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Abstract—With an increasing demand for resilience in
software-defined networks (SDN), it becomes critical to mini-
mize service recovery delay upon route failures. Fast reroute
(FRR) mechanisms are widely used in IP and MPLS networks
by computing the recovery path before a failure occurs. The
centralized control plane in SDN can potentially enhance path
computation, so that FRR path computation can better scale
in SDN than in traditional networks. However, traditional FRR
path computation algorithms could lead to poor performance
in large-scale SDN. The problem can become more severe for
a highly dynamic network, which often sees dozens of failures
or configuration changes in any single day. We propose a new
algorithm that exploits pruned searching to quickly compute
recovery paths for all-pair switches/hosts upon a link failure. For
applications requiring stringent path robustness levels, we also
extend this algorithm to quickly find the shortest guaranteed-
cost path, which ensures that the recovery path used upon
on-path link failures has the minimum cost. Compared with
traditional solutions, our evaluations show that our algorithm
is about 8 ∼ 81 times faster than the practical implementation,
1.93 ∼ 3.11 times faster than the state-of-the-art solution. Our
results also show that the shortest guaranteed-cost path can
reduce the cost of the recovery path significantly. Moreover, we
design a prototype to show how to deploy our algorithm in an
OpenFlow network.

Index Terms—Software-Defined Networks, Path Computation,
Fast Reroute

I. INTRODUCTION

RECENTLY, software-defined networks (SDN) are in-
creasingly deployed in enterprise, campus and carrier

networks [1], [2]. By separating the control plane from the
data plane, SDN has emerged as a promising paradigm
with attractive features, such as switch programmability and
centralized global view [3]. Although a large space of new
functionalities in SDN has been explored, the problem of
resilience to connectivity disruptions in SDN still remains
challenging.

Measurement studies have revealed that link and node fail-
ures are quite frequent and unexpected in both data-center and
wide-area network environments [4], [5]. Even if an important
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portion of failures are transient and last only few seconds or
minutes as reported in [5], many delay-sensitive applications
like VoIP or video conference [6] can tolerate only sub-50ms
recovery times [7], [8]. Slow convergence during link/node
failures can cause severe disruptions for these applications.
Accordingly, fast reactions to such failures is a critical task.

The procedure of computing and bypassing the traffic from
the path with failures to a recovery path is referred to as
rerouting [9]. The default SDN rerouting scheme includes the
following steps: 1) failure report from switch to controller; 2)
reactive computation of the recovery path at controller, and
3) flow table updates in the involved switches. The flow table
update delay can be minimized remarkably [10]. However,
path computation and switch-controller interaction still take a
significant amount of the total recovery time. It is reported
that the recovery time of IGP in SDN may be slower than in
legacy network due to these overheads [11].

In general, the recovery paths can be reactively computed
upon a failure event or proactively computed before a failure
occurs. Reactive approaches might take significant time in
finding an alternative path due to the route update delay.
To allow rerouting as quick as possible, Fast Reroute (FRR)
is proposed as a proactive recovery path pre-computation
mechanism to initiate local switching tables. There have been
considerable efforts using FRR towards minimizing rerouting
time in traditional IP and MPLS networks [12]–[15]. FRR
is also believed to be easily deployable in SDN [16]–[19].
There have been efforts in applying FRR to SDN using source
routing [20]–[22]. However, as summarized in section II-A,
traditional recovery path computation approaches suffer from
prohibitive performance degradation in SDN environments
as the scale of the network is much larger (typically more
than 1, 000 switches/hosts [23], [24]) than traditional FRR
scenarios. Meanwhile, it is reported that if failure recovery
relies only upon built-in mechanisms of commercial OpenFlow
switches, it may require up to hundreds of milliseconds [25].
As SDN is sensitive against single link failure, a full (100%)
coverage protection solution is desired [26]. Therefore, it is
vital to improve the efficiency of computing recovery paths
for all-pair switches/hosts upon a link failure.

In this paper,we focus on the algorithmic challenges towards
efficient FRR recovery path computation upon link failures
in large-scale SDNs. With an FRR mechanism, the traffic
detour locally occurs, with a recovery path from the node
with a failed link (the last reachable node along the original
path) to the destination node. There are different criteria for
selecting the recovery path. A commonly used strategy is to
choose the shortest path that has the minimum cost from
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(a) The shortest path is s →
c → f → g → t. The cost
is 9.
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(b) The guaranteed cost of the
path in (a) is 25, which is in-
curred when link f → g failed
in the worst recovery scenario.
The last reachable node is f and
the shortest path from f to t is
f → c→ d→ e→ t.
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(c) A path from s→ a→ d→
e → t. The cost is 12, a bit
larger than the shortest path.
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(d) The guaranteed cost of the
path in (c) is 14, which is in-
curred when link e → t failed.
The last reachable node is e and
the shortest path from e to t is
e→ d→ g → t.

Fig. 1. A shortest path may lead to a high recovery cost if one of its edges failed. Thus, finding the path that has the shortest guaranteed cost can reduce
the cost of the path in the worst recovery scenario. In the example, the guaranteed cost of the shortest path cannot meet the cost constraint if the notified
constraint is smaller than 14.

the failed node to the destination node [27], [28], which is
called the shortest recovery path. This work aims to provide a
fast path computation approach for: 1) shortest recovery path,
and 2) shortest guaranteed-cost path. For the first challenge,
we need to efficiently compute shortest recovery paths in
a graph. The shortest recovery path can be computed by
utilizing the shortest path algorithms between the failed node
and the destination. Dijkstra is the default algorithm used
in current carrier-grade controllers such as ONOS [29] and
OpenDaylight [30]. Since the naı̈ve Dijkstra is not scalable for
large-scale networks, various approaches [31], [32] have been
proposed to tackle the scalability of shortest recovery path
computation. The most efficient algorithm [28] can achieve a
time complexity of O(M logN +N2) for single-pair shortest
recovery path computation in an undirected graph with N
nodes and M edges.

For the second challenge, we need a fast algorithm for com-
puting the shortest guaranteed-cost path. The guaranteed cost
is defined as the cost of the worst-case recovery path associated
with a given path (i.e., the maximum recovery cost upon an on-
path link failure). A path P that has the minimum guaranteed
cost is called the shortest guaranteed-cost path. We use Fig. 1
to illustrate the necessity of finding the shortest guaranteed-
cost path. Intuitively, the shortest guaranteed-cost path is more
preferable in some circumstances because recovering the link
failure on the shortest path may lead to high cost. An algorithm
is proposed [28] with complexity O(MN+N2 logN) to com-
pute the all-pair shortest guaranteed-cost path. However, its
performance is not efficient enough for large-scale networks.

We propose an efficient two-stage algorithm, which includes
indexing stage and querying stage, to address the first chal-
lenge by utilizing the general pruned searching [33], [34]
framework with our own pruning strategy to index intermedi-
ate results. Our algorithm can achieve significant performance
improvement by reducing the indexing time complexity of
existing solutions to O(lM + lN(logN + l)) with query-
ing time complexity O(l), where l, a factor introduced by
pruned searching, is proved as a pretty stable integer less

than 300 in most real-world topologies. Intuitively speaking,
a lower l indicates a more efficient pruning strategy in the
search, which means that a higher number of unnecessary
intermediate results are pruned during indexing. We compare
our solution with both theoretical state-of-the-art and the
practical implementation (Dijkstra algorithm, commonly used
in network system design) in all-pairs nodes (100% nodes
protection) scenarios. The computation time of our solution
is 8 ∼ 81 times faster than the practical solution in a variety
of networks with the scale range from 153 ∼ 1, 163 nodes
(from Topology Zoo [35] and AS network [36]) , and it is
1.93 ∼ 3.11 times faster than a theoretical state-of-the-art
(optimized pre-computing) solution with 754 ∼ 5, 340 nodes
in all-pairs nodes protection scenario. From our evaluation
results, the practical solution cannot finish evaluations with
more than 1, 163 nodes networks, and the optimized pre-
computing solution may finish evaluations with more than
5, 340 nodes networks in several days. On the contrary, our
algorithm can compute all-pairs recovery path range from
several minutes to several hours. Also, our algorithm can
provide much higher efficiency in the scenario that the per-
centage of nodes protection is less than 100%. Moreover, we
design a prototype to show how to deploy our algorithm in
an OpenFlow network. The evaluation result indicates that
Fast Reroute is far faster than the conventional approaches in
OpenFlow network. Meanwhile, we extend the first algorithm
to address the shortest guaranteed-cost path with the same time
complexity. We prove the correctness of our pruning strategy
and evaluate it with real-world topologies [35], [36]. We also
compare the guaranteed cost between the shortest path and
the shortest guaranteed-cost path. Our results show the shortest
guaranteed-cost path can significantly reduce the recovery cost
in the worst case upon a link failure in real-world topologies.
Furthermore, we also give some discussion on multiple link
failures and nodes failures.

The rest of paper is organized as follows. We first sum-
marize the background and motivation in section II, and then
present the problem statement in section III. In section IV,
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we introduce our algorithm for computing shortest recovery
path, and we introduce our algorithm for computing shortest
guaranteed-cost path in section V. In section VI, we evaluate
our algorithms and analyze the evaluation results, and we
discuss the case of multiple links/node failure, and some im-
plementation and experimentation issues. Finally, we conclude
the paper in section VII.

II. BACKGROUND AND MOTIVATION

After resuming the state of the art on fast rerouting and
path recovery in IP networks, we provide the rationale and
motivation of our proposal.

A. Related Work

1) FRR in IP and MPLS network: Applying FRR in IP
and Multi-Protocol Label Switched (MPLS) networks [13],
[14] can reduce the recovering time remarkably when a failure
occurs. The loop-free alternate (LFA) [15] is the simplest
method to provide FRR in IP networks and it is widely used
in commodity devices. MPLS FRR [37] uses RSVP-TE [38]
to maintain recovery path. However, since SDN is based on a
centralized controller, these solutions do not work out-of-the-
box in SDN [39]. This because these solutions are designed
for pure distributed network environment.

2) Existing FRR solutions in SDN: Existing works uti-
lize the shortest path algorithm [27], [40], [41] to compute
the FRR recovery path. Most of SDN controllers including
ONOS [29] integrate Dijkstra algorithm as the primary shortest
path computation algorithm. However, with the increase in
network scale [42], Dijkstra is not as efficient as it performs
in small-scale networks. McNettle [23], a multicore supported
controller is designed to scale up to large networks with 1, 000
switches; and ONOS, the carrier-grade controller, can support
even more switches than existing single server designs by
utilizing distributed computing. But as evidence, the running
time is more than several seconds for an O(N3) algorithm
(e.g., computing recovery path for all-pairs nodes by Dijkstra)
when N is larger than 5, 000 with an Intel i7-920 @2.66GHz
processor [43]. Moreover, it is also reported that in ONOS,
the path computation cannot achieve the expected through-
put [29] since ONOS does not utilize distributed computing
in path computation [44]. There are also previous attempts
to address FRR in the OpenFlow network. A heap-Dijkstra
based system [45] utilizes the Group Table feature to deploy
fast failover entries into the OpenFlow switch. Moreover, a
hybrid recovery path computation algorithm [46] has been
proposed to compute the recovery path both on node and link
failure. However, both schemes show no advantages in path
computation complexity with respect to the traditional Dijkstra
algorithm..

3) Replacement path problem/Parallel shortest path algo-
rithm: Computing shortest recovery problem is a subproblem
of the well-studied replacement path problem in graph theory.
In solving replacement path problem, an O(M + N logN)
algorithm is proposed by [31] for a given pair of s and
t in an undirected graph. It has been proven that there
is no solution faster than O(MN + N2 log logN) [32] in

directed graphs. Clearly, directly applying these algorithms to
all-pair recovery path computation in SDN is unacceptable
due to the high time complexity. Though there exist parallel
shortest path algorithms, e.g. ∆−stepping algorithm [47] with
linear time complexity in directed graphs, most existing SDN
controllers can not support distributed path computation at
multiple controller instances. For example, ONOS can support
multiple controller instances, but the path computation is still
performed at one instance.

B. Design rationale
Our FRR mechanism seeks to reduce recovery path compu-

tation by separating the computation into two stages: indexing
stage and querying stage. Different from the conventional
approach that directly computes final best paths (all-pair
shortest recovery path or shortest guaranteed-cost path), we
only compute intermediate results with an optimized algorithm
in the indexing stage, and then compute the final paths by
using these indexed intermediate results in the querying stage.
Moreover, we propose a strategy in our optimized algorithm
that can significantly reduce unnecessary intermediate results
in the indexing stage. In this way, we can sharply decrease
the computation time, which is the sum of the indexing time
(time used in indexing stage) and querying time (time used in
querying stage) for all-pair shortest recover paths.

In order to motivate our design, we use Fig. 2 to show
a case for path recovery under link failure. In this example,
different recovery schemes are deployed to protect the path
from s to t. Fig. 2(a) shows the traditional reactive scheme
for failure recovery in SDN. When a link fails, the switch
firstly sends a recovery request to the controller, then the
controller computes a new path and inserts forwarding rules
into the switch. Our experiments reveal that for a 1, 163-
node network, the computing time needs 195ms for one single
shortest recovery path by utilizing the Dijkstra algorithm.

Fig. 2(b) shows the traditional Fast Reroute algorithm in
SDN [27]. The controller computes the recovery path before
failure occurs, and inserts forwarding rules into switches
(s,h,a,d) that need be protected. When the failure occurs,
such as h → a and i → a failed, the reroute h → g and
i→ j occurs in the switch locally. For a 1, 163-node network,
protecting paths for all switches to t (when k = N in the time
complexity) needs 227.231s.

We also leverage a proactive approach to precomputing the
recovery path before failure occurs. However, our method
does not compute the recovery path directly. Instead, as
shown in Fig. 2(c), the controller computes the intermediate
results as indexes in the indexing stage, and query recov-
ery paths based on the index for protected switches in the
querying stage. When a failure occurs, the protected switch
can redirect the flow to the recovery path without controller
intervention. If the topology changed, i.e., multiple switch/link
add/remove/failures, our method can re-compute indexes and
recovery paths rapidly. For a 1, 163-node network, indexing
only needs 0.144s, computing recovery paths for all switches
to t needs only 2.785s.

The key intuition exploited by our design is that we can
accelerate the recovery path setup by precomputing the inter-



JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 4

a

k

l

c

j
s

h

g
f

b

t

G

Controller

1.Link failed

2.Compute 
reroute path to t

(O(n2))

3.Insert flow 
to switch

(a) Reactive failure recovery in SDN.

a

k

l

c

j
s

h

g
f

b

t

G

Controller

1.Pre-Compute reroute path 
(local link failure) for

switch s,h,a,d to e indexes
(O(kN2)) 

2.Insert reroute 
flow from indexes 

to switch  
(O(1))

j

g

f

b

3. Link failed 
Switch reroute locally

(without connecting with controller)

Indexes

(b) Traditional Fast Reroute algorithm in
SDN [27]. All recovery path are stored in in-
dexes.

a

k

l

c

j
s

h

g
f

b

t

G

Controller

1.Re-Compute reroute path 
when topology changed

(i.e. add switch/link, multiple links/nodes 
remove/failure)
(O(l*NlogN))

2.Insert reroute 
flow by querying indexes 

 to switch
(O(l))

j

g

b

a

Indexes with 
smaller size 

m

(c) Our efficient Fast Reroute algorithm in SDN. Only
necessary intermediate results are stored in indexes

Fig. 2. The differences between traditional failure recovery and our method in SDN. We suppose the path from s, h, a, d to t are protected. We use a square
with a node near the switch to indicate the next hop of backup path to t, which is the path when the first link of the default path failed.

mediate indexing results. To this end, we profitably separate
the computation into two stages: indexing stage and querying
stage. Another concern in the design is the space overhead
in storing the index. One naı̈ve approach is to compute
all the final recovery paths and store them in the index.
Query can then be achieved with an O(1) time (directly
access the computed results in memory after the computing
is finished). However, the index size is unacceptable for large-
scale networks. Motivated by 2-hop cover strategy [48], we
design a pruned searching algorithm to reduce the index
size by balancing the indexing time and querying time. Our
method can significantly reduce the size of indexes by pruning
unnecessary results during indexing. The tradeoff is to slightly
increase the computation time when querying the recovery
paths. Intuitively speaking, our method computes the index
iteratively and prune the intermediate results that are never
used after each iteration. Final path results can then be
computed on the pruned index. The example of Fig. 3, for
instance, shows the differences in index size between the naı̈ve
method and our method.

In the following sections, we will describe the problem
formally.

III. PROBLEM STATEMENT

In the following we present the mathematical notations used
in the paper and give a formal definition of the addressed
problem.

A. Notations

We describe our notations which are used in this paper in
TABLE I. In this paper, we describe a network as an undirected
graph G = (V,E), with node set V and edge set E. N
indicates the number of nodes and M indicates the number
of edges. We denote an edge from node u to node v by eu,v .
Each edge is associated with a cost (e.g., delay or distance)

between two nodes. We use σ(eu,v) to indicate the cost of
eu,v .

Let P (s, t) be a path from node s to node t. The internal
nodes are the nodes in P (s, t) excluding s and t. We also use
P ′(s,t)(u, v) to denote a subpath in P (s, t). Let σ(P (s, t))
indicate the cost of P (s, t) (e.g., delay of the distance of a
path) between node s and t.

We can connect two paths into one if the destination of the
first path is the same as the source of the second path, and we
can easily obtain the cost of the connected path by adding up
the cost of the two paths.

B. Problem definition

As we mentioned above, the paper studies the following
two problems: 1) Computing the shortest recovery path
R(P (s, t)) for a given node pair(s, t) and 2) Computing
the shortest guaranteed-cost path Gp(s, t) for a given node
pair (s, t).

Briefly speaking, the recovery path R(P (s, t)) of a specific
path P (s, t) is another path from s to t, which does not
pass through the first edge in P (s, t). This path is used for
rerouting network packets from s to t when the first link of
the original path fails. As we have mentioned above, with an
FRR mechanism, the rerouting occurs locally on the switch.
In other words, when a link failure occurs on a switch, the
switch chooses the recovery path to the destination locally to
bypass the failed link that is the first link of the original path
from the switch to the destination.

Problem 1 seeks to compute the shortest recovery path for
any path between an arbitrary pair of nodes in graph G.

For problem 2, we first define the guaranteed cost η(P (s, t))
as the cost of the actual path P (s, t) followed by a packet in
the worst-case recovery scenario. Because P (s, t) can cause
different recovery costs upon different link failure scenarios,
there will be one failure scenario that leads to the maximum
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Fig. 3. The differences in index size between the naı̈ve method (a) and our method (b) (c).

TABLE I
TERMS OF DEFINITION

Notation Description

G = (V,E) A graph G with node set V and edge set E

eu,v ∈ E, u, v ∈ V An edge from u to v

σ(eu,v) The cost of an edge eu,v

P (s, t) A path from s to t

P ′(s,t)(u, v) P ′(s,t)(u, v) is a subpath of P (s, t)

σ(P (s, t)) The cost of a path P (s, t)

R(P (s, t)) The shortest recovery path for P (s, t)

η(P (s, t)) The guaranteed cost of P (s, t)

Gp(s, t) The shortest guaranteed-cost path from s to t

recovery cost, say η(P (s, t)). As we have mentioned above,
the shortest guaranteed-cost path Gp(s, t) is a path from s to
t, which has the smallest guaranteed cost.

We formally define two problems as follows:
1) Computing the shortest recovery path R(P (s, t)) for

given (s, t): given a graph G(V,E) and a path P (s, t)
between an arbitrary pair of nodes, return the shortest
path from s to t in G(V,E − es,n1

), where es,n1
is the

first edge in P (s, t).
2) Computing the shortest guaranteed-cost path Gp(s, t)

for given (s, t): given a graph G(V,E) and an arbitrary
pair of nodes s, t, return the path from s to t that
satisfies the following statement: Gp(s, t) has the smallest
guaranteed cost.

IV. SHORTEST RECOVERY PATH

As we have mentioned above, the efficiency of our algo-
rithm is brought by reducing the amount of computation that
is proved unnecessary. We separate our computation into two

TABLE II
TERMS OF CONSTRAINED PATH

Notation Description

P>u(u, v)
A path set from u to v,
whose internal nodes are larger than u

P∗,∗(u, v)
A path set from u to v,
without any constrained edges
(‘*’ means ignoring the constraint of edge)

P=x,=y(u, v)
A path set from u to v,
whose first edge must be eu,x
and last edge must be ey,v

P 6=x,∗(u, v)
A path set from u to v,
whose first edge cannot be eu,x
(ignoring the constraint of last edge)

P∗, 6=y(u, v)
A path set from u to v,
whose last edge cannot be ey,v
(ignoring the constraint of first edge)

P@ex,y (u, v)
A path set from u to v,
whose edges cannot exist ex,y

stages: indexing stage and querying stage; we prove that the
most unnecessary computation tasks can be avoided thanks to
the indexing stage.

In this section, we will first describe the algorithm in the
querying stage: How to query the shortest recovery path
with the knowledge of indexed intermediate results. Then,
we will describe the algorithm in the indexing stage, which
is the core contribution of our proposing: How to index
intermediate results, and reduce unnecessary results (we
call pruned searching) with pruning strategy.

A. Query shortest recovery path with 2-hop method

Firstly, we introduce how to utilize 2-hop cover [48] in
querying shortest recovery path. Intuitively speaking, the 2-
hop cover provides the ability to compute a complicated path
(with some edge/node constraints) by combining the results
of two simple path computation (such as the shortest path).
We give the notation of the constrained path in TABLE II.
Suppose that each node in V is assigned with a node ID in
an integer. Thus, we can compare two nodes u, v in V by
u > v or u ≤ v. Let P (s, t) = {s, n1, n2, . . . , nm, t} and the
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that does not pass through 4 → 3.
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(c) The third BFS starts from node
3 to compute P>3(3, v). The cost
in red and green square of node 4
and 5 are pruned since we do not
find a path without passing through
the first edge or the last edge of the
shortest path.
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(d) The last BFS starts from node
4 to compute P>4(4, v). Only the
shortest path 4 → 5 is indexed.

Fig. 4. An example of our algorithm in the indexing stage. The graph is an undirected graph, and the arrow indicates the search direction in the BFS. Yellow
nodes denote the root in each BFS, blue nodes denote the nodes we have searched, orange nodes indicate the nodes we have searched but some results (paths)
are pruned, grey nodes denote the nodes which are already used as roots, to ensure blue nodes are larger than the root in current BFS. The number in the
white square indicates the cost of the shortest path from the yellow node. The number in the red (green) square indicates the minimum cost of the path that
does not pass through the first (last) edge of the shortest path. After all BFS finished, we can query all-pair shortest recovery path in the querying stage. A
query example: QUERY(2, 5, e2,4)=min{P>2

6=4,∗(2, 5), P
>1
∗,6=4(1, 2) + P>1

@e2,4 (1, 5)}=min{5, 6 + 5} = 5.

first edge of P (s, t) is es,n1
. Without loss of generality, we

assume s < t. We can swap s with t if s > t. We denote the
cost of a path between node s and t by σ(P (s, t)).

We can separate the recovery path of P (s, t) into two parts.
We define P>u=x,=y(u, v) = {u, x, . . . , y, v} as the path set that
belongs to P>u(u, v) with two constraints: the path must start
with eu,x and end with ey,v . If we change ‘=’ to ‘6=’, the
meaning of the constraint turns to be that the path cannot
start with eu,x or end with ey,v . We also use the wildcard
‘∗’ to indicate that the constraint can be ignored. Thus,
P>u∗,∗ (u, v) = P>u(u, v). We use P>u@ex,y (u, v) to represent the
path in P>u(u, v) that does not pass through ex,y .

Suppose we have computed all P>u(u, v), ∀u, v ∈ V in the
indexing stage. With the knowledge of all P>u(u, v), ∀u, v ∈
V available, we can compute the cost of the shortest recovery
path by defining the QUERY function: ∀nq ∈ V and es,n1 ∈
P (s, t), note that es,n1

is the first edge in P (s, t).

σ(R(P (s, t))) = QUERY(s, t, es,n1
) =

min


σ(P

>nq
∗,6=n1

(nq, s)) + σ(P
>nq
@es,n1

(nq, t)), (∃nq < s, nq < t)

σ(P
>nq
∗,6=n1

(nq, s)) + σ(P@es,n1
(nq, t)), (∃nq ≥ t)

σ(P>s6=n1,∗(s, t).

The output of the QUERY(s, t, es,n1) is the cost of shortest
recovery path of P (s, t). The sum of cost in the first equa-
tion indicates the minimum cost of the sum of two paths
P (nq, s) ∈ P

>nq
∗,6=n1

(nq, s) with P (nq, t) ∈ P
>nq
@es,n1

(nq, t) by
finding nq,∃nq < s, nq < t. The second equation is the
same as the first one. If we cannot find a common nq for
P
>nq
∗,6=n1

(nq, s) and P>nq@es,n1
(nq, t), (∃nq < s, nq < t), the sum

of cost is ∞; similarly, if we cannot find a common nq for
P
>nq
∗,6=n1

(nq, s) and P@es,n1
(nq, t), (∃nq ≥ t), the sum of cost

is ∞; if we cannot find a path in P>s6=n1,∗(s, t), the cost of

P>s6=n1,∗(s, t) is ∞ too.
In order to estimate the time complexity, we define L(v) =
{P (u, v)|P (u, v) ∈ P>u(u, v),∀u ∈ V }. L(v) is the path set
for all paths whose destination is v. For each node v, if we
store the L(v) in an order sorted by u, we can compute the
QUERY(s, t, es,n1) in O(|L(s)|+ |L(t)|) by a merge-join-like
algorithm [33].

B. Index intermediate results with pruning strategy

As we have mentioned, we can use QUERY to compute the
shortest recovery path in computed P>u(u, v), ∀u, v ∈ V . For
computing P>u(u, v) with a given u, we can use a standard
Breadth-First-Search(BFS) [49] algorithm, which starts from
the head of a queue and expends all of its adjacent nodes into
the queue. The queue initialized with root u, and the BFS will
stop if no new path found. Moreover, we add an expanding
constraint in BFS algorithm to ensure each expanded node
is larger than u. However, directly computing P>u(u, v) is
a brute force method, which leads to a significant amount of
space and time. Motivated by utilizing pruned searching in
efficiently computing shortest path and k-th shortest path [33],
[34], we believe that most paths in P>u(u, v) are unnecessary
for computing shortest recovery path.

Thus, utilizing a pruning strategy in computing P>u(u, v)
to prune unnecessary results and reduce the indexing time, is
necessary. This framework is called pruned searching.

Proposition 1. ∀u, v ∈ V , and we denote eu,na , enz,v ∈
P (u, v). Only the following paths

{Pα(u, v)|σ(Pα(u, v)) = min{σ(P>u∗,∗ (u, v))}},
{P β(u, v)|σ(P β(u, v)) = min{σ(P>u∗, 6=nz (u, v))}},
{P γ(u, v)|σ(P γ(u, v)) = min{σ(P>u6=na,∗(u, v))}}.
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Fig. 5. Different cases in pruning strategy. In Case a), suppose the original
path is from s→ b→ t, and the shortest path from s to t is P ′ : s→ a→
w → t, (∃w < s,w < t) or P : s → a → t. If s → b failed, the shortest
recovery path must be one of P ′ or P . In Case b), the original path is from
s → b → t or s → b → w → t, (∃w < s,w < t), while s → b is the
first edge of the shortest path from s to t. Thus, if s→ b failed, the shortest
recovery path must be the shortest path from s to t without passing through
s → b. There are two types of shortest recovery paths: P : s → a → t or
P ′ : s → a → w → t, (∃w < s,w < t). Case c) and Case d) can ensure
there is no other path needed if w → t intersects in s → w. In Case d), if
w → t intersects in s → w, we can find a new recovery path shorter than
s→ w → t.

are needed for computing R(P (s, t)), ∀s, t ∈ V in the
querying stage,

with s, t limitations:

∀s, t ∈ V,∃nq < s, nq < t,

σ(P
>nq
∗,6=n1

(nq, s)) + σ(P
>nq
@es,n1

(nq, t)) 6=∞

We use Fig. 5 to intuitively explain how Proposition 1
works. w is a nq that satisfies the limitation. As we have
defined, the shortest recovery path (s → a → t or s → a →
w → t) of the original path (s→ b→ t or s→ b→ w → t)
from s to t must be the shortest path from s to t without
passing through the first edge of the original path. Case a):
If the first edge of the original path from s to t is different
from the first edge of the shortest path from s to t, we can
choose the shortest path (can be computed with Pα(s, t)) as
the shortest recovery path. Case b): Otherwise, if the first edge
of the original path from s to t is the first edge of the shortest
path from s to t, we need to choose the path whose first edge is
different from the shortest path from s to t (can be computed
with P γ(s, t), P β(t, s) if s > t) as shortest recovery path.

Case c) and Case d) can ensure there is no other path needed
if w → t intersects in s → w. Respectively. In Case c), if
w → t is disjoint with s → w, w → t must be the shortest
path for ensuring the recovery path s → w → t to be the
shortest. In Case d), if w → t intersects in s→ w, we assume
the joint point is c and we can find the shortest recovery path
s → c → w → c → t is longer than s → c → t. In other
words, if w → t intersects in s → w, we can find a new
recovery path shorter than s→ w → t.

Formally, we provide the proof of correctness as follow:

Proof 1. Suppose we have computed Pα(u, v), P β(u, v),
P γ(u, v) with ∀u, v ∈ V . We denote the first edge of
Pα(u, v), P γ(u, v) is eu,nα , eu,nγ and the last edge of
P β(u, v) is enβ ,v .

Let the original path be

P (s, t) = {s, n1, n2, . . . , nm, t}.

If we suppose es,n1
∈ P (s, t), when es,n1

6= es,nα , ∀nq ∈
V we can get

σ(R(P (s, t))) = QUERY(s, t, es,n1
) = σ(Pα(s, t)), (1)

otherwise, when es,n1
= es,nα , ∀nq ∈ V , ∃nq < s, nq < t,

we can get

σ(R(P (s, t))) = QUERY(s, t, es,n1
) =

min

{
σ(P

>nq
∗,6=n1

(nq, s)) + σ(P
>nq
@es,n1

(nq, t)) (∃nq < s, nq < t),

σ(P γ(s, t)).
(2)

Suppose ∃nq ∈ V, nq < s, nq < t and

σ(P (s, t)) = σ(P
>nq
∗,=nα(nq, s)) +min{σ(P>nq (nq, t))},

then we can get

min{σ(P
>nq
∗,6=n1

(nq, s))} = σ(P β(nq, s)). (3)

to make the first equation of QUERY minimum.
We denote P δ(nq, t) = {P δ(nq, t)|σ(P δ(nq, t)) =

min{σ(P
>nq
@es,n1

(nq, t))}}. Suppose ∃nq ∈ V , nq < s, nq < t.
Pα(nq, t) is disjoint with P β(nq, s), we can get

P δ(nq, t) = Pα(nq, t). (4)

otherwise ∃nq ∈ V, nq < s, nq < t, Pα(nq, t) must
intersect in P β(nq, t), we denote the joint point as nj , and
∀np >= nq . From Equation (2) (same as Equation (1)) we
can get,

min{σ(P
>nq
∗,6=n1

(nq, s)) + σ(P δ(nq, t))}
= min{σ(P

>nq
∗,6=n1

(nj , s)) + σ(P>nq (nj , nq))

+ σ(P>nq (nq, nj)) + σ(P>nq (nj , t))}
≥ min{σ(P

>nq
∗,6=n1

(nj , s)) + σ(P>nq (nj , t))}
≥ min{σ(P

>np
∗,6=n1

(np, s)) + σ(P>np(np, t))}
= min{σ(P

>np
∗,6=n1

(np, s)) + σ(Pα(np, t))}

= min

{
σ(Pα(np, s)) + σ(Pα(np, t)), (ena,s /∈ Pα(np, s))

σ(P β(np, s)) + σ(Pα(np, t)).(ena,s ∈ Pα(np, s))

(5)

As a conclusion from Equation (1),(2),(3),(4) and (5),
Proposition 1 is proven.

However, ∃nq ≥ t, σ(P@es,n1
(nq, t)) (in the second equa-

tion of QUERY) may not be computed by Pα(u, v), P β(u, v),
P γ(u, v). Briefly speaking, suppose es,n1

exists in Pα(u, v),
P β(u, v), P γ(u, v) simultaneously, only indexing Pα(u, v),
P β(u, v), P γ(u, v) will result σ(P@es,n1

(nq, t)) = ∅. Thus,
we need to use Dijkstra algorithm to compute P@es,n1

(nq, t)
and add it into indexes.
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Fig. 6. e3,4 exists in Pα(1, 2), Pβ(1, 2), P γ(1, 2) simultaneously. We need
Dijkstra algorithm to compute P@e3,4 (1, 2), and add it into indexes.

As an example in Fig. 6, when we QUERY(3, 2, e3,4), which
means finding the recovery path from node 3 to node 2 without
passing through e3,4, we cannot find any path that satisfies
the limitation of nq . Suppose nq < t, such as nq = 1,
then Pα(1, 3) = {1, 3}, Pα(1, 2) = {1, 3, 4, 2}, P β(1, 2) =
{1, 5, 3, 4, 2}, P γ(1, 2) = {1, 3, 4, 6, 2}. e3,4 exists in
Pα(1, 2), P β(1, 2), P γ(1, 2) simultaneously. P>1

@e3,4(1, 2) = ∅.
Suppose nq > t, if nq = 3, σ(P@e3,4(1, 2)) cannot be
computed via existing indexes. Thus, we need to use Dijkstra
algorithm to compute P@e3,4(1, 2), and add it into indexes.

Fortunately, this case seldom occurred in the real-world
dataset from our evaluation result. In small-scale backbone
network, the probability of this case is about 3% to 4%. In
large-scale IPv4 and IPv6 network, the probability of this case
is lower than 0.05%. Thus, introducing Dijkstra algorithm will
not cause a significant decrease in efficiency.

The case A) can be explained by Equation (1) and case B)
can be explained by Equation (2) and (3). We have also proved
that there is no loop created in case B) by Equation (4) (5).

Proposition 1 provides the ability to prune paths whose cost
are larger than Pα(u, v), P β(u, v) and P γ(u, v) in computing
P>u(u, v) with a given u. They are initialized with ∞ at the
beginning of the BFS, and they will be replaced by newer paths
whose cost are smaller during the computation. We give an
example of our algorithm in the indexing stage in Fig. 4. After
the indexing stage finished, we can compute all-pair shortest
recovery path by utilizing QUERY method for all-pair nodes.

C. Pruned searching algorithm

With Proposition 1, now we propose a search algorithm with
the pruning strategy to only compute the necessary results
in P>u(u, v). We utilize Algorithm 1—INDEX, a pruned
searching algorithm to compute the P>u(u, v) with a given
u. At last, we increase u gradually to compute all necessary
P>u(u, v) by Algorithm 2.

It is easy to utilize the pruning strategy (Proposition 1)
by implementing a method PRUNE. PRUNE(u, h) returns the
result whether the new path P (u, h) is smaller than current
Pα(u, h), P β(u, h) and P γ(u, h). If it is larger than all of
them, the new path can be pruned. Moreover, for further re-
ducing the size of P>u(u, v), we can also prune the Pα(u, h),

P β(u, h) or P γ(u, h) if the cost of Pα(u, h), P β(u, h) or
P γ(u, h) is larger than the path with the path constraints (same
as Pα(u, h), P β(u, h) or P γ(u, h)), which can be computed
in P>u

′
(s, t) (∀u′ < u) by QUERY function. Thus, we also

need the computed set P>u
′
(u′, v) (∀u′ < u) to filter the

unnecessary path. We can utilize an algorithm that is similar
to QUERY for obtaining the computed path in P>u

′
(u, h)

(∀u′ < u). Therefore, the time complexity of method PRUNE
is O(|L(u)| + |L(h)|) for one query by a merge-join-like
algorithm. As mentioned earlier, L(v) is the path set for
all paths whose destination is v. After utilizing the pruning
strategy, the average size of L(v) has a significant decrease.
We also use L to indicate the union of L(v) (∀v ∈ V ), which
is the set of all computed P>u(u, v).

Algorithm 1: INDEX: Pruned searching for a given u to
compute P>u(u, v)

Input: Node u, existing path set P>u
′
(u′, v) (∀u′ < u)

Output: The path set P>u(u, v)
h is the expanded node in search
h.cost is the cost from u to h
Q← a priority queue with one element u
T ← ∅
while Q is not empty do

Dequeue h from Q
if PRUNE(u, h) is false then

A path P (u, h) is computed
T ← T ∪ P (u, h)
for w that is the neighbor of h and w > u do

w.cost← h.cost+ σ(eh,w)
Insert w to Q

Return T

Algorithm 2: Compute all P>u(u, v) by pruned searching
Input: Graph G
Output: The path set P>u(u, v) (∀u, v ∈ V )
L← ∅
for i = 1, 2, 3, . . . , n ∈ V do

L ← L ∪ INDEX(i, R)

Return L

Hence, we can roughly estimate the time complexity of the
whole algorithm. Suppose l is the average size of L(v) (∀v ∈
V ), we need to visit O(lN) nodes in total. As in the analysis
for pruned searching [33], [34], we assume in each node we
have O(MN ) edges and each PRUNE needs O(l) time. Thus,
the total time complexity is O(lM+lN(logN+l)), where l is
a pretty stable integer with our pruning strategy, much smaller
than 300 in our experiment with real-world topologies.

V. SHORTEST GUARANTEED-COST PATH COMPUTATION

In this section we propose and characterize a solution to
compute shortest guaranteed-cost paths.
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A. Query guaranteed cost

We define the guaranteed cost η(P (s, t)) for a path P (s, t)
as max{σ(P ′(s,t)(s, ni)) + σ(R(P ′(s,t)(ni, t)))},∀ni ∈
P (s, t). Naı̈vely implementing it for all node pairs can lead a
performance deficiency since the time complexity is O(N3).
Therefore, [28] proposed a Dijkstra-like algorithm to compute
the all-pair shortest guaranteed cost in O(MN + N2 logN)
by using Equation (6).

Theorem 1. ∀s, t ∈ V , es,n1
∈ P (s, t) we have

η(P (s, t)) = max

{
σ(es,n1) + η(P (n1, t)),

σ(R(P (s, t))).
(6)

There is a simple proof of Theorem 1 in [28]. Intuitively,
Equation (6) explains the fact that the worst recovery case
can only occur in the first edge of P (s, t) or in the remaining
edges of P (s, t). Therefore, we can divide the computation of
guaranteed cost into several sub-problems since the problem
satisfies the optimal substructure. It is similar to the shortest
path problem that also satisfies the optimal substructure. Thus,
we can merge two sub-shortest guaranteed paths into one
shortest guaranteed-cost path by Equation (7).

B. Indexing the shortest guaranteed-cost path

We define Gp(s, t) as the shortest guaranteed-cost path that
has the shortest guaranteed cost from s to t, and we define
SP (s, t) is the shortest path that has the lowest cost from s to
t. We attempt to utilize the 2-hop cover in indexing the shortest
guaranteed path. Before detailing our algorithm design, we
first prove that two sub-shortest guaranteed paths can merge
into one shortest guaranteed-cost path.

Theorem 2. ∀s, t ∈ V , ∀ni ∈ Gp(s, t) we have

η(Gp(s, t)) = max

{
η(Gp(s, ni)) + σ(SP (ni, t)),

σ(SP (s, ni)) + η(Gp(ni, t)).
(7)

Proof 2. Suppose P (s, t) = {s, n1, n2, . . . , nm, t}, we de-
compose Equation (6), we have,

η(P (s, t))

= max{σ(R(P (s, t))), σ(es,n1
) + η(P ′(s,t)(n1, t))}

= max


σ(R(P (s, t))),

σ(P ′(s,t)(s, ni)) + η(P ′(s,t)(ni, t)),

σ(P ′(s,t)(s, nj)) + σ(R(P ′(s,t)(nj , t))). (∀j < i)

(8)

From the definition of Gp(s, t), ∀ni ∈ P (s, t) we have

η(Gp(s, t)) =min{η(P (s, t)}
= min{max{σ(P ′(s,t)(s, ni)) + σ(R(P ′(s,t)(ni, t)))}}. (9)

We assume that nβ makes σ(P ′(s,t)(s, nβ)) +
σ(R(P ′(s,t)(nβ , t))) the maximum value (we can treat
σ(R(P (s, t))) as a special case with nβ = s), then from

Equation (8) (9) we have

η(Gp(s,t)) = min{σ(P ′(s,t)(s, nβ)) + σ(R(P ′(s,t)(nβ , t)))}
= σ(SP (s,nβ)) + η(Gp(nβ , t))

= max{σ(SP (s, ni)) + η(Gp(ni, t))}. (∀i < β)

In the same way, we have

η(Gp(s, t)) = max{η(Gp(s, ni)) + σ(SP (ni, t))}. (∀i > β)

Thus, ∀ni ∈ Gp(s, t), we have

η(Gp(s, t)) = max

{
η(Gp(s, ni)) + σ(SP (ni, t)), (∀i > β)

σ(SP (s, ni)) + η(Gp(ni, t)). (∀i < β)

= max

{
η(Gp(s, ni)) + σ(SP (ni, t)),

σ(SP (s, ni)) + η(Gp(ni, t)).

C. Pruning strategy and pruned searching algorithm

We simply modify the existing Algorithm 1 to index the
shortest guaranteed-cost path. We denote the guaranteed-cost
path from u to v by Gp>u(u, v), of which all internal nodes are
larger than u. In Algorithm 1, we use Equation (6) to replace
w.cost ← h.cost + σ(eh,w) with w.cost ← max{h.cost +
σ(eh,w, Query(w, u, eh,w)} for expanding the new node in
indexing. We use Equation (7) to implement the PRUNE and
QUERY methods for a given pair of s and t to prune or query
a shortest guaranteed-cost path from s to t. We prune the
guaranteed-cost path whose cost is higher than the existing
guaranteed-cost paths with the same s and t. We roughly
estimate the time complexity. Similar to the definition of L(v),
we define R(v) as the path set for all guaranteed-cost path
whose destination is v. Thus, the total time complexity is
O(rM + rN(logN + r)) where r is the average size of R(v).

VI. EVALUATION

This section has two parts. The first part evaluates the
performance of our algorithm with a variety of datasets. In the
second part, we propose a prototype with Mininet and Open-
vSwitch (OvS) to show the differences of the link recovery
time between our solution and the practical implementation.

A. The Environment of Performance Evaluation

We first evaluate our algorithms through experiments on
a Linux server with Intel i7-6700@4GHz and 32GB DDR4
memory. We use C++ to implement our algorithm, and make
it publicly available at GitHub repository [50]. Since the ef-
ficiency of compiler optimization may vary based on different
CPUs, we decide not to turn on the compiler optimization
option in g++ to allow for a fair comparison. Thus, we use g++
to compile without any optimization. We use 2-byte integer
(UNSIGNED SHORT) to represent the node ID and the cost.
We evaluate the average query time by measuring 1, 000, 000
random queries.
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Datasets: To confirm that our methods are robust and
scalable enough, we evaluate our algorithms on various real-
world networks [35], [36]: three from carrier backbones, seven
from AS networks. Although TOPO8 and TOPO9 have more
than 20, 000 nodes, which are not common for SDN, we still
use these topologies to test the scalability of our algorithm. We
treat all topologies as undirected graphs. Since the original
topology does not have cost information, we assign cost
on each edge by a gamma distribution (from measurement
results [51]) with α = 0.2463, λ = 55.9280, and the scale of
cost ranges from 1 to 524. We give the parameter of these
networks in TABLE III.

Since the degree of nodes can influence l, which is associ-
ated with the performance of our algorithms, we measure the
degree distribution of the networks. These networks comply
with the power-law distribution (80-20 rule), which means
more than 80% degrees of vertexes are smaller than 2. Also,
we measure the distribution of path cost on all-pairs nodes.
We found 80% to 90% costs are smaller than 100.

B. Performance of computing the shortest recovery path

Firstly, we show the performance of computing the shortest
recovery path on these real-world topologies in TABLE IV. IT
indicates indexing times; MS indicates memory size, which is
the memory usage of storing L and topology; QT indicates
average querying time. CT indicates the computation time,
which is composed of indexing time and querying time. We
also evaluate the performance of two existing methods. One is
optimized pre-computing [28], and the other is the naı̈ve Di-
jkstra [27]. The latter is the algorithm that queries the shortest
recovery path (R(P (s, t))) directly. We also implement these
algorithms by using C++ and g++. Since the optimized pre-
computing algorithm must compute all-pairs shortest recovery
paths to get the correct result, CT of the optimized pre-
computing indicates the time of computing recovery paths for
all-pairs s and t. CT of the naı̈ve Dijkstra indicates the time

TABLE III
DATASET

Dataset Type Date |V | |E|

TOPO1 BACKBONE Colt 201008 153 191

TOPO2 BACKBONE Cogent 201008 197 245

TOPO3 BACKBONE Kentucky 201008 754 889

TOPO4 AS IPv6 201605 1,163 1,274

TOPO5 AS IPv6 201605 2,439 2,797

TOPO6 AS IPv6 201605 4,079 4,955

TOPO7 AS IPv6 201605 5,340 6,572

TOPO8 AS IPv4 201601 21,394 42,622

TOPO9 AS IPv4 201602 25,150 50,874

TOPO10 Skitter 200802 7,292 15,258
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Fig. 7. Characteristics of L in maximum five topologies.

of querying all-pairs nodes for shortest recovery paths in the
graph. SR indicates the speedup ratio, which is computed by
dividing the computation time of optimized pre-computing or
naı̈ve Dijkstra with the computation time in our algorithm. We
estimate CT of TOPO8, TOPO9 by adding the indexing time
with the querying multiply the number of nodes need to be
protected, as the computation time for all-pairs protection is
longer than half an hour, and protecting more than 20k nodes
is not a common scenario in real-world. ‘NA’ indicates that
the naı̈ve Dijkstra and the optimized pre-computing cannot
complete the computation within half an hour.

1) Indexing time and computation time: From TABLE IV
we can see that the indexing time (Algorithm 2) is pretty
small, showing the algorithm to be more scalable than others.
Although the optimized pre-computing algorithm reduces a
magnitude of the time complexity from naı̈ve Dijkstra, the
computation time in pruned searching is far smaller than the
computation time in others. The computation time of our
algorithm is longer than the optimized pre-computing only in
TOPO1, TOPO2 and TOPO3, while these topologies are small
topologies. As the overhead, the indexing time costs most in
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TABLE IV
PERFORMANCE COMPARISON IN COMPUTING SHORTEST RECOVERY PATH

(IT: INDEXING TIME; MS: MEMORY USAGE; QT: QUERYING TIME, FOR A GIVEN PAIR OF s AND t;
CT: COMPUTATION TIME, FOR ALL-PAIR; SR: SPEEDUP RATIO)

Dataset Pruned Searching Optimized Pre-computing [28] Naı̈ve Dijkstra [27]

10 IT MS QT CT l CT SR MS CT SR

TOPO1 0.059s 15 MB 15µs 0.172s 15 0.138s 0.80x 15 MB 1.451s 8x

TOPO2 0.081s 32 MB 15µs 0.333s 53 0.246s 0.74x 22 MB 3.338s 10x

TOPO3 0.614s 817 MB 19µs 8.785s 86 8.716s 0.99x 97 MB 180.220s 20x

TOPO4 0.144s 157 MB 15µs 2.785s 20 6.248s 2.24x 104 MB 227.231s 81x

TOPO5 0.549s 230 MB 15µs 24.985s 32 77.726s 3.11x 243 MB NA NA

TOPO6 3.366s 1.0 GB 18µs 209.815s 74 494.182s 2.36x 1.4 GB NA NA

TOPO7 3.647s 1.8 GB 18µs 373.142s 66 721.314s 1.93x 3.5 GB NA NA

TOPO8 211.483s 11.1 GB 76µs 35023.174s 243 NA NA NA NA NA

TOPO9 258.017s 17.5 GB 83µs 52878.942s 277 NA NA NA NA NA

TOPO10 21.801s 5.6 GB 51µs 2736.015s 158 NA NA NA NA NA

TOPO1 and TOPO2.
2) Querying time: As we have mentioned above, the query-

ing time depends on l. The query algorithm can query the
result in microsecond level since all l is smaller than 103,
and the longest QT is 83 µs. Although the optimized pre-
computing algorithm does not utilize any time in a query, the
computation time is too long to counteract the advantages.
Moreover, our experiments show that the querying time does
not increase rapidly with the increasing scale of the network.

3) Memory size: Our algorithm benefits from the 2-hop
cover policy and uses memory space to store intermediate
results. We can see the memory usage in TOPO3 (817 MB) is
larger than TOPO2 and TOPO4 since we have a larger l (86).
The result is evidenced by the observation that there are many
linear topology subgraphs in TOPO3, which makes l larger.
We think the memory usage is sufficient for current commodity
server that usually has more than 32GB memory. Also with
the rapid development of modern memory technology, it
should be easy to meet the memory space requirement.

Nevertheless, we still need to reduce the memory size for
further improving scalability, which will be studied in future
work.

C. Analysis
We analyze the reasons why our algorithm of computing the

shortest recovery path is more efficient than other algorithms.
We analyze some important characteristics of our algorithm in
maximum five topologies.

1) Pruned searching: Fig. 7(a) shows the cumulative distri-
bution of the number of paths added to L. From Fig. 7(a) we
can see that most paths are added to L before calling INDEX
1,000 times (the second line of Algorithm 2), which means
most of the computed recovery paths are unnecessary (pruned
by PRUNE) after calling 1,000 times INDEX.

TABLE V
PERFORMANCE COMPARISON IN COMPUTING SHORTEST GUARANTEED-COST PATH

(IT: INDEXING TIME; MAXQT: MAXIMUM QUERYING TIME, FOR A GIVEN PAIR OF s

AND t)

Dataset Pruned Searching Naı̈ve algorithm [28]

5 IT MaxQT QT

TOPO6 0.468s 18µs 102ms

TOPO7 0.226s 16µs 154ms

TOPO8 8.355s 15µs 1.194s

TOPO9 4.739s 15µs 2.225s

TOPO10 2.479s 16µs 360ms

2) Size of L: Fig. 7(b) shows the distribution of |L(v)|
(∀v ∈ V ) with the increasing order of sizes. From Fig. 7(b)
we can see that ∀v ∈ V , |L(v)| are not much different among
all nodes, and only a few nodes have a larger size, which
means the querying time (related to the time complexity of
QUERY and PRUNE) is pretty stable.

D. Performance of computing shortest guaranteed-cost path

With the knowledge of all-pair shortest recovery path, we
give the results of performance and characteristics evaluation
in some large-scale topologies (TOPO6, TOPO7, TOPO8,
TOPO9 and TOPO10). Large-scale topologies can provide
more paths to analyze the property of shortest guaranteed-cost
path. We give IT, maximum QT (most of the QT are pretty
small because r are small) in TABLE V.

As we have mentioned, r is the average size of R(v),
which has a similar definition to the l and L(v), indicating
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the efficiency of the pruning strategy. In our evaluation, we
find that r are 1 since most nodes in these networks do not
have an alternative recovery path to reach other nodes (i.e., the
degree of most nodes is 1). For example, a node with only one
edge means it cannot find another path if the only edge failed.
Thus, |R| of these nodes are not larger than 1. On the other
hand, if plenty of nodes having a large degree are available
in the network, the IT will be smaller. The reason is that the
node with a large degree (most paths must pass through these
central vertices) can significantly increase the probability of
pruning in pruned searching [33].
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Fig. 8. The characteristic of the shortest guaranteed-cost path

E. The characteristic of the shortest guaranteed-cost path
We use TOPO7 and TOPO10 as examples to analyze the

characteristic of the shortest guaranteed-cost path. We evaluate
the characteristic of the shortest guaranteed-cost path by
comparing the path cost with the shortest path, the shortest
guaranteed-cost path, the maximum recovery path of the
shortest path and the maximum recovery path of the shortest
guaranteed-cost path.

We define the primary path as the path that packets pass
through by default. From Fig. 8(a)(b), we can see that choosing
the shortest guaranteed-cost path as the primary path can
decrease the maximum cost of the recovery path notably.
In Fig. 8(a), All recovery paths are shorter than 300 if we
choose the shortest guaranteed-cost path as the primary path.
Moreover, 80% of recovery paths are shorter than 100, which
is more than 60% if we choose the shortest path as the primary
path. Meanwhile, from Fig. 8(b) we can see that the maximum
cost of recovery path decreases 150 cost (from 400 to 250)
with only increasing the 50 cost (from 100 to 150) of the
primary path slightly. Obviously, the shortest guaranteed-cost
path can reduce the cost of the recovery path significantly.

F. Prototype Implementation and Evaluation
As mentioned, we have developed a prototype to validate

the feasibility of our algorithm in real system. The prototype
is based on Mininet and Open vSwitch (v 2.4.0-1). Note that
we use some specific feature as the Group Table one, only
available in OpenFlow versions later than 1.1.

Group Table: In order to implement Fast Reroute in a
standard OpenFlow switch, we need to utilize Group Table
feature. From the OpenFlow specification we know that Group
Table enables OpenFlow to represent additional methods for
forwarding. Group Table supports several forwarding modes,
but the most important mode for us is the fast failover one.
With the fast failover mode, OpenFlow switch can forward
packet based on the port status (e.g., the port is up or down).
In order to utilize the fast failover mode, we need to pass-
through a pair of parameters: the watch port p and the action
q; if p is up, the switch will perform action q. A group table can
have several pairs of parameters, and each pair of parameters
has its own priority. When a packet is matched, the OpenFlow
switch will check the status of the watch port p1 in the pair of
parameters with the highest priority; if p1 is live, then perform
action q1, otherwise the switch will check the status of the
watch port p2, p3 . . . pn until a live watch port is found. If
there is no live watch port, the switch will drop the packet.
In our scenario, only two pairs of parameters are necessary in
most cases. The first pair of parameters p1 needs to be set as
the port for forwarding packet with the shortest path (i.e., the
primary path), and the action q1 needs to be set to forwarding
to p1. The second pair of parameters has a lower priority.
Note that p2 needs to be set as the port for forwarding packet
with the recovery path, and the action q2 needs to be set to
forwarding to p2.

Fast Reroute algorithm in the controller: Group tables
and entries need to be computed in the controller by our
algorithm when the topology changes, and then be deployed
into the switch. Currently, most controllers support a user
defined path computation module, such as POX has FOR-
WARDING.L2 MULTI module, and ONOS has GETPATHS()
method to compute the path. Practically, in order to increase
the flexibility, we can provide a recovery path computation
server and modify the path computation module in different
controllers as the client. The controller can use this client to
get recovery path from the path computation server, and deploy
them into the OpenFlow switch.
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h1 s1

s2

s4

s3

h2

Fig. 9. A simple topology for prototype evaluation. We use knock to
continuously send packets from h1 to h2. We random shut down the links
between s1, s2, s3 and s4, and then measure the recovery time.

Topology and evaluation tools: We use Mininet to emulate
our topology. In this evaluation, we use a simple topology
(shown in Fig. 9) to test whether our system can work or not.
Since Mininet can support a variety of topology formats such
as ‘GML’/‘GraphML’ by utilizing the iGraph library, we can
easily change the topology if it needs it. We also use the Linux
command knock to periodically send packets from the source
to the destination.

G. Recovery Time Evaluation Results

We set the source at h1, and the destination at h2. knock
in h1 will continuously trigger packets to h2. The server
in h2 will print the reception time of packets. We can get
recovery time by finding the first reception time after the
link failure. We compute the recovery path for each link, and
deploy them into switches. Then, we randomly shut down
the link in mininet, and evaluate how much time is needed
to recovery the communication. We evaluate the time with
three recovery methods: (i) the recovery time without any
Fast Reroute feature, the controller will check the connectivity
periodically by LLDP; (ii) the recovery time that is the sum
of switch reactively reports a failure to the controller, the
controller uses the Naı̈ve Dijkstra to compute the path, and
deploys the new path into the switch; (iii) the recovery time
with our Fast Reroute feature. In the third time, the switch
does not need to connect with the controller. We use POX as
controller to test case (i), use Ryu to test remaining cases since
POX does not support OpenFlow 1.3 (Group Table feature).
We compute recovery paths and deploy them by the controller.

TABLE VI
FAILURE RECOVERY TIME

LLDP Naı̈ve Dijkstra Fast Reroute

Time used 9.235s 30.610ms 1.000ms

From TABLE VI we can see that, since our solution does
not need connect to the controller, the recovery time of Fast
Reroute is the shortest.

VII. CONCLUSION

In this paper, we mainly focus on the performance bottle-
neck in recovery path computation for SDN fast rerouting. To

accelerate the computation, we design two algorithms. First,
we propose a fast algorithm for quickly indexing shortest
recovery paths in a large-scale SDN. Second, we extend this
algorithm to indexing the shortest guaranteed-cost path that
has the minimum cost (delay) of the recovery path. We also
prove the graph-theoretic correctness of the two algorithms.
Moreover, we have design a prototype to show how to deploy
our algorithm in the OpenFlow network. The evaluation results
show that our algorithm can be about 8 ∼ 81 times faster
than the practical implementation, 3.11 times faster than the
theoretical legacy behavior in a 2, 439-node network. Further-
more, by analyzing the shortest guaranteed-cost path shape,
the results show that the it can significantly reduce the cost of
the recovery path.
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