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Résumé – La complexité croissante des systèmes industriels amène les décideurs publics ou privés à optimiser le cycle de vie 

d'un système, notamment en ce qui concerne ses opérations de maintenance. Dans cet article, nous proposons une approche 

d’optimisation et de planification de la stratégie de maintenance tenant compte à la fois des coûts des opérations et des risques 

liés à la défaillance du système. La nouveauté de l'approche proposée réside dans une intégration, dans la fonction objectif 

que nous minimisons, de l’ensemble de coûts de maintenance ainsi que des risques financiers, environnementaux et humains 

pouvant être causés par une éventuelle défaillance du système. Pour cela, nous nous fondons sur la durée de vie utile restante 

(RUL) du système en tant qu’indicateur de l’état de santé du système. Les variables de décision sont alors : un seuil critique 

de RUL en-deça duquel le composant est remplacé et un pas d’inspection donnant la régularité avec laquelle le système est 

inspecté.  

 

Abstract - The growing complexity of industrial systems is driving public and private decision-makers to optimize the life cycle 

of a system, particularly with regard to maintenance operations. In this article, we propose an approach to optimize and plan 

the maintenance strategy taking into account both the costs of operations and the risks associated with system failure. The 

novelty of the proposed approach lies in an integration, in the objective function that we minimize, of the set of maintenance 

costs as well as the financial, environmental and human risks that could be caused by a possible system failure. This is based 

on the system's remaining useful life (RUL) as an indicator of the health status of the system. The decision variables are then: 

a critical threshold of RUL below which the component is replaced and an inspection step giving the regularity with which the 

system is inspected. 

 

 

Mots clés –maintenance basée sur les risques, maintenance prévisionnelle, durée de vie résiduelle, modèle coût, 

optimisation. 

Keywords – risk-based maintenance, predictive maintenance, remaining useful life, cost model, optimization. 

 
1 INTRODUCTION 

Maintenance is the combination of all technical, administrative, 

and managerial actions during the life cycle of a system aiming to 

retain it in, or restore it to a state in which it can perform its 

required function [Afnor, 2018]. We distinguish different types of 

maintenance such as corrective maintenance which is a 

maintenance performed after detection of a failure [Afnor, 2018] 

and preventive maintenance which is performed at predetermined 

intervals intended to reduce the probability of failure or 

degradation of the system [Afnor, 2018]. These two types of 

maintenance have major drawbacks: corrective maintenance 

generates additional costs and significant system downtime [Lee 

et al., 2006], [Lesobre et al., 2014], [Palem, 2013], while 

preventive maintenance does not allow an optimal system 

operation [Le, 2016]. In order to overcome these drawbacks, 

predictive maintenance has emerged as a solution to reduce the 

system downtime and the cost of maintaining the system.  

Predictive maintenance is based on a regular monitoring of the 

system in order to evaluate the health state of its components.  

Predictive maintenance is carried out following a forecast derived 

from repeated analysis or known characteristics and evaluation of 

the significant parameters of the degradation of the system [Afnor, 

2018]. Usually, we use the Remaining Useful Life (« RUL »), 

defined as the expected length of time left for the system before it 

falls down, as a measure of the the system’s health state.  

Through predictive maintenance, it is now possible for industrials 

to estimate the RUL of the system as one among other measures 

used to predict the failure time of the system, so that industrials 

are able to maintain the system before it falls down. However, in 

practice, once the RUL or other indicator of the health state of the 

system is determined, industrials face several issues related to the 

decision making process : what is the best time to perform 

predictive maintenance ? and how can we optimize the total cost 

of maintenance ? 

Besides, a sudden failure of the system may result in major 

accidents, causing damages to human and to the environment. The 
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main challenge for industrials is to quantify the impacts of these 

probable accidents in order to implement a cost-efficient 

maintenance strategy [Khan et Haddara, 2003].   
In this paper, we try to answer the previous issues by proposing 

an approach allowing to identify the cost-optimal strategy for 

predictive maintenance, taking into considerations the possible 

impacts that a failure accident may cause on the system and on its 

surroundings.  

 
2 STATE OF THE ART 

The introduction of new maintenance strategies such as predictive 

maintenance has been motivated mainly by the increase in the 

complexity of industrial systems and by the importance of the 

impact that maintenance may have on environment, equipment 

security, human safety and economic profitability. For instance, 

more recently, we have witnessed the use of risk measures in 

maintenance. In this paper, and in first approximation, risk is 

considered as the product of the probability of failure occurring to 

the system and the consequence of failure to the system and its 

surrounding, is then adopted as an index measure to clarify 

priority in risk maintenance technologies. Alternative criteria for 

taking into account decision maker’s attitude to risk is an avenue 

for future research. 

 

The Risk-Based Maintenance (RBM) is a technique for 

identifying, characterizing, quantifiying and evaluating the loss 

from a failure event in order to plan a maintenance action [Khan 

et Haddara, 2003]. 

RBM was first deployed in the chemical engineering and 

petroleum refining fields. For instance, the work of [Aller et al., 

1995] and [Reynolds, 1995] was used to develop a risk-based 

inspection policy for equipment owned by Brunei Shell Petroleum 

[Hagemeijer et Kerkveld, 1998]. A simple RBM was used by [Dey 

et al., 1998] to maintain a cross-country pipelines. [Nessim et 

Stephen, 1998] developed a quantitative risk-analysis model for 

maintenance budgeting, while [Dey, 2001] developed a more 

general framework for risk-based inspection and maintenance for 

cross-country pipelines.  

 

According to [Khan et Haddara, 2003], the risk-based 

methodology can be broken down in three main modules: risk 

determination which consists of risk identification and risk 

estimation, risk evaluation which consists of risk aversion and risk 

acceptance analysis and maintenance planning considering risk 

factors. This approach was successfully applied to a Heating 

Ventilation and Air-conditioning (HVAC) system [Khan et 

Haddara, 2003].  

 

[Sakai, 2010] has defined a general procedure for RBM. In this 

general procedure, data are collected and used to evaluate the risk 

of each part of the system under study. The risk evaluation will be 

the basis to rank priority for part inspection. As a consequence, 

mitigation measures are proposed and the operation is iterated 

from the beginning if problems are detected [Sakai, 2010].  

A more recent work on RBM combined with Bayesian network to 

model the risk and its associated uncertainty is developed by 

[Leoni et al., 2018] and successfully applied to a case study of 

Natural Gas Reduction and Measuring Station in Italy. Finally, the 

work of [Jaderi et al., 2019] considers both traditional RBM and 

fuzzy RBM for the risk analysis of petrochemical assets failure.  

 

 The review of literature on RBM shows that the risk measure can 

be used as a criterion to plan maintenance. However, in practice, 

it is not evident to define the risk acceptance level which is the 

basis of the RBM methodology. Besides, the notion of risk cannot 

be excluded from the notion of monetary loss as the ultimate goal 

of industrials is to reduce the overall cost of maintenance. 

 

Another approach widely used in literature to plan maintenance is 

the approach of cost optimization. This approach aims at 

identifying the maintenance strategy minimizing the total cost of 

maintenance.  For example, [Vaurio, 1999] developed a cost 

model taking into account finite repair, maintenance durations and 

costs due to testing, repair, maintenance and lost production or 

accidents. The objective of the maintenance optimization is to 

minimize the total cost rate by proper selection of two intervals: 

one for inspections and one for replacements [Vaurio, 1999]. 

[Maillart et Pollock, 2002] analyzed predictive maintenance 

policies for systems exhibiting 2-phase behavior: the phase of new 

condition and the phase of worn condition, and presented cost-

minimizing policies, to determine when monitoring should take 

place. [Zou et al., 2007] and [You et al., 2010] developed a 

sequential imperfect preventive maintenance policy and 

determined the optimal preventive maintenance schedule that 

minimizes the cost rate in the life cycle of the system or in the long 

run, while [Van Horenbeek et Pintelon, 2013] developed a 

dynamic predictive maintenance policy for complex multi-

component systems aiming at minimizing the long-term mean 

maintenance cost per unit time. Finally, a recent work on 

predictive maintenance decision-making method based on cyber 

manufacturing and mission reliability state was developed by [He 

et al., 2018].  

 

The review of literature on maintenance cost optimization 

methods shows that the concept of risk in cost optimization has 

not been tackled yet, although the occurrence of a failure on a 

system may have onerous consequences for industrials [Khan et 

Haddara, 2003]. 

  

To deal with this gap, we propose in this paper an original 

approach allowing to combine the notion of risk with the cost of 

maintenance for optimal maintenance strategy identification in 

terms of economic profit.  

3 COST MODEL 

3.1 Assumptions  

In developing the predictive maintenance strategy, some 

assumptions are addressed as below: 

1- The system under study is a single component. 

2- The system under study is part of a whole complex 

system, which has a duration of exploitation known 

beforehand, noted D.  

3- A perfectly reliable inspection is applied regularly on the 

system (figure 1). The inspection gives an information on 

the state of health of the system. For instance, the 

inspection gives a real estimation of the RUL of the 

system. After simulations, the RUL is the expected 

interval of time the system is likely to operate before it 

requires replacement. The RUL of the system can be 

expressed by the following equation: 



 

𝑅𝑈𝐿(𝑡) = 𝐸[𝑇 − 𝑡|𝑇 > 𝑡] =
∫ (𝑢 − 𝑡). 𝑓(𝑢). 𝑑𝑢
∞

𝑡

𝑆(𝑡)
 

 

with T the time of failure of the system, f the failure 

density function of the system and S the survival function 

of the system. 

  

4- The inspection does not affect the system’s performance. 

5- A first inspection is required in the early life of the 

system, but the health of the system is supposed not to 

require replacement because it is a new one (figure 1). 

Once the system attains D, there is no use to perform 

inspection and the system can be replaced by a new one.  

 

 

Figure 1. Inspection procedure 

 

6- Between inspection i and inspection i+1 (figure 1), one 

of these scenerios happens : 

- Predictive maintenance scenario : the RUL of the 

system attains some threshold value called RULlim 

under which the system is considered as 

deteriorated : the system is replaced by a new one 

before the inspection i+1.  

- Non-predictive maintenance scenario : in this 

scenario, the system is not replaced by predictive 

maintenance. In such case, the system can fail or not: 

o The system fails before the next inspection 

i+1 knowing that he was operating at 

inspection i, the system is then correctively 

replaced by a new one. The probability of 

occurrence of this scenario is given by 

∫ 𝑓(𝑡)
𝑖+1

𝑖,𝑇>𝑡𝑖
. 𝑑𝑡 =

∫ 𝑓(𝑡)
𝑖+1
𝑖 .𝑑𝑡

𝑆(𝑡𝑖)
, where 𝑡𝑖 is the 

time of the ith inspection.  

o The system operates normally until the next 

inspection i+1 with the complementary 

probability of occurrence 1 −

∫ 𝑓(𝑡)
𝑖+1

𝑖,𝑇>𝑡𝑖 
. 𝑑𝑡. 

7- The duration of both predictive and corrective 

replacement is assumed to be constant and known. 

8- The cost of both predictive and corrective replacement, 

as well as the cost of inspection, are assumed to be 

constant and known. 

3.2 Typology of costs 

In our methodology, costs can be divided in two types as shown 

in figure 2: costs related to maintenance composed of: cost of 

predictive maintenance, cost of corrective maintenance and cost 

of inspection and economic loss due to maintaining the system. 

The economic loss includes cost of operating loss and cost of 

indirect loss (figure 2).  

 

Figure 2. Typology of costs for maintenance strategy 

optimization 

 

3.3 Cost of predictive maintenance 

In our methodology, the decision to preventively maintain the 

system is not systematic. In fact, in some cases, corrective 

maintenance may be preferable to predictive maintenance.  

The cost of predictive maintenance during the time cycle D, 

denoted by 𝐶𝑃𝑚, can be described by the following equation [He 

et al, 2018]: 

𝐶𝑃𝑚 = (𝐶𝑝 + 𝐶𝐼). ∑ 𝑁𝑖

𝑁𝐼𝑛−1

𝑖=1

   (𝐸𝑞. 1)    

 

where 𝐶𝑃 is the cost of a predictive replacement of the system, 𝐶𝐼is 

the cost of installation for maintenance (fixed cost), 𝑁𝐼𝑛 is the total 

number of inspections (the first one does not cause any 

replacement) and Ni is a binary decision variable in the inspection 

interval [i, i+1] which takes the value of 1 in case of predictive 

maintenance (the RUL is under the threshold value RULlim) and 0 

elsewhere. 

 

3.4 Cost of corrective maintenance 

The cost of corrective maintenance for the ith inspection is paid 

only if there is no predictive replacement and if there is a failure 

before the next inspection (inspection i+1). Thus, the cost of 

corrective maintenance during the time cycle D, denoted by 𝐶𝐶𝑚, 

can be described by the following equation [He et al, 2018]: 

𝐶𝐶𝑚 = ∑ (𝐶𝑐 + 𝐶𝐼). (1 − 𝑁𝑖)∫ 𝑓(𝑡)
𝑖+1

𝑖,𝑇>𝑡𝑖

. 𝑑𝑡

𝑁𝐼𝑛−1

𝑖=1

   (𝐸𝑞. 2)  

 
where 𝐶𝑐 is the cost of a corrective replacement of the system.  

 

3.5 Inspection cost 

The inspection process is done regularly on the system to evaluate 

the RUL of the system under study (figure 1). We stipulate that 

inspection is required in the early life of the system. According to 

figure 1, the step of inspection θ is linked to the number of 

inspections NIn per cycle D according to the following equation : 

𝑁𝐼𝑛 . 𝜃 = 𝐷      
which means : 



 

𝑁𝐼𝑛 =
𝐷

𝜃
  (𝐸𝑞. 3) 

 

Thus, the total cost of inspection 𝐶𝐼𝑛 per time cycle D can be 

expressed by the following equation : 

𝐶𝐼𝑛 =
𝐷

𝜃
. 𝑐𝐼𝑛   (𝐸𝑞. 4)    

 

where 𝑐𝐼𝑛 is the cost of one inspection.  

 

3.6 Cost of operating loss 

Usually the failure of the system causes in loss of operation 

capacity [He et al, 2018]. Besides, maintaining the system may 

require to shut down the system for security measures which leads 

to loss of the system’s operation capacity. 

The cost of operating loss 𝐶𝑂𝑙  contains the cost of operating loss 

from predictive maintenance and the cost of operating loss from 

corrective maintenance. This cost can be modeled by the 

following equation: 

𝐶𝑂𝑙 = 𝐷𝑝. 𝑐𝐷𝑡. ∑ 𝑁𝑖

𝑁𝐼𝑛−1

𝑖=1

+ ∑ (1 − 𝑁𝑖

𝑁𝐼𝑛−1

𝑖=1

). ∫ 𝑓(𝑡). 𝑑𝑡
𝑖+1

𝑖,𝑇>𝑡𝑖
𝑐𝐷𝑡. 𝐷𝑐   (𝐸𝑞. 5)  

  

where 𝐷𝑝 is the duration of a predictive replacement, 𝐷𝑐  is the 

duration of a corrective replacement and 𝑐𝐷𝑡 is the system 

downtime cost per unit of time. 

As expected before, the first term of the equation corresponds to 

the cost of operating loss due to predictive maintenance and the 

second term of the equation corresponds to the cost of operating 

loss due to corrective maintenance.  

 

3.7 Indirect loss cost 

In reality, the loss of operation capacity may affect negatively the 

customer satisfaction, which indirectly brings economic loss to the 

company such as reduced orders caused by diminished company 

standing and other factors [He et al, 2018].  

Besides, the occurrence of a failure event can have negative 

effects on human health and environment. As for example, a 

failure of the system may cause the emission of toxic chemicals 

harmful for human health as well as for the environment [Khan et 

Haddara, 2003]. 

Thus, the indirect loss cost includes the following terms: 

- the financial risk Rf caused by reduction of customer 

orders. 

- the human risk Rh caused by human loss (injury, disease 

or death) from a failure event. 

- the environment or ecological risk Re caused by 

environmental degradation due to emission of pollutants.  

 

The indirect loss cost, denoted by 𝐶𝐼𝑙 can then be represented by 

the equation below: 

𝐶𝐼𝑙 = 𝑅𝑓 + 𝑅ℎ + 𝑅𝑒    (𝐸𝑞. 6)      

 

In the following section (section 4), we describe how we measure 

the financial risks in section 4.1, the environmental risks in section 

4.2 and the human risks in section 4.3. 

4 RISK ASSESSMENT 

The underpinnings of the risk-based methdology come from the 

identification of failure scenarios, their consequences and the 

probabilities of their occurrence. A failure scenario is a sequence 

of events which may lead to a system’s failure. It may be a single 

event or a combination of sequential events [Khan et Haddara, 

2003]. In the context of predictive maintenance, estimation of the 

likelihood of system’s failure is based on inspections and 

simulations. To evaluate the risk of a failure scenario, we use the 

classical definition of the risk : a risk can be defined, in first 

approximation - which does not address risk related behaviour of 

the decision maker - by the following set of duplets for a 

predefined failure scenario [Khan et Haddara, 2003]: 

𝑅𝑖𝑠𝑘 = 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 × 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 
 

4.1 Financial risks 

The literature review presents a wide variety of financial measures 

allowing to evaluate the financial performance of an industry : for 

example, growth rates used at their most basic level to express the 

annual change in a variable as a percentage, profit margins used 

to evaluate the monetary gain left over after accounting for the 

cost of goods sold or the average revenue per user [Ngobo et 

Ramaroson, 2005]. In our study, we proconize the use of the churn 

rate as a financial meaure as it allows to model a financial loss 

[Crie, 1996]. The basic definition of churn rate is the proportion 

of customers that a business loses during a given period of time 

[Crie, 1996].  

In our study, we assume that the business loses x% of customers 

in case of predictive maintenance and y% of customers in case of 

corrective maintenance. As one may notice, y% is superior to x% 

because the failure of the system is negative for consumers.   

We know that during the period of time D : in (∑ 𝑁𝑖
𝑁𝐼𝑛−1
𝑖=1 ) of 

cases, the system is predictively maintained and in (∑ (1 −
𝑁𝐼𝑛−1

𝑖=1

𝑁𝑖).∫ 𝑓(𝑡). 𝑑𝑡
𝑖+1

𝑖,𝑇>𝑡𝑖
) of cases, the system is correctively 

maintained.  

Thus, the expected financial risks (𝑅𝑓) can be evaluated by the 

following equation: 
𝑅𝑓

= 𝑀. 𝐶. (
𝑥 × (∑ 𝑁𝑖

𝑁𝐼𝑛−1
𝑖=1 ) + 𝑦 × (∑ (1 − 𝑁𝑖

𝑁𝐼𝑛−1
𝑖=1 ). ∫ 𝑓(𝑡). 𝑑𝑡

𝑖+1

𝑖,𝑇>𝑡𝑖
)

100
)   (𝐸𝑞. 7) 

 

where M is the number of potential customers at the beginning of 

the period D, and C is the cost of loss of one customer for the 

business. 

4.2 Environmental risks 

A failure scenario may cause damages to environment by emission 

of harmful pollutants. For a failure scenario i, we consider : 

- n: the total number of chemicals emitted during failure 

sceanrio i. 

- 𝑃 = (𝑃1, 𝑃2, … , 𝑃𝑛): the probability emission of 

pollutants, so that 𝑃𝑗 is the probability of emission of 

chemical j during the failure scenario i.  

- 𝑉 = (𝑉1, 𝑉2, … , 𝑉𝑛): the volume of emission of 

pollutants, so that 𝑉𝑗 is the volume of emission of 

chemical j during the failure scenario i.  



 

- 𝜚 = (𝜌1, 𝜌2, … , 𝜌𝑛): the density vector of chemicals, so 

that 𝜌𝑗 is the density value of chemical j emitted during 

the failure scenario i. 

- 𝐷𝑎 = (𝐷𝑎1, 𝐷𝑎2, … , 𝐷𝑎𝑛): the cost of damage per tonne 

emission of pollutants, so that 𝐷𝑎𝑗 is the cost of damage 

per tonne emission of chemical j during the failure 

scenario i.  

 

There are several methods to evaluate the cost of damage of 

pollutants. For example, disability-adjusted life years (DALYs) is 

used to evaluate the environmental impact on human health by 

measuring the reduced quality of life due to illness in years [Gao 

et al., 2015]. Environmental burden of disease (EBD) assess the 

disease burden attributable to environmental risk factors [Prüss-

Üstün et al., 2003], while the CAFE-CBA methodology is an 

approach for cost-benefit analysis used by the clean air for Europe 

(CAFE) program in order to quantify the damage of some 

chemicals to crops and to human health [Holland et Pye, 2005].  

 
The environmental risks (𝑅𝑒) of a failure scenario i by taking into 

account the expected number of failures can then be evaluated by 

the following equation: 

𝑅𝑒 = (∑𝑃𝑗 × 𝑉𝑗 × 𝜌𝑗 ×

𝑛

𝑗=1

𝐷𝑎𝑗) . ∑ (1 − 𝑁𝑖

𝑁𝐼𝑛−1

𝑖=1

).∫ 𝑓(𝑡). 𝑑𝑡
𝑖+1

𝑖,𝑇>𝑡𝑖

   (𝐸𝑞. 8) 

 

where 𝐷𝑎𝑗 is the cost of damage per tonne emission of pollutant j 

by considering one the previously descriped methods for damage 

cost evaluation.  

4.3 Human risks 

It is difficult to evaluate risks outside the financial domain. Risks 

to life and health are usually different from financial risks and 

thus, cannot be evaluated in terms of money. To deal with this 

issue, economists have introduced the concept of Value of 

Statistical Life (VSL). The VSL is the most frequent terminology 

to refer to the trade-off rate between fatality risks and money [Kip 

Viscusi, 1993], [Kip Viscusi et Aldy, 2003], [Kip Viscusi, 2004], 

[Machina et Kip Viscusi, 2013]: it reflects the worker’s 

willingness to pay to accept risk and to pay for more safety. The 

terminology of VSL emphasizes the probabilistic aspect of the 

valuation because at the time of a decision, the lives that will be 

saved are only probabilistically known [Shelling, 1968], [Machina 

et Kip Viscusi, 2013]. The VSL has attractive properties : 

according to [Machina et Kip Viscusi, 2013], it provides a cardinal 

measure of the value of life rather than an ordinal measure and it 

is applied to estimate the willingness-to-pay value as-well-as the 

willingness-to-accept value to risk changes. Let’s note 𝑝𝑗
𝑑 the 

death probability of the person j in case of occurrence of failure 

scenario i. The human risks (𝑅ℎ) of a failure scenario i by taking 

into account the expected number of failures can be evaluated by 

the following equation: 

𝑅ℎ = (𝑉𝑆𝐿.∑𝑝𝑗
𝑑

𝑛

𝑗=1

) . ∑ (1 − 𝑁
𝑖

𝑁𝐼𝑛−1

𝑖=1

).∫ 𝑓(𝑡). 𝑑𝑡
𝑖+1

𝑖,𝑇>𝑡𝑖

    (𝐸𝑞. 9) 

 

where n is the total number of persons that are possibly being 

impacted by the failure scenario i.  

 

By way of similarities, this method can be applied to evaluate the 

risk of human injuries : we may consider different levels of 

injuries with their corresponding compensation costs.  

 

In practice, experts are not able to evaluate with certainty the 

injury/death probability from a failure scenario. They are not able 

neither to evaluate the probability of emission of chemicals. Thus, 

methods for uncertainty reduction are used to estimate 

approximately these probabilities (appendix 1). 

 

5 COST MODEL BASED ON RISK ASSESSMENT 

In this section, we describe the optimization process to follow in 

order to identify the optimal strategy for predictive maintenance.  

The objective function to optimize is defined in section 5.1, the 

decision variables are described in section 5.2 and the constraints 

are described in section 5.3. Finally, a synthesis of the steps of the 

optimization process is described in section 5.4. 

5.1 Objective function 

The objective function that we want to minimize is the total cost 

of maintenance during the period of time D. This objective 

function is   given by the following equation: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐶𝑃𝑚 + 𝐶𝐶𝑚 + 𝐶𝐼𝑛 + 𝐶𝑂𝑙 + 𝐶𝐼𝑙    (𝐸𝑞. 10) 

5.2 Decision variables 

The decision variables that we need to determine by the process 

of optimization are the following: 

- RULlim: the limit of the RUL that indicates that a 

predictive maintenance should be performed on the 

system. It means: 

o If 𝑅𝑈𝐿𝑠𝑦𝑠𝑡𝑒𝑚 ≤ 𝑅𝑈𝐿𝑙𝑖𝑚, then the system should 

be maintained. 

o If 𝑅𝑈𝐿𝑠𝑦𝑠𝑡𝑒𝑚 > 𝑅𝑈𝐿𝑙𝑖𝑚, then the system 

operates normally and does not need to be 

maintained.  

- θ: the inspection step, i.e. the interval between two 

consecutive inspections. 

5.3 Constraints 

o Positivity constraints 

The different costs should be positive: 

{
 
 

 
 
𝐶𝑃𝑚 ≥ 0
𝐶𝐶𝑚 ≥ 0
𝐶𝐼𝑛 ≥ 0
𝐶𝑂𝑙 ≥ 0
𝐶𝐼𝑙 ≥ 0

   (𝐸𝑞. 11) 

 

and the decision variables need to verify the following constraints: 

{
𝑁𝑖  𝑏𝑖𝑛𝑎𝑟𝑦, 𝑖 = 1. . 𝑁𝐼𝑛 − 1

𝜃 ≥ 0
   (𝐸𝑞. 12) 

 

o Constraints on the inspection process 

The system requires at least one inspection : one inspection at 

the early life of the system. This can be translated by the 

following inequality: 

𝑁𝐼𝑛 ≥ 1   (𝐸𝑞. 13) 
 

o Contraints on the system’s availability 

We must ensure the availability of the system which means 

that the maintenance action should be negligible comparing 



 

to the operating time of the system. In other words, the 

duration of both predictive and corrective replacement should 

be too small in comparison with the inspection step θ.  

{
𝐷𝑝 ≤ 𝜀. 𝜃

𝐷𝑐 ≤ 𝜀. 𝜃
   (𝐸𝑞. 14) 

 

with ε a sufficiently small number. 

5.4 Synthesis 

The inspection i of the system gives data on the health state of the 

system, in particular a measurement of the RUL at time ti (time of 

inspection i). At time ti, we need to decide whether predictive 

maintenance should be performed on the system or not. Therefore, 

we proceed by: 

- assessing the different risks caused by a possible failure 

of the system 

- evaluating the different costs related to maintenance  

- identifying the decision variables that minimize the 

global cost of maintenance 

Once the decision variables are evaluated, we are confronted with 

several possibles cases: 

- Case 1: the decision variable N is equal to 1, thus a 

predictive replacement of the system should be 

performed and the RULlim is superior to the RUL of the 

system. In this case, the process must be reset once the 

system is replaced by a new one.  

- Case 2: the decision variable N is equal to 0, thus there 

is no predictive replacement of the system. However, the 

system may fail or not before the next inspection 

(inspection i+1): 

o The system does not fail before inspection i+1: 

the system continues to operate normally and 

inspection i+1 is performed at time ti+θ. 

o The system fails before inspection i+1: a 

corrective replacement of the system should be 

performed and the process is reset once the 

system is replaced by a new one. 

 

Figure 3 represents the flowchart of the global approach 

developed in this paper. 

 

 
Figure 3. Flowchart of the optimization process for 

predictive maintenance planning 

6 CONCLUSION AND FUTURE PERSPECTIVES 

Maintenance aims at increasing the availability of a system, taking 

into account issues related to safety and to environment, and 

considering as well the problem of cost optimization. Risk 

assessment tries to answer the following questions :  

- what can cause the system to fail ?  

- what are the possible impacts of system failure ? 

- how probable does it occur ? 

 

while cost optimization tries to answer the following questions : 

- in regards with risk assessment, what are the different 

costs of maintenance ? 

- how to minimize the total cost of maintenance, in other 

words: what is the best time to perform 

inspection/maintenance in order to minimize the total 

cost of maintenance ? 

 

We tried in this paper to answer the previous questions by 

proposing an original approach for maintenance strategy 

optimization considering risk assessment. However, this approach 

is subject to several possible improvements : 

- uncertainty in the probability estimation: in fact, it is not 

evident for the decision maker to evaluate with certainty 

the probability of a possible damage caused by a failure 

scenario. Thus, a method for uncertainty reduction may 

be integrated to our approach (appendix 1).  

- decision maker’s attitude to risk and uncertainty: in 

reality, whether the decision maker is averse or not to risk 

or uncertainty has a tremendous impact on the 

optimization process. It may be interesting to integrate to 

our approach the attitude to risk and uncertainty of the 

decision maker (see example in appendix 2).   

 

Our future work will try to develop these two points as a possible 

way to improve the approach described in this paper.  
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9 APPENDIX 1 : UNCERTAINTY REDUCTION IN 

PROBABILITY ESTIMATION 

  Suppose that for a failure scenario i, the total number of persons 

that are possibly being physically impacted by the failure of the 

system is known. We note n the total number of physically 

impacted people. All that experts know is that the probability of 

death of the jth person lies in the interval 𝑃𝑗
𝑑 = [𝑝𝑗

𝑑 , 𝑝𝑗
𝑑] ⊂ [0,1] 



 

where 𝑝𝑗
𝑑 and 𝑝𝑗

𝑑 are respectively the minimum and maximum 

possible value of death probability of the jth person [Aspinall et 

Cooke, 2013], [Ben Abdallah et Destercke, 2015]. The uncertainty 

𝑈𝑗
𝑑on the value of 𝑝𝑗

𝑑 can then be expressed as follows : 

𝑈𝑗
𝑑 = 𝑝𝑗

𝑑 − 𝑝𝑗
𝑑       

 

We assume that the uncertainty 𝑈𝑗
𝑑 is reductible via expert 

elicitation and that experts are able to answer correctly all the 

questions about the input [Ben Abdallah et Destercke, 2015]. 

Thus, the expert knowledge are exploited to reduce the uncertainty 

𝑈𝑗
𝑑  on the value of death probability  𝑝𝑗

𝑑 to a some desired level 

𝑠𝑗
𝑑 [Ben Abdallah et Destercke, 2015]. 

 

 Expert elicitation method : 

We use simple questions that do not require high cognitive effort 

such as : « is 𝑝𝑗
𝑑 ≤ 𝛼𝑗 ? » with 𝛼𝑗 in 𝑃𝑗

𝑑. Such a query is denoted 

by Q
j

αj
  and the set of possible queries is denoted by Q =

{Q
j

αj
,  jϵ{1, … , n}, αjϵ𝑃𝑗

𝑑}. The set of possible answers A is binary 

{yes, no}. When a question Q
j

αj
 is asked and an answer 𝑎 ∈ 𝐴 is 

collected, 𝑝𝑘
𝑑 remains the same if 𝑘 ≠ 𝑗, while if 𝑘 = 𝑗, 𝑝𝑘

𝑑 is 

updated to 𝑝𝑗 (𝑄𝑗
𝛼𝑗
,  𝐴) as follows [Ben Abdallah et Destercke, 

2015] : 

𝑝𝑗 (𝑄𝑗
𝛼𝑗
,  𝐴) = {

𝑃𝑗
𝑑 ∩ ]−∞,𝛼𝑗] 𝑖𝑓 𝑘 = 𝑗,  𝐴 = 𝑌𝑒𝑠

𝑃𝑗
𝑑 ∩ [𝛼𝑗, +∞[ 𝑖𝑓 𝑘 = 𝑗,  𝐴 = 𝑁𝑜

         

 

which satisfies 𝑝𝑗 (𝑄𝑗
𝛼𝑗
,  𝐴) ∈ 𝑃𝑗

𝑑 for whatever 𝑄
𝑗

𝛼𝑗
∈ 𝑄 and 𝑎 ∈

𝐴. 

𝑈
𝑝𝑗
𝑑(𝑄𝑗)

 is then the uncertainty reduction induced by query 𝑄𝑗  : 

this is a typical problem of decision making under uncertainty 

where the decision is the value of 𝛼𝑗, the uncertain event is the 

answer to the question and the outcome that we want to maximize 

is the uncertainty reduction on the output 𝑝𝑗
𝑑 [Ben Abdallah et 

Destercke, 2015]. 

The method of expert elicitation is used to reduce uncertainty. As 

one may expect, this method can also be applied to reduce 

uncertainty on the estimation of probability of chemical emission 

or on the estimation of probability of human injury, because 

experts are not able to measure these probabilities with certainty. 

 

10 APPENDIX 2 : DECISION MAKING CRITERIA UNDER 

UNCERTAINTY 

Decision under uncertainty refers to the problem of choosing the 

best decision d among a set of possible alternatives D which 

desired outcomes (or utilities), U(d,e), depend on an uncertain 

event e in a set of events E. The objective of the decision maker is 

to maximize the outcome under incomplete knowledge [Aspinall 

et Cooke, 2013], [Ben Abdallah et Destercke, 2015]. The decision 

theory proposes several rules that model rational behaviour the 

decision maker may use to evaluate the alternatives and make 

choices. In what follows, uncertainty is not totally reduced and 

probabilities of each event are not well known: 

- The rule of maximax : it describes extreme optimistic 

attitude and selects the alternatives with the best-case 

outcome [Hwang et Yoon, 1981]. This rule can be 

represented by the following equation : 

𝛼𝑗
∗ = 𝑎𝑟𝑔 min

𝛼𝑗𝜖𝑃𝑗
𝑑
min (𝑈

𝑝𝑗
𝑑(𝑄

𝑗

𝛼𝑗
,𝑁𝑜)

, 𝑈
𝑝𝑗
𝑑(𝑄

𝑗

𝛼𝑗
,𝑌𝑒𝑠)

)  

 

- The rule of maximin (Wald’s criterion) : it suggests to 

select the alternatives with the worst case outcome. It 

reflects a cautious attitude [Wang et Boutilier, C., 2003], 

[Viappiani et Kroer, 2013]. This rule can be expressed by 

the following equation : 

𝛼𝑗
∗ = 𝑎𝑟𝑔 min

𝛼𝑗𝜖𝑃𝑗
𝑑
max (𝑈

𝑝𝑗
𝑑(𝑄

𝑗

𝛼𝑗
,𝑁𝑜)

, 𝑈
𝑝𝑗
𝑑(𝑄

𝑗

𝛼𝑗
,𝑌𝑒𝑠)

) 

 

- Hurwicz’s criterion : it is a trade-off between the 

strategies above. It uses a set of balancing coefficients p 

and q that satisfies 𝑝 + 𝑞 = 1. They reflect respectively 

the decision maker’s degree of optimism and pessimism 

[Hwang et Yoon, 1981]. 
𝛼𝑗
∗

= 𝑎𝑟𝑔 𝑚𝑖𝑛
𝛼𝑗𝜖𝑃𝑗

𝑑
(𝑝.min(𝑈

𝑝𝑗
𝑑(𝑄

𝑗

𝛼𝑗
,𝑁𝑜)
, 𝑈

𝑝𝑗
𝑑(𝑄

𝑗

𝛼𝑗
,𝑌𝑒𝑠)

) + q.𝑚𝑎𝑥 (𝑈
𝑝𝑗
𝑑(𝑄

𝑗

𝛼𝑗
,𝑁𝑜)
, 𝑈

𝑝𝑗
𝑑(𝑄

𝑗

𝛼𝑗
,𝑌𝑒𝑠)

)) 

 
 

 

 

  

 

 

 


