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Abstract
Climate	change	and	human	pressures	are	changing	the	global	distribution	and	the	ex‐
tent	of	intermittent	rivers	and	ephemeral	streams	(IRES),	which	comprise	half	of	the	
global	river	network	area.	IRES	are	characterized	by	periods	of	flow	cessation,	during	
which	channel	substrates	accumulate	and	undergo	physico‐chemical	changes	(precon‐
ditioning),	and	periods	of	flow	resumption,	when	these	substrates	are	rewetted	and	
release	pulses	of	dissolved	nutrients	and	organic	matter	(OM).	However,	there	are	no	
estimates	of	the	amounts	and	quality	of	leached	substances,	nor	is	there	information	
on	the	underlying	environmental	constraints	operating	at	the	global	scale.	We	experi‐
mentally	simulated,	under	standard	laboratory	conditions,	rewetting	of	 leaves,	river‐
bed	sediments,	and	epilithic	biofilms	collected	during	the	dry	phase	across	205	IRES	
from	five	major	climate	zones.	We	determined	the	amounts	and	qualitative	character‐
istics	of	the	leached	nutrients	and	OM,	and	estimated	their	areal	fluxes	from	riverbeds.	
In	addition,	we	evaluated	the	variance	in	leachate	characteristics	in	relation	to	selected	
environmental	variables	and	substrate	characteristics.	We	found	that	sediments,	due	
to	 their	 large	quantities	within	 riverbeds,	contribute	most	 to	 the	overall	 flux	of	dis‐
solved	substances	during	rewetting	events	 (56%–98%),	and	that	flux	rates	distinctly	
differ	among	climate	zones.	Dissolved	organic	carbon,	phenolics,	and	nitrate	contrib‐
uted	most	to	the	areal	fluxes.	The	largest	amounts	of	leached	substances	were	found	
in	the	continental	climate	zone,	coinciding	with	the	lowest	potential	bioavailability	of	
the	leached	OM.	The	opposite	pattern	was	found	in	the	arid	zone.	Environmental	vari‐
ables	expected	to	be	modified	under	climate	change	(i.e.	potential	evapotranspiration,	
aridity,	dry	period	duration,	land	use)	were	correlated	with	the	amount	of	leached	sub‐
stances,	with	the	strongest	relationship	found	for	sediments.	These	results	show	that	
the	role	of	 IRES	should	be	accounted	for	 in	global	biogeochemical	cycles,	especially	
because	prevalence	of	IRES	will	increase	due	to	increasing	severity	of	drying	events.

K E Y W O R D S

biofilms,	leaching,	leaf	litter,	rewetting,	sediments,	temporary	rivers

1  | INTRODUC TION

Human	activities	and	climate	change	cause	global‐scale	alterations	
in	the	flow	regimes	of	rivers,	which	in	turn	are	tightly	linked	to	bio‐
geochemical	processes	such	as	carbon	processing	(Arnell	&	Gosling,	

2013;	 Bernhardt	 et	 al.,	 2018;	 Tonkin,	Merritt,	Olden,	 Reynolds,	&	
Lytle,	2018).	Currently,	more	 than	half	of	 the	global	 river	network	
length	is	represented	by	intermittent	rivers	and	ephemeral	streams	
(IRES)	–	systems	that	cease	to	flow	at	some	point	in	time	and	space	
(Acuña	et	al.,	2014;	Datry,	Larned,	&	Tockner,	2014).	Anthropogenic	

mailto:shumilova@igb-berlin.de
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pressures	 alter	 the	 hydrological	 regime	of	 perennial	 rivers	 toward	
intermittency,	 although	 the	 opposite	 can	 also	 happen	 at	 some	 lo‐
cations.	On	the	one	hand,	flow	regulation,	water	diversion,	ground‐
water	 extraction,	 and	 land‐use	 alteration	 promote	 the	 prevalence	
of	 river	 flow	 intermittence	 both	 spatially	 and	 temporally	 (Datry,	
Bonada,	&	Boulton,	2017;	Pekel,	Cottam,	Gorelick,	&	Belward,	2016).	
On	the	other	hand,	naturally	intermittent	rivers	turn	permanent	due	
to	 effluents	 from	 wastewater	 treatment	 plants	 or	 artificially	 en‐
hanced	discharge	required	for	 livestock	and	 irrigation	 (Chiu,	Leigh,	
Mazor,	Cid,	&	Resh,	2017).

From	a	biogeochemical	perspective,	IRES	function	as	punctuated	
biogeochemical	 reactors	 (Larned,	Datry,	Arscott,	&	Tockner,	2010;	
von	 Schiller,	 Bernal,	Dahm,	&	Martí,	 2017).	During	 the	 dry	 phase,	
a	diversity	of	substrates	 (leaf	 litter,	epilithic	biofilms,	wood,	animal	
carcasses,	sediments)	accumulate	on	the	dry	riverbed	(Datry	et	al.,	
2018)	.	Absence	of	water	reduces	decomposition	rates	of	substrates	
(for	particulate	organic	matter,	OM),	while	sunlight	and	intense	des‐
iccation	alter	their	physico‐chemical	properties,	a	process	known	as	
preconditioning	(Abril,	Muñoz,	&	Menéndez,	2016;	Bruder,	Chauvet,	
&	Gessner,	 2011;	 del	 Campo	&	Gómez,	 2016;	Dieter	 et	 al.,	 2011;	
Taylor	&	Bärlocher,	 1996).	When	 surface	water	 returns	 after	 dry‐
ing	 events,	 accumulated	 organic	 and	 inorganic	 substrates	 are	 re‐
wetted	and	can	be	transported	downstream	 (Corti	&	Datry,	2012;	
Obermann,	Froebrich,	Perrin,	&	Tournoud,	2007;	Rosado,	Morais,	&	
Tockner,	2015).	Rewetting	during	 the	so‐called	 “first	 flush	events”	
also	leads	to	massive	pulsed	releases	of	dissolved	nutrients	and	dis‐
solved	 organic	 matter	 (DOM;	 Arce,	 Sánchez‐Montoya,	 &	 Gómez,	
2015;	 Gessner,	 1991;	 von	 Schiller	 et	 al.,	 2011).	 Importantly,	 con‐
centrations	of	the	released	substances	may	exceed	baseflow	values	
in	perennial	watercourses	by	several	orders	of	magnitude	and	can	
thus	substantially	contribute	 to	annual	 fluxes	 (Bernal,	von	Schiller,	
Sabater,	&	Marti,	2013;	Corti	&	Datry,	2012;	Skoulikidis	&	Amaxidis,	
2009).	Released	nutrients	and	DOM	fuel	primary	producers	and	het‐
erotrophic	organisms,	alter	nutrient	and	carbon	cycling,	and	thus	in‐
fluence	stream	ecosystem	metabolism	(Austin	et	al.,	2004;	Baldwin	
&	Mitchell,	2000;	Fellman,	Petrone,	&	Grierson,	2013;	Jacobson	&	
Jacobson,	2013;	Skoulikidis,	Vardakas,	Amaxidis,	&	Michalopoulos,	
2017).	 Furthermore,	 eutrophication	 and	 hypoxia	 can	 be	 a	 conse‐
quence	of	excess	nutrient	transport	to	downstream	lakes,	reservoirs,	
and	 coastal	 areas,	 where	 the	 mortality	 of	 fish	 and	 other	 aquatic	
organisms	 can	 increase	 (Bunn,	 Thoms,	 Hamilton,	 &	 Capon,	 2006;	
Datry,	Corti,	Foulquier,	Schiller,	&	Tockner,	2016;	Hladyz,	Watkins,	
Whitworth,	&	Baldwin,	2011;	Whitworth,	Baldwin,	&	Kerr,	2012).

Despite	 their	 widespread	 distribution	 and	 distinct	 role	 in	 bio‐
geochemical	 cycling,	 IRES	 are	 notably	 missing	 in	 current	 analy‐
ses	of	 global	 carbon	budgets	 and	other	biogeochemical	processes	
such	as	cycling	of	nutrients	and	DOM	(Datry	et	al.,	2018).	Still,	re‐
search	on	 IRES	 is	 based	primarily	 on	 studies	 spanning	 fine	 spatial	
extents	(Leigh	et	al.,	2016),	which	limits	our	understanding	of	their	
roles	in	ecosystem	processes	at	the	global	scale	(Datry	et	al.,	2014;	
Skoulikidis,	 Sabater	 et	 al.,	 2017;	 von	 Schiller	 et	 al.,	 2017;	 but	 see	
Datry	et	 al.,	 2018;	Soria,	 Leigh,	Datry,	Bini,	&	Bonada,	2017).	The	
contribution	of	IRES	particularly	to	biogeochemical	processes	must	

be	understood	and	quantified	to	correctly	estimate	carbon	and	nu‐
trient	 fluxes.	 Studies	 indicating	 altered	 distribution	 of	 IRES	 in	 the	
future	 due	 to	 climate	 change	 (e.g.	Milly,	Dunne,	&	Vecchia,	 2005)	
also	emphasizes	the	need	to	adjust	future	river	monitoring	and	con‐
servation strategies.

The	amounts	and	quality	of	dissolved	compounds	released	from	
IRES	upon	rewetting,	a	process	referred	to	as	leaching	(e.g.	Gessner,	
1991;	 Nykvist,	 1963),	 depends	 primarily	 on	 the	 physico‐chemical	
characteristics	 and	 amounts	 of	 substrates	 accumulated	 on	 river‐
beds.	Leachates	from	leaf	litter,	the	most	abundant	form	of	coarse	
particulate	 organic	 matter	 (CPOM)	 accumulated	 in	 dry	 riverbeds	
(Datry	et	al.,	2018),	are	rich	in	dissolved	organic	carbon	(DOC;	up	to	
39%	of	the	 leaf	bulk	carbon	content)	 including	soluble	sugars,	car‐
bonic	and	amino	acids,	phenolic	substances,	proteins,	and	inorganic	
nutrients	 (e.g.,	 phosphorus,	 nitrogen,	 potassium;	 Bärlocher,	 2005;	
Gessner,	 1991;	 Harris,	 Silvester,	 Rees,	 Pengelly,	 &	 Puskar,	 2016;	
Nykvist,	1963).	Likewise,	leaching	from	rewetted	sediments	of	IRES	
releases	 large	 amounts	 of	 inorganic	 nitrogen	 (e.g.	 Arce,	 Sánchez‐
Montoya,	 Vidal‐Abarca,	 Suárez,	 &	 Gómez,	 2014;	 Merbt,	 Proia,	
Prosser,	 Casamayor,	 &	 von	 Schiller,	 2016;	Ostojic,	 Rosado,	Miliša,	
Morais,	&	Tockner,	2013;	Tzoraki,	Nikolaidis,	Amaxidis,	&	Skoulikidis,	
2007).	Furthermore,	riverbeds	can	be	covered	by	biofilm	mats	(here‐
after	referred	to	as	“biofilm”),	composed	of	microorganisms	 (algae,	
bacteria,	 fungi)	 embedded	 in	 a	 matrix	 of	 extracellular	 polymeric	
substances	(Sabater,	Timoner,	Borrego,	&	Acuña,	2016),	whose	rem‐
nants	can	often	be	seen	even	during	the	dry	phase.	Biofilm's	leach‐
ate	may	contain	highly	bioavailable	organic	carbon	and	nitrogen	due	
to	the	accumulation	of	exudates	and	products	of	cell	 lysis	(Romaní	
et	al.,	2017;	Schimel,	Balser,	&	Wallenstein,	2007).	Physico‐chemical	
characteristics	of	substrates	accumulated	within	IRES	during	the	dry	
phase	as	well	as	the	amounts	of	leached	substances	depend	on	envi‐
ronmental	variables	that	act	at	both	regional	(climate	influenced)	and	
local	scales	(e.g.	influenced	by	river	geomorphology,	land	use,	ripar‐
ian	canopy	cover)	(Aerts,	1997;	Catalan,	Obrador,	Alomar,	&	Pretus,	
2013;	Datry	et	al.,	2018;	von	Schiller	et	al.,	2017).

The	quantity	and	quality	of	dissolved	substances	 leached	from	
the	 channel	 beds	 of	 IRES	 during	 the	 rewetting	 process,	 and	 the	
environmental	variables	associated	with	variation	 in	differences	 in	
leached	amounts,	has	been	little	studied.	However,	such	knowledge	
is	essential	for	disentangling	the	role	of	IRES	in	biogeochemical	pro‐
cesses	under	different	 scenarios	of	climate	change.	 In	 the	present	
study,	we	experimentally	simulated	pulsed	rewetting	events	under	
controlled standardized laboratory conditions using substrates 
collected	from	205	IRES	 located	 in	27	countries	 in	five	continents	
and	covering	five	major	climate	zones.	We	aimed	(a)	to	compare	the	
amounts	of	 nutrients	 and	DOM,	 and	 the	quality	 of	DOM	 leached	
from	 leaf	 litter,	 biofilms,	 and	 bed	 sediments	 accumulated	 on	 dry	
IRES	beds	at	 the	global	scale	as	well	as	 in	different	climate	zones,	
(b)	to	explore	and	identify	the	environmental	variables	related	to	the	
variability	in	leached	amounts,	and	(c)	to	estimate	the	potential	area‐
specific	fluxes	(per	m2	of	bed	surface)	of	nutrients	and	OM	leached	
during	 pulsed	 rewetting	 events.	We	 focused	 on	 common	nutrient	
and	 DOM	 species,	 which	 control	 essential	 ecosystem	 processes	
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such	as	primary	production	and	microbial	respiration	(Conley	et	al.,	
2009;	Elser	et	al.,	2007).	Furthermore,	we	estimated	the	size	catego‐
ries	and	optical	properties	of	released	DOM	as	proxies	of	its	quality.

Our	 first	hypothesis	was	 that	 in	 comparison	with	mineral	 sub‐
strates	(sediments),	leachates	from	organic	substrates	(biofilms	and	
leaves)	contain	higher	amounts	of	nutrients	and	DOM	relative	to	the	
content	of	the	respective	element	 (carbon	or	nitrogen)	 in	the	sub‐
strate.	 In	 addition,	 substrates	 of	 organic	 origin	 also	 have	 a	 higher	
variability	 in	 the	composition	of	 leachates	due	 to	a	higher	 species	
richness	 and	 compositional	 heterogeneity.	Within	 our	 second	 hy‐
pothesis	we	expected	that	significant	differences	in	the	amounts	of	
leached	substances	are	observed	among	substrates	sampled	across	
different	climate	zones,	with	the	highest	amounts	of	nutrients	and	
OM	leached	in	the	continental	climate	zone	compared	to	others	due	
to	high	 litter	quality	 (Boyero	et	al.,	2017).	 In	combination	with	the	
highest	mass	of	litter	observed	(Datry	et	al.,	2018)	we	expect	this	to	
result	 in	the	highest	nutrient	and	OM	fluxes	from	a	representative	
area	of	dry	river	bed	 in	 the	continental	zone.	Finally,	we	hypothe‐
sized	that	quantitative	and	qualitative	composition	of	leachates	will	
depend	on	substrate	characteristics,	which	in	turn	are	expected	to	
correlate	with	environmental	variables	sampled	at	the	study	sites.

2  | MATERIAL S AND METHODS

2.1 | Sampling sites, substrate collection, and 
environmental variables

A	total	of	205	IRES,	located	in	27	countries	and	spanning	five	major	
Köppen–Geiger	 climate	 classes,	 were	 sampled	 during	 dry	 phases,	
following	the	standardized	protocol	of	the	1,000	Intermittent	Rivers	
Project	(Datry	et	al.,	2016,	http://1000_intermittent_rivers_project.
irstea.fr,	Figure	1).	Five	major	climate	zones	were	assigned	to	sites	
based	on	their	 location:	arid	 (merging	Köppen–Geiger	classes	BSh,	

BSk,	BWh	and	BWk,	n	=	29),	continental	(Dfb,	Dfc,	n	=	13),	temper‐
ate	(Cfa,	Cfb,	Csa,	Csb,	Cwa,	n	=	142),	tropical	(As,	Aw,	n	=	19),	and	
polar	(ET,	n	=	1).	Differences	in	sample	size	resulted	from	the	occur‐
rence	of	IRES	and	accessibility	of	sampling	sites	by	researchers	in‐
volved	in	the	sampling	campaign.	A	larger	sample	size	increases	the	
variability	of	the	results	while	increasing	the	precision	of	the	mean/
median	values,	that	is,	reducing	the	variability	of	the	sample	mean/
median.	This	needs	 to	be	 considered	 in	data	evaluation	and	 inter‐
pretation.	For	each	 river,	one	 reach	was	selected	and	sampled	 for	
leaf	litter	(further	referred	as	leaves),	epilithic	biofilms	(biofilms),	and	
sediments	(details	on	material	collection	are	provided	in	Supporting	
Information).	After	collection,	field	samples	were	further	processed	
in	the	laboratory.	Leaves	and	biofilms	were	oven‐dried	(60°C,	12	hr)	
to	 achieve	 constant	 mass,	 reduce	 variability	 from	 fluctuations	 in	
water	content	(Boulton	&	Boon,	1991),	and	ensure	cellular	death	of	
the	 leaf	 tissue.	Oven‐drying	mainly	 affects	 volatile	 and	 oxidizable	
compounds,	 which	 were	 not	 in	 the	 focus	 of	 our	 study.	 However,	
oven‐drying	may	 increase	 the	amount	of	 leached	substances	 from	
leaves	 and	 biofilms	 (e.g.	 Gessner	 &	 Schwoerbel,	 1989).	 Bed	 sedi‐
ments	were	sieved	(2	mm)	and	air‐dried	for	1	week.	The	dry	material	
was	placed	 in	 transparent	plastic	bags,	 shipped	 to	 laboratories	 re‐
sponsible	for	further	analyses	(see	Acknowledgements),	and	stored	
in	a	dry	and	dark	room	until	processing	and	analysis.

Nine	 environmental	 variables	 were	 selected	 to	 analyze	 their	
association	 with	 leachate	 characteristics	 (Table	 1).	 The	 variables	
were	 selected	based	on	 a	 conceptual	 understanding	of	 the	 leach‐
ing	 process.	As	 proxies	 of	 a	 regional‐scale	 influence,	we	used	 the	
aridity	index	and	potential	evapotranspiration	(PET)	extracted	from	
the	 Global	 Aridity	 and	 PET	 database	 (for	 details	 see	Datry	 et	 al.,	
2018).	River	width,	riparian	cover	(%,	visually	estimated	as	the	pro‐
portion	of	 river	 reach	covered	by	vegetation),	dry	period	duration	
(estimated	either	with	water	loggers	or	repeated	observations,	pre‐
cision:	2	weeks),	altitude,	and	land	cover	(%)	of	pasture,	forest,	and	

F I G U R E  1  Location	of	the	sampling	sites	(N	=	205)	across	five	climate	zones.	Climate	zones	according	to	Köppen–Geiger	classes	are	
marked	with	different	colors	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

http://1000_intermittent_rivers_project.irstea.fr
http://1000_intermittent_rivers_project.irstea.fr
www.wileyonlinelibrary.com
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urban	areas	within	the	catchment	were	selected	as	proxies	of	local	
influence.	These	local‐scale	parameters	(apart	from	land	cover)	were	
recorded	 in	 situ	 by	 participants	 of	 the	 1,000	 Intermittent	 Rivers	

Project.	Land	cover	was	derived	using	GIS	maps.	For	details	on	the	
environmental	variables	sampled	and	substrate	characteristics,	see	
Table	S1.

TA B L E  1  Overview	of	the	variables	included	in	the	partial	least	squares	(PLS)	regression	models	and	transformations	applied	to	meet	
assumptions	of	analysis

Variable Description Measurement units Transformation
Variable in the 
PLS model

Environmental	variables

PET Mean	potential	evapotranspiration	for	
1950–2000

mm/month log(x) X

Aridity Mean	annual	aridity	index	for	years	
1950–2000

– log(x) X

Altitude Altitude	of	the	sampled	reach m above sea level log(x) X

Riparian	cover Percentage	of	the	sampled	reach	covered	
by vegetation

% log(x	+	1) X

Width	of	the	
sampled	reach

Active	channel	width m log(x) X

Dry	period Duration	of	the	drying	period days log(x) X

Pasture cover Percentage	of	pasture	area	within	the	
river	catchment

% log(x	+	1) X

Forest	cover Percentage	of	forested	area	within	the	
river	catchment

% log(x	+	1) X

Urban	cover Percentage	of	urban	area	within	the	river	
catchment

% log(x	+	1) X

Chemical	substrates	characteristics

%	C Carbon	content % log(x) X,	Y

%	N Nitrogen	content % log(x) X,	Y

C:N Molar	C:N	ratio – log(x) X,	Y

Specific	sediment	characteristics

Silt Silt	fraction % log(x) X,	Y

Sand Sand	fraction % log(x) X,	Y

Clay Clay	fraction % log(x) X,	Y

Mean	size Mean	particle	size mm log(x) X,	Y

Quantitative	chemical	characteristics	of	leachates

DOC Dissolved organic carbon mg/g dry mass log(x) Y

DON Dissolved organic nitrogen mg/g dry mass log(x) Y

SRP Soluble	reactive	phosphorous mg/g dry mass log(x) Y

N‐NH4
+ Ammonium mg/g dry mass log(x) Y

N‐NO3
− Nitrate mg/g dry mass log(x) Y

Qualitative	chemical	characteristics	of	leachates

SUVA254 Specific	ultraviolet	absorbance mg	C/L – Y

FI Fluorescence	index – log(x	+	1) Y

HIX Humification	index – log(x	+	1) Y

β:α Ratio	of	autochthonous	to	allochtonous	
dissolved organic matter

– log(x	+	1) Y

DOC:DON Ratio	of	DOC	to	DON	concentration – Y

Phenolics:DOC Ratio	of	phenolics	to	DOC	concentration – log(x	+	1) Y

LMWS Low	molecular	weight	substances % Y

BP Biopolymers % Y

HS Humic	substances % Y
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2.2 | Leaching experiments

Rewetting	was	simulated	 in	 the	 laboratory	by	exposing	dried	sub‐
strates	to	leaching	solutions	as	a	proxy	for	their	exposure	in	situ	to	
river	water	during	first	flush	events.	Leaves	were	cut	into	approxi‐
mately	 0.5	cm	 ×	 0.5	cm	 pieces	 and	 homogenized	 in	 glass	 beakers	
using	 a	 spoon.	 If	 the	 sample	 contained	 conifer‐needles	 (approxi‐
mately	30%	of	samples),	these	were	cut	into	fragments	of	approxi‐
mately	 4	±	0.5	cm	 length.	 From	 each	 sample,	 0.5	±	0.01	g	 were	
weighed,	put	 into	250	ml	dark	glass	bottles	and	filled	with	200	ml	
of	a	200	mg/L	NaCl	leaching	solution	to	mimic	ionic	strength	of	the	
stream	water	 and	 thus	 to	avoid	extreme	osmotic	 stress	on	micro‐
organisms’	cells	upon	rewetting	(e.g.	McNamara	&	Leff,	2004).	For	
biofilms,	 sub‐samples	 homogenized	 as	 previously	 described	 were	
weighed	 to	 1	±	0.01	g,	 and	 placed	 in	 dark	 glass	 bottles	 filled	with	
100	ml	of	 the	 leaching	solution.	Sediment	samples	 (20–60	g)	were	
homogenized	 in	 the	 same	way,	weighed	 to	 10	±	0.1	g,	 transferred	
into	250	ml	dark	glass	bottles,	and	filled	with	100	ml	of	the	leaching	
solution.	The	selected	mass	of	each	substrate	in	relation	to	the	vol‐
ume	of	leaching	solution	aimed	on	maximizing	the	leaching	yield	by	
avoiding	high	concentrations	of	dissolved	substances	that	could	lead	
to	saturation	so	that	substances	cannot	dissolve	further.

Preliminary	investigations	of	the	effect	of	temperature	and	time	
on	leaching	(tested	at	temperatures	of	4	and	20°C	and	leaching	du‐
rations	of	4	and	24	hr,	corresponding	to	temperatures	and	durations	
most	commonly	applied	in	leaching	studies	due	to	the	rapid	nature	
of	 the	 leaching	 process,	 data	 not	 shown),	 indicated	 selection	 of	 a	
constant	 temperature	 of	 20°C	 and	 leaching	 duration	 of	 4	hr.	 The	
selected	duration	reflects	the	time	when	most	of	the	dissolved	sub‐
stances	are	leached	and	minimizes	microbial	modification	of	leach‐
ates	upon	rewetting.	Bottles	containing	substrates	and	the	leaching	
solution	were	capped	and	placed	on	 shaking	 tables	 (100	rpm)	 in	a	
climate	chamber	in	darkness.	Two	subsamples	(technical	replicates)	
of	each	substrate	type	from	each	sampling	site	were	leached	when‐
ever	enough	material	was	available	(70%	of	the	samples).	Otherwise	
a	single	technical	replicate	was	used.

After	 4	hr,	 the	 leachate	 from	 the	 bottle	 was	 filtered	 through	
8.0	µm	cellulose	acetate	and	0.45	µm	cellulose	nitrate	membrane	fil‐
ters	(both	Sartorius,	AG	Göttingen,	Germany)	which	were	prerinsed	
with	1	L	of	de‐ionized	water	per	filter,	using	a	vacuum	pump.	Filtered	
leachates	were	collected	in	200	ml	glass	flasks	prerinsed	with	50	ml	
of	 the	 filtered	 leachate.	 If	 sufficient	 substrate	 was	 available,	 two	
subsamples	were	 leached	 to	 cover	 possible	 heterogeneity	 of	 sub‐
strate	 composition,	 but	 combined	 later	 in	 one	 glass	 flask	 to	 have	
one	representative	composite	sample	for	further	analysis.	Leachates	
were	then	transferred	into	HCl	prewashed	25	ml	plastic	bottles	prior	
to	further	chemical	analyses	(see	details	in	Supporting	Information).

2.3 | Physical and chemical characterization of 
substrates and leachates

Organic	carbon	(C)	and	total	nitrogen	(N)	content	of	substrates	(%C	
and	%N,	 respectively)	were	 determined	using	 elemental	 analyzers	

(for	details	see	Supporting	Information).	Sediment	texture	descrip‐
tors	(fractions	[%]	of	sand,	silt,	clay,	and	their	mean	and	median	par‐
ticle	size)	were	determined	with	a	laser‐light	diffraction	instrument	
(see	Supporting	Information).

Using	 standard	 analytical	 methods	 (for	 details	 see	 Supporting	
Information)	 we	 analyzed	 the	 following	 substances	 in	 leachates:	
DOC,	 soluble	 reactive	phosphorus	 (SRP),	 ammonium	 (N‐NH4

+),	 ni‐
trate	(N‐NO3

−),	and	phenolics.
The	concentration	of	nutrients	and	OM	in	leachates	was	used	to	

calculate	leached	amounts	per	gram	of	dry	substrate	(total	leached	
amounts)	and	per	gram	of	the	respective	element,	C	or	N,	in	the	sub‐
strate	(relative	leached	amounts).	Areal	fluxes	upon	rewetting	were	
calculated	from	total	leached	amounts	and	mass	of	substrate	accu‐
mulated	in	the	field.

2.4 | Characterization of DOM quality

To	 determine	 concentrations	 of	 dissolved	 organic	 nitrogen	 (DON)	
and	the	composition	of	DOM	based	on	size	categories,	we	used	size‐
exclusion	chromatography	with	organic	carbon	and	organic	nitrogen	
detection	 (LC‐OCD‐OND	 analyzer,	 DOC‐Labor	 Huber,	 Karlsruhe,	
Germany)	 (details	 are	 provided	 in	 Supporting	 Information).	A	 sub‐
set	of	 leaves,	biofilms,	and	sediments	sampled	 from	77	 rivers	was	
selected	 randomly	 to	 cover	 all	 climate	 zones.	We	 selected	 limited	
samples	due	to	the	time‐consuming	nature	of	this	analysis	(2.5	hr	per	
sample).	 Leachates	 produced	 from	 these	 substrates	 (as	 described	
previously)	were	selected	for	further	analysis,	 in	cases	where	con‐
centrations	of	DOC	in	leachates	did	not	exceed	the	measuring	limits	
of	the	chromatograph	(the	final	set	included	leachates	from	52	leaf,	
11	biofilm,	and	77	sediment	samples).	We	classified	DOM	into	three	
major	 sub‐categories:	 (a)	biopolymers	 (BP),	 (b)	humic	or	humic‐like	
substances	(HS)	including	building	blocks	(HS‐like	material	of	lower	
molecular	weight),	and	(c)	low	molecular‐weight	substances	(LMWS).	
The	concentration	of	each	category	was	normalized	to	the	total	DOC	
concentration,	and	is	thus	given	as	the	fraction	(%)	of	the	total	DOC.

To	obtain	indices	of	DOM	quality	(for	details	see	Fellman,	Hood,	
&	Spencer,	2010;	Hansen	et	al.,	2016),	we	simultaneously	determined	
absorbance	 spectra	of	DOM	and	 fluorescence	excitation‐emission	
matrices	 (EEM)	 using	 a	 spectrofluorometer	 (Horiba	 Jobin	 Yvon	
Aqualog;	 Horiba	 Scientific	 Ltd,	 Kyoto,	 Japan).	 Specific	 UV	 absor‐
bance	values	were	calculated	at	a	wavelength	of	254	nm	(SUVA254),	
which	are	correlated	with	aromatic	carbon	content	(Weishaar	et	al.,	
2003),	by	dividing	decadal	absorbance	by	DOC	concentration	 (mg	
C/L)	 and	 cuvette	 length	 (m).	 The	 fluorescence	 index	 (FI),	 humifi‐
cation	 index	 (HIX),	 and	 freshness	 index	 (β:α)	were	calculated	 from	
fluorescence	EEM	for	all	DOM	samples	(for	details	see	Supporting	
Information).	The	FI	indicates	whether	DOM	is	derived	from	terres‐
trial	sources	(e.g.	plant	or	soil,	FI	value	~1.4)	or	microbial	sources	(e.g.	
extracellular	 release,	 leachates	 from	 bacterial	 and	 algal	 cells	 lysis,	
FI	value	~1.9)	(McKnight	et	al.,	2001).	The	HIX	indicates	the	extent	
of	 DOM	 humification	 (degradation)	 (Ohno,	 2002;	 Zsolnay,	 Baigar,	
Jimenez,	Steinweg,	&	Saccomandi,	1999),	with	HIX	<0.9	 indicating	
DOM	derived	from	relatively	recent	(plant	and	algae)	inputs	(Hansen	
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et	 al.,	 2016).	 The	 freshness	 index,	 that	 is,	 the	 ratio	 of	 autochtho‐
nous	(β)	vs.	allochthonous	(α)	DOM,	indicates	dominance	by	recently	
produced	or	decomposed	DOM	(values	~0.6–0.7	indicate	more	de‐
composed	allochtonous	DOM;	Parlanti,	Worz,	Geoffroy,	&	Lamotte,	
2000;	Wilson	&	Xenopoulos,	2008).	EEM	were	corrected	for	Raman	
scatter,	Rayleigh,	 and	 inner	 filter	 effects	 before	 calculation	of	 the	
fluorescence	indices	(Mcknight	et	al.,	2001;	Parlanti	et	al.,	2000).

2.5 | Calculation of the total areal flux of 
nutrients and OM

Total	areal	flux	of	nutrients	and	OM	per	square	meter	of	the	riverbed	
was	calculated	based	on	information	about	the	mass	of	leaves	and	
biofilm	accumulated	on	the	dry	riverbeds	(Datry	et	al.,	2018),	as	well	
as	on	average	mass	of	sediment	per	square	meter	of	surface	area.	For	
the	latter,	we	assumed	an	average	density	of	sediments	of	1.6	g/cm3 
(Hillel,	1980)	and	the	depth	of	the	sediments	potentially	affected	by	
a	rewetting	event	to	be	10	cm	(see	Merbt	et	al.,	2016),	which	also	
corresponds	to	the	depth	of	the	sampled	sediment	layer	according	to	
the	sampling	protocol.	We	acknowledge	that	this	assumption	should	
be	considered	with	caution	as	high	variability	in	sediment	densities	
can	be	found	in	nature	(e.g.	Boix‐Fayos	et	al.,	2015)	and	contribution	
of	 sediment	 layers	within	10	cm	depth	 to	 leaching	also	may	differ	
(e.g.	Merbt	et	al.,	2016).

Overall,	 the	 total	 areal	 flux	 is	 the	 sum	 of	 nutrients	 and	 OM	
leached	 from	 all	 substrates	 found	within	 the	 dry	 riverbed.	 To	 ex‐
ecute	 a	 global	 comparison	of	 total	 areal	 fluxes,	 samples	 from	157	
reaches	were	selected	for	which	a	complete	set	of	nutrients	and	OM	
concentrations	(except	DON)	were	available.	Reaches	for	which	one	
or	more	chemical	measurements	were	identified	as	technical	outliers	
after	exploration	with	boxplots	and	Cleveland	dotplots	(Zuur,	Ieno,	&	
Elphick,	2010)	were	excluded.	We	assume	these	calculations	reflect	
spatial	 differences	 in	 surface	 fluxes	of	nutrients	 and	OM	across	 a	
range	of	sampled	IRES.

2.6 | Statistical analyses

Differences	 in	 the	 total	and	 relative	 leached	amounts	of	nutrients	
and	DOM	from	different	 substrates	 (Hypothesis	1),	 as	well	 as	be‐
tween	substrates	collected	in	different	climate	zones	and	estimated	
fluxes	 from	different	 climate	 zones	 (Hypothesis	 2),	were	 assessed	
using	Kruskal–Wallis	nonparametric	tests	followed	by	Dunn's	tests	
with	Bonferroni	 correction	 for	post‐hoc	comparisons.	The	 level	of	
significance	was	set	to	0.0167	to	account	for	multiple	comparisons	
among	 the	 three	 substrates	 and	 to	 0.0083	 to	 account	 for	 com‐
parisons	 among	 the	 four	 main	 climate	 zones	 (calculated	 as	 0.05/
[k(k−1)/2],	where	k	is	the	number	of	groups)	(Dunn,	1964).	The	polar	
climate	zone	was	excluded	from	the	comparison	as	there	was	only	
one	 sampling	 location	 in	 this	 category.	Biofilm	 leachates	were	ex‐
cluded	from	the	cross‐climate	comparison	as	the	majority	of	samples	
were	taken	in	the	temperate	zone	(35	out	of	41	samples).	Variability	
in	leached	amounts	(Hypothesis	1)	was	assessed	based	on	interquar‐
tile	difference	(quartile	three	of	data	distribution	minus	quartile	one)	TA
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expressed	 in	percentages.	This	measure	of	variability	accounts	 for	
differences	 in	 data	 distributions	 of	 nutrients	 and	 DOM	 amounts	
leached	from	different	substrates	and	facilitates	comparison.

In	 order	 to	 identify	 the	 environmental	 variables	 and	 substrate	
characteristics	 driving	 the	 quantitative	 (amounts	 of	 nutrients	 and	
OM)	and	qualitative	(DOM	quality)	characteristics	of	the	leachates	
partial	 least	 squares	 (PLS)	 regression	models	were	 applied	 (Wold,	
Sjöstrom,	&	Eriksson,	2001).	This	approach	allows	exploration	of	the	
relationship	between	collinear	data	in	matrices	X	(independent	vari‐
able)	 and	Y	 (dependent	 variable).	An	overview	of	 the	 components	
to	be	included	in	the	models	is	given	in	Table	1.	Performance	of	the	
model	 is	 expressed	 by	 R2Y	 (explained	 variance).	 The	 influence	 of	
every X	 variable	 on	 the	Y	 variable	 across	 the	 extracted	PLS	 com‐
ponents	(latent	vectors	that	explain	as	much	as	possible	of	the	co‐
variance between X and Y)	is	summarized	by	the	variable	influence	
on	projection	(VIP)	score	 (Table	3).	The	VIP	scores	of	every	model	
term	(X‐variables)	are	cumulative	across	components	and	weighted	
according	to	the	amount	of	Y‐variance	explained	in	each	component	
(Eriksson,	 Johansson,	 Kettaneh‐Wold,	 &	Wold,	 2006).	 X‐variables 
with	VIP	>	1	are	most	 influential	on	the	Y‐variable,	while	variables	
with	 1	>	VIP	 >	 0.8	 are	 moderately	 influential.	 Values	 negatively	 
correlated	with	 the	Y‐variable	 were	multiplied	 by	 a	 coefficient	 of	
negative	 one	 to	 facilitate	 interpretation.	 Data	 were	 transformed	
prior	to	analyses	to	meet	the	assumptions	of	normal	distribution	and	
homoscedasticity	(Table	1).

In	order	to	partition	the	variance	in	quantitative	and	qualitative	
characteristics	of	nutrients	and	DOM	explained	by	different	groups	
of	variables	(environmental	variables,	substrate	characteristics,	and	
the	effect	of	environmental	variables	through	their	effect	on	mea‐
sured	 substrate	 characteristics),	 we	 used	 the	 approach	 suggested	
in	 Borcard,	 Legendre,	 and	 Drapeau	 (1992)	 (Figure	 2).	 The	 follow‐
ing	PLS‐regression	models	were	run	to	distinguish	fractions	of	ex‐
plained	variance	in	the	quantitative/qualitative	characteristics	of	the	
leachates:

‐	Fraction	[a	+	b]	–	explained	by	substrate	characteristics;
‐	Fraction	[b	+	c]	–	explained	by	environmental	variables;
‐	Fraction	[a	+	b	+	c]	–	explained	by	environmental	variables	and	 
measured	substrate	characteristics.

From	each	PLS‐regression	model,	the	explained	variance	R2Y was 
calculated	and	used	to	calculate	the	fraction	of	variance	explained	
by	each	set	of	predictors	separately	 (Borcard	et	al.,	1992).	For	the	
PLS	regression	analysis,	we	selected	the	complete	set	of	variables	
for	which	 the	 required	data	 (all	predictors	and	 response	variables,	
Table	1)	were	available.	We	ran	partitioning	of	variance	for	the	set	
of	samples	on	the	global	scale	and	individually	for	each	climate	zone.	
For	 biofilms,	 the	 analysis	was	 done	 for	 samples	 of	 the	 temperate	
zone	only	because	of	the	limited	number	of	samples	from	other	cli‐
mate zones.

All	statistical	analyses	were	performed	in	r	3.2.2	(R	Core	Team,	
2017),	except	for	the	PLS	analysis	which	was	conducted	using	xlstat 
software	(XLSTAT,	2017,	Addinsoft,	Germany).Pr
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3  | RESULTS

3.1 | Leached amounts of nutrients and DOM 
species

3.1.1 | Total and relative leaching rates

The	total	leached	amounts	(mg/g	dry	mass)	of	nutrients	(except	N‐
NO3

−)	and	DOM	were	highest	for	leaves,	followed	by	biofilms,	and	
sediments	 (Figure	 3;	 Table	 S2).	 The	 leached	 amounts	 of	 N‐NO3

− 
were	 highest	 for	 biofilms	 (Kruskal–Wallis	 test,	 χ2	=	15.8,	 df	=	2,	
p	<	0.0001;	 Dunn's	 test	 for	multiple	 comparison,	 p	<	0.0001),	 and	
no	significant	difference	was	found	between	leaves	and	sediments	
(Dunn's	test,	p	=	0.3).	Leached	amounts	of	DON	from	leaves	and	bio‐
films	were	not	significantly	different	(Kruskal–Wallis	test,	χ2	=	105.7,	
df	=	2,	p	<	0.0001;	Dunn's	test,	p	=	0.2).

The	 total	 leached	amounts	of	nutrients	 and	DOM	from	 leaves	
and	 biofilms	 decreased	 in	 a	 similar	 sequence:	DOC	 >	 phenolics	 >	
DON	>	SRP	>	N‐NH4

+ >	N‐NO3
−	(based	on	median	values).	The	total	

leached	amounts	from	sediments	decreased	in	the	following	order:	
DOC	>	phenolics	>	N‐NO3

−	>	N‐NH4
+ ≈	DON	>	SRP	(Table	S2).

The	 relative	 leached	 amounts	 of	DOC	 and	 phenolics	 (mg/g	C)	
and	DON	(mg/g	N)	were	highest	for	leaves,	followed	by	biofilms	and	
sediments	(Figure	3;	Table	S2).	However,	there	were	no	significant	
differences	 for	 the	 amounts	 of	 DON	 between	 leaves	 and	 biofilm	
leachates	(Kruskal–Wallis	test,	χ2	=	51.6,	df	=	2,	p	<	0.0001;	Dunn's	

test,	 p	=	0.8),	 nor	 for	 phenolics	 between	 biofilms	 and	 sediments	
(Kruskal–Wallis	 test,	 χ2	=	265.4,	 df	=	2,	 p	<	0.0001;	 Dunn's	 test,	
p	=	0.2).	Relative	leached	amounts	of	N‐NH4

+	were	highest	for	bio‐
films,	followed	by	leaves	and	bed	sediments,	with	a	significant	differ‐
ence	between	leaves	and	sediments	(Kruskal–Wallis	test,	χ2	=	265.4,	
df	=	2,	 p	<	0.0001;	 Dunn's	 test,	 p	<	0.001).	 For	 N‐NO3

−,	 relative	
leached	 amounts	 decreased	 significantly	 from	 sediments	 to	 bio‐
films	and	leaves	(Kruskal–Wallis	test,	χ2	=	204.4,	df	=	2,	p	<	0.0001;	
Dunn's	test,	p	<	0.001;	Figure	3;	Table	S2).

For	all	substrates,	we	observed	large	variations	in	the	total	and	
relative	 leached	amounts	of	nutrients	and	DOM	(Figure	3,	Table	
S2).	The	highest	variability	 in	total	and	relative	 leached	amounts	
of	DOC,	N‐NO3

−,	and	SRP	was	observed	for	biofilms,	which	was	
up	 to	10	 times	higher	 than	 for	 sediments	and	 leaves.	Sediments	
had	 the	highest	variability	 in	 the	 total	 leached	amounts	of	DON	
and	relative	leached	amounts	of	N‐NH4

+	and	phenolics.	For	leaves,	
the	highest	variability	was	found	in	the	relative	leached	amounts	
of	DON.

3.2 | Qualitative DOM characterization

Values	of	SUVA254,	a	proxy	for	aromatic	carbon	content,	decreased	
from	sediments	and	 leaves	 to	biofilms,	with	no	 significant	differ‐
ence	between	sediments	and	leaves	(Kruskal–Wallis	test,	χ2	=	55.8,	
df	=	2,	p	<	0.0001;	Dunn's	test,	p	=	0.4)	(Figure	4;	Table	S3).

F I G U R E  2  Variance	partitioning	
among	variables	that	influence	leaching	
of	nutrients	and	organic	matter	from	
substrates accumulated in intermittent 
rivers	and	ephemeral	streams.
*	Fraction	a	–	variance	explained	by	the	sub‐
strate	characteristics;	fraction	b	–	variance	
explained	 by	 the	 effect	 of	 environmen‐
tal	 variables	 on	 substrate	 characteristics	
measured	in	the	study;	fraction	c	–	variance	
explained	 by	 the	 environmental	 variables;	
[d]	–	unexplained	variance.
**	[a	+	b]	–	effect	of	the	substrate	character‐
istics	on	leachate	characteristics;	[b	+	c]	–	 
effect	 of	 the	 environmental	 variables	 on	
leachate	characteristics;	[a	+	b	+	c]	–	effect	
of	the	environmental	variables	on	leachate	
characteristics	 through	 their	 impact	 on	
substrate	 characteristics.	 [Colour	 figure	
can	be	viewed	at	wileyonlinelibrary.com]
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Ratios	of	DOC:DON	and	phenolics:DOC	were	highest	in	leach‐
ates	from	leaves,	while	differences	between	sediments	and	biofilms	
were	 not	 statistically	 significant	 (Dunn's	 test	 following	 a	Kruskal–
Wallis	test,	p = 0.8 and p	=	0.06	respectively;	Table	S3).

The	β:α	 ratio	 indicated	a	prevalence	of	 allochthonous	DOM	 in	
leachates	from	all	substrates.	The	proportion	of	allochthonous	DOM	
was	highest	in	leachates	from	biofilms,	followed	by	sediments,	then	

leaves,	but	there	was	no	significant	difference	between	biofilms	and	
sediments	(Kruskal–Wallis	test,	χ2	=	197.4,	df	=	2,	p	<	0.0001;	Dunn's	
test,	p	=	0.4).	The	degree	of	DOM	humification	based	on	HIX	values	
was	highest	for	sediments	followed	by	biofilms	and	leaves,	with	sta‐
tistically	significant	differences	among	all	substrates	(Kruskal–Wallis	
test,	 χ2	=	96.94,	 df	=	2,	 p	<	0.0001;	 Dunn's	 tests	 <0.0001).	 Values	
of	FI	indicated	the	presence	of	OM	derived	from	terrestrial	sources	
in	 all	 leachates,	 with	 no	 significant	 differences	 among	 substrates	
(Kruskal–Wallis	test,	χ2	=	6.3,	df	=	2,	p	=	0.043).

In	all	leachates,	HS	was	the	dominant	fraction	of	DOM	followed	
by	BP	and	LMWS	 (Figure	5;	Table	S3).	The	highest	proportion	of	
HS	 in	DOM	was	 in	 sediment	 leachates,	while	 between	 leachates	
of	 leaves	 and	biofilms	 the	percentage	of	HS	did	 not	 significantly	
differ	 (Kruskal–Wallis	 test,	 χ2	=	29.9,	 df	=	2,	 p	<	0.0001;	 Dunn's	
test,	p	=	0.9).	The	highest	percentage	of	LMWS	was	present	in	leaf	
leachates	with	the	median	twice	as	high	as	 in	sediments	and	bio‐
films.	The	highest	percentage	of	BP	was	 found	 in	 leachates	 from	
biofilms	with	 the	median	values	 two	and	six	 times	higher	 than	 in	
sediments	 and	 leaves,	 respectively.	 For	 LMWS	 and	 BP,	 the	 dif‐
ference	between	biofilms	and	sediments	was	not	statistically	sig‐
nificant	 (Dunn's	 test	 following	 a	 Kruskal–Wallis	 test,	 p = 0.7 and 
p	=	0.06	respectively).

3.3 | Differences in amounts of leached 
substances and DOM quality across climate zones

Cross‐climate	 differences	 in	 amounts	 of	 leached	 substances	 and	
qualitative	 characteristics	 of	DOM	depended	 on	 the	 type	 of	 sub‐
strate	(Table	2;	Table	S4).	For	leaves,	a	significant	difference	in	the	
total	 leached	 amounts	 was	 observed	 only	 for	 N‐NH4

+ between 
continental	 and	 arid	 zones,	 as	 well	 as	 between	 continental	 and	
temperate	 zones	 (Dunn	 post‐hoc	 tests	 following	 a	 Kruskal–Wallis	
test,	p	<	0.0001,	Table	S4).	All	variables	measured	in	leaves	showed	
highest	 concentration	 in	 the	 continental	 zone,	 except	 for	N‐NO3

− 
(highest	in	the	tropical	zone)	and	DON	(highest	in	the	arid	zone).	For	
sediments,	 significant	 differences	 in	 leached	 amounts	were	 found	
for	 all	 variables	 except	 phenolics	 (Kruskal–Wallis	 test,	 χ2	=	5.43,	
df	=	3,	 p	=	0.143).	 In	 all	 cases,	 the	 highest	 total	 leached	 amounts	
were	found	in	samples	from	the	continental	zone	and	the	lowest	in	
leachates	from	the	arid	zone	(Table	2;	Table	S4).	Leached	amounts	
of	nutrients	and	DOM	from	leaves	and	sediments	from	the	temper‐
ate	zone,	the	most	commonly	sampled	zone	in	the	study,	followed	
leached	amounts	found	in	the	tropical	zone,	however,	with	no	sig‐
nificant	difference	(Table	2;	Table	S4).	The	relative	leached	amounts	
did	not	differ	significantly	among	climate	zones	for	 leaves	or	sedi‐
ments	(Table	S4).

Aromatic	carbon	content	 (a	proxy	used	to	access	cross‐climate	
differences	 in	 bioavailability)	 leached	 from	 leaves	was	 not	 signifi‐
cantly	different	among	climate	zones	(Kruskal–Wallis	test,	χ2	=	3.82,	
df	=	3,	p	=	0.28).	For	sediments,	a	statistically	significant	difference	
was	found	between	samples	from	the	arid	and	the	continental	zone	
(Dunn's	test,	p	=	0.003;	Table	S4),	with	leachates	from	the	arid	zone	
having	lower	aromaticity.

F I G U R E  3  Total	(left)	and	relative	(right)	leached	amounts	of	
nutrients	and	dissolved	organic	matter	from	leaves	(L),	biofilms	(B),	and	
sediments	(S)	of	IRES	globally.	Box:	median,	interquartile	range	(25%–
75%),	and	outliers	(i.e.	values	that	exceed	1.5	interquartile	range).	
DM	–	dry	mass;	GAE	–	gallic	acid	equivalent.	Note:	Relative	leached	
amounts	of	SRP	were	not	estimated.	For	parameter	acronyms	see	
Table	1.	Letters	in	parentheses	on	the	x‐axis	indicate	nonsignificant	
difference	between	leachates	from	specified	substrates	(p	>	0.0167,	
Dunn	test	for	post‐hoc	comparison;	see	Section	2)
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3.4 | Effects of environmental variables and 
substrate characteristics

3.4.1 | Effects on the amounts of leached 
nutrients and DOM

On	a	global	scale,	25%	of	the	variance	in	the	amounts	of	nutrients	
and	DOM	leached	from	sediments	could	be	explained	by	selected	
variables	 (fraction	 [a	+	b	+	c]),	which	was	more	than	twice	that	 for	
leaves	(11%)	(Figure	6a,b).	For	sediments,	around	23%	of	the	variance	
could	be	explained	by	the	effect	of	substrate	characteristics	 (frac‐
tion	 [a	+	b]),	 around	15%	by	 the	 effect	 of	 environmental	 variables	
(fraction	[b	+	c]),	and	13%	by	the	effect	of	environmental	variables	
on	substrate	characteristics	(fraction	[b])	(Figure	6a).	For	leaves,	the	
substrate	characteristics	and	the	environmental	variables	explained	
approximately	an	equal	percentage	of	variance,	8%	and	6%	respec‐
tively,	 which	 was	 much	 lower	 than	 that	 explained	 for	 sediments.	
Environmental	variables	and	substrate	characteristics	accounted	for	
3%	of	variance	in	the	quantitative	composition	of	leaf	leachates.	For	
both	substrates,	the	most	influential	variables	(VIP	>1)	were	C	frac‐
tion,	N	fraction,	PET,	and	in	the	case	of	leaves,	C:N	and	pasture	cover	
within	the	river	catchment	(Table	3).

For	both	sediments	and	 leaves,	 the	highest	percentage	of	vari‐
ance	 in	amounts	of	 leached	nutrients	and	DOM	was	explained	 for	
the	continental	and	tropical	zones	(59%	and	46%	for	sediments,	39%	
and	40%	for	leaves	respectively,	Figure	6a).	Substances	leached	from	
sediments	from	these	regions	were	explained	mostly	by	the	environ‐
mental	variables	and	their	effect	on	substrate	characteristics.	High	
VIP	was	found	for	the	dry	period	duration,	N	fraction	and	textural	
classes	(both	zones),	river	width	and	forest	cover	(continental),	PET,	
urban	cover,	and	fraction	of	C	(tropical).	In	contrast,	for	leaves	in	these	
zones,	most	 of	 the	 variance	was	 explained	 by	 environmental	 vari‐
ables	alone	and	not	by	their	effect	on	the	substrates.	Environmental	
variables	with	high	VIP	in	these	zones	were	PET	and	aridity	(in	both),	
river	width	and	altitude	(in	the	continental	zone),	as	well	as	pasture	
cover	and	dry	period	duration	(in	the	tropical	zone)	(Table	3).

For	 the	 temperate	 zone,	 the	 results	 of	 variance	 partitioning	
were	available	 for	all	analyzed	substrates.	Here,	 the	 total	variance	
in	leachates	was	best	explained	for	biofilms	(48%)	followed	by	sed‐
iments	(30%)	and	leaves	(15%).	In	contrast	to	sediments	and	leaves,	
the	variance	 in	biofilm	 leachates	was	better	explained	by	environ‐
mental	variables	 (VIP	>1	for	aridity	and	altitude)	than	by	substrate	
characteristics.

3.5 | Effects on qualitative characteristics of DOM

For	sediments	and	leaves,	the	percentage	of	variance	that	was	ex‐
plained	for	qualitative	characteristics	of	DOM	on	the	global‐scale	
was	much	lower	(around	7%	for	each	of	the	substrates)	than	that	
for	the	amounts	of	 leached	substances	 (Figure	6b).	The	contribu‐
tion	of	environmental	variables,	 substrate	characteristics,	and	ef‐
fect	of	environmental	variables	on	substrate	characteristics	to	the	
total	variance	was	approximately	equal	(Figure	6).	Influential	vari‐
ables	with	VIP	>1	were	altitude	and	C	fraction	(for	both	substrates),	
PET	and	texture	 (for	sediments),	and	river	width	and	urban	cover	
(for	leaves).

F I G U R E  4  Qualitative	characteristics	of	dissolved	organic	
matter	leached	from	leaves	(L),	biofilms	(B),	and	sediments	(S)	
of	IRES	globally.	Box:	median,	interquartile	range	(25%–75%),	
and	outliers	(i.e.	values	that	exceed	1.5	interquartile	range).	For	
parameter	acronyms	see	Table	1.	Letters	in	parentheses	on	the	x‐
axis	indicate	that	the	difference	between	leachates	from	specified	
substrates	was	nonsignificant	(p	>	0.0167,	Dunn	test	for	post‐hoc	
comparison;	see	Section	2)

F I G U R E  5  Size	fractions	of	dissolved	organic	matter	(DOM)	
leached	from	leaves	(L),	biofilms	(B),	and	sediments	(S)	of	IRES	
globally.	BP,	biopolymers;	HS,	humic	substances;	LMWS,	low	
molecular	weight	substances.	Box:	median,	interquartile	range	
(25%–75%),	and	outliers	(i.e.	values	that	exceed	1.5	interquartile	
range).	Letters	in	parentheses	on	the	x‐axis	indicate	that	the	
difference	between	leachates	from	specified	substrates	was	
nonsignificant	(p	>	0.0167,	Dunn	test	for	post‐hoc	comparison;	see	
Section	2)
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For	sediments,	as	in	the	case	of	amounts	of	leached	substances,	
the	variance	across	sampling	sites	was	explained	best	in	the	tropical	
(58%)	and	continental	(53%)	zones,	and	was	driven	mainly	by	the	en‐
vironmental	variables	and	their	effect	on	substrate	characteristics.	
Variables	with	VIP	>1	in	both	zones	were	sediment	texture	(fraction	
of	silt	and	clay)	and,	additionally	PET,	aridity,	and	urban	cover	in	sam‐
ples	 from	the	 tropical	 zone,	and	pasture	and	 forest	cover,	 riparian	
cover,	 aridity,	 and	 dry	 period	 duration	 in	 samples	 from	 the	 conti‐
nental	zone	(Table	3).	For	sediments	in	the	arid	zone,	the	explained	
variance	was	around	28%	and	the	share	of	groups	of	variables	that	
explained	the	observed	variance	was	different.	In	particular,	almost	
all	variance	explained	by	environmental	variables	was	due	to	the	ef‐
fect	 of	 environmental	 variables	 on	 substrates	 (VIP	>1	 for	 texture,	
%C,	%N,	and	forest	cover).	This	was	the	opposite	for	leaf	leachates,	
where	the	variance	was	explained	mainly	by	the	effect	of	environ‐
mental	variables	alone	(PET,	aridity,	and	dry	period	duration).

In	samples	from	the	temperate	zone,	variance	of	leachate	quality	
was	best	explained	for	biofilms	(27%)	followed	by	leaves	(13%)	and	
sediments	 (6%)	 (Table	3).	The	same	was	 found	 for	 the	amounts	of	
leached	substances,	where	the	explained	variance	for	biofilms	was	
due	 to	 the	 effect	 of	 environmental	 variables	 (PET	 and	 fraction	 of	
different	 land	use	 types),	 and	 for	 leaves	due	 to	 the	effect	of	 sub‐
strate	characteristics	(%C,	%N).	For	sediments,	the	share	of	variance	
explained	by	the	effect	of	substrate	characteristics	and	the	effect	of	
environmental	variables	was	approximately	equal	 (VIP	>1	for	sedi‐
ment	texture	classes,	river	width,	altitude).

3.6 | Estimated areal fluxes of nutrients and OM 
across IRES riverbeds

Area‐specific	 fluxes	 differed	 by	 two	 to	 four	 orders‐of‐magnitude	
among	the	sampled	riverbeds,	depending	on	the	nutrient	and	OM	
species	 (Figure	 S1,	 Table	 4).	 Fluxes	 of	 DOC	 and	 SRP	 differed	 by	
two	orders‐of‐magnitude	and	ranged	for	DOC	from	3	to	163	g/m2 
riverbed	surface	(median:	15.2)	and	for	SRP	from	0.015	to	2.63	g/
m2	 (median:	0.12).	 Fluxes	of	N‐NH4

+ and	phenolics	 spanned	 three	
orders‐of‐magnitude	(N‐NH4

+: 0.009–6.67 g/m2,	median:	0.27;	phe‐
nolics:	 0.012–35	g/m2,	 median:	 1.39).	 N‐NO3

−	 fluxes	 spanned	 the	
largest	range,	from	0.008	to	18.88	g/m2	(median:	0.59	g/m2).	Overall,	
the	released	fluxes	decreased	in	the	following	order:	DOC	>	pheno‐
lics	>	N‐NO3

−	>	N‐NH4
+ >	SRP.

Major	contributions	to	the	areal	fluxes	from	riverbeds	were	made	
by	sediments:	98	±	7%	(mean	±	SD)	for	N‐NO3

−,	97	±	6%	for	N‐NH4
+,	

86	±	19%	for	SRP,	85	±	20%	for	DOC,	and	56	±	33%	for	phenolics.	
Leaves	provided	the	second	highest	contribution	to	the	total	areal	
flux.	 In	contrast	 to	sediments	and	 leaves,	 the	relative	contribution	
of	biofilms	to	area‐specific	flux	rates	was	very	low	for	all	substances	
(in	 average:	<0.1%),	 but	 slightly	higher	 for	N‐NO3

−	 (1.5	±	7%)	 (val‐
ues	above	100%	or	lower	than	0%	reflect	deviation	and	not	the	real	
data).

The	highest	fluxes	were	estimated	from	riverbeds	 in	the	conti‐
nental	zone	(Table	4),	whose	areal	flux	of	N‐NH4

+ and	phenolics	was	
three	times	higher	than	that	of	the	arid	zone,	four	times	higher	for	

N‐NO3
−,	and	 five	 times	higher	 for	SRP	and	DOC.	For	all	nutrients	

and	OM	 species,	 except	 phenolics	 (Kruskal–Wallis	 test,	 χ2	=	4.68,	
df	=	3,	p	=	0.2),	the	differences	between	continental	and	arid	zones	
were	statistically	significant	(Dunn's	test,	p	<	0.001	for	all	pairwise	
comparisons).	Compared	to	the	continental	zone,	a	 lower	flux	was	
found	for	DOC	in	temperate	and	tropical	zones	(Kruskal–Wallis	test,	
χ2	=		24.8,	 df	=	3,	 p	=	0.003;	 Dunn's	 tests	 p = 0.001 and p = 0.005 
respectively)	 and	 SRP	 (Kruskal–Wallis	 test,	 χ2	=	20.02,	 df	=	3,	
p	<	0.001;	Dunn's	 tests	p = 0.001 and p	=	0.004	 respectively).	The	
flux	of	N‐NH4

+ was	lower	in	the	temperate	zone	than	in	the	conti‐
nental	zone	(Kruskal–Wallis	test,	χ2	=	16.5,	df	=	3,	p	<	0.001;	Dunn's	
test p	=	0.006).

4  | DISCUSSION

4.1 | Rewetting events in IRES in the context of 
global biogeochemical cycles

Our	 globally	 comparable	 assessment	 of	 nutrient	 and	DOM	 leach‐
ing	in	rewetted	IRES	shows	that	the	quantity	and	quality	of	leached	
nutrients	 and	 DOM	 are	 substrate‐	 and	 climate‐specific,	 with	 the	
highest	amounts	leached	in	continental	climate	and	with	sediments	
contributing	most	to	the	total	areal	flux	from	dry	river	beds.	These	
data	provide	a	basis	on	which	to	develop	models	of	biogeochemical	
cycling	in	river	networks	including	IRES.

According	to	our	first	hypothesis,	we	found	a	high	variability	in	
the	amount	of	leached	substances	and	the	quality	of	leachates	from	
organic,	but	also	from	inorganic	substrates,	mainly	as	a	consequence	
of	 inherent	 substrate	properties	and	 their	modification	during	 the	
drying	period.	Leaching	from	organic	materials	(leaves	and	biofilms)	
was	relatively	enriched	 in	P	vs	N	 in	contrast	 to	sediments.	Due	to	
their	 higher	 mass	 within	 the	 riverbeds,	 sediments	 were	 the	 main	
contributors	to	the	areal	fluxes.	Sediments	leached	high	amounts	of	
N‐NO3

‐,	the	accumulation	of	which	in	dry	riverbeds	is	promoted	by	
aerobic	conditions	(Amalfitano	et	al.,	2008;	Arce	et	al.,	2014;	Borken	
&	Matzner,	2009;	Merbt	et	al.,	2016).	Considering	quality	of	leached	
DOM,	we	found	that	depending	on	the	proportion	of	each	substrate	
within	the	riverbed,	different	ecosystem	processes	can	be	affected.	
For	example,	leachates	from	biofilms	with	a	high	proportion	of	bio‐
polymers	may	play	a	key	role	as	sources	of	bioavailable	DOM	in	IRES	
and	are	more	likely	to	be	retained	within	the	riverbed	upon	rewet‐
ting	(Romani,	Vazquez,	&	Butturini,	2006;	von	Schiller	et	al.,	2015).	
A	high	proportion	of	LMWS	leached	from	leaves	suggests	that	such	
leachates	can	 trigger	ecosystem	processes	 in	downstream	surface	
waters	and	groundwaters,	as	molecules	of	this	size	fraction	can	eas‐
ily	be	 transported	 through	 the	hyporheic	zone	with	 limited	 immo‐
bilization	(Romani	et	al.,	2006).	DOM	leached	from	sediments	was	
mainly	of	microbial	origin,	suggesting	its	high	potential	bioavailability	
(Marxsen,	Zoppini,	&	Wilczek,	2010;	Schimel	et	al.,	2007).	Overall,	
we	 suggest	 that	 rewetting	 of	 sediments	 is	 key	 for	 understanding	
biogeochemical	cycles	in	fluvial	networks	with	IRES,	and	that	leaves	
and	biofilms	can	 introduce	 regional	variabilities	 in	 the	global	 scale	
patterns	depending	on	the	accumulated	amount	of	these	substrates	
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in	the	channel	during	the	dry	phase.	Indeed,	accumulation	of	plant	
litter	on	the	dry	riverbed	ranges	from	0	to	963	g/m2	depending	on	
aridity,	river	width,	catchment	area,	riparian	cover,	and	drying	dura‐
tion	(Datry	et	al.,	2018	and	Table	S1).	In	our	study,	accumulations	of	
biofilms	were	very	common	in	the	temperate	zone	and	ranged	from	
0.3	to	327	g/m2 (Table	S1).

We	also	found	differences	in	the	amounts	of	leached	substances	
among	climate	zones,	in	accordance	with	our	second	hypothesis,	but	
only	for	sediments.	Initially,	we	expected	cross‐climate	differences	
to	be	more	pronounced	for	leaves	due	to	climatic	effects	on	vegeta‐
tion	composition	and	leaf	litter	quality	(e.g.	Aerts,	1997;	Boyero	et	
al.,	2017),	rather	than	for	sediments	whose	composition	is	controlled	
mainly	by	geology	and	geomorphology.	The	absence	of	significant	
differences	among	climate	 zones	 for	 leaves	could	be	explained	by	
the	 considerable	 variability	we	 observed	 among	 leaf	material	 col‐
lected	within	 climate	 zones,	 both	 in	 terms	of	 species	 composition	
and	 drying	 history.	 Although	 we	 did	 not	 assess	 the	 site‐specific	
composition	of	riparian	vegetation,	previous	studies	 indicated	that	
up	to	40%	of	variation	in	leaf	traits	at	a	given	site	can	be	explained	
by	 small‐scale	 spatial	 and	 temporal	 environmental	 heterogenity	 in	
environmental	 factors	 such	 as	 hydrology	 and	 disturbance	 regime	
(Cornwell	et	al.,	2008).

High	 concentrations	 leached	 in	 the	 continental	 climate	 zone	
suggest	 that	 nutrient	 loads	 to	 freshwaters	 will	 increase	 with	 the	
projected	increase	in	the	extent	of	IRES	in	such	regions.	In	the	arid	

zone	where	terrestrial	primary	production	is	severely	constrained	by	
water	availability	(Austin	et	al.,	2004),	rewetting	events	are	expected	
to	stimulate	stream	ecosystem	productivity	not	only	due	to	water	
availability,	 but	 also	because	 the	potential	 bioavailability	 of	 leach‐
ates	is	particularly	high	in	this	climate	zone.	However,	despite	a	high	
potential	bioavailability	of	DOM,	leachates	from	the	arid	zone	were	
characterized	by	low	amounts	of	nutrients,	probably	resulting	from	
leaf	traits	that	reflect	adaptation	to	dry	conditions	(Cornwell	et	al.,	
2008).

Comparison	of	 fluxes	 from	1	m2	 of	 IRES	within	 the	4	hr	 dura‐
tion	of	the	experiment	with	the	annual	flux	from	1	m2 of	watersheds	
(Table	S5)	showed	that	rewetting	events	in	IRES	represent	a	signif‐
icant	pulse	of	dissolved	substances	 in	ecosystems,	 including	some	
estimates	 exceeding	 known	 annual	 fluxes	 from	 watersheds	 with	
perennial	rivers	(although	differences	in	the	size	of	watersheds	and	
stream	area	of	IRES	should	be	accounted).	While	there	can	be	some	
confounding	factors	between	laboratory	conditions	and	those	that	
occur	 in	 a	 natural	 setting	 (i.e.	 intensity	 and	 duration	 of	 rewetting	
events,	 ambient	 temperature,	 increased	 leaching	 caused	 by	 oven‐
drying	(Gessner	&	Schwoerbel,	1989),	presence	of	terrestrial	plants	
in	dry	riverbeds	(Gómez,	Arce,	Sánchez,	&	del	Mar	Sánchez‐Montoya,	
2012)),	the	results	of	our	experiment	across	various	climate	regions	
indicate	 that	 rewetting	 of	 IRES	 produces	 a	 pulsed	 release	 of	 dis‐
solved	 substances.	 Decomposition	 of	 substrates	 accumulated	 in	
IRES,	 and	 thus	 carbon	 turnover,	 are	 affected	 by	 drying‐rewetting	

F I G U R E  6  Partitioning	of	variance	in	quantitative	composition	(a)	and	qualitative	characteristics	(b)	of	leachates	on	global	and	regional	
scales	(values	indicate	percentage	of	variance	(R2Y)	explained).	Note:	For	biofilms,	the	analysis	was	done	on	data	from	the	temperate	zone	
only	because	of	the	limited	amount	of	samples	from	other	climate	zones
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cycles	(Fierer	&	Schimel,	2002).	Given	the	predicted	increase	in	the	
duration	 of	 droughts,	 the	 exacerbation	 of	 extreme	 low‐flow	 con‐
ditions,	and	the	 intensity	of	storm	events	 (De	Girolamo,	Bouraoui,	
Buffagni,	 Pappagallo,	 &	 Lo	 Porto,	 2017;	 Huntington,	 2006;	 IPCC,	
2014),	the	results	of	this	study	emphasize	the	need	to	integrate	IRES	
in	global	carbon	cycles	and	budgets,	from	which	they	are	currently	
excluded	(Raymond	et	al.,	2013;	although	see	Datry	et	al.,	2018).

4.2 | Environmental variables correlated with 
release of nutrients and OM

Environmental	 variables	 that	 are	 prone	 to	 be	 affected	 by	 climate	
change	(namely	PET,	aridity,	dry	period	duration,	land‐use)	correlated	
with	 amounts	 and	quality	 of	 leachates,	 particularly	 for	 sediments.	
For	leaves,	these	correlations	were	less	pronounced,	suggesting	that	
leaching	 may	 be	 affected	 by	 substrate	 characteristics	 other	 than	
those	examined	here.	Characteristics	such	as	toughness	and	content	
of	secondary	metabolites	in	substrates	could	have	affected	leaching	
through	the	effect	on	their	mass	loss	during	the	dry	phase	and	simu‐
lated	rewetting,	and	on	activity	of	microbial	community	in	leachates	
(e.g.	Pérez‐Harguindeguy	et	al.,	2000;	Ristock	et	al.,	2017).	Latitude,	
although	not	 considered	 in	 the	 study,	may	also	be	 responsible	 for	
the	unexplained	variance	given	that	litter	quality	generally	increases	
with	latitude	(Boyero	et	al.,	2017).

The	amounts	of	leached	substances	from	both	leaves	and	sedi‐
ments	were	correlated	with	PET.	This	variable	is	expected	to	be	in‐
tensified	in	the	future	(Milly	&	Dunne,	2016)	and	will	most	likely	lead	
to	fluctuations	in	moisture	conditions	in	dry	riverbeds.	Low	moisture	
level	reduces	litter	decomposition	and	C	consumption,	thereby	pro‐
moting	the	release	of	DOM	upon	rewetting	(Abril	et	al.,	2016;	Aerts,	
1997;	Bruder	et	al.,	2011;	Gessner,	1991)	and	hence	increasing	the	
probability	of	negative	consequences	for	stream	ecosystems	such	as	
blackwater	events	leading	to	hypoxia	(Hladyz	et	al.,	2011).

Differences	among	climate	zones	in	terms	of	correlations	of	en‐
vironmental	 variables	with	amounts	of	 leached	 substances	 indicate	
that	 climate	 change	can	have	different	effects	on	 IRES	 in	different	
geographical	regions.	For	example,	 in	the	arid	zone,	where	IRES	are	
usually	 characterized	 by	 open	 canopy	 (Steward,	 Schiller,	 Tockner,	
Marshall,	&	Bunn,	2012),	aridity	and	percentage	of	riparian	vegetation	
best	explained	the	variance	in	sediment	leachates.	Inputs	of	riparian	
vegetation	litter	onto	the	dry	riverbeds	and	its	subsequent	decompo‐
sition,	can	represent	an	additional	input	of	nutrients	to	sediments	in	
the	arid	zone	areas	(Abril	et	al.,	2016),	where	soils	generally	contain	
less	carbon	and	nitrogen	compared	to	the	continental	zone	(Table	S1	
and	Delgado‐Baquerizo	et	al.,	2013).	Changes	in	land‐use	(particularly,	
in	the	percentage	of	pasture	cover	at	the	global	scale	as	well	as	within	
individual	climate	zones	except	continental)	were	correlated	with	the	
amount	of	leached	substances	from	leaves,	potentially	through	mod‐
ifying	the	composition	of	plant	material	accumulated	in	beds	of	IRES.	
This	 suggests	 that	modification	of	 land	use	 in	 the	catchments	with	
IRES	can	also	affect	their	contribution	to	nutrient	load	due	to	changes	
in	the	composition	of	CPOM	accumulating	in	dry	riverbeds.
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Although	dry	period	duration	is	an	important	factor	affecting	the	
amounts	 and	 quality	 of	 litter	 accumulations	 in	 IRES	 (del	 Campo	 &	
Gómez,	2016;	von	Schiller	et	al.,2017),	we	found	its	influence	on	the	
variance	in	leachates	only	in	continental	and	tropical	zones.	This	indi‐
cates	that	during	the	dry	phase	materials	with	different	drying	history	
(as	affected	by	different	climates)	and	potential	to	leach	nutrients	and	
OM	can	accumulate	in	IRES.	This	also	suggests	that	dry	period	dura‐
tion	cannot	 invariably	be	used	as	a	master	proxy	 to	assess	potential	
impacts	of	nutrient	loading	from	IRES	upon	rewetting.	Under	field	con‐
ditions,	other	factors	such	as	severity	and	timing	of	a	rewetting	event	
as	well	as	presence/absence	of	plant	material	growing	in	dry	channels	
can	affect	nutrient	fluxes	from	riverbeds,	and	the	fate	of	nutrients	in	
ecosystems,	as	well	as	potential	ecosystem	 impacts	 (e.g.	eutrophica‐
tion,	mass	mortality	of	aquatic	organisms)	in	downstrean	receiving	wa‐
ters	and	groundwater	(Baldwin	&	Mitchell,	2000;	Bernal	et	al.,	2013;	
Cavanaugh,	Richardson,	Strauss,	&	Bartsch,	2006;	Hladyz	et	al.,	2011;	
Ocampo,	Oldham,	Sivapalan,	&	Turner,	2006).	Substrate	moisture	con‐
tent	and	variability	in	associated	microbial	communities	can	potentially	
be	responsible	for	the	unexplained	part	of	the	variance	in	the	leachates,	
due	to	their	effect	on	decomposition	rates	of	accumulated	CPOM,	nu‐
trient	processing	in	sediments,	release	of	DOM	upon	rewetting,	and	its	
modification	by	microbial	communities	 (Abril	et	al.,	2016;	Arce	et	al.,	
2015;	Dieter,	Frindte,	Krüger,	&	Wurzbacher,	2013;	McIntyre,	Adams,	
Ford,	&	Grierson,	2009;	Meisner,	Leizeaga,	Rousk,	&	Bååth,	2017).

4.3 | Implications for freshwater ecosystems and 
future research

We	 identified	 IRES	 to	 function	 as	pulsed	biogeochemical	 reactors	
(sensu	Larned	et	al.,	2010)	at	a	global	scale	even	though	the	experi‐
ments were conducted under laboratory conditions and magnitudes 
of	 leached	 substances	may	differ	 in	 the	natural	 environment.	Our	
data	serve	also	as	a	basis	for	further	upscaling	and	modeling	of	the	
processes	observed	in	the	laboratory	to	address	ecological	implica‐
tions	of	rewetting	events	at	catchment	scales.	Potential	implications	
for	 the	 functioning	of	 rivers	could	be	determined	by	 the	effect	of	
leached	 substances	 on	 the	 degree	 of	 nutrient	 limitation	 of	micro‐
organisms	 downstream,	 and	 therefore	 community	 composition	
(Demi,	Benstead,	Rosemond,	&	Maerz,	2018)	as	well	as	on	the	fate	
of	refractory	substances	and	intensification	of	their	decomposition	
through	the	so‐called	“priming	effect”	(Guenet,	Danger,	Abbadie,	&	
Lacroix,	2010).	The	results	of	our	study	support	the	recent	call	for	
developing	effective	strategies	for	the	management	of	IRES	to	avoid	
negative	consequences	for	downstream	ecosystems	caused	by	ex‐
cessive	nutrient	and	OM	load.
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