do is to show how to deduce judgments of the form Γ ⊢Enve,t Γ′. For that we first
define how to denote occurrences of an expression. These are identified by paths in the syntax tree

of the expressions, that is, by possibly empty strings of characters denoting directions starting from

the root of the tree (we use ϵ for the empty string/path, which corresponds to the root of the tree).

Let e be an expression andϖ ∈ {0, 1, l , r , f , s}∗ a path; we denote e↓ϖ the occurrence of e reached
by the path ϖ , that is (for i = 1, 2, and undefined otherwise)

e↓ϵ = e (e0, e1)↓l .ϖ = e0↓ϖ π1e↓f .ϖ = e↓ϖ
e0e1↓i .ϖ = ei↓ϖ (e0, e1)↓r .ϖ = e1↓ϖ π2e↓s .ϖ = e↓ϖ

To ease our analysis we used different directions for each kind of term. So we have 0 and 1 for the

function and argument of an application, l and r for the left and r ight expressions forming a pair,

and f and s for the argument of a f irst or of a second projection. Note also that we do not consider
occurrences under λ’s (since their type is frozen in their annotations) and type-cases (since they

reset the analysis). The judgments Γ ⊢Enve,t Γ′ are then deduced by the following two rules:

[Base]

Γ ⊢Enve,t Γ
[Path]

⊢PathΓ′,e,t ϖ : t ′ Γ ⊢Enve,t Γ′

Γ ⊢Enve,t Γ′, (e↓ϖ : t ′)

These rules describe how to produce by occurrence typing the type environments while checking

that an expression e has type t . They state that (i) we can deduce from Γ all the hypothesis already

in Γ (rule [Base]) and that (ii) if we can deduce a given type t ′ for a particular occurrence ϖ of the

expression e being checked, then we can add this hypothesis to the produced type environment

(rule [Path]). The rule [Path] uses a (last) auxiliary judgement ⊢PathΓ,e,t ϖ : t ′ to deduce the type t ′ of

the occurrence e↓ϖ when checking e against t under the hypotheses Γ. This rule [Path] is subtler
than it may appear at first sight, insofar as the deduction of the type for ϖ may already use some

hypothesis on e↓ϖ (in Γ′) and, from an algorithmic viewpoint, this will imply the computation

of a fix-point (see Section 2.5.3). The last ingredient for our type system is the deduction of the

judgements of the form ⊢PathΓ,e,t ϖ : t ′ where ϖ is a path to an expression occurring in e . This is given
by the following set of rules.

[PSubs]

⊢PathΓ,e,t ϖ : t1 t1 ≤ t2

⊢PathΓ,e,t ϖ : t2
[PInter]

⊢PathΓ,e,t ϖ : t1 ⊢PathΓ,e,t ϖ : t2

⊢PathΓ,e,t ϖ : t1 ∧ t2
[PTypeof]

Γ ⊢ e↓ϖ : t ′

⊢PathΓ,e,t ϖ : t ′

[PEps]

⊢PathΓ,e,t ϵ : t
[PAppR]

⊢PathΓ,e,t ϖ .0 : t1 → t2 ⊢PathΓ,e,t ϖ : t ′
2

⊢PathΓ,e,t ϖ .1 : ¬t1
t2 ∧ t ′

2
≃ 0



1:11

[PAppL]

⊢PathΓ,e,t ϖ .1 : t1 ⊢PathΓ,e,t ϖ : t2

⊢PathΓ,e,t ϖ .0 : ¬(t1 → ¬t2)
[PPairL]

⊢PathΓ,e,t ϖ : t1 × t2

⊢PathΓ,e,t ϖ .l : t1

[PPairR]

⊢PathΓ,e,t ϖ : t1 × t2

⊢PathΓ,e,t ϖ .r : t2
[PFst]

⊢PathΓ,e,t ϖ : t ′

⊢PathΓ,e,t ϖ . f : t ′ × 1
[PSnd]

⊢PathΓ,e,t ϖ : t ′

⊢PathΓ,e,t ϖ .s : 1 × t ′

These rules implement the analysis described in Section 1.1 for functions and extend it to products.

Let us comment each rule in detail. [PSubs] is just subsumption for the deduction ⊢Path. The

rule [PInter] combined with [PTypeof] allows the system to deduce for an occurrence ϖ the

intersection of the static type of e↓ϖ (deduced by [PTypeof]) with the type deduced for ϖ by the

other ⊢Path rules. The rule [PEps] is the starting point of the analysis: if we are assuming that

the test e ∈ t succeeds, then we can assume that e (i.e., e↓ϵ) has type t (recall that assuming that

the test e ∈ t fails corresponds to having ¬t at the index of the turnstyle). The rule [PApprR]

implements occurrence typing for the arguments of applications, since it states that if a function

maps arguments of type t1 in results of type t2 and an application of this function yields results (in

t ′
2
) that cannot be in t2 (since t2 ∧ t ′

2
≃ 0), then the argument of this application cannot be of type

t1. [PAppR] performs the occurrence typing analysis for the function part of an application, since it

states that if an application has type t2 and the argument of this application has type t1, then the

function in this application cannot have type t1 → ¬t2. Rules [PPair_] are straightforward since

they state that the i-th projection of a pair that is of type t1 × t2 must be of type ti . So are the last

two rules that essentially state that if π1e (respectively, π2e) is of type t
′
, then the type of e must be

of the form t ′ × 1 (respectively, 1 × t ′).
This concludes the presentation of our type system, which satisfies the property of safety,

deduced, as customary, from the properties of progress and subject reduction (cf. Appendix A.3).

Theorem 2.2 (type safety). For every expression e such that ∅ ⊢ e : t either e diverges or there
exists a value v of type t such that e {∗ v .

2.5 Algorithmic system
The systemwe defined in the previous section implements the ideaswe illustrated in the introduction

and it is safe. Now the problem is to decide whether an expression is well typed or not, that is, to

find an algorithm that given a type environment Γ and an expression e decides whether there exists
a type t such that Γ ⊢ e : t is provable. For that we need to solve essentially two problems: (i) how
to handle the fact that it is possible to deduce several types for the same well-typed expression and

(ii) how to compute the auxiliary deduction system for paths.

Multiple types have two distinct origins each requiring a distinct technical solution. The first

origin is the rule [Abs-] by which it is possible to deduce for every well-typed lambda abstraction

infinitely many types, that is the annotation of the function intersected with as many negations

of arrow types as it is possible without making the type empty. To handle this multiplicity we

use and adapt the technique of type schemes defined by Frisch et al. [2008]. Type schemes—whose

definition we recall in Section 2.5.1—are canonical representations of the infinite sets of types of

λ-abstractions. The second origin is due to the presence of structural rules
7
such as [Subs] and

[Inter]. We handle this presence in the classic way: we define an algorithmic system that tracks

the miminum type—actually, the minimum type scheme—of an expression; this system is obtained

from the original system by removing the two structural rules and by distributing suitable checks

7
In logic, logical rules refer to a particular connective (here, a type constructor, that is, either →, or ×, or b), while identity
rules (e.g., axioms and cuts) and structural rules (e.g., weakening and contraction) do not.
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of the subtyping relation in the remaining rules. To do that in the presence of set-theoretic types

we need to define some operators on types, which are given in Section 2.5.2.

For what concerns the use of the auxiliary derivation for the judgments, we present in Sec-

tion 2.5.3 an algorithm that is sound and satisfies a limited form of completeness. All these notions

are then used in the algorithmic typing system given in Section 2.5.4.

2.5.1 Type schemes. We introduce the new syntactic category of types schemes which are the

terms t inductively produced by the following grammar.

Type schemes t ::= t | [t → t ; · · · ; t → t] | t ⃝× t | t ⃝∨ t | Ω

Type schemes denote sets of types, as formally stated by the following definition:

Definition 2.3 (Interpretation of type schemes). We define the function {_} that maps type schemes

into sets of types.

{t } = {s | t ≤ s}
{[ti → si ]i=1..n} = {s | ∃s0 = ∧

i=1..n ti → si ∧
∧

j=1..m ¬(t ′j → s ′j ). 0 ; s0 ≤ s}

{t1 ⃝× t2} = {s | ∃t1 ∈ {t1} ∃t2 ∈ {t2}. t1 × t2 ≤ s}
{t1 ⃝∨ t2} = {s | ∃t1 ∈ {t1} ∃t2 ∈ {t2}. t1 ∨ t2 ≤ s}
{Ω} = ∅

Note that {t} is closed under subsumption and intersection and that Ω, which denotes the empty

set of types is different from 0 whose interpretation is the set of all types.

Lemma 2.4 ([Frisch et al. 2008]). Let t be a type scheme and t a type. It is possible to decide the
assertion t ∈ {t}, which we also write t ≤ t .

We can now formally define the relation v ∈ t used in Section 2.3 to define the dynamic

semantics of the language. First, we associate each (possibly, not well-typed) value to a type scheme

representing the best type information about the value. By induction on the definition of values:

typeof (c) = bc , typeof (λ∧i∈I si→tix .e) = [si → ti ]i ∈I , typeof ((v1,v2)) = typeof (v1) ⃝× typeof (v1).
Then we have v ∈ t ⇐⇒

def typeof (v) ≤ t .
We also need to perform intersections of type schemes so as to intersect the static type of an

expression (i.e., the one deduced by conventional rules) with the one deduced by occurrence typing

(i.e., the one derived by ⊢Path). For our algorithmic system (see [EnvA] in Section 2.5.4) all we need

to define is the intersection of a type scheme with a type:

Lemma 2.5 ([Frisch et al. 2008]). Let t be a type scheme and t a type. We can compute a type

scheme, written t ⃝∧ t, such that {t ⃝∧ t} = {s | ∃t ′ ∈ {t}. t ∧ t ′ ≤ s}

Finally, given a type scheme t it is straightforward to choose in its interpretation a type Repr(t)
which serves as the canonical representative of the set (i.e., Repr(t) ∈ {t}):

Definition 2.6 (Representative). We define a function Repr(_) that maps every non-empty type

scheme into a type, representative of the set of types denoted by the scheme.

Repr(t) = t Repr(t1 ⃝× t2) = Repr(t1) × Repr(t2)
Repr([ti → si ]i ∈I ) =

∧
i ∈I ti → si Repr(t1 ⃝∨ t2) = Repr(t1) ∨ Repr(t2)

Repr(Ω) undefined

2.5.2 Operators for type constructors. In order to define the algorithmic typing of expressions

like applications and projections we need to define the operators on types we used in Section 1.1.

Consider the rule [App] for applications. It essentially does three things: (1) it checks that the

function has functional type; (2) it checks that the argument is in the domain of the function, and

(3) it returns the type of the application. In systems without set-theoretic types these operations
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are quite straightforward: (1) corresponds to checking that the function has an arrow type, (2)

corresponds to checking that the argument is in the domain of the arrow deduced for the function

and (3) corresponds to returning the codomain of that same arrow. With set-theoretic types things

get more difficult, since a function can be typed by, say, a union of intersection of arrows and

negations of types. Checking that the function has a functional type is easy since it corresponds to

checking that it has a type subtype of 0→1. Determining its domain and the type of the application

is more complicated and needs the operators dom() and ◦ we informally described in Section 1.1

where we also introduced the operator ‚ . These three operators are used by our algorithm and

formally defined as:

dom(t) = max{u | t ≤ u → 1} (13)

t ◦ s = min{u | t ≤ s → u} (14)

t ‚ s = min{u | t ◦ (dom(t) \ u) ≤ ¬s} (15)

We need similar operators for projections since the type t of e in πie may not be a single product

type but, say, a union of products: all we know is that t must be a subtype of 1 × 1. So let t be a
type such that t ≤ 1 × 1, then we define:

π 1(t) = min{u | t ≤ u × 1} π 2(t) = min{u | t ≤ 1 × u} (16)

All the operators above but ‚ are already present in the theory of semantic subtyping: the reader

can find how to compute them and how to extend their definition to type schemes in [Frisch

et al. 2008, Section 6.11] (see also [Castagna 2019, §4.4] for a detailed description). Below we

just show the formula that computes t ‚ s for a t subtype of 0 → 1. For that, we use a result

of semantic subtyping that states that every type t is equivalent to a type in disjunctive normal

form and that if furthermore t ≤ 0 → 1, then t ≃
∨

i ∈I

(∧
p∈Pi (sp → tp )

∧
n∈Ni

¬(s ′n → t ′n)
)
with∧

p∈Pi (sp → tp )
∧

n∈Ni
¬(s ′n → t ′n) ; 0 for all i in I . For such a t and any type s then we have:

t ‚ s = dom(t) ∧
∨
i ∈I

©­«
∧

{P ⊆Pi | s≤
∨
p∈P ¬tp }

©­«
∨
p∈P

¬sp
ª®¬ª®¬ (17)

The formula considers only the positive arrows of each summand that forms t and states that, for

each summand, whenever you take a subset P of its positive arrows that cannot yield results in

s (since s does not overlap the intersection of the codomains of these arrows), then the success

of the test cannot depend on these arrows and therefore the intersection of the domains of these

arrows—i.e., the values that would precisely select that set of arrows—can be removed from dom(t).
The proof that this type satisfies (15) is given in the Appendix A.4.

2.5.3 Type environments for occurrence typing. The last step for our presentation is to define the

algorithm for the deduction of Γ ⊢Enve,t Γ′, that is an algorithm that takes as input Γ, e , and t , and
returns an environment that extends Γ with hypotheses on the occurrences of e that are the most

general that can be deduced by assuming that e ∈ t succeeds. For that we need the notation

typeofΓ(e) which denotes the type scheme deduced for e under the type environment Γ in the

algorithmic type system of Section 2.5.4. That is, typeofΓ(e) = t if and only if Γ ⊢A e : t is provable.
We start by defining the algorithm for each single occurrence, that is for the deduction of

⊢PathΓ,e,t ϖ : t ′. This is obtained by defining two mutually recursive functions Constr and Intertype:
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ConstrΓ,e,t (ϵ) = t (18)

ConstrΓ,e,t (ϖ .0) = ¬(IntertypeΓ,e,t (ϖ .1) → ¬IntertypeΓ,e,t (ϖ)) (19)

ConstrΓ,e,t (ϖ .1) = Repr(typeofΓ(e↓ϖ .0)) ‚ IntertypeΓ,e,t (ϖ) (20)

ConstrΓ,e,t (ϖ .l) = π 1(IntertypeΓ,e,t (ϖ)) (21)

ConstrΓ,e,t (ϖ .r ) = π 2(IntertypeΓ,e,t (ϖ)) (22)

ConstrΓ,e,t (ϖ . f ) = IntertypeΓ,e,t (ϖ) × 1 (23)

ConstrΓ,e,t (ϖ .s) = 1 × IntertypeΓ,e,t (ϖ) (24)

IntertypeΓ,e,t (ϖ) = Repr(ConstrΓ,e,t (ϖ) ⃝∧ typeofΓ(e↓ϖ)) (25)

All the functions above are defined if and only if the initial path ϖ is valid for e (i.e., e↓ϖ is defined)

and e is well-typed (which implies that all typeofΓ(e↓ϖ) in the definition are defined).
8

Each case of the definition of the Constr function corresponds to the application of a logical

rule (cf. Footnote 7) in the deduction system for ⊢Path: case (18) corresponds to the application

of [PEps]; case (19) implements [Pappl] straightforwardly; the implementation of rule [PAppR]

is subtler: instead of finding the best t1 to subtract (by intersection) from the static type of the

argument, (20) finds directly the best type for the argument by applying the ‚ operator to the static

types of the function and the refined type of the application. The remaining (21–24) cases are the

straightforward implementations of the rules [PPairL], [PPairR], [PFst], and [PSnd], respectively.

The other recursive function, Intertype, implements the two structural rules [PInter] and

[PTypeof] by intersecting the type obtained for ϖ by the logical rules, with the static type deduced

by the type system for the expression occurring at ϖ . The remaining structural rule, [Psubs], is

accounted for by the use of the operators ‚ and π i in the definition of Constr.
It remains to explain how to compute the environment Γ′ produced from Γ by the deduction

system for Γ ⊢Enve,t Γ′. Alas, this is the most delicate part of our algorithm. In a nutshell what we want

to do is to define a function Refine_,_(_) that takes a type environment Γ, an expression e and a

type t and returns the best type environment Γ′ such that Γ ⊢Enve,t Γ′ holds. By the best environment

we mean the one in which the occurrences of e are associated to the largest possible types (type

environments are hypotheses so they are contravariant: the larger the type the better the hypothesis).

Recall that in Section 1.2 we said that we want our analysis to be able to capture all the information

available from nested checks. If we gave up such a kind of precision then the definition of Refine
would be pretty easy: it must map each subexpression of e to the intersection of the types deduced

by ⊢Path (i.e., by Intertype) for each of its occurrences. That is, for each expression e ′ occurring in e ,
Refinee,t (Γ) would be the type environment that maps e ′ into

∧
{ϖ | e↓ϖ≡e ′ } IntertypeΓ,e,t (ϖ). As

we explained in Section 1.2 the intersection is needed to apply occurrence typing to expressions

such as ((x ,x)∈t1 × t2) ? e1 : e2 where some expressions—here x—occur multiple times.

In order to capture most of the type information from nested queries the rule [Path] allows

the deduction of the type of some occurrence ϖ to use a type environment Γ′ that may contain

information about some suboccurrences of ϖ . On the algorithm this would correspond to applying

the Refine defined above to an environment that already is the result of Refine, and so on. Therefore,
ideally our algorithm should compute the type environment as a fixpoint of the function X 7→

Refinee,t (X ). Unfortunately, an iteration of Refine may not converge. As an example, consider the

(dumb) expression (x1x2∈1) ? e1 : e2. If x1 : 1 → 1, then every iteration of Refine yields for x1 a
type strictly more precise than the type deduced in the previous iteration.

The solution we adopt here is to bound the number of iterations to some number no . From
a formal point of view, this means to give up the completeness of the algorithm: Refine will be

8
Note that the definition is well-founded. This can be seen by analyzing the rule [CaseA]: the definition of Refinee,t (Γ)
and Refinee,¬t (Γ) use typeofΓ(e↓ϖ), and this is defined for all ϖ since the first premisses of [CaseA] states that Γ ⊢ e : t0
(and this is possible only if we were able to deduce under the hypothesis Γ the type of every occurrence of e .)
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complete (i.e., it will find all solutions) for the deductions of Γ ⊢Enve,t Γ′ of depth at most no . This is
obtained by the following definition of Refine

Refinee,t =
def

(RefineStepe,t )
no

where RefineStepe,t (Γ)(e
′) =


∧

{ϖ | e↓ϖ≡e ′ } IntertypeΓ,e,t (ϖ) if ∃ϖ . e↓ϖ ≡ e ′

Γ(e ′) otherwise, if e ′ ∈ dom(Γ)
undefined otherwise

Note in particular that Refinee,t (Γ) extends Γ with hypotheses on the expressions occurring in e ,
since dom(Refinee,t (Γ)) = dom(RefineStepe,t (Γ)) = dom(Γ) ∪ {e ′ | ∃ϖ . e↓ϖ ≡ e ′}.

In other terms, we try to find a fixpoint of RefineStepe,t but we bound our search to no iterations.
Since RefineStepe,t is monotone (w.r.t. the subtyping pre-order extended to type environments

pointwise), then every iteration yields a better solution.

While this is unsatisfactory from a formal point of view, in practice the problem is a very mild

one. Divergence may happen only when refining the type of a function in an application: not only

such a refinement is meaningful only when the function is typed by a union type (which is quite

rare in practice)
9
, but also we had to build the expression that causes the divergence in quite an ad

hoc way which makes divergence even more unlikely.

2.5.4 Algorithmic typing rules. We now have all the notions we need for our typing algorithm,

which is defined by the following rules.

[EfqA]

Γ, (e : 0) ⊢A e ′ : 0
with priority over

all the other rules
[VarA]

Γ ⊢A x : Γ(x)
x ∈ dom(Γ)

[EnvA]

Γ \ {e} ⊢A e : t

Γ ⊢A e : Γ(e) ⃝∧ t
e ∈ dom(Γ) and
e not a variable [ConstA]

Γ ⊢A c : bc
c < dom(Γ)

[AbsA]

Γ,x : si ⊢A e : t′i t′i ≤ ti

Γ ⊢A λ∧i∈I si→tix .e : [si → ti ]i ∈I
λ∧i∈I si→ti x .e < dom(Γ)

[AppA]

Γ ⊢A e1 : t1 Γ ⊢A e2 : t2 t1 ≤ 0 → 1 t2 ≤ dom(t1)

Γ ⊢A e1e2 : t1 ◦ t2
e1e2 < dom(Γ)

[CaseA]

Γ ⊢A e : t0 Refinee,t (Γ) ⊢A e1 : t1 Refinee,¬t (Γ) ⊢A e2 : t2

Γ ⊢A (e∈t) ? e1 : e2 : t1 ⃝∨ t2
(e∈t) ?e1:e2 < dom(Γ)

[ProjA]

Γ ⊢A e : t t ≤ 1×1

Γ ⊢A πie : π i(t)
πie<dom(Γ) [PairA]

Γ ⊢A e1 : t1 Γ ⊢A e2 : t2

Γ ⊢A (e1, e2) : t1 ⃝× t2
(e1, e2)<dom(Γ)

The side conditions of the rules ensure that the system is syntax directed, that is, that at most

one rule applies when typing a term: priority is given to [EqfA] over all the other rules and to

[EnvA] over all remaining logical rules. Type schemes are used to account for the type-multiplicity

stemming from λ-abstractions as shown in particular by rule [AbsA] (in what follows we use the

word “type” also for type schemes). The subsumption rule is no longer in the system; it is replaced

by: (i) using a union type in [CaseA], (ii) checking in [AbsA] that the body of the function is typed

by a subtype of the type declared in the annotation, and (iii) using type operators and checking

subtyping in the elimination rules [AppA ,ProjA]. In particular, for [AppA] notice that it checks

that the type of the function is a functional type, that the type of the argument is a subtype of the

9
The only impact of adding a negated arrow type to the type of a function is when we test whether the function has a given

arrow type: in practice this never happens since programming languages test whether a value is a function, rather than the

type of a given function.
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domain of the function, and then returns the result type of the application of the two types. The

intersection rule is replaced by the use of type schemes in [AbsA] and by the rule [EnvA]. The

latter intersects the type deduced for an expression e by occurrence typing and stored in Γ with the

type deduced for e by the logical rules: this is simply obtained by removing any hypothesis about e
from Γ, so that the deduction of the type t for e cannot but end by a logical rule. Of course this does
not apply when the expression e is a variable, since an hypothesis in Γ is the only way to deduce

the type of a variable, which is why the algorithm reintroduces the classic rule for variables.

The algorithmic system above is sound with respect to the deductive one of Section 2.4

Theorem 2.7 (Soundness). For every Γ, e , t , no , if Γ ⊢A e : t, then Γ ⊢ e : t for every t ∈ t.

We were not able to prove full completeness, just a partial form of it. As anticipated, the problems

are twofold: (i) the recursive nature of rule [Path] and (ii) the use of nested [PAppL] that yield

a precision that the algorithm loses by applying Repr() in the definition of Constr (case (19) is
the critical one). Completeness is recovered by (i) limiting the depth of the derivations and (ii)
forbidding nested negated arrows on the left-hand side of negated arrows.

Definition 2.8 (Rank-0 negation). A derivation of Γ ⊢ e : t is rank-0 negated if [Abs–] never occurs

in the derivation of a left premise of a [PAppL] rule.

The use of this terminology is borrowed from the ranking of higher-order types, since, intuitively,

it corresponds to typing a language in which in the types used in dynamic tests, a negated arrow

never occurs on the left-hand side of another negated arrow.

Theorem 2.9 (Partial Completeness). For every Γ, e , t , if Γ ⊢ e : t is derivable by a rank-0

negated derivation, then there exists no such that Γ ⊢A e : t ′ and t ′ ≤ t .

The use of type schemes and of possibly diverging iterations yields a system that may seem overly

complicated. But it is important to stress that this system is defined only to study the type inference

system of Section 2.4 and in particular to probe how close we can get to a complete algorithm

for it. But for practical applications type schemes are not needed, since they are necessary only

when type cases may specify types with negative arrows and this, in practice, never happens (see

Footnote 9 and Corollary A.30). This is why for our implementation we use the CDuce library in

which type schemes are absent and functions are typed only by intersections of positive arrows.

We present the implementation in Section 4 but before let us study some extensions.

3 EXTENSIONS
3.1 Adding structured types
The previous analysis already covers a large gamut of realistic cases. For instance, the analysis

already handles list data structures, since products and recursive types can encode them as right

associative nested pairs, as it is done in the language CDuce [Benzaken et al. 2003] (e.g., X =
Nil ∨ (Int × X ) is the type of the lists of integers): see Code 8 in Table 1 of Section 4 for a concrete

example. And even more since the presence of union types makes it possible to type heterogeneous

lists whose content is described by regular expressions on types as proposed by Hosoya et al. [2000].

Since the main application of occurrence typing is to type dynamic languages, then it is worth

showing how to extend our work to records. We use the record types as they are defined in CDuce

and which are obtained by extending types with the following two type constructors:

Types t ::= {ℓ1 = t . . . ℓn = t , _ = t} | Undef

where ℓ ranges over an infinite set of labels Labels and Undef is a special singleton type whose

only value is the constant undef which is a constant not in 1. The type {ℓ1 = t1 . . . ℓn = tn , _ = t}
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is a quasi-constant function that maps every ℓi to the type ti and every other ℓ ∈ Labels to the type

t (all the ℓi ’s must be distinct). Quasi constant functions are the internal representation of record

types in CDuce. These are not visible to the programmer who can use only two specific forms of

quasi constant functions, open record types and closed record types, provided by the following

syntactic sugar and that form the record types of our language
10

• {{{ℓ1 = t1, . . . , ℓn = tn}}} for {ℓ1 = t1 . . . ℓn = tn , _ = Undef} (closed records).

• {{{ℓ1 = t1, . . . , ℓn = tn ..}}} for {ℓ1 = t1 . . . ℓn = tn , _ = 1 ∨ Undef} (open records).

plus the notation ℓ =?t to denote optional fields, which corresponds to using in the quasi-constant

function notation the field ℓ = t ∨ Undef.
For what concerns expressions, we adapt CDuce records to our analysis. In particular records

are built starting from the empty record expression {} and by adding, updating, or removing fields:

Expr e ::= {} | {e with ℓ = e} | e\ℓ | e .ℓ

in particular e\ℓ deletes the field ℓ from e , {e with ℓ = e}′ adds the field ℓ = e ′ to the record e
(deleting any existing ℓ field), while e .ℓ is field selection with the reduction: {..., ℓ = e, ...}.ℓ { e .

To define record type subtyping and record expression type inference we need the following

operators on record types (refer to Frisch [2004] for more details):

t .ℓ =

{
min{u | t ≤ {{{ℓ = u ..}}}} if t ≤ {{{ℓ = 1 ..}}}
undefined otherwise

(26)

t1 + t2 = min

{
u

���� ∀ℓ ∈ Labels.
{
u .ℓ ≥ t2.ℓ if t2.ℓ ≤ ¬Undef
u .ℓ ≥ t1.ℓ ∨ (t2.ℓ \ Undef) otherwise

}}
(27)

t\ℓ = min

{
u

���� ∀ℓ′ ∈ Labels.
{
u .ℓ′ ≥ Undef if ℓ′ = ℓ
u .ℓ′ ≥ t .ℓ′ otherwise

}}
(28)

Then two record types t1 and t2 are in subtyping relation, t1 ≤ t2, if and only if for all ℓ ∈ Labels
we have t1.ℓ ≤ t2.ℓ. In particular {{{..}}} is the largest record type.

Expressions are then typed by the following rules (already in algorithmic form).

[Record]

Γ ⊢ {} : {{{}}}
[Update]

Γ ⊢ e1 : t1 t1 ≤ {{{..}}} Γ ⊢ e2 : t2

Γ ⊢ {e1 with ℓ = e2} : t1 + {{{ℓ = t2}}}
{e1 with ℓ = e2} < dom(Γ)

[Delete]

Γ ⊢ e : t t ≤ {{{..}}}

Γ ⊢ e\ℓ : t\ℓ
e\ℓ < dom(Γ) [Proj]

Γ ⊢ e : t t ≤ {{{ℓ = 1 ..}}}

Γ ⊢ e .ℓ : t .ℓ
e .ℓ < dom(Γ)

To extend occurrence typing to recordswe add the following values to paths:ϖ ∈ {. . . ,aℓ,u
1

ℓ
,u2

ℓ
, rℓ}

∗
,

with e .ℓ ↓ aℓ .ϖ = e↓ϖ , e\ℓ ↓ rℓ .ϖ = e↓ϖ , and {e1 with ℓ = e2} ↓ ui
ℓ
.ϖ = ei↓ϖ and add the follow-

ing rules for the new paths:

[PSel]

⊢PathΓ,e,t ϖ : t ′

⊢PathΓ,e,t ϖ .aℓ : {{{ℓ : t
′
..}}}

[PDel]

⊢PathΓ,e,t ϖ : t ′

⊢PathΓ,e,t ϖ .rℓ : (t
′\ℓ) + {{{ℓ =?1}}}

[PUpd1]

⊢PathΓ,e,t ϖ : t ′

⊢PathΓ,e,t ϖ .u
1

ℓ : (t
′\ℓ) + {{{ℓ =?1}}}

[PUpd2]

⊢PathΓ,e,t ϖ : t

⊢PathΓ,e,t ϖ .u
2

ℓ : t .ℓ
′

Deriving the algorithm from these rules is then straightforward:

10
Note that in the definitions “. . . ” is meta-syntax to denote the presence of other fields while in the open records “..” is

the syntax that distinguishes them from closed ones.
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ConstrΓ,e,t (ϖ .aℓ) = {{{ℓ : IntertypeΓ,e,t (ϖ) ..}}} ConstrΓ,e,t (ϖ .rℓ) = (IntertypeΓ,e,t (ϖ))\ℓ + {{{ℓ =?1}}}
ConstrΓ,e,t (ϖ .u2ℓ) = (IntertypeΓ,e,t (ϖ)).ℓ ConstrΓ,e,t (ϖ .u1ℓ) = (IntertypeΓ,e,t (ϖ))\ℓ + {{{ℓ =?1}}}

Notice that the effect of doing t\ℓ + {{{ℓ =?1}}} corresponds to setting the field ℓ of the (record) type
t to the type 1 ∨ Undef, that is, to the type of all undefined fields in an open record. So [PDel]

and [PUpd1] mean that if we remove, add, or redefine a field ℓ in an expression e then all we can

deduce for e is that its field ℓ is undefined: since the original field was destroyed we do not have

any information on it apart from the static one. For instance, consider the test:

({x with a = 0} ∈ {{{a = Int,b = Bool ..}}} ∨ {{{a = Bool,b = Int ..}}})?x .b:False

ByConstrΓ,e,t (ϖ .u1ℓ)—i.e., by [Ext1], [PTypeof], and [PInter]—the type for x in the positive branch

is (({{{a = Int,b = Bool ..}}} ∨ {{{a = Bool,b = Int ..}}}) ∧ {{{a = Int ..}}}) + {{{a =?1}}}. It is equivalent to
the type {{{b = Bool ..}}}, and thus we can deduce that x .b has the type Bool.

3.2 Refining function types
As we explained in the introduction, both TypeScript and Flow deduce the type (number∨string)
→ (number∨string) for the first definition of the function foo in (1), and the more precise type

(number→number)∧ (string→string) (29)

can be deduced by these languages only if they are instructed to do so: the programmer has to

explicitly annotate foo with the type (29): we did it in (2) using Flow—the TypeScript annotation

for it is much hevier. But this seems like overkill, since a simple analysis of the body of foo in (1)

shows that its execution may have two possible behaviors according to whether the parameter x
has type number or not (i.e., or (number∨string)\number, that is string), and this is should be

enough for the system to deduce the type (29) even in the absence the annotation given in (2). In

this section we show how to do it by using the theory of occurrence typing we developed in the

first part of the paper. In particular, we collect the different types that are assigned to the parameter

of a function in its body, and use this information to partition the domain of the function and to

re-type its body. Consider a more involved example

function (x : τ) {
(x ∈ Real) ? { (x ∈ Int) ? succ x : sqrt x } : { ¬x } (30)

}

When τ is Real|Bool (we assume that Int is a subtype of Real) we want to deduce for this function
the type (Int → Int) ∧ (Real\Int → Real) ∧ (Bool → Bool). When τ is 1, then the function must be

rejected (since it tries to type ¬x under the assumption that x has type ¬Real. Notice that typing
the function under the hypothesis that τ is 1, allows us to capture user-defined discrimination as

defined by Tobin-Hochstadt and Felleisen [2010] since, for instance

let is_int x = (x∈Int)? true : false
in if is_int z then z+1 else 42

is well typed since the function is_int is given type (Int → True) ∧ (¬Int → False). We choose a

more general approach allowing the programmer to hint a particular type for the argument and

deducing, if possible, an intersection type for the function.

We start by considering the system where λ-abstractions are typed by a single arrow and later

generalize it to the case of intersections of arrows. First, we define the auxiliary judgement Γ ⊢ e ▷ψ
where Γ is a typing environement, e an expression and ψ a mapping from variables to sets of

types. Intuitivelyψ (x) denotes the set that contains the types of all the occurrences of x in e . This
judgement can be deduced by the following deduction system that collects type information on the

variables that are λ-abstracted (i.e., those in the domain of Γ, since lambdas are our only binders):
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[Var]

Γ ⊢ x ▷ {x 7→ {Γ(x)}}
[Const]

Γ ⊢ c ▷∅
[Abs]

Γ,x : s ⊢ e ▷ψ

Γ ⊢ λx : s .e ▷ψ \ {x}

[App]

Γ ⊢ e1 ▷ψ1 Γ ⊢ e2 ▷ψ2

Γ ⊢ e1e2 ▷ψ1 ∪ψ2

[Pair]

Γ ⊢ e1 ▷ψ1 Γ ⊢ e2 ▷ψ2

Γ ⊢ (e1, e2) ▷ψ1 ∪ψ2

[Proj]

Γ ⊢ e ▷ψ

Γ ⊢ πie ▷ψ

[Case]

Γ ⊢ e ▷ψ◦ Γ ⊢Enve,t Γ1 Γ1 ⊢ e1 ▷ψ1 Γ ⊢Enve,¬t Γ2 Γ2 ⊢ e2 ▷ψ2

Γ ⊢ (e ∈ t)?e1:e2 ▷ψ◦ ∪ψ1 ∪ψ2

Whereψ \ {x} is the function defined asψ but undefined on x andψ1 ∪ψ2 denotes component-wise

union, that is :

(ψ1 ∪ψ2)(x) =


ψ1(x) if x < dom(ψ2)

ψ2(x) if x < dom(ψ1)

ψ1(x) ∪ψ2(x) otherwise

All that remains to do is replace the rule [Abs+] with the following rule

[AbsInf+]

Γ,x : s ⊢ e ▷ψ Γ,x : s ⊢ e : t T = {(s, t)} ∪ {(u,w) | u ∈ ψ (x) ∧ Γ,x : u ⊢ e : w}

Γ ⊢ λx : s .e :
∧

(u,w )∈T u → w

Note the invariant that the domain ofψ is always equal to the domain of Γ restricted to variables.

Simply put, this rule first collects all possible types that are deduced for a variable x during typing

and then uses them to re-type the body of the lambda under this new refined hypothesis for the

type of x . The re-typing ensures that the type safety property carries over to this new rule.

This system is enough to type our case study (30) for the case τ defined as Real|Bool. Indeed
the analysis of the body yieldsψ (x) = {Int,Real \ Int} for the branch (x ∈ Int) ? succ x : sqrt x
and, since (Bool∨Real) \Real = Bool, yieldsψ (x) = {Bool} for the branch ¬x. So the function will

be checked for the input types Int, Real \ Int, and Bool, yielding the expected result.

It is not too difficult to generalize this rule when the lambda is typed by an intersection type:

[AbsInf+]

∀i ∈ I Γ,x : si ⊢ e ▷ψi Γ,x : si ⊢ e : ti Ti = {(u,w) | u ∈ ψi (x) ∧ Γ,x : u ⊢ e : w}

Γ ⊢ λ
∧
i∈I si→tix .e :

∧
i ∈I (si → ti ) ∧

∧
(u,w )∈Ti (u → w)

Here, for each arrow declared in the interface of the function, we first typecheck the body of the

function as usual (to check that the arrow is valid) and collect the refined types for the parameter x .
Then we deduce all possible output types for this refined input types and add the resulting arrows

to the type we deduce for the whole function (see Appendix B for an even more precise rule).

In summary, in order to type a function we use the type-cases on its parameter to partition the

domain of the function and we type-check the function on each single partitions rather than on the

union thereof. Of course, we could use a much finer partition: the finest (but impossible) one is to

check the function against the singleton types of all its inputs. But any finer partition would return,

in many cases, not a much better information, since most partitions would collapse on the same

return type: type-cases on the parameter are the tipping points that are likely to make a difference,

by returning different types for different partitions thus yielding more precise typing. But they are

not the only such tipping points: see rule [OverApp] in Section 4.

3.3 Integrating gradual typing
Gradual typing is an approach proposed by Siek and Taha [2006] to combine the safety guarantees

of static typing with the programming flexibility of dynamic typing. The idea is to introduce an

unknown (or dynamic) type, denoted ?, used to inform the compiler that some static type-checking

can be omitted, at the cost of some additional runtime checks. The use of both static typing and

dynamic typing in a same program creates a boundary between the two, where the compiler
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automatically adds—often costly [Takikawa et al. 2016]—dynamic type-checks to ensure that a

value crossing the barrier is correctly typed.

Occurrence typing and gradual typing are two complementary disciplines which have a lot to

gain to be integrated, although we are not aware of any study in this sense. We study it for the

formalism of Section 2 for which the integration of gradual typing was defined by Castagna et al.

[2019]. In a sense, occurrence typing is a discipline designed to push forward the frontiers beyond

which gradual typing is needed, thus reducing the amount of runtime checks needed. For instance,

the the JavaScript code of (1) and (2) in the introduction can be typed by using gradual typing:

function foo(x : ???) {
(typeof(x) === "number")? x++ : x.trim() (31)

}

“Standard” gradual typing inserts two dynamic checks since it compiles the code above into:

function foo(x) {
(typeof(x) === "number")? (x⟨number⟩)++ : (x⟨string⟩).trim()

}

where e ⟨t⟩ is a type-cast that dynamically checks whether the value returned by e has type t .11 We

already saw that thanks to occurrence typing we can annotate the parameter x by number|string
instead of ? and avoid the insertion of any cast. But occurrence typing can be used also on the

gradually typed code in order to statically detect the insertion of useless casts. Using occurrence

typing to type the gradually-typed version of foo in (31), allows the system to avoid inserting

the first cast x⟨number⟩ since, thanks to occurrence typing, the occurrence of x at issue is given
type number (the second cast is still necessary however). But removing only this cast is far from

being satisfactory, since when this function is applied to an integer there are some casts that

still need to be inserted outside of the function. The reason is that the compiled version of the

function has type ?→number, that is, it expects an argument of type ?, and thus we have to apply

a cast (either to the argument or to the function) whenever this is not the case. In particular, the

application foo(42) will be compiled as foo(42⟨?⟩). Now, the main problem with such a cast is

not that it produces some unnecessary overhead by performing useless checks (a cast to ? can

easily be detected and safely ignored at runtime). The main problem is that the combination of such

a cast with type-cases will lead to unintuitive results under the standard operational semantics of

type-cases and casts. Indeed, consider the standard semantics of the type-case (typeof(e)==="t")
which consists in reducing e to a value and checking whether the type of the value is a subtype of t .
In standard gradual semantics, 42⟨?⟩ is a value. And this value is of type ?, which is not a subtype

of number. Therefore the check in foo would fail for 42⟨?⟩, and so would the whole function call.

Although this behavior is type safe, this is the opposite of what every programmer would expect:

one would expect the test (typeof(e)==="number") to return true for 42⟨?⟩ and false for, say,

true⟨?⟩, whereas the standard semantics of type-cases would return false in both cases.

A solution is to modify the semantics of type-cases, and in particular of typeof, to strip off all

the casts in a value, even nested ones. This however adds a new overhead at runtime. Another

solution is to simply accept this counter-intuitive result, which has at least the benefit of promoting

the dynamic type to a first class type, instead of just considering it as a directive to the front-end.

Indeed, this would allow to dynamically check whether some argument has the dynamic type ? (i.e.,

whether it was applied to a cast to such a type) simply by (typeof(e)==="?"). Whatever solution

we choose it is clear that in both cases it would be much better if the application foo(42) were
compiled as is, thus getting rid of a cast that at best is useless and at worse gives a counter-intuitive

and unexpected semantics.

11
Intuitively, e ⟨t ⟩ is syntactic sugar for (typeof(e)==="t") ? e : (throw "Type error"). Not exactly though, since to

implement compilation à la sound gradual typing is is necessary to use casts on function types that need special handling.



1:21

This is where the previous section about refining function types comes in handy. To get rid of all

superfluous casts, we have to fully exploit the information provided to us by occurrence typing

and deduce for the function in (31) the type (number→number)∧((?\number)→string), so that
no cast is inserted when the function is applied to a number. To achieve this, we simply modify the

typing rule for functions that we defined in the previous section to accommodate for gradual typing.

Let σ and τ range over gradual types, that is the types produced by the grammar in Definition 2.1 to

which we add ? as basic type (see Castagna et al. [2019] for the definition of the subtyping relation

on these types). For every gradual type τ , define τ ⇑ as the (non graudal) type obtained from τ by

replacing all covariant occurrences of ? by 1 and all contravariant ones by 0. The type τ ⇑ can be

seen as the maximal interpretation of τ , that is, every expression that can safely be cast to τ is of

type τ ⇑. In other words, if a function expects an argument of type τ but can be typed under the

hypothesis that the argument has type τ ⇑, then no casts are needed, since every cast that succeeds

will be a subtype of τ ⇑. Taking advantage of this property, we modify the rule for functions as:

[AbsInf+]

T = {(σ ′,τ ′)} ∪ {(σ ,τ ) | σ ∈ ψ (x) ∧ Γ,x : σ ⊢ e : τ } ∪ {(σ⇑,τ ) | σ ∈ ψ (x) ∧ Γ,x : σ⇑ ⊢ e : τ }
Γ,x : σ ′ ⊢ e ▷ψ Γ,x : σ ′ ⊢ e : τ ′

Γ ⊢ λx : σ ′.e :
∧

(σ ,τ )∈T σ → τ

The main idea behind this rule is the same as before: we first collect all the information we

can into ψ by analyzing the body of the function. We then retype the function using the new

hypothesis x : σ for every σ ∈ ψ (x). Furthermore, we also retype the function using the hypothesis

x : σ⇑
: as explained before the rule, whenever this typing suceeds it eliminates unnecessary

gradual types and, thus, unecessary casts. Let us see how this works on the function foo in (31).

First, we deduce the refined hypothesis ψ (x) = { number∧? , ?\number }. Typing the function

using this new hypothesis but without considering the maximal interpretation would yield (? →

number ∨ string) ∧ ((number ∧ ?) → number) ∧ ((?\number) → string). However, as we stated
before, this would introduce an unnecessary cast if the function were to be applied to an integer.

Hence the need for the second part of Rule [AbsInf+]: the maximal interpretation of number ∧ ?
is number, and it is clear that, if x is given type number, the function type-checks, thanks to

occurrence typing. Thus, after some routine simplifications, we can actually deduce the desired

type (number → number) ∧ ((?\number) → string).

4 TOWARDS A PRACTICAL IMPLEMENTATION
We have implemented a simplified version of the algorithm presented in Section 2.5 that does not

make use of type schemes and is, therefore, incomplete w.r.t. the system of Section 2.4. In particular,

as we explained in Section 2.5, in the absence of type schemes it is not always possible to prove

that ∀v,∀t ,v ∈ t or v < ¬t . Since this property ceases to hold only for λ-abstractions, then not

using type schemes yields less precise typing only for tests (e ∈ t)?e1:e2 where e has a functional
type, that is, the value tested will be a λ-abstraction. This seems like a reasonable compromise

between the complexity of an implementation involving type schemes and the programs we want

to type-check in practice. Indeed, if we restrict the language so that the only functional type t
allowed in a test (e ∈ t)?e1:e2 is 0→1—i.e., if we allow to check whether a value is a function but

not whether it has a specific function type (cf., Footnote 9)—, then our implementation becomes

complete (see Corollary A.30 in the appendix for a formal proof).

Our implementation is written in OCaml and uses CDuce as a library to provide the seman-

tic subtyping machinery. Besides a type-checking algorithm defined on the base language, our

implementation supports record types (Section 3.1) and the refinement of function types (Sec-

tion 3.2 with the rule of Appendix B). The implementation is rather crude and consist of 2000

lines of OCaml code, including parsing, type-checking of programs, and pretty printing of types.
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Code Inferred type

1 let basic_inf = fun (y : Int | Bool) ->
if y is Int then incr y else lnot y (Int → Int) ∧ (Bool → Bool)

2 let any_inf = fun (x : Any) ->
if x is Int then incr x else
if x is Bool then lnot x else x

(Int → Int) ∧ (¬Int → ¬Int)∧
(Bool → Bool) ∧ (¬(Int ∨ Bool) → ¬(Int ∨ Bool))

3 let is_int = fun (x : Any) ->
if x is Int then true else false

let is_bool = fun (x : Any) ->
if x is Bool then true else false

let is_char = fun (x : Any) ->
if x is Char then true else false

(Int → True) ∧ (¬Int → False)

(Bool → True) ∧ (¬Bool → False)

(Char → True) ∧ (¬Char → False)

4 let not_ = fun (x : Any) ->
if x is True then false else true (True → False) ∧ (¬True → True)

5 let or_ = fun (x : Any) -> fun (y: Any) ->
if x is True then true
else if y is True then true else false

(True → 1 → True) ∧ (1 → True → True)∧
(¬True → ¬True → False)

6 let and_ = fun (x : Any) -> fun (y : Any) ->
if not_ (or_ (not_ x) (not_ y)) is True
then true else false

(True → ((¬True → False) ∧ (True → True))
∧(¬True → 1 → False)

7 let f = fun (x : Any) -> fun (y : Any) ->
if and_ (is_int x) (is_bool y) is True
then 1 else

if or_ (is_char x) (is_int y) is True
then 2 else 3

(Int → (Int → 2) ∧ (¬Int → 1 ∨ 3) ∧ (Bool → 1)∧

(¬(Bool ∨ Int) → 3) ∧ (¬Bool → 2 ∨ 3)) ∧

(Char → (Int → 2) ∧ (¬Int → 2) ∧ (Bool → 2)∧

(¬(Bool ∨ Int) → 2) ∧ (¬Bool → 2)) ∧

(¬(Int ∨ Char) → (Int → 2) ∧ (¬Int → 3)∧

(Bool → 3) ∧ (¬(Bool ∨ Int) → 3) ∧ (¬Bool → 2 ∨ 3)) ∧ . . .
(two other redundant cases ommitted)

let test_1 = f 3 true
let test_2 = f (42 ,42) 42
let test_3 = f nil nil

1
2
3

8 type Document = { nodeType =9 ..}
and Element = { childNodes=NodeList ,

nodeType =1 ..}
and Text = { isElementContentWhiteSpace=Bool ,

nodeType=3, ..}
and Node = Document | Element | Text
and NodeList = Nil | (Node , NodeList)

let is_empty_node = fun (x : Node) ->
if x.nodeType is 9 then false
else if x.nodeType is 3 then

x.isElementContentWhiteSpace
else
if x.childNodes is Nil then true else false

(Document → False) ∧
({{{nodeType= 1, childNodes=Nil ..}}} → True) ∧
({{{nodeType= 1, childNodes= (Node, NodeList) ..}}} → False) ∧
(Text → Bool) ∧
(omitted redundant arrows)

9 let xor_ = fun (x : Any) -> fun (y : Any) ->
if and_ (or_ x y) (not_ (and_ x y)) is True
then true else false

True → ((True → False) ∧ (¬True → True)) ∧
(¬True → ((True → True) ∧ (¬True → False))

10 (* f, g have type: (Int ->Int) & (Any ->Bool) *)

let example10 = fun (x : Any) ->
if (f x, g x) is (Int , Bool) then 1 else 2

(Int → Empty) ∧ (¬Int → 2)

Warning: line 4, 39-40: unreachable expression

Table 1. Types inferred by implementation

We demonstrate the output of our type-checking implementation in Table 1. These examples

and others can be tested in the online toplevel available at https://occtyping.github.io/. In this

table, the second column gives a code fragment and the third column the type deduced by our

implementation. Code 1 is a straightforward function similar to our introductory example foo in
(1,2). Here the programmer annotates the parameter of the function with a coarse type Int ∨ Bool.
Our implementation first type-checks the body of the function under this assumption, but do-

ing so collects that the type of x is specialized to Int in the “then” case and to Bool in the “else”

case. The function is thus type-checked twice more under each hypothesis for x, yielding the

precise type (Int → Int) ∧ (Bool → Bool). Note that w.r.t. rule [AbsInf+] of Section 3.2, we

improved the output of the computed type. Indeed using rule [AbsInf+] we would obtain the type

(Int → Int) ∧ (Bool → Bool) ∧ (Bool∨ Int → Bool∨ Int) with a redundant arrow. Here we can see

that since we deduced the first two arrows (Int → Int) ∧ (Bool → Bool), and since the union of

https://occtyping.github.io/
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their domain exactly covers the domain of the third arrow, the latter is not needed. Code 2 shows

what happens when the argument of the function is left unannotated (i.e., it is annotated by the

top type 1, written Any in our implementation). Here type-checking and refinement also work as

expected, but the function only type checks if all cases for x are covered (which means that the

function must handle the case of inputs that are neither in Int nor in Bool).
The following examples paint a more interesting picture. First (Code 3) it is easy in our formalism

to program type predicates such as those hard-coded in the λTR language of Tobin-Hochstadt and
Felleisen [2010]. Such type predicates, which return true if and only if their input has a particular

type, are just plain functions with an intersection type inferred by the system of Section 3.2. We

next define Boolean connectives as overloaded functions. The not_ connective (Code 4) just tests
whether its argument is the Boolean true by testing that it belongs to the singleton type True
(the type whose only value is true) returning false for it and true for any other value (recall

that ¬True is equivalent to Any\True). It works on values of any type, but we could restrict it to

Boolean values by simply annotating the parameter by Bool (which in CDuce is syntactic sugar

for True∨False) yielding the type (True→False) ∧ (False→True). The or_ connective (Code 5) is
straightforward as far as the code goes, but we see that the overloaded type precisely captures all

possible cases. Again we use a generalized version of the or_ connective that accepts and treats any
value that is not true as false and again, we could easily restrict the domain to Bool if desired.

To showcase the power of our type system, and in particular of the “ ‚ ” type operator, we define

and_ (Code 6) using De Morgan’s Laws instead of using a direct definition. Here the application

of the outermost not_ operator is checked against type True. This allows the system to deduce

that the whole or_ application has type False, which in turn leads to not_ x and not_ y to have

type ¬True and therefore both x and y to have type True. The whole function is typed with the

most precise type (we present the type as printed by our implementation, but the first arrow of the

resulting type is equivalent to (True → ¬True → False) ∧ (True → True → True)).
All these type predicates and Boolean connectives can be used together to write complex type

tests, as in Code 7. Here we define a function f that takes two arguments x and y. If x is an integer

and y a Boolean, then it returns the integer 1; if x is a character or y is an integer, then it returns 2;
otherwise the function returns 3. Our system correctly deduces a (complex) intersection type that

covers all cases (plus several redundant arrow types). That this type is as precise as possible can be

shown by the fact that when applying f to arguments of the expected type, the type deduced for

the whole expression is the singleton type 1, or 2, or 3, depending on the type of the arguments.

Code 8 allows us to demonstrate the use and typing of record paths. We model, using open

records, the type of DOM objects that represent XML or HTML documents. Such objects possess a

common field nodeType containing an integer constant denoting the kind of the node (e.g., 9 for
the root element, 1 for an element node, 3 for a text node, . . . ). Depending on the kind, the object

will have different fields and methods. It is common practice to perform a test on the value of the

nodeType field. In dynamic languages such as JavaScript, the relevant field or method can directly

be accessed after having checked for the appropriate nodeType. In mainstream statically typed

languages, such as Java, a downward cast from the generic Node type to the expected precise type

of the object is needed. We can see that using the extension presented in Section 3.1 we can deduce

the correct type for x in all cases. Of particular interest is the last case, since we use a type case to

check the emptiness of the list of child nodes. This splits, at the type level, the case for the Element
type depending on whether the content of the childNodes field is the empty list or not.

Our implementation features another enhancement that allows us to further improve the precision

of the inferred type. Consider the definition of the xor_ operator (Code 9). Here the rule [AbsInf+]

is not sufficient to precisely type the function, and using only this rule would yield a type 1 →

1 → Bool. Let us follow the behavior of the “ ‚ ” operator. Here the whole and_ is requested to
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have type True, which implies that or_ x ymust have type True. This can always happen, whether

x is True or not (but then depends on the type of y). The “ ‚ ” operator correctly computes that the

type for x in the “then” branch is True ∨ ¬True ∨ True ≃ 1, and a similar reasoning holds for y. To
solve this problem, we can first remark that even though type cases in the body of a function are

tipping points that may change the type of the result of the function, they are not the only ones:

applications of overloaded functions play exactly the same role. We therefore extend deduction

system for Γ ⊢ e ▷ψ defined in Section 3.2 with the following rule

[OverApp]

Γ ⊢ e :
∨∧

i ∈I ti → si Γ ⊢ x : t Γ ⊢ e ▷ψ1 Γ ⊢ x ▷ψ2

Γ ⊢ e x ▷ψ1 ∪ψ2 ∪
⋃

i ∈I {x 7→ t ∧ ti }
Whenever a function parameter is the argument of an overloaded function, we record as possible

types for this parameter all the possible domains of the arrows that type the overloaded function,

restricted by the static type of the parameter. In Code 9, since, or_ has type

(True → 1 → True) ∧ (1 → True → True) ∧ (¬True → ¬True → False)
We consider True, 1, and ¬True as candidate types for xwhich, in turn allows us to deduce a precise

type given in the table. Finally, thanks to this rule it is no longer necessary to use a type case to

force refinement. As a consequence we can define the functions and_ and xor_ more naturally as:

let and_ = fun (x : Any) -> fun (y : Any) -> not_ (or_ (not_ x) (not_ y))
let xor_ = fun (x : Any) -> fun (y : Any) -> and_ (or_ x y) (not_ (and_ x y))

for which the very same types as in Table 1 are deduced.

Last but not least Code 10 (corresponding to our introductory example (10)) illustrates the need

for iterative refinement of type environments, as defined in Section 2.5.3. As explained, a single

pass analysis would deduce for x a type Int from the f x application and 1 from the g x application.

Here by iterating a second time, the algorithm deduces that x has type 0 (i.e., Empty), that is that
the first branch can never be selected (and our implementation warns the user accordingly). In

hindsight, the only way for a well-typed overloaded function to have type (Int→Int) ∧ (1→Bool)
is to diverge when the argument is of type Int: since this intersection type states that whenever

the input is Int, both branches can be selected, yielding a result that is at the same time an integer

and a Boolean. This is precisely reflected by the case Int → 0 in the result. Indeed our example10
function can be applied to an integer, but at runtime the application of f x will diverge.

5 RELATEDWORK
Occurrence typing was introduced by Tobin-Hochstadt and Felleisen [2008] and further advanced in

[Tobin-Hochstadt and Felleisen 2010] in the context of the Typed Racket language. This latter work

in particular is close to ours, with some key differences. Tobin-Hochstadt and Felleisen [2010] define

λTR, a core calculus for Typed Racket. In this language types are annotated by logical propositions

that record the type of the input depending on the (Boolean) value of the output. For instance,

the type of the number? function states that when the output is true, then the argument has type

Number, and when the output is false, the argument does not. Such information is used selectively

in the “then” and “else” branches of a test. One area where their work goes further than ours is

that the type information also flows outside of the tests to the surrounding context. In contrast,

our type system only refines the type of variables strictly in the branches of a test. However, using

semantic-subtyping as a foundation we believe our approach has several merits over theirs. First, in

our case, type predicates are not built-in. A user may define any type predicate she wishes by using

an overloaded function, as we have shown in Section 4. Second, in our setting, types play the role of

formulæ. Using set-theoretic types, we can express the complex types of variables without resorting

to a meta-logic. This allows us to type all but two of their key examples (the notable exceptions

being Example 8 and 14 in their paper, which use the propagation of type information outside of
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the branches of a test). Also, while they extend their core calculus with pairs, they only provide a

simple cons? predicate that allows them to test whether some value is a pair. It is therefore unclear

whether their systems allows one to write predicates over list types (e.g., test whether the input is

a list of integers), which we can easily do thanks to our support for recursive types.

Kent et al. [2016] introduce the λRTR core calculus, an extension of λTR where the logical formulæ

embedded in types are not limited to built-in type predicates, but accept predicates of arbitrary

theories. This allows them to provide some form of dependent typing (and in particular they provide

an implementation supporting bitvector and linear arithmetic theories). While static invariants

that can be enforced by such logic go well beyond what can be proven by a static “non dependent”

type system, it does so at the cost of having the programmer write logical annotations (to help the

external provers). While this work provides richer logical statements than those by Tobin-Hochstadt

and Felleisen [2010], it still remains restricted to refining the types of variables, and not of arbitrary

constructs such as pairs, records or recursive types.

Chaudhuri et al. [2017] present the design and implementation of Flow by formalizing a relevant

fragment of the language. Since they target an industrial-grade implementation, they must account

for aspects that we could afford to postpone to future work, notably side effects and responsiveness

of the type checker on very large code base. The degree of precision of their analysis is really

impressive and they achieve most of what we did here and, since they perform flow analysis and

use an effect system (to track mutable variables), even more. However, this results in a specific and

very complex system. Their formalization includes only union types (though, Flow accepts also

intersection types as in (2)) which are used in ad hoc manner by the type system, for instance to

type record types. This allows Flow to perform an analysis similar to the one we did for Code 8

in Table 1, but also has as a consequence that in some cases unions do not behave as expected. In

contrast, our approach is more classic and foundational: we really define a type system, typing

rules looks like classic ones and are easy to understand, unions are unions of values (and so are

intersections and negations), and the algorithmic part is—excepted for fix points—relatively simple

(algorithmically Flow relies on constraint generation and solving). This is the reason why our

system is more adapted to study and understand occurrence typing and to extend it with additional

features (e.g., gradual typing and polymorphism) and we are eager to test how much of their

analysis we can capture and enhance by formalizing it in our system.

6 FUTUREWORK AND CONCLUSION
In this work we presented to core of our analysis of occurrence typing, extended it to record types

and proposed a couple of novel applications of the theory, namely the inference of intersection types

for functions and a static analysis to reduce the number of casts inserted when compiling gradually-

typed programs. One of the by-products of our work is the ability to define type predicates such

as those used in [Tobin-Hochstadt and Felleisen 2010] as plain functions and have the inference

procedure deduce automatically the correct overloaded function type.

There is still a lot of work to do to fill the gap with real-world programming languages. For

example, our analysis cannot handle flow of information. In particular, the result of a type test can

flow only to the branches but not outside the test. As a consequence the current system cannot type

a let binding such as let x = (y∈Int)?‘yes:‘no in (x∈‘yes)?y+1:not(y) which is clearly

safe when y : Int ∨ Bool. Nor can this example be solved by partial evaluation since we do not

handle nesting of tests in the condition( ((y∈Int)?‘yes:‘no)∈‘yes ) ? y+1 : not(y), and both

are issues that the system by Tobin-Hochstadt and Felleisen [2010] can handle. We think that it is

possible to reuse some of their ideas to perform an information flow analysis on top of our system

to remove these limitations. Some of the exensions we hinted to in Section 4 warrant a formal

treatment. In particular, the rule [OverApp] only detects the application of an overloaded function
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once, when type-checking the body of the function against the coarse input type (i.e.,ψ is computed

only once). But we could repeat this process whilst type-checking the inferred arrows (i.e., we

would enrichψ while using it to find the various arrow types of the lambda abstraction). Clearly, if

untamed, such a process may never reach a fix point. Studying whether this iterative refining can

be made to converge and, foremost, whether it is of use in practice is among our objectives.

But the real challenges that lie ahead are the handling of side effects and the addition of poly-

morphic types. Our analysis works in a pure system and extending it to cope with side-effects

is not immediate. We plan to do it by defining effect systems—notably, we will try to graft the

effect system of Chaudhuri et al. [2017] on ours—and/or by performing some information flow

analysis typically by enriching the one we will develop to overcome the limitations above. But our

plan is not more defined than that. For polymorphism, instead, we can easily adapt the main idea

of this work to the polymorphic setting. Indeed, the main idea is to remove from the type of an

expression all the results of the expression that would make some test fail (or succeed, if we are

typing a negative branch). This is done by applying an intersection to the type of the expression,

so as to keep only the values that may yield success (or failure) of the test. For polymorphism the

idea is the same, with the only difference that besides applying an intersection we can also apply

an instantiation. The idea is to single out the two most general type substitutions for which some

test may succeed and fail, respectively, and apply these substitutions to refine the types of the

corresponding occurrences in the “then” and “else” branches. Concretely, consider the test x1x2 ∈ t
where t is a closed type and x1, x2 are variables of type x1 : s → t and x2 : u with u ≤ s . For the
positive branch we first check whether there exists a type substitution σ such that tσ ≤ ¬τ . If it
does not exists, then this means that for all possible assignments of polymorphic type variables

of s → t , the test may succeed, that is, the success of the test does not depend on the particular

instance of s → t and, thus, it is not possible to pick some substitution for refining the occurrence

typing. If it exists, then we find a type substitution σ◦ such that τ ≤ tσ◦ and we refine for the

positive branch the types of x1, of x2, and of x1x2 by applying σ◦ to their types. While the idea is

clear (see Appendix C for a more detailed explanation), the technical details are quite involved,

especially when considering functions typed by intersection types and/or when integrating gradual

typing. This needs a whole gamut of non trivial research that we plan to develop in the near future.

ACKNOWLEDGMENTS
The authors thank Paul-André Melliès for his help on type ranking.

This research was partially supported by Labex DigiCosme (project ANR-11-LABEX-0045- DIGI-

COSME) operated by ANR as part of the program «Investissement d’Avenir» Idex Paris-Saclay

(ANR-11-IDEX-0003-02) and by a Google PhD fellowship for the second author.

REFERENCES
Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. 2003. CDuce: an XML-Centric General-Purpose Language.

In ICFP ’03, 8th ACM International Conference on Functional Programming. ACM Press, Uppsala, Sweden, 51–63. http:

//doi.acm.org/10.1145/944746.944711

Giuseppe Castagna. 2019. Covariance and Contravariance: a fresh look at an old issue (a primer in advanced type systems

for learning functional programmers). Logical Method in Computer Science (2019). (Revised edition: first version 2013).

To appear. https://arxiv.org/abs/1809.01427.

Giuseppe Castagna, Victor Lanvin, Tommaso Petrucciani, and Jeremy G. Siek. 2019. Gradual Typing: a New Perspective.

Proc. ACM Program. Lang. 3, Article 16, POPL ’19 46nd ACM Symposium on Principles of Programming Languages (2019).

http://doi.acm.org/10.1145/3290329

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. 2017. Fast and Precise Type Checking

for JavaScript. Proc. ACM Program. Lang. 1, OOPSLA, Article 48 (Oct. 2017), 30 pages. https://doi.org/10.1145/3133872

Facebook. Flow. Facebook. https://flow.org/

http://doi.acm.org/10.1145/944746.944711
http://doi.acm.org/10.1145/944746.944711
https://arxiv.org/abs/1809.01427
http://doi.acm.org/10.1145/3290329
https://doi.org/10.1145/3133872
https://flow.org/


1:27

Alain Frisch. 2004. Théorie, conception et réalisation d’un langage de programmation adapté à XML. Ph.D. Dissertation.

Université Paris 7 Denis Diderot. http://www.cduce.org/papers/frisch_phd.pdf

Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. 2008. Semantic subtyping: dealing set-theoretically with

function, union, intersection, and negation types. Journal of the ACM 55, 4 (Sept. 2008), 19:1–19:64. http://doi.acm.org/

10.1145/1391289.1391293

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. 2000. Regular Expression Types for XML. In Proceedings of the

International Conference on Functional Programming (ICFP) (SIGPLAN Notices), Vol. 35(9).

Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. 2016. Occurrence Typing Modulo Theories. In Proceedings of the

37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). ACM, New York, NY,

USA, 296–309. https://doi.org/10.1145/2908080.2908091

Microsoft. TypeScript. Microsoft. https://www.typescriptlang.org/

Jeremy G Siek and Walid Taha. 2006. Gradual typing for functional languages. In Scheme and Functional Programming

Workshop, Vol. 6. 81–92.

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual

Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’16). ACM, 456–468. https://doi.org/10.1145/2914770.2837630

Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In Proceedings of the

35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’08). ACM, New York,

NY, USA, 395–406. https://doi.org/10.1145/1328438.1328486

Sam Tobin-Hochstadt and Matthias Felleisen. 2010. Logical types for untyped languages. In Proceedings of the 15th

ACM SIGPLAN International Conference on Functional Programming (ICFP ’10). ACM, New York, NY, USA, 117–128.

https://doi.org/10.1145/1863543.1863561

Andrew K. Wright and Matthias Felleisen. 1994. A syntactic approach to type soundness. Information and Computation 115,

1 (1994), 38 – 94. https://doi.org/10.1006/inco.1994.1093

http://www.cduce.org/papers/frisch_phd.pdf
http://doi.acm.org/10.1145/1391289.1391293
http://doi.acm.org/10.1145/1391289.1391293
https://doi.org/10.1145/2908080.2908091
https://www.typescriptlang.org/
https://doi.org/10.1145/2914770.2837630
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1863543.1863561
https://doi.org/10.1006/inco.1994.1093


1:28 Giuseppe Castagna, Victor Lanvin, Mickaël Laurent, and Kim Nguyen

A FULL PROOFS AND DEFINITIONS
A.1 Full declarative type system

[Env]

Γ ⊢ e : Γ(e)
e ∈ dom(Γ) [Inter]

Γ ⊢ e : t1 Γ ⊢ e : t2

Γ ⊢ e : t1 ∧ t2
[Subs]

Γ ⊢ e : t t ≤ t ′

Γ ⊢ e : t ′

[Const]

Γ ⊢ c : bc
[App]

Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1

Γ ⊢ e1e2 : t2

[Abs+]

∀i ∈I Γ,x : si ⊢ e : ti

Γ ⊢ λ∧i∈I si→tix .e :
∧

i ∈I si → ti

[Abs-]

Γ ⊢ λ∧i∈I si→tix .e : t

Γ ⊢ λ∧i∈I si→tix .e : ¬(t1 → t2)
((∧i ∈I si → ti ) ∧ ¬(t1 → t2)) ; 0

[Case]

Γ ⊢ e : t0 Γ ⊢Enve,t Γ1 Γ1 ⊢ e1 : t
′ Γ ⊢Enve,¬t Γ2 Γ2 ⊢ e2 : t

′

Γ ⊢ (e∈t) ? e1 : e2 : t
′

[Efq]

Γ, (e : 0) ⊢ e ′ : t
[Proj]

Γ ⊢ e : t1 × t2

Γ ⊢ πie : ti
[Pair]

Γ ⊢ e1 : t1 Γ ⊢ e2 : t2

Γ ⊢ (e1, e2) : t1 × t2

[Base]

Γ ⊢Enve,t Γ
[Path]

⊢PathΓ′,e,t ϖ : t ′ Γ ⊢Enve,t Γ′

Γ ⊢Enve,t Γ′, (e↓ϖ : t ′)

[PSubs]

⊢PathΓ,e,t ϖ : t1 t1 ≤ t2

⊢PathΓ,e,t ϖ : t2
[PInter]

⊢PathΓ,e,t ϖ : t1 ⊢PathΓ,e,t ϖ : t2

⊢PathΓ,e,t ϖ : t1 ∧ t2
[PTypeof]

Γ ⊢ e↓ϖ : t ′

⊢PathΓ,e,t ϖ : t ′

[PEps]

⊢PathΓ,e,t ϵ : t
[PAppR]

⊢PathΓ,e,t ϖ .0 : t1 → t2 ⊢PathΓ,e,t ϖ : t ′
2

⊢PathΓ,e,t ϖ .1 : ¬t1
t2 ∧ t ′

2
≃ 0

[PAppL]

⊢PathΓ,e,t ϖ .1 : t1 ⊢PathΓ,e,t ϖ : t2

⊢PathΓ,e,t ϖ .0 : ¬(t1 → ¬t2)
[PPairL]

⊢PathΓ,e,t ϖ : t1 × t2

⊢PathΓ,e,t ϖ .l : t1

[PPairR]

⊢PathΓ,e,t ϖ : t1 × t2

⊢PathΓ,e,t ϖ .r : t2
[PFst]

⊢PathΓ,e,t ϖ : t ′

⊢PathΓ,e,t ϖ . f : t ′ × 1
[PSnd]

⊢PathΓ,e,t ϖ : t ′

⊢PathΓ,e,t ϖ .s : 1 × t ′
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A.2 Full parallel semantics
Expressions e ::= c | x | λ

∧
t→tx .e | ee | πie | (e, e) | (e∈t) ? e : e

Values v ::= c | λ
∧
t→tx .e | (v,v)

Context C[] ::= e[] | []v | (e, []) | ([],v)

For convenience, we denote e
e 7→e ′
{ e ′ by e

Id
{ e ′.

[Ctx]

e
er 7→e ′r
{ e ′

C[e]
er 7→e ′r
{ C[e ′]

[App]

(λtx .e)v
Id
{ e{x 7→ v}

[Proj]

πi (v1,v2)
Id
{ vi

[TestCtx]

e
er 7→e ′r
{ e ′

(e∈t) ? e1 : e2
Id
{ (e{er 7→ e ′r }∈t) ? e1{er 7→ e ′r } : e2{er 7→ e ′r }

[Case]

i ∈ {1, 2} (i = 1 ⇔ v ∈ JtKV)

(v∈t) ? e1 : e2
Id
{ ei

JtKV = {v | ⊢V v : t}

[Subsum]

⊢V v : t ′ t ′ ≤ t

⊢V v : t
[Const]

⊢V c : bc

[Abs]

t = (∧i ∈I si → ti ) ∧ (∧j ∈J¬(s
′
j → t ′j )) t ≰ 0

⊢V λ∧i∈I si→tix .e : t

A.3 Proofs for the declarative type system
In this section, the substitutions on expressions that we introduce are up to alpha-renaming

and perform only one pass. For instance, if our substitution is ρ = {(λtx .x)y 7→ y}, we have

((λtx .x)((λtz.z)y))ρ = (λtx .x)y.
The environments also operate up to alpha-renaming.

Finally, the only environments that we consider are well-formed environments (see definition

below).We can easily check that every derivation only contains well-formed environments, provided

that the initial judgement also use a well-formed environment. It is a consequence of the fact that

rule [Case] require e to be typeable and that it only refines subexpressions of e .

A.3.1 Environments — definitions.

Definition A.1 (Well-formed environment). We say that an environment Γ is well-formed iff

∀e ∈ dom(Γ) s.t. e is not a variable. ∃t . Γ \ {e} ⊢ e : t .
In other words, an environment can refine the type of an expression, but only if this expression

is already typeable without this entry in the environment (possibly with a strictly weaker type).

Definition A.2 (Bottom environment). Let Γ an environment.

Γ is bottom (noted Γ = ⊥) iff ∃e ∈ dom(Γ). Γ(e) ≃ 0.



1:30 Giuseppe Castagna, Victor Lanvin, Mickaël Laurent, and Kim Nguyen

Definition A.3 ((Pre)order on environments). Let Γ and Γ′ two environments. We write Γ′ ≤ Γ iff:

Γ′ = ⊥ or (Γ , ⊥ and ∀e ∈ dom(Γ). Γ′ ⊢ e : Γ(e))

This relation is a preorder (proof below).

Definition A.4 (Application of a substitution to an environment). Let Γ an environment and ρ a

substitution from expressions to expressions. The environment Γρ is defined by:

dom(Γρ) = dom(Γ)ρ

∀e ∈ dom(Γρ), (Γρ)(e) =
∧

{e ′∈dom(Γ) | e ′ρ≡e }

Γ(e ′)

Definition A.5 (Ordinary environments). We say that an environment Γ is ordinary iff its domain

only contains variables.

A.3.2 Subject Reduction.

Property 1 (J_KV properties).

∀s . ∀t . JsKV ⊆ JtKV ⇔ s ≤ t

J0KV = ∅
∀t . J¬tKV = V \ JtKV
∀s . ∀t . Js ∨ tKV = JsKV ∪ JtKV

Proof. See theorem 5.5, lemmas 6.19, 6.22, 6.23 of [Frisch et al. 2008]. □

Lemma A.6 (Alpha-renaming). Both the type system and the semantics are invariant by alpha-

renaming.

Proof. Straightforward. For the type system, it is a consequence of the fact that environments

are up to alpha-renaming. For the semantics, it is a consequence of the fact that parallel substitutions

in [TestCtx] are up to alpha-renaming. □

Lemma A.7 (Completeness and soundness for typing of values). Let v a value, t a type and
Γ an environment.

If v ∈ JtKV and v is well-typed in Γ, then Γ ⊢ v : t .
If Γ ⊢ v : t and Γ , ⊥, then v ∈ JtKV .

Proof. Immediate by definition of J.KV . □

Lemma A.8 (Monotonicity). Let Γ and Γ′ two environments such that Γ′ ≤ Γ. Then, we have:

∀e, t . Γ ⊢ e : t ⇒ Γ′ ⊢ e : t

∀e, t , Γ1. Γ ⊢Enve,t Γ1 ⇒ ∃Γ1 ′ ≤ Γ1. Γ
′ ⊢Enve,t Γ1

′

∀e, t ,ϖ, t ′. ⊢PathΓ,e,t ϖ : t ′ ⇒ ⊢PathΓ′,e,t ϖ : t ′

Proof. Immediate, by replacing every occurrence of rule [Env] in the derivation with Γ by the

corresponding derivation with Γ′, followed by an application of rule [Subs] if needed. □

Corollary A.9 (Preorder relation). The relation ≤ on environements is a preorder.

Lemma A.10 (Value refinement 1). If we have ⊢PathΓ,e,t ϖ .x : t ′ with x ∈ {0, 1, l , r , f , s} (and e

well-typed in Γ) such that ∀y. e↓ϖ .y is a value and v = e↓ϖ .x < Jt ′KV , we can derive ⊢PathΓ,e,t ϖ : 0.
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Proof. We proceed by induction on the derivation of ⊢PathΓ,e,t ϖ .x : t ′.
We perform a case analysis on the last rule:

[PTypeof] In this casewe have Γ ⊢ e↓ϖ .x : t ′withv < Jt ′KV . Thuswe can derive Γ ⊢ e↓ϖ .x : 0
by using the rule [Inter] and the rules [Abs+], [Abs-] or [Const].

Let’s show that we also have Γ ⊢ e↓ϖ : 0.
• If x = 0, we know that e↓ϖ is an application, and we can conclude easily given that

0 ≤ 1 → 0.
• If x = 1, we know that e↓ϖ is an application, and we can conclude easily given that

0 → 0 ≃ 0 → 1.
• If x = f or x = s , we know that e↓ϖ is a projection, and we can conclude easily given that

0 ≃ 0 × 0.
• If x = l or x = r , we know that e↓ϖ is a pair, and we can conclude easily given that

0 × 1 ≃ 1 × 0 ≃ 0.
Hence we can derive Γ ⊢ e↓ϖ : 0.

[PInter] We must have v < Jt1 ∧ t2KV . It implies v < Jt1KV ∩ Jt2KV and thus v < Jt1KV or

v < Jt2KV . Hence, we can conclude just by applying the induction hypothesis.

[PSubs] Trivial (we use the induction hypothesis).

[PEps] This case is impossible.

[PAppL] We have v < J¬(t1 → ¬t2)KV . Thus, we have v ∈ Jt1 → ¬t2KV and in consequence

we can derive Γ ⊢ v : t1 → ¬t2 (because e is well-typed in Γ).
Recall that e↓ϖ .1 is necessarily a value (by hypothesis). By using the induction hypothesis

on ⊢PathΓ,e,t ϖ .1 : t1, we can suppose e↓ϖ .1 ∈ Jt1KV (otherwise, we can conclude directly). Thus,

we can derive Γ ⊢ e↓ϖ .1 : t1.
From Γ ⊢ v : t1 → ¬t2 and Γ ⊢ e↓ϖ .1 : t1, we can derive Γ ⊢ e↓ϖ : ¬t2 using the rule [App].

Now, by starting from the premise ⊢PathΓ,e,t ϖ : t2 and using the rules [PInter] and [PTypeof],

we can derive ⊢PathΓ,e,t ϖ : 0.
[PAppR] We have v < J¬t1KV . Thus, we have v ∈ Jt1KV and in consequence we can derive

Γ ⊢ v : t1.
Recall that e↓ϖ .0 is necessarily a value (by hypothesis). By using the induction hypothesis

on ⊢PathΓ,e,t ϖ .0 : t1 → t2, we can suppose e↓ϖ .0 ∈ Jt1 → t2KV (otherwise, we can conclude

directly). Thus, we can derive Γ ⊢ e↓ϖ .0 : t1 → t2 (because e is well-typed in Γ).
From Γ ⊢ v : t1 and Γ ⊢ e↓ϖ .0 : t1 → t2, we can derive Γ ⊢ e↓ϖ : t2 using the rule [App].

Now, by starting from the premise ⊢PathΓ,e,t ϖ : t ′
2
and using the rules [PInter] and [PTypeof],

we can derive ⊢PathΓ,e,t ϖ : 0.
[PPairL] We have v < Jt1KV . Thus, we have v ∈ J¬t1KV and in consequence we can derive

Γ ⊢ v : ¬t1.
Hence, we can derive Γ ⊢ e↓ϖ : ¬t1 × 1 (e is well-typed in Γ).
Now, by starting from the premise ⊢PathΓ,e,t ϖ : t1×t2 and using the rules [PInter] and [PTypeof],

we can derive ⊢PathΓ,e,t ϖ : 0.
[PPairR] Similar to the previous case.

[PFst] We have v < Jt ′ × 1KV . As we also have v ∈ J1 × 1KV (because e is well-typed in Γ),
we can deduce v ∈ J(¬t ′) × 1KV .

Hence, we can derive Γ ⊢ v : (¬t ′) × 1 and then Γ ⊢ e↓ϖ : ¬t ′.
Now, by starting from the premise ⊢PathΓ,e,t ϖ : t ′ and using the rules [PInter] and [PTypeof],

we can derive ⊢PathΓ,e,t ϖ : 0.
[PSnd] Similar to the previous case.
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□

Corollary A.11 (Value refinement 2). For any derivable judgement of the form Γ ⊢Enve,t Γ′ (with

e well-typed in Γ), we can construct a derivation of Γ ⊢Enve,t Γ′′ with Γ′′ ≤ Γ′ that never uses the rule
[Path] on a path ϖ .x such that ∀y. e↓ϖ .y refers to a value.

Proof. We can easily remove every such rule from the derivation. If e↓ϖ .x ∈ Jt ′KV , the [Path]

rule is useless and we can freely remove it. Otherwise, if e↓ϖ .x < Jt ′KV , we can use the previous

lemma to replace it with a [Path] rule on ϖ . □

Lemma A.12 (Value testing). For any derivable judgement of the form Γ ⊢Envv,t Γ′ (with v a value),

we have v ∈ JtKV ⇒ Γ ≤ Γ′.

Proof. As v is a value, the applications of [Path] have a path ϖ only composed of l and r and
such that e↓ϖ is a value.

Thus, any derivation ⊢PathΓ,v,t ϖ : t ′ can only contains the rules [PTypeof], [PInter], [PSubs],

[PEps], [PPairL] and [PPairR].

Moreover, as v ∈ JtKV , the rules [PEps] can be replaced by a [PTypeof]. Thus we can easily

derive Γ ⊢ v : t ′ (we replace [PTypeof] by [Typeof], [PInter] by [Inter], etc.). □

Lemma A.13 (Substitution). Let Γ an environment. Let ea and eb two expressions.

Let’s suppose that eb is closed and that ea has one of the following form:

• x (variable)

• (e∈t) ? e1 : e2 (if expression)
• v (value)

• vv (application of two values)

• (v,v) (product of two values)

Let’s also suppose that ∀t . Γ ⊢ ea : t ⇒ Γ{ea 7→ eb } ⊢ eb : t .
Then, by noting ρ = {ea 7→ eb } we have:

∀e, t . Γ ⊢ e : t ⇒ Γρ ⊢ eρ : t

Proof. Let Γ, ea , eb as in the statement.

We note ρ the substitution {ea 7→ eb }.
We consider a derivation of Γ ⊢ e : t .
By using the value refinement lemma,we can assumewithout loss of generality that our derivation

does not contain any rule [Path] on a path ϖ .x such that ∀y. e↓ϖ .y refers to a value.

We can also assumew.l.o.g. that every application of the [Path] rule is such that Γ′, (e↓ϖ : t ′) ≤ Γ′.
If it is not the case, we can easily transform the derivation by intersecting t ′ with Γ′(e↓ϖ) using the
rules [PInter], [PTypeof] and [Env]. The rest of the derivation can easily be adapted by adding

some [Subs] rules when needed.

Finally, we can assume that, in any environment appearing in the derivation, if the environnement

is not bottom, then a value v can only be mapped to a type t such that v ∈ JtKV . If it is not the case,

then we just have to change the [Path] rule that introduce (v : t) into a path rule that introduce

(v : 0), by using the rules [PInter] and [PTypeof] (if v < JtKV , then v ∈ J¬tKV and thus Γ ⊢ v : ¬t
is derivable).

Now, let’s prove by induction on the derivation the following properties:
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∀e, t . Γ ⊢ e : t ⇒ Γρ ⊢ eρ : t

∀e, t , Γ′. Γ ⊢Enve,t Γ′ ⇒ Γρ ⊢Enveρ,t Γ
′ρ and we still have ∀t . Γ′ ⊢ ea : t ⇒ Γ′ρ ⊢ eb : t

∀e, t ,ϖ, t ′ s.t. eρ↓ϖ is defined. ⊢PathΓ,e,t ϖ : t ′ ⇒⊢PathΓρ,eρ,t ϖ : t ′

We proceed by case analysis on the last rule of the derivation at the left of the ⇒ in order to

construct the derivation at the right.

If the last judgement is of the form Γ ⊢ ea : t , then we can directly conclude with the hypotheses

of the lemma. Thus, we can suppose it is not the case.

There are many cases depending on the last rule:

[Env] If e ∈ dom(Γ), then we have eρ ∈ dom(Γρ) and (Γρ)(eρ) ≤ Γ(e). Thus we can easily

derive Γρ ⊢ eρ : t with the rule [Env] and [Subs].

[Efq] If there exists e ∈ dom(Γ) such that Γ(e) = 0, then (Γρ)(eρ) = 0 so we can easily derive

Γρ ⊢ eρ : t with the rule [Efq].

[Inter] Trivial (by using the induction hypothesis).

[Subs] Trivial (by using the induction hypothesis).

[Const] In this case, cρ = c (because c , ea ). Thus it is trivial.
[App] We have (e1e2)ρ = (e1ρ)(e2ρ) (because e1e2 , ea ). Thus we can directly conclude by

using the induction hypothesis.

[Abs+] We have (λt
′

x .e)ρ = λt
′

x .(eρ) (because λt
′

x .e , ea ).
By alpha-renaming, we can suppose that the variable x is a new fresh variable that does not

appear in ea nor eb (eb is closed).

We can thus use the induction hypothesis on all the judgements Γ,x : si ⊢ e : ti .
[Abs-] Trivial (by using the induction hypothesis).

[Proj] We have (πie)ρ = πi (eρ) (because πie , ea ). Thus we can directly conclude by using

the induction hypothesis.

[Pair] We have (e1, e2)ρ = (e1ρ, e2ρ) (because (e1, e2) , ea ). Thus we can directly conclude by

using the induction hypothesis.

[Case] We have ((e∈ti f ) ? e1 : e2)ρ = (eρ∈ti f ) ? e1ρ : e2ρ (because (e∈ti f ) ? e1 : e2 , ea ).

We apply the induction hypothesis on the judgements Γ ⊢ e : t0 and Γ ⊢Enve,ti f Γ1. We get

Γρ ⊢ eρ : t0, Γρ ⊢Enveρ,ti f Γ1ρ and ∀t ′. Γ1 ⊢ ea : t ′ ⇒ Γ1ρ ⊢ eb : t ′. Now, we can apply the

induction hypothesis on Γ1 ⊢ e1 : t and we have Γ1ρ ⊢ e1ρ : t .
We proceed similarly on the judgments Γ ⊢Enve,¬ti f Γ2 and Γ2 ⊢ e2 : t , and so we have all the

premises to apply the [Case] rule in order to get Γρ ⊢ (eρ∈ti f ) ? e1ρ : e2ρ : t ′.
[Base] Trivial.

[Path] We have by using the induction hypothesis Γρ ⊢Enveρ,t Γ
′ρ and ∀t ′′. Γ′ ⊢ ea : t ′′ ⇒ Γ′ρ ⊢

eb : t ′′.
First, let’s show that we can derive Γρ ⊢Enveρ,t Γ

′′ρ with Γ′′ = Γ′, (e↓ϖ : t ′).
There are two cases:

• e↓ϖ is a strict subexpression of ea .
In this case, it means that among its three possible forms, ea is of the form vv or (v,v).
According to the assumptions we made on the derivation at the beginning of the proof, it

implies that ϖ = ϵ . Hence, e does not contain any occurence of ea , so it is easy to conclude.

• e↓ϖ is not a strict subexpression of ea .
In this case, we know that eρ↓ϖ is defined.
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Thus we can apply the induction hypothesis on ⊢PathΓ′,e,t ϖ : t ′. It gives ⊢PathΓ′ρ,eρ,t ϖ : t ′. If

eρ↓ϖ ∈ dom(Γ′ρ), and (Γ′ρ)(eρ↓ϖ) = t ′′ ≱ t ′, then we can derive ⊢PathΓ′ρ,eρ,t ϖ : t ′ ∧ t ′′ just

by using the rules [PInter], [PTypeof] and [Env].

Using this last judgement together with Γ ⊢Enve,t Γ′, we can derive with the rule [Path] the

wanted Γρ ⊢Enveρ,t Γ
′′ρ.

Now, let’s show that ∀t ′. Γ′′ ⊢ ea : t ′ ⇒ Γ′′ρ ⊢ eb : t ′.
Let t ′ such that Γ′′ ⊢ ea : t ′.
Recall that we have Γ′ ⊢ ea : t ′ ⇒ Γ′ρ ⊢ eb : t ′.
If Γ′′ = ⊥, then Γ′′ρ = ⊥ so we are done. So lets’s suppose Γ′′ , ⊥.

Let’s separate the proof in two cases:

• If e↓ϖ . ea . In this case, let’s show that we have Γ′ ⊢ ea : t ′. Indeed, in the typing derivation
of Γ′′ ⊢ ea : t ′, the [Env] rules can only be applied on subexpressions of ea .
If e↓ϖ is not a strict subexpression of ea (and thus not a subexpression as e↓ϖ . ea ), there
is no [Env] rule applied to e↓ϖ in the derivation of Γ′′ ⊢ ea : t ′ and thus we can easily

derive Γ′ ⊢ ea : t ′.
If e↓ϖ , is a strict subexpression of ea , it must be a value (given the possible forms of ea ).
Moreover, as Γ′′ , ⊥, we have ∀v ∈ dom(Γ′′). v ∈ JΓ′′(v)KV (recall the assumptions at

the beginning of the proof) and thus ∀v ∈ dom(Γ′′). Γ′ ⊢ v : Γ′′(v). Thus we can derive

Γ′ ⊢ ea : t ′ just by replacing every [Env] rule applied to e↓ϖ in the derivation of Γ′′ ⊢ ea : t ′

by the relevant derivation.

From Γ′ ⊢ ea : t ′ we deduce Γ′ρ ⊢ eb : t ′. As Γ′′ ≤ Γ′ (according to the assumptions we

made on the derivation at the beginning of the proof) and dom(Γ′) ⊆ dom(Γ′′), we have
Γ′′ρ ≤ Γ′ρ and thus, by monotonicity, Γ′′ρ ⊢ eb : t ′.

• If e↓ϖ ≡ ea . Let’s note ta = Γ′′(ea). This time, we can’t derive Γ′ ⊢ ea : t ′ from Γ′′ ⊢ ea : t ′

because the rule [Env] could be used on e↓ϖ = ea (which may not be a value).

However, the rule [Env] can only be used on ea at the end of the derivation of Γ′′ ⊢ ea : t ′:
there can’t be any [App], [Abs+], [Proj], [Pair] or [Case] after because the premises of

these rules only contain strict subexpressions of their consequence. Thus, we can easily

transform the derivation so that every [Env] applied on ea is directly followed by an

[Inter]: if there is any [Abs-] or [Subs] between, we can move it after.

Then, we can (temporarily) remove from the derivation all [Env] applied on ea : for each,
we just replace the following [Inter] rule by its other premise.

It yields a derivation for Γ′′ ⊢ ea : t ′′ such that t ′′ ∧ ta ≤ t ′ and without any [Env] applied

to ea . Thus, we can transform it into a derivation of Γ′ ⊢ ea : t ′′ as in the previous point, and
we get Γ′ρ ⊢ eb : t ′′. Still as before, we get a derivation for Γ′′ρ ⊢ eb : t ′′ by monotonicity.

Now, we can append at the end of this derivation a rule [Inter] with a rule [Env] applied

to eb . As (Γ
′′ρ)(eb ) ≤ Γ′′(ea) = ta , we obtain a derivation for Γ′′ρ ⊢ eb : t ′ (we can add a

final [Subs] rule if needed).

[PTypeof] Trivial (by using the induction hypothesis).

[P· · · ] All the remaining rules are trivial.

□

Theorem A.14 (Subject reduction). Let Γ an ordinary environment, e and e ′ two expressions
and t a type.

If Γ ⊢ e : t and e { e ′, then Γ ⊢ e ′ : t .

Proof. Let Γ, e , e ′ and t as in the statement.

We construct a derivation for Γ ⊢ e ′ : t by induction on the derivation of Γ ⊢ e : t .
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If Γ = ⊥ this theorem is trivial, so we can suppose Γ , ⊥.

We proceed by case analysis on the last rule of the derivation:

[Env] As Γ is ordinary, it means that e is a variable. It contradicts the fact that e reduces to e ′

so this case is impossible.

[Efq] This case is impossible as Γ , ⊥.

[Inter] Trivial (by using the induction hypothesis).

[Subs] Trivial (by using the induction hypothesis).

[Const] Impossible case (no reduction possible).

[App] In this case, e ≡ e1e2. There are three possible cases:
• e2 is not a value. In this case, we must have e2 { e ′

2
and e ′ ≡ e1e

′
2
. We can easily conclude

using the induction hypothesis.

• e2 is a value and e1 is not. In this case, we must have e1 { e ′
1
and e ′ ≡ e ′

1
e2. We can easily

conclude using the induction hypothesis.

• Both e1 and e2 are values. This is the difficult case. We have e1 ≡ λ
∧
i∈I si→tix .ex with∧

i ∈I si → ti ≤ s → t and Γ ⊢ e2 : s . We can suppose that x is a new fresh variable that

does not appear in our environment (if it is not the case, we can alpha-rename e1).
This means that s ≤

∨
i ∈I si and that for any non-empty I ′ such that s ≰

∨
i ∈I\I ′ si , we

have

∧
i ∈I ′ ti ≤ t (see lemma 6.8 of [Frisch et al. 2008]). Let’s take I ′ = {i ∈ I | e2 ∈ JsiKV }.

We have I ′ not empty: e2 ∈ JsKV and s ≤
∨

i ∈I si , so according to J_KV properties we have

at least one i such that e2 ∈ JsiKV . We also have s ≰
∨

i ∈I\I ′ si , otherwise there would be a

i < I such that e2 ∈ JsiKV (contradiction with the definition of I ′). As a consequence, we
get

∧
i ∈I ′ ti ≤ t .

Now, let’s prove that Γ ⊢ e ′ :
∧

i ∈I ′ ti (which, by subsumption, yields Γ ⊢ e ′ : t ). For that, we
show that for any i ∈ I ′, Γ ⊢ e ′ : ti (it is then easy to conclude by using the [Inter] rule).

Let i ∈ I ′. We have e2 ∈ JsiKV , and so Γ ⊢ e2 : si (e2 is well-typed in Γ). As e1 is well-typed
in Γ, there must be in its derivation an application of the rule [Abs+] which guarantees

Γ, (x : si ) ⊢ ex : ti (recall that Γ , ⊥ and Γ is ordinary so there is no abstraction in

dom(Γ)). Let’s note Γ′ = Γ, (x : si ). We can deduce, using the substitution lemma, that

Γ′{x 7→ e2} ⊢ ex {x 7→ e2} : ti .
Moreover, Γ′{x 7→ e2} = Γ, (e2 : si ) and Γ ≤ Γ, (e2 : si ). Thus, by monotonicity, we deduce

Γ ⊢ ex {x 7→ e2} : ti , that is Γ ⊢ e ′ : ti .
[Abs+] Impossible case (no reduction possible).

[Abs-] Impossible case (no reduction possible).

[Proj] In this case, e ≡ πie0. There are two possible cases:

• e0 is not a value. In this case, we must have e0 { e ′
0
and e ′ ≡ πie

′
0
. We can easily conclude

using the induction hypothesis.

• e0 is a value. Given that e0 ≤ 1 × 1, we have e0 = (v1,v2) with v1 and v2 two values. We

also have e { vi .
The derivation of Γ ⊢ (v1,v2) : t1×t2 must contain a rule [Pair] which guarantees Γ ⊢ vi : ti
(recall that Γ , ⊥ and Γ is ordinary so there is no pair in dom(Γ)). It concludes this case.

[Pair] In this case, e ≡ (e1, e2). There are two possible cases:

• e2 is not a value. In this case, we must have e2 { e ′
2
and e ′ ≡ (e1, e

′
2
). We can easily conclude

using the induction hypothesis.

• e2 is a value and e1 is not. In this case, we must have e1 { e ′
1
and e ′ ≡ (e ′

1
, e2). We can

easily conclude using the induction hypothesis.

[Case] In this case, e ≡ (e0∈ti f ) ? e1 : e2. There are three possible cases:
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• e0 is a value and e0 ∈ Jti f KV . In this case we have e ′ ≡ e1. We have derivations for Γ ⊢ e0 : t0,

Γ ⊢Enve0,ti f Γ′ and Γ′ ⊢ e1 : t .

As e0 is a value and e0 ∈ Jti f KV , we have Γ ≤ Γ′ by using the value testing lemma. Thus,

by monotonicity, we have Γ ⊢ e1 : t .
• e0 is a value and e0 < JtKV . This case is similar to the previous one (we replace ti f by ¬ti f
and e1 by e2).

• e0 is not a value. In this case, we have e0
ea 7→eb
{ e ′

0
and e ′ ≡ (e0ρ∈ti f ) ? e1ρ : e2ρ ≡ eρ with

ρ = {ea 7→ eb }.
First, let’s notice that we have eb closed (only closed expressions are reducible), and ea has

one of the following forms:

– (e∈t) ? e1 : e2 (if expression)
– vv (application of two values)

– (v,v) (product of two values)

It can be easily proved by induction on the derivation of the reduction step.

Secondly, as ea { eb and as the derivation of this reduction is a strict subderivation

of that of e { e ′, we can use the induction hypothesis on ea { eb and we obtain

∀t ′. Γ ⊢ ea : t ′ ⇒ Γρ ⊢ eb : t ′.
Thus, we can conclude directly by using the substitution lemma on e and ρ.

□

A.3.3 Progress.

Lemma A.15 (Inversion).

Jt1 × t2KV = {(v1,v2) | ⊢V v1 : t1, ⊢V v2 : t2}

JbKV = {c | bc ≤ b}

Jt → sKV = {λ
∧
i∈I ti→six .e |

∧
i ∈I

ti → si ≤ t → s}

Proof. See lemma 6.21 of [Frisch et al. 2008] □

Theorem A.16 (Progress). If ∅ ⊢ e : t , then either e is a value or there exists e ′ such that e { e ′.

Proof. We proceed by induction on the derivation ∅ ⊢ e : t . We consider the last rule of this

derivation:

[Env] This case is impossible (the environment is empty).

[Efq] This case is impossible (the environment is empty).

[Inter] Straightforward application of the induction hypothesis.

[Subs] Straightforward application of the induction hypothesis.

[Const] In this case, e must be a constant so e is a value.
[App] We have e = e1 e2, with ∅ ⊢ e1 : s → t and ∅ ⊢ e2 : s . If one of the ei can be reduced,

then e can also be reduced using the reduction rule [Ctx].

Otherwise, by using the induction hypothesis we get that both e1 and e2 are values. Moreover,

by using the inversion lemma, we know that e1 has the form λ
∧
i∈I ti→six .e0. In consequence,

e is reducible (the reduction rule [App] can be applied).

[Abs+] In this case, e must be a lambda abstraction, so e is a value.
[Abs-] Straightforward application of the induction hypothesis.

[Case] We have e = (e0∈t
′) ? e1 : e2. If e0 can be reduced, then e can also be reduced using the

reduction rule [TestCtx].
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Otherwise, by using the induction hypothesis we get that e0 is a value. In consequence, e is
reducible (the reduction rule [Case] can be applied).

[Proj] We have e = πie0, t = ti ,∅ ⊢ e0 : t1 × t2. If e0 can be reduced, then e can also be reduced

using the rule [Ctx].

Otherwise, by using the induction hypothesis we get that e0 is a value. Moreover, by using

the inversion lemma, we know that e0 has the form (v1,v2). In consequence, e is reducible
(the reduction rule [Proj] can be applied).

[Pair] We have e = (e1, e2). If one of the ei can be reduced, then e can also be reduced using

the reduction rule [Ctx].

Otherwise, by using the induction hypothesis we get that both e1 and e2 are values. In

consequence, e is also a value.

□

A.4 Operator ‚

In this section, we will use the algorithmic definition of ‚ and show that it is equivalent to its

descriptive definition.

t ≃
∨

i ∈I

(∧
p∈Pi (sp → tp )

∧
n∈Ni

¬(s ′n → t ′n)
)

t ‚ s = dom(t) ∧
∨

i ∈I

(∧
{P ⊆Pi | s≤

∨
p∈P ¬tp }

(∨
p∈P ¬sp

))
Lemma A.17 (Correctness of ‚ ). ∀t , s . t ◦ (dom(t) \ (t ‚ s)) ≤ ¬s

Proof. Let t an arrow type. t ≃
∨

i ∈I

(∧
p∈Pi (sp → tp )

∧
n∈Ni

¬(s ′n → t ′n)
)

Let s be any type.

Let’s prove that t ◦ (dom(t) \ (t ‚ s)) ≤ ¬s (with the algorithmic definition for ‚ ).

Equivalently, we want (t ◦ (dom(t) \ (t ‚ s))) ∧ s ≃ 0.

Let u be a type such that u ≤ dom(t) and (t ◦ u) ∧ s ; 0 (if such a type does not exist, we are

done).

Let’s show that u∧(t ‚ s) ; 0 (we can easily deduce the wanted property from that, by the absurd).

For that, we should prove the following:

∃i ∈ I . u ∧
∧

{P ⊆Pi | s≤
∨
p∈P ¬tp }

©­«
∨
p∈P

¬sp
ª®¬ ; 0

From (t ◦u)∧s ; 0, we can take (using the algorithmic definition of ◦) i ∈ I andQ ⊊ Pi such that:

u ≰
∨
q∈Q

sq and (
∧

p∈Pi \Q

tp ) ∧ s ; 0

For any P ⊆ Pi such that s ≤
∨

p∈P ¬tp (equivalently, s ∧
∧

p∈P tp ≃ 0),
we have P ∩Q , ∅ (by the absurd, because (

∧
p∈Pi \Q tp ) ∧ s ; 0).

Consequently, we have:

∀P ⊆ Pi . s ≤
∨
p∈P

¬tp ⇒
∧
p∈P

sp ≤
∨
q∈Q

sq
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We can deduce that: ∨
{P ⊆Pi | s≤

∨
p∈P ¬tp }

©­«
∧
p∈P

sp
ª®¬ ≤

∨
q∈Q

sq

Moreover, as u ≰
∨

q∈Q sq , we have u ≰
∨

{P ⊆Pi | s≤
∨
p∈P ¬tp }

(∧
p∈P sp

)
.

This is equivalent to the wanted result. □

LemmaA.18 ( ‚ alternative definition). The following algorithmic definition for ‚ is equivalent

to the previous one:

∀t , s . t ‚ s ≃
∨
i ∈I

©­­«
∨

{P ⊆Pi | s≰
∨
p∈P ¬tp }

©­«dom(t) ∧
∧
p∈Pi

sp ∧
∧

n∈Pi \P

¬sn
ª®¬
ª®®¬

Proof.

t ‚ s = dom(t) ∧
∨
i ∈I

©­«
∧

{P ⊆Pi | s≤
∨
p∈P ¬tp }

©­«
∨
p∈P

¬sp
ª®¬ª®¬

≃
∨
i ∈I

©­«dom(t) ∧
∧

{P ⊆Pi | s≤
∨
p∈P ¬tp }

©­«
∨
p∈P

¬sp
ª®¬ª®¬

≃
∨
i ∈I

©­«©­«dom(t) ∧
∨
p∈Pi

sp
ª®¬ ∧

∧
{P ⊆Pi | s≤

∨
p∈P ¬tp }

©­«
∨
p∈P

¬sp
ª®¬ª®¬

≃
∨
i ∈I

©­«©­«dom(t) ∧
∨
p∈Pi

©­«sp ∧
∨

P ⊆Pi \{p }

©­«
∧
p∈P

sp ∧
∧

n∈(Pi \{p })\P

¬sn
ª®¬ª®¬ª®¬ ∧

∧
{P ⊆Pi | s≤

∨
p∈P ¬tp }

©­«
∨
p∈P

¬sp
ª®¬ª®¬

≃
∨
i ∈I

©­«©­«dom(t) ∧
∨
p∈Pi

©­«
∨

P ⊆Pi \{p }

©­«sp ∧
∧
p∈P

sp ∧
∧

n∈(Pi \{p })\P

¬sn
ª®¬ª®¬ª®¬ ∧

∧
{P ⊆Pi | s≤

∨
p∈P ¬tp }

©­«
∨
p∈P

¬sp
ª®¬ª®¬

≃
∨
i ∈I

©­­­«
©­­­«dom(t) ∧

∨
P ⊆Pi
P,∅

©­«
∧
p∈P

sp ∧
∧

n∈Pi \P

¬sn
ª®¬
ª®®®¬ ∧

∧
{P ⊆Pi | s≤

∨
p∈P ¬tp }

©­«
∨
p∈P

¬sp
ª®¬
ª®®®¬

≃
∨
i ∈I

©­­­«dom(t) ∧
∨
P ⊆Pi
P,∅

©­«
∧
p∈P

sp ∧
∧

n∈Pi \P

¬sn
ª®¬ \

∨
{P ⊆Pi | s≤

∨
p∈P ¬tp }

©­«
∧
p∈P

sp
ª®¬
ª®®®¬

≃
∨
i ∈I

©­­­«dom(t) ∧
∨
P ⊆Pi
P,∅

©­«
∧
p∈P

sp ∧
∧

n∈Pi \P

¬sn
ª®¬ \

∨
{P ⊆Pi | s≤

∨
p∈P ¬tp }

©­«
∧
p∈P

sp ∧
∧

n∈Pi \P

¬sn
ª®¬
ª®®®¬

≃
∨
i ∈I

©­­«dom(t) ∧
∨

{P ⊆Pi | s≰
∨
p∈P ¬tp }

©­«
∧
p∈Pi

sp ∧
∧

n∈Pi \P

¬sn
ª®¬
ª®®¬
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≃
∨
i ∈I

©­­«
∨

{P ⊆Pi | s≰
∨
p∈P ¬tp }

©­«dom(t) ∧
∧
p∈Pi

sp ∧
∧

n∈Pi \P

¬sn
ª®¬
ª®®¬

□

Lemma A.19 (Optimality of ‚ ). Let t , s , two types. For any u such that t ◦ (dom(t) \u) ≤ ¬s , we
have t ‚ s ≤ u.

Proof. Let t an arrow type. t ≃
∨

i ∈I

(∧
p∈Pi (sp → tp )

∧
n∈Ni

¬(s ′n → t ′n)
)

Let s be any type.

Let u be such that t ◦ (dom(t) \ u) ≤ ¬s . We want to prove that t ‚ s ≤ u.
We have:

t ‚ s =
∨
i ∈I

©­­«
∨

{P ⊆Pi | s≰
∨
p∈P ¬tp }

ai,P
ª®®¬

With:

ai,P = dom(t) ∧
∧
p∈Pi

sp ∧
∧

n∈Pi \P

¬sn

Let i ∈ I and P ⊆ Pi such that s ≰
∨

p∈P ¬tp (equivalently, s ∧
∧

p∈P tp ; 0) and such that

ai,P ; 0.
For convenience, let a = ai,P . We just have to show that a ≤ u.

By the absurd, let’s suppose that a \ u ; 0 and show that (t ◦ (dom(t) \ u)) ∧ s ; 0.

Let’s recall the algorithmic definition of ◦:

t ◦ (dom(t) \ u) =
∨
i ∈I

©­­«
∨

{Q⊊Pi | dom(t )\u≰
∨
q∈Q sq }

©­«
∧

p∈Pi \Q

tp
ª®¬
ª®®¬

Let’s take Q = Pi \ P . We just have to prove that:

dom(t) \ u ≰
∨
q∈Q

sq and s ∧
∧

p∈Pi \Q

tp ; 0

As Pi \Q = P , we immediatly have s ∧
∧

p∈Pi \Q tp ; 0.
Moreover, we know that a ≤

∧
q∈Q ¬sq (definition of ai,P ), so we have:

a ∧
∧
q∈Q

¬sq ≃ a

Thus:

(a \ u) ∧
∧
q∈Q

¬sq ≃ (a ∧
∧
q∈Q

¬sq) \ u ≃ a \ u ; 0

And so:

a \ u ≰
∨
q∈Q

sq

As dom(t) \ u ≥ a \ u, we can immediatly obtain the remaining inequality. □

Theorem A.20 (Characterization of ‚ ). ∀t , s . t ‚ s = min{u | t ◦ (dom(t) \ u) ≤ ¬s}.

Proof. Immediate consequence of the previous results. □
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A.5 Full algorithmic type system

[EfqA]

Γ, (e : 0) ⊢A e ′ : 0
with priority over

all the other rules
[VarA]

Γ ⊢A x : Γ(x)
x ∈ dom(Γ)

[EnvA]

Γ \ {e} ⊢A e : t

Γ ⊢A e : Γ(e) ⃝∧ t
e ∈ dom(Γ) and e not a variable [ConstA]

Γ ⊢A c : bc
c < dom(Γ)

[AbsA]

Γ,x : si ⊢A e : t′i t′i ≤ ti

Γ ⊢A λ∧i∈I si→tix .e : [si → ti ]i ∈I
λ∧i∈I si→ti x .e < dom(Γ)

[AppA]

Γ ⊢A e1 : t1 Γ ⊢A e2 : t2 t1 ≤ 0 → 1 t2 ≤ dom(t1)

Γ ⊢A e1e2 : t1 ◦ t2
e1e2 < dom(Γ)

[CaseA]

Γ ⊢A e : t0 Refinee,t (Γ) ⊢A e1 : t1 Refinee,¬t (Γ) ⊢A e2 : t2

Γ ⊢A (e∈t) ? e1 : e2 : t1 ⃝∨ t2
(e∈t) ?e1:e2 < dom(Γ)

[ProjA]

Γ ⊢A e : t t ≤ 1 × 1

Γ ⊢A πie : π i(t)
πie < dom(Γ)

[PairA]

Γ ⊢A e1 : t1 Γ ⊢A e2 : t2

Γ ⊢A (e1, e2) : t1 ⃝× t2
(e1, e2) < dom(Γ)

typeofΓ(e) =
{

t if Γ ⊢A e : t
Ω otherwise

ConstrΓ,e,t (ϵ) = t (32)

ConstrΓ,e,t (ϖ .0) = ¬(IntertypeΓ,e,t (ϖ .1) → ¬IntertypeΓ,e,t (ϖ)) (33)

ConstrΓ,e,t (ϖ .1) = Repr(typeofΓ(e↓ϖ .0)) ‚ IntertypeΓ,e,t (ϖ) (34)

ConstrΓ,e,t (ϖ .l) = π 1(IntertypeΓ,e,t (ϖ)) (35)

ConstrΓ,e,t (ϖ .r ) = π 2(IntertypeΓ,e,t (ϖ)) (36)

ConstrΓ,e,t (ϖ . f ) = IntertypeΓ,e,t (ϖ) × 1 (37)

ConstrΓ,e,t (ϖ .s) = 1 × IntertypeΓ,e,t (ϖ) (38)

IntertypeΓ,e,t (ϖ) = Repr(ConstrΓ,e,t (ϖ) ⃝∧ typeofΓ(e↓ϖ)) (39)

RefineStepe,t (Γ) = Γ′ with:

dom(Γ′) = dom(Γ) ∪ {e ′ | ∃ϖ . e↓ϖ ≡ e ′}

Γ′(e ′) =

{ ∧
{ϖ | e↓ϖ≡e ′ } IntertypeΓ,e,t (ϖ) if ∃ϖ . e↓ϖ ≡ e ′

Γ(e ′) otherwise

Refinee,t (Γ) = RefineStepe,t
no (Γ) with n a global parameter
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A.6 Proofs for the algorithmic type system
This section is about the algorithmic type system (soundness and some completeness properties).

Note that we use a different but more convenient definition for typeofΓ(e) that the one in

Section 2.5.3:

typeofΓ(e) =
{

t if Γ ⊢A e : t
Ω otherwise

In this way, typeofΓ(e) is always defined but is equal to Ω when e is not well-typed in Γ.
We will reuse the definitions and notations introduced in the previous proofs. In particular, we

only consider well-formed environments, as in the proofs of the declarative type system.

A.6.1 Soundness.

Theorem A.21 (Soundness of the algorithm). For every Γ, e , t , no , if typeofΓ(e) ≤ t , then we

can derive Γ ⊢ e : t .
More precisely:

∀Γ, e, t . typeofΓ(e) ≤ t ⇒ Γ ⊢ e : t

∀Γ, e, t ,ϖ . typeofΓ(e) , Ω ⇒⊢PathΓ,e,t ϖ : IntertypeΓ,e,t (ϖ)

∀Γ, e, t . typeofΓ(e) , Ω ⇒ Γ ⊢Enve,t Refinee,t (Γ)

Proof. We proceed by induction over the structure of e and, for two identical e , on the domain

of Γ (with the inclusion order).

Let’s prove the first property. Let t such that {typeofΓ(e)} ≤ t .
If Γ = ⊥, we trivially have Γ ⊢ e : t with the rule [Efq]. Let’s assume Γ , ⊥.

If e = x is a variable, then the last rule used is [VarA]. We can derive Γ ⊢ x : t by using the rule

[Env] and [Subs]. So let’s assume that e is not a variable.
If e ∈ dom(Γ), then the last rule used is [EnvA]. Let t

′ ∈ {t} such that t ′∧ Γ(e) ≤ t . The induction
hypothesis gives Γ \ {e} ⊢ e : t ′ (the premise uses the same e but the domain of Γ is strictly smaller).

Thus, we can build a derivation Γ ⊢ e : t by using the rules [Subs], [Inter], [Env] and the derivation
Γ \ {e} ⊢ e : t ′.
Now, let’s suppose that e < dom(Γ).

e = c The last rule is [ConstA]. We derive easily Γ ⊢ c : t with [Const] and [Subs].

e = x Already treated.

e = λ
∧
i∈I ti→six .e ′ The last rule is [AbsA]. We have

∧
i ∈I ti → si ≤ t . Using the definition of

type schemes, let t ′ =
∧

i ∈I ti → si ∧
∧

j ∈J ¬t
′
j → s ′j such that 0 , t ′ ≤ t . The induction

hypothesis gives, for all i ∈ I , Γ,x : si ⊢ e
′
: ti .

Thus, we can derive Γ ⊢ e :

∧
i ∈I ti → si using the rule [Abs+], and with [Inter] and [Abs-]

we can derive Γ ⊢ e : t ′. We can conclude by applying [Subs].

e = e1e2 The last rule is [AppA]. We have t1 ◦ t2 ≤ t . Thus, let t1 and t2 such that t1 ≤ t1, t2 ≤ t2
and t1 ◦ t2 ≤ t . We know, according to the descriptive definition of ◦, that there exists s ≤ t
such that t1 ≤ t2 → s .
By using the induction hypothesis, we have Γ ⊢ e1 : t1 and Γ ⊢ e2 : t2. We can thus derive

Γ ⊢ e1 : t2 → s using [Subs], and together with Γ ⊢ e2 : t2 it gives Γ ⊢ e1 e2 : s with [App]. We

conclude with [Subs].

e = πie
′
The last rule is [ProjA]. We have π it ≤ t . Thus, let t ′ such that t ≤ t ′ and π it

′ ≤ t .
We know, according to the descriptive definition of π i , that there exists ti ≤ t such that

t ′ ≤ 1 × ti (for i = 2) or t ′ ≤ ti × 1 (for i = 1).
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By using the induction hypothesis, we have Γ ⊢ e ′ : t ′, and thus we easily conclude using

[Subs] and [Proj] (for instance for the case i = 1, we can derive Γ ⊢ e ′ : ti × 1 with [Subs]

and then use [Proj]).

e = (e1, e2) The last rule is [PairA]. We conclude easily with the induction hypothesis and the

rules [Subs] and [Pair].

e = (e0∈t) ? e1 : e2 The last rule is [CaseA]. We conclude easily with the induction hypothesis

and the rules [Subs] and [Case] (for the application of [Case], t ′ must be taken equal to

t1 ∨ t2 with t1 and t2 such that t1 ≤ t1, t2 ≤ t2 and t1 ∨ t2 ≤ t ).

Now, let’s prove the second property. We perform a (nested) induction on ϖ .
Recall that IntertypeΓ,e,t (ϖ) = Repr(ConstrΓ,e,t (ϖ) ⃝∧ typeofΓ(e↓ϖ)).
For any t ′ such that typeofΓ(e↓ϖ) ≤ t ′, we can easily derive ⊢PathΓ,e,t ϖ : t ′ by using the outer

induction hypothesis (the first property that we have proved above) and the rule [PTypeof].

Now we have to derive ⊢PathΓ,e,t ϖ : ConstrΓ,e,t (ϖ) (then it will be easy to conclude using the rule

[PInter]).

ϖ = ϵ We use the rule [PEps].

ϖ = ϖ ′.1 Let’s note f = Repr(typeofΓ(e↓ϖ
′.0)), s = IntertypeΓ,e,t (ϖ

′) and tres = f ‚ s .

By using the outer and inner induction hypotheses, we can derive ⊢PathΓ,e,t ϖ ′.0 : f and

⊢PathΓ,e,t ϖ
′
: s .

By using the descriptive definition of ‚ , we have t ′ = f ◦ (dom(f ) \ tres) ≤ ¬s .
Moreover, by using the descriptive definition of ◦ on t ′, we have f ≤ (dom(f ) \ tres) → t ′.
As t ′ ≤ ¬s , it gives f ≤ (dom(f ) \ tres) → ¬s .
Let’s note t1 = dom(f ) \ tres and t2 = ¬s . The above inequality can be rewritten f ≤ t1 → t2.
Thus, by using [PSubs] on the derivation ⊢PathΓ,e,t ϖ

′.0 : f , we can derive ⊢PathΓ,e,t ϖ
′.0 : t1 → t2.

We have:

• t2 ∧ s ≃ 0 (as t2 = ¬s)
• ¬t1 = tres ∨ ¬dom(f ) = tres
In consequence, we can conclude by applying the rule [PAppR] with the premises ⊢PathΓ,e,t ϖ

′.0 :

t1 → t2 and ⊢PathΓ,e,t ϖ
′
: s .

ϖ = ϖ ′.0 By using the inner induction hypothesis and the previous case we’ve just proved, we

can derive ⊢PathΓ,e,t ϖ
′
: IntertypeΓ,e,t (ϖ

′) and ⊢PathΓ,e,t ϖ
′.1 : IntertypeΓ,e,t (ϖ

′.1). Hence we can

apply [PAppL].

ϖ = ϖ ′.l Let’s note t1 = π 1IntertypeΓ,e,t (ϖ
′). According to the descriptive definition of π 1, we

have IntertypeΓ,e,t (ϖ
′) ≤ t1 × 1.

The inner induction hypothesis gives ⊢PathΓ,e,t ϖ
′
: IntertypeΓ,e,t (ϖ

′), and thus using the rule

[PSubs] we can derive ⊢PathΓ,e,t ϖ
′
: t1 × 1. We can conclude just by applying the rule [PPairL]

to this premise.

ϖ = ϖ ′.r This case is similar to the previous.

ϖ = ϖ ′. f The inner induction hypothesis gives ⊢PathΓ,e,t ϖ
′
: IntertypeΓ,e,t (ϖ

′), so we can conclude

by applying [PFst].

ϖ = ϖ ′.s The inner induction hypothesis gives ⊢PathΓ,e,t ϖ
′
: IntertypeΓ,e,t (ϖ

′), so we can conclude

by applying [PSnd].
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Finally, let’s prove the third property. Let Γ′ = Refinee,t (Γ) = RefineStepe,t
n0 (Γ). We want to

show that Γ ⊢Enve,t Γ′ is derivable.

First, let’s note that ⊢Enve,t is transitive: if Γ ⊢Enve,t Γ′ and Γ′ ⊢Enve,t Γ′′, then Γ ⊢Enve,t Γ′′. The proof is

quite easy: we can just start from the derivation of Γ ⊢Enve,t Γ′, and we add at the end a slightly

modified version of the derivation of Γ′ ⊢Enve,t Γ′′ where:

• the initial [Base] rule has been removed in order to be able to do the junction,

• all the Γ′ at the left of ⊢Enve,t are replaced by Γ (the proof is still valid as this Γ′ at the left is
never used in any rule)

Thanks to this property, we can suppose that n0 = 1 (and so Γ′ = RefineStepe,t (Γ)). If it is not
the case, we just have to proceed by induction on n0 and use the transitivity property.

Let’s build a derivation for Γ ⊢Enve,t Γ′.

By using the proof of the second property on e that we’ve done just before, we get: ∀ϖ . ⊢PathΓ,e,t
ϖ : IntertypeΓ,e,t (ϖ).

Let’s recall a monotonicity property: for any Γ1 and Γ2 such that Γ2 ≤ Γ1, we have ∀t ′. ⊢PathΓ1,e,t
ϖ :

t ′ ⇒⊢PathΓ2,e,t
ϖ : t ′.

Moreover, when we also have e↓ϖ ∈ dom(Γ2), we can derive ⊢PathΓ2,e,t
ϖ : t ′ ∧ Γ2(e↓ϖ) (just by adding

a [PInter] rule with a [PTypeof] and a [Env]).

Hence, we can apply successively a [Path] rule for all valid ϖ in e , with the following premises

(Γϖ being the previous environment, that trivially verifies Γϖ ≤ Γ):

If e↓ϖ ∈ dom(Γϖ ) ⊢PathΓϖ ,e,t
ϖ : IntertypeΓ,e,t (ϖ) ∧ Γϖ (e↓ϖ) Γ ⊢Enve,t Γϖ

Otherwise ⊢PathΓϖ ,e,t
ϖ : IntertypeΓ,e,t (ϖ) Γ ⊢Enve,t Γϖ

At the end, it gives the judgement Γ ⊢Enve,t Γ′, so it concludes the proof. □

A.6.2 Completeness.

Definition A.22 (Bottom environment). Let Γ an environment.

Γ is bottom (noted Γ = ⊥) iff ∃e ∈ dom(Γ). Γ(e) ≃ 0.

Definition A.23 (Algorithmic (pre)order on environments). Let Γ and Γ′ two environments. We

write Γ′ ≤A Γ iff:

Γ′ = ⊥ or (Γ , ⊥ and ∀e ∈ dom(Γ). typeofΓ(e) ≤ Γ(e))

For an expression e , we write Γ′ ≤e
A
Γ iff:

Γ′ = ⊥ or (Γ , ⊥ and ∀e ′ ∈ dom(Γ) such that e ′ is a subexpression of e . typeofΓ(e
′) ≤ Γ(e ′))

Note that if Γ′ ≤A Γ, then Γ′ ≤e
A
Γ for any e .

Definition A.24 (Order relation for type schemes). Let t1 and t2 two type schemes. We write t2 ≤ t1
iff {t1} ⊆ {t2}.

Definition A.25 (Positive derivation). A derivation of the declarative type system is said positive

iff it does not contain any rule [Abs-].

Definition A.26 (Rank-0 negated derivation). A derivation of the declarative type system is said

rank-0 negated iff any application of [PAppL] has a positive derivation as first premise (⊢PathΓ,e,t ϖ .1 :
t1).
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Lemma A.27.

∀t , t. Repr(t ⃝∧ t) ≤ t ∧ Repr(t)

∀t , t. t ⃝∧ t ; 0 ⇒ Repr(t ⃝∧ t) ≃ t ∧ Repr(t)

∀t1, t2. Repr(t1 ◦ t2) ≤ Repr(t1) ◦ Repr(t2)

Proof. Straightfoward, by induction on the structure of t. □

Lemma A.28 (Monotonicity of the algorithm). Let Γ, Γ′ and e such that Γ′ ≤e
A

Γ and

typeofΓ(e) , Ω. We have:

typeofΓ′(e) ≤ typeofΓ(e) and Repr(typeofΓ′(e)) ≤ Repr(typeofΓ(e))

∀t ,ϖ . IntertypeΓ′,e,t (ϖ) ≤ IntertypeΓ,e,t (ϖ)

∀t . Refinee,t (Γ′) ≤e
A
Refinee,t (Γ)

Proof. We proceed by induction over the structure of e and, for two identical e , on the domains

of Γ and Γ′ (with the lexicographical inclusion order).

Let’s prove the first property: typeofΓ′(e) ≤ typeofΓ(e) and Repr(typeofΓ′(e)) ≤ Repr(typeofΓ(e)).
We will focus on showing typeofΓ′(e) ≤ typeofΓ(e).

The property Repr(typeofΓ′(e)) ≤ Repr(typeofΓ(e)) can be proved in a very similar way, by using

the fact that operators on type schemes like ⃝∧ or ◦ are also monotone. (Note that the only rule that

introduces the type scheme constructor [_] is [AbsA].)

If Γ′ = ⊥ we can conclude directly with the rule [Efq]. So let’s assume Γ′ , ⊥ and Γ , ⊥ (as

Γ = ⊥ ⇒ Γ′ = ⊥ by definition of ≤e
A
).

If e = x is a variable, then the last rule used in typeofΓ(e) and typeofΓ′(e) is [VarA]. As Γ
′ ≤e

A
Γ,

we have Γ′(e) ≤ Γ(e) and thus we can conclude with the rule [VarA]. So let’s assume that e is not a
variable.

If e ∈ dom(Γ), then the last rule used in typeofΓ(e) is [EnvA]. As Γ
′ ≤e

A
Γ, we have typeofΓ′(e) ≤

Γ(e). Moreover, by applying the induction hypothesis, we get typeofΓ′\{e }(e) ≤ typeofΓ\{e }(e) (we
can easily verify that Γ′ \ {e} ≤e

A
Γ \ {e}).

• If we have e ∈ dom(Γ′), we have according to the rule [EnvA] typeofΓ′(e) ≤ typeofΓ′\{e }(e) ≤
typeofΓ\{e }(e).
Together with typeofΓ′(e) ≤ Γ(e), we deduce typeofΓ′(e) ≤ Γ(e)⃝∧typeofΓ\{e }(e) = typeofΓ(e).

• Otherwise, we have e < dom(Γ′). Thus typeofΓ′(e) = typeofΓ′\{e }(e) ≤ Γ(e)⃝∧typeofΓ\{e }(e) =
typeofΓ(e).

If e < dom(Γ) and e ∈ dom(Γ′), the last rule is [EnvA] for typeofΓ′(e). As Γ
′ \ {e} ≤e

A
Γ \ {e} = Γ,

we have typeofΓ′(e) ≤ typeofΓ′\{e }(e) ≤ typeofΓ(e) by induction hypothesis.

Thus, let’s suppose that e < dom(Γ) and e < dom(Γ′). From now we know that the last rule in

the derivation of typeofΓ(e) and typeofΓ′(e) (if any) is the same.

e = c The last rule is [ConstA]. It does not depend on Γ so this case is trivial.

e = x Already treated.

e = λ
∧
i∈I ti→six .e ′ The last rule is [AbsA]. We have ∀i ∈ I . Γ′, (x : si ) ≤e ′

A
Γ, (x : si ) (quite

straightforward) so by applying the induction hypothesis we have ∀i ∈ I . typeofΓ′,(x :si )(e
′) ≤

typeofΓ,(x :si )(e
′).

e = e1e2 The last rule is [AppA]. We can conclude immediately by using the induction hypothesis

and noticing that ◦ is monotonic for both of its arguments.

e = πie
′
The last rule is [ProjA]. We can conclude immediately by using the induction hypoth-

esis and noticing that π i is monotonic.
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e = (e1, e2) The last rule is [PairA]. We can conclude immediately by using the induction

hypothesis.

e = (e0∈t) ? e1 : e2 The last rule is [CaseA]. By using the induction hypothesis we getRefinee0,t (Γ
′) ≤

e0
A

Refinee0,t (Γ). We also have Γ′ ≤e1
A Γ (as e1 is a subexpression of e).

From those two properties, let’s show that we can deduce Refinee0,t (Γ
′) ≤

e1
A Refinee0,t (Γ):

Let e ′ ∈ dom(Refinee0,t (Γ)) a subexpression of e1.
• If e ′ is also a subexpression of e0, we can directly deduce

typeofRefinee
0
,t (Γ)′

(e ′) ≤ (Refinee0,t (Γ))(e
′) by using Refinee0,t (Γ

′) ≤
e0
A Refinee0,t (Γ).

• Otherwise, as Refinee0,t (_) is reductive, we have Refinee0,t (Γ
′) ≤A Γ′ and thus by using

the induction hypothesis typeofRefinee
0
,t (Γ′)

(e ′) ≤ typeofΓ′(e
′). We also have typeofΓ′(e

′) ≤

Γ(e ′) by using Γ′ ≤e1
A Γ. We deduce typeofRefinee

0
,t (Γ′)

(e ′) ≤ Γ(e ′) = (Refinee0,t (Γ))(e
′).

So we have Refinee0,t (Γ
′) ≤

e1
A Refinee0,t (Γ). Consequently, we can apply the induction hy-

pothesis again to get typeofRefinee
0
,t (Γ′)

(e1) ≤ typeofRefinee
0
,t (Γ)

(e1).

We proceed the same way for the last premise.

Now, let’s prove the second property. We perform a (nested) induction on ϖ .
Recall that we have ∀t , t. t ⃝∧ t ; 0 ⇒ Repr(t ⃝∧ t) ≃ t ∧ Repr(t).
Thus, in order to proveRepr(ConstrΓ′,e,t (ϖ)⃝∧typeofΓ′(e↓ϖ)) ≤ Repr(ConstrΓ,e,t (ϖ)⃝∧typeofΓ(e↓ϖ)),

we can prove the following:

ConstrΓ′,e,t (ϖ) ≤ ConstrΓ,e,t (ϖ)

typeofΓ′(e↓ϖ) ≤ typeofΓ(e↓ϖ)

Repr(typeofΓ′(e↓ϖ)) ≤ Repr(typeofΓ(e↓ϖ))

The two last inequalities can be proved with the outer induction hypothesis (for ϖ = ϵ we use
the proof of the first property above).

Thus we just have to prove thatConstrΓ′,e,t (ϖ) ≤ ConstrΓ,e,t (ϖ). The only case that is interesting
is the case ϖ = ϖ ′.1.
First, we can notice that the ‚ operator is monotonic for its second argument (consequence of

its declarative definition).

Secondly, let’s show that for any function types t1 ≤ t2, and for any type t ′, we have (t1 ‚ t ′) ∧
dom(t2) ≤ t2 ‚ t ′. By the absurd, let’s suppose it is not true. Let’s note t ′′ = (t1 ‚ t ′) ∧ dom(t2).
Then we have t ′′ ≤ dom(t2) ≤ dom(t1) and t2 ≤ t ′′ → t ′ and t1 ≰ t ′′ → t ′, which contradicts

t1 ≤ t2.
Let’s note t1 = Repr(typeofΓ′(e↓ϖ

′.0)) and t2 = Repr(typeofΓ(e↓ϖ
′.0)) and t ′ = IntertypeΓ,e,t (ϖ

′).

As e is well-typed, and using the inner induction hypothesis, we have Repr(typeofΓ′(e↓ϖ
′.1)) ≤

Repr(typeofΓ(e↓ϖ
′.1)) ≤ dom(t2).

Thus, using this property, we get:

(t1 ‚ t ′) ∧ Repr(typeofΓ′(e↓ϖ
′.1))

≤(t2 ‚ t ′) ∧ Repr(typeofΓ(e↓ϖ
′.1))

Then, using the monotonicity of the second argument of ‚ and the outer induction hypothesis:

(t1 ‚ IntertypeΓ′,e,t (ϖ
′)) ∧ Repr(typeofΓ′(e↓ϖ

′.1))

≤(t2 ‚ IntertypeΓ,e,t (ϖ
′)) ∧ Repr(typeofΓ(e↓ϖ

′.1))
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Finally, we must prove the third property.

It is straightforward by using the previous result and the induction hypothesis:

∀e ′ s.t. ∃ϖ . e↓ϖ ≡ e ′, we get
∧

{ϖ | e↓ϖ≡e ′ } IntertypeΓ′,e,t (ϖ) ≤
∧

{ϖ | e↓ϖ≡e ′ } IntertypeΓ,e,t (ϖ).
The rest follows. □

Theorem A.29 (Completeness for positive derivations). For every Γ, e , t such that we have a

positive derivation of Γ ⊢ e : t , there exists a global parameter no with which Repr(typeofΓ(e)) ≤ t .
More precisely:

∀Γ, e, t . Γ ⊢ e : t has a positive derivation ⇒ Repr(typeofΓ(e)) ≤ t

∀Γ, Γ′, e, t . Γ ⊢Enve,t Γ′ has a positive derivation ⇒ Refinee,t (Γ) ≤A Γ′ (for no large enough)

Proof. We proceed by induction on the derivation.

Let’s prove the first property. We have a positive derivation of Γ ⊢ e : t .
If Γ = ⊥, we can conclude directly using [EfqA]. Thus, let’s suppose Γ , ⊥.

If e = x is a variable, then the derivation only uses [Env], [Inter] and [Subs]. We can easily

conclude just be using [VarA]. Thus, let’s suppose e is not a variable.
If e ∈ dom(Γ), we can have the rule [Env] applied to e in our derivation, but in this case there can

only be [Inter] and [Subs] after it (not [Abs-] as we have a positive derivation). Thus, our derivation

contains a derivation of Γ ⊢ e : t ′ that does not use the rule [Env] on e and such that t ′ ∧ Γ(e) ≤ t
(actually, it is possible for our derivation to typecheck e only using the rule [Env]: in this case we

can take t ′ = 1 and use the fact that Γ is well-formed). Hence, we can build a positive derivation for

Γ \ {e} ⊢ e : t ′. By using the induction hypothesis we deduce that Repr(typeofΓ\{e }(e)) ≤ t ′. Thus,
by looking at the rule [EnvA], we deduce Repr(typeofΓ(e)) ≤ Γ(e) ∧ Repr(typeofΓ\{e }(e)) ≤ t . It
concludes this case, so let’s assume e < dom(Γ).

Now we analyze the last rule of the derivation:

[Env] Impossible case (e < dom(Γ)).
[Inter] By using the induction hypothesis we getRepr(typeofΓ(e)) ≤ t1 andRepr(typeofΓ(e)) ≤

t2. Thus, we have Repr(typeofΓ(e)) ≤ t1 ∧ t2.
[Subs] Trivial using the induction hypothesis.

[Const] We know that the derivation of typeofΓ(e) (if any) ends with the rule [ConstA]. Thus

this case is trivial.

[App] We know that the derivation of typeofΓ(e) (if any) ends with the rule [AppA]. Let

t1 = typeofΓ(e1) and t2 = typeofΓ(e2). With the induction hypothesis we have Repr(t1) ≤
t1 → t2 and Repr(t2) ≤ t1, with t2 = t . According to the descriptive definition of ◦, we have

Repr(t1) ◦ Repr(t2) ≤ t1 → t2 ◦ t1 ≤ t2. As we also have Repr(t1 ◦ t2) ≤ Repr(t1) ◦ Repr(t2),
we can conclude that typeofΓ(e) ≤ t2 = t .

[Abs+] We know that the derivation of typeofΓ(e) (if any) ends with the rule [AbsA]. This case

is straightforward using the induction hypothesis.

[Abs-] This case is impossible (the derivation is positive).

[Case] We know that the derivation of typeofΓ(e) (if any) ends with the rule [CaseA]. By using

the induction hypothesis and the monotonicity lemma, we get Repr(t1) ≤ t and Repr(t2) ≤ t .
So we have Repr(t1 ⃝∨ t2) = Repr(t1) ∨ Repr(t2) ≤ t .

[Proj] Quite similar to the case [App].

[Pair] We know that the derivation of typeofΓ(e) (if any) ends with the rule [PairA]. We just

use the induction hypothesis and the fact that Repr(t1 ⃝× t2) = Repr(t1) × Repr(t2).
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Now, let’s prove the second property. We have a positive derivation of Γ ⊢Enve,t Γ′.

[Base] Any value of no will give Refinee,t (Γ) ≤A Γ, even no = 0.

[Path] We have Γ′ = Γ1, (e↓ϖ : t ′). By applying the induction hypothesis on the premise

Γ ⊢Enve,t Γ1, we have RefineStepne,t (Γ) = Γ2 with Γ2 ≤A Γ1 for a certain n.

We now proceed by induction on the derivation ⊢PathΓ1,e,t
ϖ : t ′ to show that we can obtain

IntertypeΓ′′,e,t (ϖ) ≤ t ′ with Γ′′ = RefineStepn
′

e,t (Γ2) for a certain n
′
. It is then easy to conclude

by taking no = n + n
′
.

[PSubs] Trivial using the induction hypothesis.

[PInter] By using the induction hypothesis we get:

IntertypeΓ′′
1
,e,t (ϖ) ≤ t1

IntertypeΓ′′
2
,e,t (ϖ) ≤ t2

RefineStepn1

e,t (Γ1) ≤A Γ′′
1

RefineStepn2

e,t (Γ2) ≤A Γ′′
2

By taking n′ = max(n1,n2), we can have Γ′′ = RefineStepn
′

e,t (Γ2) with Γ′′ ≤A Γ′′
1
and Γ′′ ≤A

Γ′′
2
. Thus, by using the monotonicity lemma, we can obtain IntertypeΓ′′,e,t (ϖ) ≤ t1∧ t2 = t ′.

[PTypeof] By using the outer induction hypothesis we get Repr(typeofΓ2 (e↓ϖ)) ≤ t ′. More-

over we have IntertypeΓ2,e,t (ϖ) ≤ Repr(typeofΓ2 (e↓ϖ)) (by definition of Intertype), thus
we can conclude directly.

[PEps] Trivial.

[PAppR] By using the induction hypothesis we get:

IntertypeΓ′′
1
,e,t (ϖ .0) ≤ t1 → t2

IntertypeΓ′′
2
,e,t (ϖ) ≤ t ′

2

t2 ∧ t ′
2
≃ 0

RefineStepn1

e,t (Γ1) ≤A Γ′′
1

RefineStepn2

e,t (Γ2) ≤A Γ′′
2

By takingn′ = max(n1,n2)+1, we can have Γ
′′ = RefineStepn

′

e,t (Γ2)with Γ
′′ ≤A RefineStepe,t (Γ

′′
1
)

and Γ′′ ≤A RefineStepe,t (Γ
′′
2
).

In consequence, we have Repr(typeofΓ′′(e↓ϖ .0)) ≤ IntertypeΓ′′
1
,e,t (ϖ .0) ≤ t1 → t2 (by

definition of RefineStepe,t ). We also have, by monotonicity, IntertypeΓ′′,e,t (ϖ) ≤ t ′
2
.

As t2 ∧ t ′
2
≃ 0, we have:

(t1 → t2) ◦ (dom(t1 → t2) \ (¬t1))

≃ (t1 → t2) ◦ t1 ≃ t2 ≤ ¬t ′
2

Thus, by using the declarative definition of ‚ , we know that (t1 → t2) ‚ t ′
2
≤ ¬t1.

According to the properties on ‚ that we have proved in the proof of the monotonicity

lemma, we can deduce:

t1 ∧ Repr(typeofΓ′′(e↓ϖ .0)) ‚ IntertypeΓ′′,e,t (ϖ)

≤ t1 ∧ (t1 → t2) ‚ t ′
2
≤ t1 ∧ ¬t1 ≃ 0

And thus Repr(typeofΓ′′(e↓ϖ .0)) ‚ IntertypeΓ′′,e,t (ϖ) ≤ ¬t1.
It concludes this case.
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[PAppL] By using the induction hypothesis we get:

IntertypeΓ′′
1
,e,t (ϖ .1) ≤ t1

IntertypeΓ′′
2
,e,t (ϖ) ≤ t2

RefineStepn1

e,t (Γ1) ≤A Γ′′
1

RefineStepn2

e,t (Γ2) ≤A Γ′′
2

By taking n′ = max(n1,n2), we can have Γ′′ = RefineStepn
′

e,t (Γ2) with Γ′′ ≤A Γ′′
1

and

Γ′′ ≤A Γ′′
2
. Thus, by using the monotonicity lemma, we can obtain IntertypeΓ′′,e,t (ϖ .0) ≤

¬(t1 → ¬t2) = t ′.
[PPairL] Quite straightforward using the induction hypothesis and the descriptive definition

of π 1.

[PPairR] Quite straightforward using the induction hypothesis and the descriptive defini-

tion of π 2.

[PFst] Trivial using the induction hypothesis.

[PSnd] Trivial using the induction hypothesis.

□

Simple type ts ::= b | ts × ts | ts ∨ ts | ¬ts | 0 | 0 → 1
Positive type t+ ::= ts | t+ ∨ t+ | t+ ∧ t+ | t+ → t+ | t+ → ¬t+
Positive abstraction type tλ+ ::= t+ → t+ | t+ → ¬t+ | t

λ
+ ∧ tλ+

Positive expression e+ ::= c | x | e+e+ | λ
tλ+ x .e+ | πje+ | (e+, e+) | (e+∈ts ) ? e+ : e+

Corollary A.30. If we restrict the language to positive expressions e+, the algorithmic type system

is complete and type schemes can be removed from it (we can use regular types instead).

More precisely: ∀Γ, e+, t . Γ ⊢ e+ : t ⇒ typeofΓ(e+) , Ω

Proof. With such restrictions, the rule [Abs-] is not needed anymore because the negative part

of functional types (i.e. the Ni part of their DNF) is useless.

Indeed, when typing an application e1e2, the negative part of the type of e1 is ignored by the

operator ◦.

Moreover, as there is no negated arrows in the domain of lambda-abstractions, the negative

arrows of the type of e2 can also be ignored.

Similarly, negative arrows can be ignored when refining an application ( ‚ also ignore the

negative part of the type of e1).
Finally, as the only functional type that we can test is 0 → 1, a functional type cannot be refined

to 0 due to its negative part, and thus we can ignore its negative part (it makes no difference

relatively to the rule [Efq]). □

Lemma A.31. If e is an application, then typeofΓ(e) does not contain any constructor [ · · · ]. Conse-

quently, we have Repr(typeofΓ(e)) ≃ typeofΓ(e).

Proof. By case analysis: neither [Efq], [EnvA] nor [AppA] can produce a type containing a

constructor [ · · · ]. □

Theorem A.32 (Completeness for rank-0 negated derivations). For every Γ, e , t such that

we have a rank-0 negated derivation of Γ ⊢ e : t , there exists a global parameter no with which

typeofΓ(e) ≤ t .
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More precisely:

∀Γ, e, t . Γ ⊢ e : t has a rank-0 negated derivation ⇒ typeofΓ(e) ≤ t

∀Γ, Γ′, e, t . Γ ⊢Enve,t Γ′ has a rank-0 negated derivation ⇒ Refinee,t (Γ) ≤A Γ′ (for no large enough)

Proof. This proof is quite similar to that of the completeness for positive derivations. In conse-

quence, we will only detail cases that are quite different from those of the previous proof.

Let’s begin with the first property. We have a rank-0 negated derivation of Γ ⊢ e : t . We want to

show typeofΓ(e) ≤ t (note that this is weaker than showing Repr(typeofΓ(e)) ≤ t ).
As in the previous proof, we can suppose that Γ , ⊥ and that e is not a variable.
The case e ∈ dom(Γ) is also very similar, but there is an additional case to consider: the rule

[Abs-] could possibly be used after a rule [Env] applied on e . However, this case can easily be

eliminated by changing the premise of this [Abs-] with another one that does not use the rule

[Env] on e (the type of the premise does not matter for the rule [Abs-], even 1 suffices). Thus let’s

assume e < dom(Γ).
Now we analyze the last rule of the derivation (only the cases that are not similar are shown):

[Abs-] We know that the derivation of typeofΓ(e) (if any) ends with the rule [AbsA]. Moreover,

by using the induction hypothesis on the premise, we know that typeofΓ(e) , Ω. Thus
we have typeofΓ(e) ≤ ¬(t1 → t2) = t (because every type ¬(s ′ → t ′) such that ¬(s ′ →
t ′) ∧

∧
i ∈I si → ti , 0 is in {[si → ti ]}).

Now let’s prove the second property. We have a rank-0 negated derivation of Γ ⊢Enve,t Γ′.

[Base] Any value of no will give Refinee,t (Γ) ≤A Γ, even no = 0.

[Path] We have Γ′ = Γ1, (e↓ϖ : t ′).
As in the previous proof of completeness, by applying the induction hypothesis on the premise

Γ ⊢Enve,t Γ1, we have RefineStepne,t (Γ) = Γ2 with Γ2 ≤A Γ1 for a certain n.

However, this time, we can’t prove IntertypeΓ′′,e,t (ϖ) ≤ t ′ with Γ′′ = RefineStepn
′

e,t (Γ2) for
a certain n′: the induction hypothesis is weaker than in the previous proof (we don’t have

Repr(typeofΓ(e)) ≤ t but only typeofΓ(e) ≤ t ).
Instead, we will prove by induction on the derivation ⊢PathΓ1,e,t

ϖ : t ′ that IntertypeΓ′′,e,t (ϖ) ⃝∧
typeofΓ′′(e↓ϖ) ≤ t ′. It suffices to conclude in the same way as in the previous proof: by taking

no = n + n
′
, it ensures that our final environment Γno verifies typeofΓ(e↓ϖ)no ≤ t ′ and thus

we have Γno ≤ Γ′ (given that Repr(0) = 0, we also easily verify that if Γ′ = ⊥ ⇒ Γno = ⊥).

[PSubs] Trivial using the induction hypothesis.

[PInter] Quite similar to the previous proof (the induction hypothesis is weaker, but it

works the same way).

[PTypeof] By using the outer induction hypothesis we get typeofΓ2 (e↓ϖ) ≤ t ′ so it is trivial.
[PEps] Trivial.

[PAppR] By using the induction hypothesis, we get:

IntertypeΓ′′
1
,e,t (ϖ .0) ⃝∧ typeofΓ′′

1

(e↓ϖ .0) ≤ t1 → t2

IntertypeΓ′′
2
,e,t (ϖ) ⃝∧ typeofΓ′′

2

(e↓ϖ) ≤ t ′
2

t2 ∧ t ′
2
≃ 0

RefineStepn1

e,t (Γ1) ≤A Γ′′
1

RefineStepn2

e,t (Γ2) ≤A Γ′′
2
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Moreover, as e↓ϖ is an application, we can use the lemma above to deduce IntertypeΓ′′
2
,e,t (ϖ)⃝∧

typeofΓ′′
2

(e↓ϖ) = IntertypeΓ′′
2
,e,t (ϖ) (see definition of Intertype).

Thus we have IntertypeΓ′′
2
,e,t (ϖ) ≤ t ′

2
.

We also have IntertypeΓ′′
1
,e,t (ϖ .0) ≤ Repr(IntertypeΓ′′

1
,e,t (ϖ .0) ⃝∧ typeofΓ′′

1

(e↓ϖ .0)) ≤ t1 →
t2.
Now we can conclude exactly as in the previous proof (by taking n′ = max(n1,n2)).

[PAppL] We know that the left premise is a positive derivation. Thus, using the previous

completeness theorem, we get:

IntertypeΓ′′
1
,e,t (ϖ .1) ≤ t1

RefineStepn1

e,t (Γ1) ≤A Γ′′
1

By using the induction hypothesis, we also get:

IntertypeΓ′′
2
,e,t (ϖ) ⃝∧ typeofΓ′′

2

(e↓ϖ) ≤ t2

RefineStepn2

e,t (Γ2) ≤A Γ′′
2

Moreover, as e↓ϖ is an application, we can use the lemma above to deduce IntertypeΓ′′
2
,e,t (ϖ)⃝∧

typeofΓ′′
2

(e↓ϖ) = IntertypeΓ′′
2
,e,t (ϖ) (see definition of Intertype).

Thus we have IntertypeΓ′′
2
,e,t (ϖ) ≤ t2.

Now we can conclude exactly as in the previous proof (by taking n′ = max(n1,n2)).
[PPairL] Quite straightforward using the induction hypothesis and the descriptive definition

of π 1.

[PPairR] Quite straightforward using the induction hypothesis and the descriptive defini-

tion of π 2.

[PFst] Quite straightforward using the induction hypothesis.

[PSnd] Quite straightforward using the induction hypothesis.

□

B A MORE PRECISE RULE FOR INFERENCE
In our prototype we have implemented for the inference of arrow type the following rule:

[AbsInf++]

T = {(s \
∨

s ′∈ψ (x ) s
′, t)} ∪ {(s ′, t ′) | s ′ ∈ ψ (x) ∧ Γ,x : s ′ ⊢ e : t ′}

Γ,x : s ⊢ e ▷ψ Γ,x : s \
∨

s ′∈ψ (x ) s
′ ⊢ e : t

Γ⊢λx :s .e :
∧

(s ′,t ′)∈T s
′ → t ′

instead of the simpler [AbsInf+]. The difference w.r.t. [AbsInf+] is that the typing of the body is

made under the hypothesis x : s \
∨

s ′∈ψ (x ) s
′
, that is, the domain of the function minus all the input

types determined by theψ -analysis. This yields an even better refinement of the function type that

makes a difference for instance with the inference for the function xor_ (Code 3 in Table 1): the old

rule would have returned a less precise type. The rule above is defined for functions annotated by a

single arrow type: the extension to annotations with intersections of multiple arrows is similar to

the one we did in the simpler setting of Section 3.2.

C A ROADMAP TO POLYMORPHIC TYPES
Extending our work to the case of a polymorphic language is far from trivial. Let us go back to our

typical example expression (3) of the introduction:

(x1x2 ∈ t)?e1:e2 (40)
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we have seen that occurrence typing for x1 and x2 was possible only in very specific cases which

depended on the form of the type of x1: (1) the type of x2 may be specialized only if the type of

x1 is an intersection of arrows and (2) the type of x1 may be specialized only if the type of x1 is a
union of arrows. With polymorphic types the first assertion is, strictly speaking, no longer true.

The simplest possible example to show it, is when x1 is of type α → α and x2 is of type α . Then it is

clear that we can assume that x2 has type t when typing e1 and that it has type ¬t when typing e2.
The deduction becomes much more difficult when one adds subtyping and set-theoretic types to

the game. Let us consider a couple of more examples to finger the key cases.

Take again the expression in (40) and imagine that t is Int and that x1 has type α → (α ∨Bool).12

We suppose the expression x1x2 to be well-typed and therefore that x2 is typed by a subtype of

α , say, α ∧ t◦. The case for the “then” is not very different from the previous one when x1 had
type α → α : the application x1x2 has type α ∨ Bool so if the test x1x2 ∈ Int succeeds, then it is

because the value yielded by the application is an integer and this integer must come from the α
summand of the union. Since we do not know exactly which integer we may obtain, we include

all of them in α , which yields Int as the best possible approximation for α . So when typing e1 we
can safely assume that x2 has type Int —or, more precisely, Int ∧ t◦, since we use the static type
information about x2—. The case for e2, instead, is different since assuming that x2 has type ¬Int
(more precisely, ¬Int ∧ t◦) would be unsound, insofar as the check may fail because the application

returned a Boolean, which can happen even when x2 is bound to an integer. Therefore, when typing

e2 we cannot specialize the type of x2 which must thus be assumed to be α ∧ t◦.
For a concrete example of why this would be unsound take t◦ = Int ∨ Bool and consider

(x1x2 ∈ Int)?x2 + 1:not(x2)

with x1 : α → (α ∨ Bool) and x2 : α ∧ (Int ∨ Bool). If when typing the else branch we assume

that x2 has type ¬Int ∧ t◦, that is, Bool, then the above expression would be well typed. But at run

time x1 can be bound to the constant function that always returns true, λα→Boolx .true (which by

subsumption is of type α → (α ∨ Bool)) and x2 to an integer, say, 42 which would reduce to the

expression not(42), which is not well typed.

As a final example consider the case in which x1 : α → (α ∨ true), x2 : α ∧ t◦, and t = Bool.
This case is somehow the dual of the previous one. For the case “then” we cannot do any further

assumption on the type of x2, since the test may have succeeded because the application returned

true and this may happen independently from the type of x2. For the “else” case instead we can

safely assume that the check failed due to the α part of the result, and therefore when typing e2 we
can safely assume that x2 has type x2 : ¬Bool ∧ t◦.
The reason why polymorphism makes a difference is that, intuitively, a polymorphic function

type already is an intersection of arrows, insofar as from an observational point of view it is

equivalent to the infinite intersection of all its instances. Since we cannot work with infinitely

many instances, we will pick up those that give us the information we need for occurrence typing

and that are computed starting from the type of x1 and from the type t as we explain next.

The idea is to single out the two most general type substitutions for which some test may

succeed and fail, respectively, and apply these substitutions to refine the types of the corresponding

occurrences when typing the “then” and “else” branches.

Consider:

• x1 : s → t
• x2 : u with u ≤ s
• the test x1x2 ∈ τ where τ is a closed type.

12
A non-trivial example of an expression of this type is the function λα→(α∨Bool)x .(e ∈u) ? x : true.
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Then we proceed as follows for the THEN branch:

First, check whether ∃σ such that tσ ≤ ¬τ .

• If such a σ does not exist, then this means that for all possible assignments of polymorphic

type variables of s → t , the test may succeed. Therefore the success of the test does not depend

on the particular instance of s → t and, thus, it is not possible to pick some substitution

that differentiates the success of the test and that could specialize the type of x2 in the “then”

branch.

• If ∃σ such that tσ ≤ ¬τ , then we know that there is at least one assignment for the type

variables of s → t that ensures that the test cannot but fail. Therefore for the typing of the
branch “then” we want to exclude all such substitutions. To put it otherwise we want only

to pick the substitutions σ for which the intersection of τ and tσ is not empty, that is, that

there is a value in τ that may be the result of the application. These are infinitely many

substitutions (if τ contains infinitely many values), and since we do not know which one

will be used (in the case of success, we just know that at least one of them will be used but

not which one), then we have to take all of them. Therefore we approximate them with the

substitution that ensures that all values in τ may be a result of the application. That is

(1) Find whether ∃σ◦ such that τ ≤ tσ◦
(2) Specialize for the “then” branch, the type of x1 and of x2 by applying the substitution σ◦ to

them.

For the ELSE branch we proceed as the above but considering the test x1x2 ∈ ¬τ .
In summary the algorithm is defined as follows:

THEN: ∃σ such that tσ ≤ ¬τ ?
no: no specialization is possible

yes: find σ◦ such that τ ≤ tσ◦ and refine in the “then” branch the type of x2 as uσ◦, of x1 as
sσ◦ → tσ◦, and of x1x2 as tσ◦.

ELSE: ∃σ such that tσ ≤ τ ?
no: no specialization is possible

yes: find σ◦ such that ¬τ ≤ tσ◦ and refine in the “else” branch the type of x2 as uσ◦, of x1 as
sσ◦ → tσ◦, and of x1x2 as tσ◦.

Notice that on the given examples the algorithm returns the expected results .

All the discussion we did above holds only when the type variables at issue are so-called

monomorphic type variables. These are variables that are bound somewhere else and all occurrences

of which will be all instantiated with the same type. For instance if x2 is the polymorphic identity

function we want to still use it polymorphically in the branches and specialize its type:

let x2 = λx .x
in ((x2x2∈Int)) ?x2(true) : (x2x2)false

rather than specializing it to either Int or Int → Int (or, worse since unsound, to their intersection).

In other terms we want to enrich occurrence typing by instantiating types in a particular way,

only if we know that those types will be instantiated all in the same way. For that we have to

syntactically distinguish polymorphic functions from monomorphic ones, so as to deduce that x2
in the example above as type ∀α .α → α , rather than α → α .
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