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We consider the Wiener integral with respect to a d-parameter Hermite process with Hurst multi-index H = (H 1 , .., H d ) ∈ 1 2 , 1 d and we analyze the limit behavior in distribution of this object when the components of H tend to 1 and/or 1 2 . As examples, we focus on the solution to the stochastic heat equation with additive Hermite noise and to the Hermite Ornstein-Uhlenbeck process.

Introduction

The Hermite processes are self-similar processes with long-memory and stationary increments. These properties made them good models for many applications. The Hermite processes constitute a non-Gaussian extension of the fractional Brownian motion. Their Hurst parameter, which is contained in the interval 1 2 , 1 , characterizes the main properties of this process. The reader may consult the monographs [START_REF] Pipiras | Long -range dependence and self-similarity[END_REF] or [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF] for a complete exposition on Hermite processes.

Our work deals with stochastic partial differential equations (SPDEs) driven by the Hermite process. Starting with the seminal work [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF], many researchers explored the possibility of solving SPDEs with general noises more general than the standard space-time white noise. In our work, such a stochastic perturbation is chosen to be the Hermite noise. Recently, various types of stochastic integral and stochastic equations driven by Hermite 1 noises have been considered by many authors. We refer, among others, to [START_REF] Balan | Linear SPDEs driven by stationary random distributions[END_REF], [START_REF] Coupek | Limiting measure and stationarity of solutions to stochastic evolution equations with Volterra noise[END_REF], [START_REF] Coupek | Stochastic evolution equations with Volterra noise[END_REF], [START_REF] Coupek | Lp-valued stochastic convolution integral driven by Volterra noise[END_REF], [START_REF] Nourdin | Statistical inference for Vasicek-type model driven by Hermite processes[END_REF], [START_REF] Diu Tran | Non-central limit theorems for quadratic functionals of Hermitedriven long-memory moving-average processes[END_REF], [START_REF] Bonaccorsi | Dissipative stochastic evolution equations driven by general Gaussian and non-Gaussian noise[END_REF], [START_REF] Gubinelli | A Fourier analytic approach to pathwise stochastic integration[END_REF], [START_REF] Slaoui | On the linear stochastic heat equation with Hermite noise[END_REF], [START_REF] Slaoui | Limit behaviour of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index[END_REF]. Our purpose is to analyze the asymptotic behavior in distribution of the solution to the stochastic heat equation with additive Hermite noise, when the Hurst parameter (which is also the self-similarity index of the Hermite process) converges to the extreme values of its interval of definition, i.e when it tends to one and to one half. Our work continues a recent line of research that concerns the limit behavior in distribution with respect to the Hurst parameter of Hermite and related fractionaltype stochastic processes. In particular, the papers [START_REF] Bell | Noncentral limit theorem for the generalized Rosenblatt process[END_REF] and [START_REF] Bai | Behavior of the generalized Rosenblatt process at extremes critical exponent values[END_REF] deal with the asymptotic behavior of the generalized Rosenblatt process, the work [START_REF] Araya | Behavior of the Hermite sheet with respect to the Hurst index[END_REF] studies the multiparamter Hermite processes while the paper [START_REF] Slaoui | Limit behaviour of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index[END_REF] investigates the Ornstein-Uhlenbeck process with Hermite noise of order q = 2.

The solution to the heat equation with Hermite noise in R d is a (d + 1)-parameter random field depending on a Hurst index H ∈ 1 2 , 1 d+1 . We prove that the solution converges in distribution to a Gaussian limit when at least one of the components of H converges to 1 2 and to a random variable in a Wiener chaos of higher order when at least one of the components of H tends to 1 (and none of them converges to 1 2 ). Moreover, the limit always coincides in distribution with the solution to the stochastic heat equation driven by the limit of the Hermite noise. The results show that these models offer a large flexibilitily, covering a large class of probability distributions, from Gaussian laws to distribution of random variables in Wiener chaos of higher order.

For the proofs we use various techniques, such as the Malliavin calculus and the Fourth Moment Theorem for the normal convergence, the properties of the Wiener integrals with respect to the Hermite process and the so-called power counting theorem. Since the solution to the Hermite-driven heat equation can be expressed as a Wiener integral with respect to a Hermite sheet, we start our analysis by some more general results, i.e by studying the behavior with respect to the Hurst index of such Wiener integrals. This allows to consider other examples, in particular the Hermite Ornstein-Uhlenbeck process.

We organized our paper as follows. Section 2 contains some preliminaries. We introduce the multidimensional Hermite processes and the Wiener integral with respect to them. We also recall some known results concerning the asymptotic behavior of the Hermite sheet. In Section 3, we state general results on the asymptotic behavior of the Wiener-Hermite integrals with respect to the Hurst parameter. We will give two applications of the main results obtained. In Section 4 we analyse the asymptotic behavior of the mild solution of the stochastic heat equation with Hermite noise and finally Section 5 contains the case of the Hermite Ornstein -Uhlenbeck process. The Appendix (Section 6) contains the basic elements of the stochastic analysis on Wiener spaces needed in the paper.

Preliminaries

In this preliminary section we will introduce the Hermite sheet and the Wiener integral with respect to this multiparameter process. We also recall the main findings from [START_REF] Araya | Behavior of the Hermite sheet with respect to the Hurst index[END_REF] concerning the behavior of the Hermite sheet with respect to its Hurst multi-index. We start with some multidimensional notation, that we will use throughout our work.

Notation

For d ∈ N\ {0} we will work with multi-parametric processes indexed by elements of R d . We shall use bold notation for multi-indexed quantities, i.e., a = (a 1 , a 2 , . . . 

a i = N 1 i 1 =0 N 2 i 2 =0
. . .

N d i d =0 a i 1 ,i 2 ,...,i d if N = (N 1 , .., N d ), a b = d i=1 a b i i , and a < b iff a 1 < b 1 , a 2 < b 2 , . . . , a d < b d (analogously for
the other inequalities).

We write a -1 to indicate the product d i=1 (a i -1). By β we denote the Beta function β(p, q) = 1 0 z p-1 (1z) q-1 dz, p, q > 0 and we use the notation

β(a, b) = d i=1 β a (i) , b (i)
if a = (a (1) , .., a (d) ) and b = (b (1) , .., b (d) ).

Let us recall that the increment of a d-parameter process X on a rectangle [s, t] ⊂ R d , s = (s 1 , . . . , s d ), t = (t 1 , . . . , t d ), with s ≤ t (denoted by ∆X([s, t])) is given by

∆X([s, t]) = r∈{0,1} d (-1) d-d i=1 r i X s+r•(t-s) . (1) 
When

d = 1 one obtains ∆X([s, t]) = X t -X s while for d = 2 one gets ∆X([s, t]) = X t 1 ,t 2 -X t 1 ,s 2 -X s 1 ,t 2 + X s 1 ,s 2 .

Hermite processes and Wiener-Hermite integrals

We recall the definition and the basic properties of multiparameter Hermite processes. For a more complete presentation, we refer to [START_REF] De La Cerda | Wiener integrals with respect to the Hermite random field and applications to the wave equation[END_REF], [START_REF] Pipiras | Long -range dependence and self-similarity[END_REF] or [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF]. Let q ≥ 1 integer and the Hurst multi-index

H = (H 1 , H 2 , . . . , H d ) ∈ ( 1 2 , 1) d .
The Hermite sheet of order q and with self-similarity index H , denoted (Z q,d H (t), t ∈ R d + ) in the sequel, is given by

Z q,d H (t) = c(H, q) R d•q t (1)

0

. . .

t (d) 0   q j=1 (s 1 -y 1,j ) -1 2 + 1-H 1 q + . . . (s d -y d,j ) -1 2 + 1-H d q +   ds d . . . ds 1 dW (y 1,1 , . . . , y d,1 ) . . . dW (y 1,q , . . . , y d,q ) = c(H, q) R d•q t 0 q j=1 (s -y j ) -1 2 + 1-H q + ds dW (y 1 ) . . . dW (y q ) (2)
for every t = (t 1 , ..., t d ) ∈ R d + , where x + = max(x, 0). The above stochastic integral is a multiple stochastic integral with respect to the Wiener sheet (W (y), y ∈ R d ), see Section 6.1. The constant c(H, q) ensures that E Z q H (t) 2 = t 2H for every t ∈ R d + . As pointed out before, when q = 1, (2) is the fractional Brownian sheet with Hurst multi-index

H = (H 1 , H 2 , . . . , H d ) ∈ ( 1 2 , 1) d .
For q ≥ 2 the process Z q,d H is not Gaussian and for q = 2 we denominate it as the Rosenblatt sheet.

The Hermite sheet is a H-self-similar stochastic process and it has stationary increments. Its paths are Hölder continuous of order δ < H, see [START_REF] Pipiras | Long -range dependence and self-similarity[END_REF] or [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF]. Its covariance is the same for every q ≥ 1 and it coincides with the covariance of the d-parameter fractional Brownian motion, i.e.

EZ q,d H (t)Z q,d H (s) = d j=1 1 2 t 2H i i + s 2H i i -|t i -s i | 2H i =: R H (t, s), t i , s i ≥ 0. ( 3 
)
We will denote by |H H | the space of measurable functions f : R d → R such that

f 2 |H H | < ∞ where f 2 |H H | := H(2H -1) R d R d dudv|f (u)| • |f (v)||u -v| 2H-2 (4) 
= H(2H -1)

R d R d
du (1) ...du (d) dv (1) ...dv (d) ×f (u (1) , .., u (d) )f (v (1) , .., v (d) )

d j=1 |u (j) -v (j) | 2H j -2
where u = (u (1) , .., u

(d) ), v = (v (1) , .., v (d) ) ∈ R d .
Notice that the space |H H | satisfies the following inclusion (see Remark 3 in [START_REF] De La Cerda | Wiener integrals with respect to the Hermite random field and applications to the wave equation[END_REF])

L 1 (R d ) ∩ L 2 (R d ) ⊂ L 1 H (R d ) ⊂ |H H |. (5) 
The Wiener integral with respect to the Hermite sheet Z q,d H has been defined in [START_REF] De La Cerda | Wiener integrals with respect to the Hermite random field and applications to the wave equation[END_REF] (following the idea of [START_REF] Maejima | Wiener Integrals with respect to the Hermite process and a Non-Central Limit Theorem[END_REF] in the one-parmeter case). In particular, it is well-defined for measurable integrands f ∈ |H H | via the formula

R d f (s)dZ q,d H (s) = R d.q
(Jf )(y 1 , ..., y q )dW (y 1 )...dW (y q ) [START_REF] Billingsley | Convergence of Probability Measures[END_REF] where W (y), y ∈ R d is a d-parameter Wiener process and (Jf )(y 1 , ..., y q ) = c(H, q)

R d duf (u)(u -y 1 ) -1 2 + 1-H q + . . . (u -y q ) -1 2 + 1-H q + (7) 
with c(H, q) from ( 2). The stochastic integral R d.q (Jf )(y 1 , ..., y q )dW (y 1 )...dW (y q ) is a multiple Wiener-Itô integral with respect to the Wiener sheet W .

We have the isometry formula, for f, g

∈ |H H | E R d f (s)dZ q,d H (s) R d g(s)dZ q,d H (s) = H(2H -1) R d R d dudvf (u)g(v)|u -v| 2H-2 := f, g H H . (8) 
By

f 2 H H we denote f, f H H .

Behavior of the Hermite sheet with respect to the Hurst parameter

In a first step, we analyze the convergence of the integral R d f (s)dZ q,d H (s) when the Hurst indices H i goes to 1 and/or 1 2 . Let us introduce the following notation: if {j 1 , .., j k } ⊂ {1, .., d} with 1 ≤ k ≤ d we will denote 1) , .., t (d) ).

A k = {j 1 , .., j k }, H A k = (H j 1 , ..., H j k ) ∈ 1 2 , 1 k , t A k = t (j 1 ) ....t (j k ) if t = (t ( 
(9) We will separate our study into following two situations:

1. At least one parameter converges to 1 and none to 1 2 . Then the limit will be a non-Gaussian random variable related to the Hermite distribution.

2. At least one parameter H i converges to 1 2 and the other indices are fixed in ( 1 2 , 1) or converges to 1, i.e. if A k is as above, B p = {l 1 , .., l p } ⊂ {1, .., d} with p + k ≤ d and

A k ∩ B p = ∅, we assume H A k → ( 1 2 , ..., 1 2 ) ∈ R k and H Bp → (1, .., 1) ∈ R p .
In this case we will see that the limit of R d f (s)dZ q,d H (s) is a centered Gaussian random variable with an explicit variance.

We start by recalling the main result in [START_REF] Araya | Behavior of the Hermite sheet with respect to the Hurst index[END_REF] concerning the asymptotic behavior of the Hermite sheet.

Theorem 1 Let Z q,d H (t) t≥0
be given by ( 2) and let A k , B p be as in [START_REF] De La Cerda | Wiener integrals with respect to the Hermite random field and applications to the wave equation[END_REF]. Fix T > 0.

1. Assume H A k → (1, .., 1) ∈ R k . Assume that the parameters H j , j ∈ A k are fixed.

Then the process Z q,d H converges weakly in C([0, T ] d ) to the d-parameter stochastic process (X t ) t≥0 defined by

X t = t A k Z q,d-k H A k (t A k ) ( 10 
)
where Z q,d-k

H A k (t A k ) t A k ∈R d-k + is a (d -k)-parameter Hermite process of order q with Hurst index H A k ∈ 1 2 , 1 d-k . 2. Assume (H 1 , .., H d ) → (1, .., 1) ∈ R d .
Then the process Z q,d H converges weakly in C([0, T ] d ) to the d-parameter stochastic process (X t ) t≥0 defined by

X t = t d 1 √ q! H q (Z) ( 11 
)
where Z ∼ N (0, 1) and H q is the qth Hermite polynomial (see ( 64)).

Assume H

A k → 1 2 , ..., 1 2 ∈ R k .
Assume that the parameters H j , j ∈ A k are fixed. Then the process Z q,d H converges weakly in C([0, T ] d ) to a d-parameter centered Gaussian process (X(t)) t≥0 with covariance

EX t X s =   a∈A k t (a) ∧ s (a)     b∈A k R H b (t (b) , s (b) )   ( 12 
)
with R H b defined in (3).

Assume H

A k → 1 2 , .., 1 2 ∈ R k and H Bp → (1, .., 1) ∈ R p .
Assume that the H j with j ∈ {1, 2, .., d} \ (A k ∪ B p ) are fixed. Then the process Z q,d H converges weakly in C([0, T ] d ) to a d-parameter Gaussian process (X(t)) t≥0 with covariance

EX t X s =   a∈A k (t (a) ∧ s (a) )     b∈Bp t (b) s (b)     c∈A k ∪Bp R Hc (t (c) , s (c) )   . ( 13 
)
We will use the above result in order to get the limit behavior with respect to the Hurst parameter of the Hermite Wiener integral.

Convergence of the Wiener-Hermite integrals with respect to the Hurst parameter

Let us start the analysis of the behavior of the Wiener-Hermite integral (6) when the components of the self-similarity index H tends to their extreme values. As mentioned above, we will separate our study into two cases: at least one component of H converges to 1 (and no component tends to 1 2 ) and at least one component of H converges to one-half.

Convergence around 1

We need to introduce new spaces for the deterministic integrand in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. Working on these spaces will ensure the convergence of the Hermite-Wiener integral. Let A k be as in [START_REF] De La Cerda | Wiener integrals with respect to the Hermite random field and applications to the wave equation[END_REF] and assume 1 ≤ k < d. We introduce the space H A k of measurable functions f : R d → R such that

f H A k := (14) k j=1 R j du A j R d-j dv A j R d-j dw A j |f (u A j , v A j )| • |f (u A j , w A j )||v A j -w A j | 2H A j -2 1 2 = k j=1 R j du A j f (u A j , •) H H A j < ∞ (15) 
with the norm • H H A j defined in [START_REF] Balan | The stochastic wave equation with fractional noise: A random field approach[END_REF]. Notice that for f ∈ H A k , the integral

R k du A k R d-k dZ q,d H (u A k )f (u) (16) 
is well-defined in L 1 (Ω). Indeed,

E R k du A k R d-k dZ q,d H (u A k )f (u) ≤ R k du A k E R d-k dZ q,d H (u A k )f (u) ≤ R k du A k E R d-k dZ q,d H (u A k )f (u) 2 1 2 = H A k (2H A k -1) 1 2 R k du A k R d-k dv A k R d-k dw A k |f (u A k , v A k )| • |f (u A k , w A k )||v A j -w A j | 2H A j -2 1 2 ≤ H A k (2H A k -1) 1 2 k j=1 R j du A j R d-j dv A j R d-j dw A j |f (u A j , v A j )| • |f (u A j , w A j )||v A j -w A j | 2H A j -2 1 2 = H A k (2H A k -1) 1 2 f H A k < ∞. If k = d, we define H A k = H A d to be the set of measurable functions f : R d → R such that f H A k := f L 1 (R d ) + d-1 j=1 R j du A j R d-j dv A j R d-j dw A j |f (u A j , v A j )| • |f (u A j , w A j )||v A j -w A j | 2H A j -2 1 2 := f L 1 (R d ) + f H A d-1 < ∞. ( 17 
)
Remark 1 Notice that the order of integration in ( 16) is important. That is, the integral

R d-k dZ q,d H (u A k ) R k du A k f (u)
is not necesarily well-defined for f ∈ H A k .

We have the following non-central limit theorem.

Proposition 1 Let A k be as in [START_REF] De La Cerda | Wiener integrals with respect to the Hermite random field and applications to the wave equation[END_REF] and assume

f ∈ H A k ∩ |H H |.
• Assume 1 ≤ k < d and

H A k → (1, .., 1) ∈ R k and H A k ∈ 1 2 , 1 d-k is fixed.
Then the family of random variables

X H , H ∈ 1 2 , 1 d X H := R d f (u)dZ q,d H (u) ( 18 
)
converges in distribution to the random variable

X := R d f (u (1) , .., u (d) )dZ q,d-k A k (u A k )du A k = R k R d-k f (u A k , u A A k )dZ q,d-k A k (u A k ) du A k . (19) 
• Assume k = d and H → (1, .., 1) ∈ R d .

Then the limit in distribution of the family X H , H ∈ 1 2 , 1 d given by ( 18) is

R d f (u (1) , .., u (d) )du 1 √ q! H q (Z)
with Z ∼ N (0, 1) and H q the Hermite polinomial of degree q (64).

Proof: We will check the convergence of the characteristic function of X H . That is, we will show that for every α ∈ R,

Ee iαX H → H A k →(1,..,1)∈R k Ee iαX .
The idea is to approximate first X by a sequence of random variables that can be written in terms of the linear combinaisons of Z q,d H and to use the result in Theorem 1. Consider a sequence of step functions

f n (u) = n l=1 a l 1 (t l ,t l+1 ] (u) = n l=1 a l 1 (t (1) l ,t (1) 
l+1 ] (u (1) )....

1 (t (d) l ,t (d) l+1 ] (u (d) )
(where we used again the notation u = (u (1) , .., u (d) ) and t l = (t

(1) l , .., t (d) l ) for l = 1, .., n) such that f n -f H A k → n→∞ 0 and f n -f |H H | → n→∞ 0. ( 20 
)
The choice of such a sequence (f n ) n≥1 is possible because for any positive function 

f ∈ H A k ∩ |H H |,
X n,H = R d f n (u)dZ q,d H (u) = n j=1 a l (∆Z q,d H )((t l , t l+1 ])
with ∆Z q,d H given by (1). Then we know from [START_REF] De La Cerda | Wiener integrals with respect to the Hermite random field and applications to the wave equation[END_REF], Section 3 that X n,H converges in L 2 (Ω) to X H if f n converges to f in |H H | due to the isometry of the Hermite Wiener integral [START_REF] Bonaccorsi | Dissipative stochastic evolution equations driven by general Gaussian and non-Gaussian noise[END_REF]. So we have

X n,H → n→∞ X H := R d f (s)dZ q,d H (s) in L 2 (Ω).
Consequently, we can write lim

H A k →(1,..,1)∈R k Ee iαX H = lim H A k →(1,..,1)∈R k lim n→∞ Ee iαX n,H . (21) 
Now, we aim at exchanging the two limits above. Recall that if f j , j ≥ 1 is a sequence of functions on D ⊂ R converging uniformly to f on D and if a is a limit point for D, then lim j→∞ lim x→a f j (x) = lim x→a f (x) provided that lim x→a f (x), lim x→a f j (x) exist. Therefore it suffices to show that Ee iαX n,H converges uniformly with respect to

H A k to Ee iαX H .
By the mean value theorem

Ee iαX n,H -Ee iαX H ≤ |α|E X n,H -X H ≤ |α| E X n,H -X H 2 1 2 .
Thus, in order to invert the limits in [START_REF] Slaoui | On the linear stochastic heat equation with Hermite noise[END_REF], it suffices to show that for some ε > 0 sup

H A k ∈[ 1 2 +ε,1] k E X n,H -X H 2 → n→∞ 0
that is proved in Lemma 1 below. The relation [START_REF] Slaoui | On the linear stochastic heat equation with Hermite noise[END_REF] becomes lim

H A k →(1,..,1)∈R k Ee iαX H = lim n→∞ lim H A k →(1,..,1)∈R k Ee iαX n,H . (22) 
Assume k < d. Since, from Theorem 1 Z q,d H converges weakly to the process (U t ) t≥0 given by

U t = t A k Z q,d-k H A k (t A k )
it follows from ( 22) that lim

H A k →(1,..,1)∈R k Ee iαX H = lim n→∞ lim H A k →(1,..,1)∈R k Ee iα n l=1 a l (∆Z q,d H )((t l ,t l+1 ]) = lim n→∞ Ee iα n l=1 a l (∆U )((t l ,t l+1 ]) . (23) 
At this point we need to study the convergence as n → ∞ of the sequence

X n := n l=1 a l (∆U )((t l , t l+1 ]) (24) 
as n → ∞.

If A k = {j 1 , .., j k }, let us use the notation (t l , t l+1 ] A k = (t (j 1 ) l , t (j 1 ) l+1 ] × .... × (t (j k ) l , t (j k ) l+1 ]. Then it is not difficult to see that (∆U )((t l , t l+1 ]) = (∆ t A k )(t l , t l+1 ] A k (∆Z q,d-k A k )(t l , t l+1 ] A k .
and therefore the sequence (24) can be expressed as follows

X n = n l=1 a l (∆U )((t l , t l+1 ]] = n l=1 a l (∆ t A k )(t l , t l+1 ] A k (∆Z q,d-k H A k )(t l , t l+1 ] A k = R d f n (u (1) , .., u (d) )du A k dZ q,d-k H A k (u A k ). Now, we show that X n → n→∞ X in L 1 (Ω) (25) 
where the random variable X is given by [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF]. We have

E|X n -X| = E R k du A k R d-k dZ q,d H (u A k )(f n (u A k , u A k ) -f (u A k , u A k )) ≤ R k du A k E R d-k dZ q,d H (u A k )(f n (u A k , u A k ) -f (u A k , u A k )) ≤ R k du A k E R d-k dZ q,d H (u A k )(f n (u A k , u A k ) -f (u A k , u A k )) 2 1 2 = H A k (2H A k -1) 1 2 R k du A k R d-k R d-k dv A k dw A k |v A k -w A k | 2H A k -2 × f n (u A k , v A k ) -f (u A k , v A k ) f n (u A k , w A k ) -f (u A k , w A k ) 1 2 ≤ H A k (2H A k -1) 1 2 f n -f H A k → n→∞ 0
where the last convergence comes from [START_REF] Pipiras | Long -range dependence and self-similarity[END_REF]. We obtain from ( 23) and ( 25) lim

H A k →(1,..,1)∈R k Ee iαX H = lim n→∞ Ee iαX n = Ee iαX
and the proof is complete for 1 ≤ k < d.

If k = d, the proof is similar. We know that the process Z q,d H converges weakly in C[0, T ] to the process

t d 1 √ q! H q (Z).
Using the same lines as above, we get lim

H→(1,..,1)∈R d Ee iαX H = lim n→∞ Ee iαX n
and in this case the sequence [START_REF] Terrin | Power counting theorem in Euclidean space[END_REF] becomes

X n = n i=1 (∆ t d )[t l , t l+1 ] 1 √ q! H q (Z) = R f n (u)du 1 √ q! H q (Z)
Clearly, by ( 20)

E|X n - R d f (u)du 1 √ q! H q (Z)| ≤ R |f n (u) -f (u)|du 1 √ q! H q (Z) → n→∞ 0.
using the definition of the norm in

H A k for k = d. Then lim n→∞ Ee iαX n = Ee iα( R d f (u)du) 1 √ q! Hq(Z) .
The below lemma has been needed in the proof of Proposition 1.

Lemma 1 Let A k be as in [START_REF] De La Cerda | Wiener integrals with respect to the Hermite random field and applications to the wave equation[END_REF] with

1 ≤ k ≤ d. Assume f ∈ H A k ∩ |H H | and consider a sequence (f n ) n≥1 of step functions on R d such that (20) holds true. Let X n,H = n l=1 a l (∆Z q,d H )((t l , t l+1 ]).
Then for every ε > 0 small enough sup

H A k ∈[ 1 2 +ε,1] k E X n,H -X H 2 → n→∞ 0.
Proof: From the isometry property [START_REF] Bonaccorsi | Dissipative stochastic evolution equations driven by general Gaussian and non-Gaussian noise[END_REF] and from [START_REF] Pipiras | Long -range dependence and self-similarity[END_REF] we have for every

H ∈ ( 1 2 , 1) d , E X n,H -X H 2 → 0. ( 26 
)
Let us show that the above convergence is uniform with respect to

H A k ∈ [ 1 2 + ε, 1] k . By (8), E X n,H -X H 2 = H(2H -1) R d R d f n (u)f n (v)|u -v| 2H-2 dudv -2H(2H -1) R d R d f n (u)f (v)|u -v| 2H-2 dudv +H(2H -1) R d R d f (u)f (v)|u -v| 2H-2 dudv := G(H A k ) ( 27 
)
with the function G considered on the interval [

1 2 + ε, 1] k . Assume k < d. Let 1(A k ) = (1, .., 1) ∈ R k . Then from (27) G(1(A k )) = H A k (2H A k -1) R k du A k R k dv A k R d-k du A k R d-k dv A k f n (u A k , u A k )f n (v A k , v A k )|u A k -v A k | 2H A k -2 -2H A k (2H A k -1) R k du A k R k dv A k R d-k du A k R d-k dv A k f n (u A k , u A k )f (v H A k , v A k )|u A k -v A k | 2H A k -2 +H A k (2H A k -1) R k du A k R k dv A k R d-k du A k R d-k dv A k f (u A k , u A k )f (v A k , v A k )|u A k -v A k | 2H A k -2
and this can be written

G(1(A k )) = R k du A k R k dv A k (f n -f )(u A k , •), (f n -f )(v A k , •) H H A k ≤ R k du A k R k dv A k (f n -f )(u A k , •) H H A k (f n -f )(v A k , •) H H A k = R k du A k (f n -f )(u A k , •) H H A k 2 = H A k (2H A k -1) R k du A k R d-k dv A k R d-k dw A k |f (u A k , v A k )| • |f (u A k , w A k )||v A k -w A k | 2H A k -2 1 2 2 ≤ H A k (2H A k -1) f n -f 2 H A k (28) 
where we used the definition [START_REF] Maejima | Wiener Integrals with respect to the Hermite process and a Non-Central Limit Theorem[END_REF]. Now, the function G is continuous on [ 1 2 +ε, 1] k so there exists

H 0 = (H 0,1 , .., H 0,k ) ∈ [ 1 2 + ε, 1] k such that sup H A k ∈[ 1 2 +ε,1] k G(H A k ) = G(H 0 ).
If H 0 = 1(A k ), then the conclusion follows from ( 28) and the assumption [START_REF] Pipiras | Long -range dependence and self-similarity[END_REF]. If H 0 has the form

H 0 = (1, .., 1, H 0,j+1 , ..., H 0,k )
with j < k then a similar calculation to [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF] shows that

G(H 0 ) ≤ H A j (2H A j -1) R j du A j R d-j dv A j R d-j dw A j |f (u A j , v A j )| • |f (u A j , w A j )||v A j -w A j | 2H A j -2 1 2 2 ≤ H A j (2H A j -1) f n -f 2 H A k (29) 
and again G(H 0 ) → 0 as

H A k → (1, .., 1) ∈ R k from (20).
Otherwise, if all H 0,i , i = 1, .., k are in [ 1 2 + ε, 1), then the conclusion follows from [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF].

If k = d, the conclusion follows in the same way. Let G be given by [START_REF] Tudor | Sample paths of the solution to the fractional-colored stochastic heat equation[END_REF] and let

H 0 = (H 0,1 , .., H 0,k ) ∈ [ 1 2 + ε, 1] d such that sup H∈[ 1 2 +ε,1] g G(H) = G(H 0 ). If H 0 = (1, .., 1) ∈ R d , notice that in this case G(1 d ) = G(1, ..., 1) = f n - f 2 L 1 (R d ) → n→∞ 0. If H 0 has the form H 0 = (1, .., 1, H 0,j+1 , ..., H 0,d )
with j < d then G(H 0 ) satisfies (29) and consequently it converges to zero from the assumption [START_REF] Pipiras | Long -range dependence and self-similarity[END_REF]. Il all components of H 0 are strictly contained in the interval 1 2 , 1 , then we conclude by [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF]. 1 2 In this section, we will study the convergence in distribution of the Hermite Wiener integral [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF] when at least one Hurst index converges to one half. Actually, we will assume (recall notation (9) from the previous section)

Convergence around

H A k → 1 2 , ..., 1 2 ∈ R k and H Bp → (1, .., 1) ∈ R p with 1 ≤ k ≤ d, 0 ≤ p ≤ d and p + k ≤ d.
Note that k ≥ 1 means that at least one Hurst parameter converges to 1 2 while p ≥ 0 means that some Hurst parameters (possibly zero) converges to 1.

We have the following result.

Proposition 2 Assume A k is as in [START_REF] De La Cerda | Wiener integrals with respect to the Hermite random field and applications to the wave equation[END_REF] and

B p = {l 1 , .., l p } ⊂ {1, .., d} with 0 ≤ p ≤ d, 1 ≤ k ≤ d, p + k ≤ d and A k ∩ B p = ∅ (if p = 0 then B p = ∅.). Let f ∈ |H H |. Assume that the following limit exists lim H A k →( 1 2 ,..., 1 2 )∈R k H(2H -1) R d R d f (u)f (v)|u -v| 2H-2 dudv := σ 2 f,H A k (30)
and that sup

H A k ∈[ 1 2 ,1] k R d R d R d R d dudvdu ′ dv ′ f (u)f (u ′ )f (v)f (v ′ ) ×|u -v| 2(H-1)r q |u ′ -v ′ | 2(H-1)r q |u -u ′ | 2(H-1)(q-r) q |v -v ′ | 2(H-1)(q-r) q < ∞. ( 31 
)
If

H A k → 1 2 , ..., 1 2 ∈ R k , H Bp → (1, .., 1) ∈ R p and H A k ∪Bp ∈ 1 2 , 1 d-k-p is fixed then the Hermite Wiener integral R d f (u)dZ q,d H (u) converges in distribution to the Gaussian law N (0, σ 2 f,H A k ).
Proof: Recall that by [START_REF] Billingsley | Convergence of Probability Measures[END_REF], R d f (u)dZ q,d H (u) = I q (Jf ) with the operator J defined in [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. We can apply the Fourth Moment Theorem to study the normal convergence of [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF].

First notice that by assumption (30), we have

E R d f (u)dZ q,d H (u) 2 = H(2H -1) R d R d f (u)f (v)|u -v| 2H-2 dudv converges to σ 2 f,H A k
. Therefore, in order to apply the Fourth Moment Theorem (see Theorem 4 in the Appendix), it suffices to show that

Jf ⊗ r Jf L 2 (R d(2q-2r) ) → 0
for every r = 1, ..., q -1. Now, as in the proof of Theorem 3 in [START_REF] Araya | Behavior of the Hermite sheet with respect to the Hurst index[END_REF] (based on relation [START_REF] Gubinelli | A Fourier analytic approach to pathwise stochastic integration[END_REF] in this reference)

(Jf ⊗ r Jf )(y 1 , .., y 2q-2r ) = (R d ) r
Jf (u 1 , .., u r , y 1 , .., y q-r )Jf (u 1 , .., u r , y q-r-1 , ..,

y 2q-2r )du 1 ...du r = c(H, q) 2 (R d ) r du 1 ...du r R d f (u)   q-r j=1 (u -y j ) -1 2 + 1-H q +     r j=1 (u -u j ) -1 2 + 1-H q +   du × R d f (v)   2q-2r j=q-r+1 (v -y j ) -1 2 + 1-H q +     r j=1 (v -u j ) -1 2 + 1-H q +   dv = c(H, q) 2 β 1 2 - 1 -H q , 2 -2H q r R d R d dudvf (u)f (v)|u -v| 2(H-1)r q   q-r j=1 (u -y j ) -1 2 + 1-H q +     2q-2r j=q-r+1 (v -y j ) -1 2 + 1-H q +  
by using the Fubini theorem and again relation [START_REF] Gubinelli | A Fourier analytic approach to pathwise stochastic integration[END_REF] in [START_REF] Araya | Behavior of the Hermite sheet with respect to the Hurst index[END_REF], this leads to

Jf ⊗ r Jf 2 L 2 (R d(2q-2r) ) = c(H, q) 4 β 1 2 - 1 -H q , 2 -2H q 2r β 1 2 - 1 -H q , 2 -2H q 2q-2r R d R d R d R d dudvdu ′ dv ′ (u)f (u ′ )f (v)f (v ′ ) ×|u -v| 2(H-1)r q |u ′ -v ′ | 2(H-1)r q |u -u ′ | 2(H-1)(q-r) q |v -v ′ | 2(H-1)(q-r) q = 1 q! 2 (H(2H -1)) 2 R d R d R d R d dudvdu ′ dv ′ f (u)f (u ′ )f (v)f (v ′ ) ×|u -v| 2(H-1)r q |u ′ -v ′ | 2(H-1)r q |u -u ′ | 2(H-1)(q-r) q |v -v ′ | 2(H-1)(q-r) q
.

The last quantity converges to zero under assumption (31).

Notice that q = 2 and d = 1 we retrieve the results in [START_REF] Slaoui | Limit behaviour of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index[END_REF]. For f = 1, the results in this section reduces to those in Theorem 1 from [START_REF] Araya | Behavior of the Hermite sheet with respect to the Hurst index[END_REF].

Applications to the stochastic heat equation with Hermite noise

We will apply the main results in the previous section to some particular cases. First, we look to the solution to the heat equation driven by an Hermite noise. That is, we consider the following linear stochastic heat equation driven by an additive Hermite sheet with d + 1 parameters

∂u ∂t (t, x) = ∆u(t, x) + Żq,d+1 H 0 ,H (t, x), t ≥ 0, x ∈ R d u(0, x) = 0, x ∈ R d (32) 
We denoted by ∆ the Laplacian on R d and Z q,d H 0 ,H = {Z q,d+1 H 0 ,H (t, x); t ≥ 0, x ∈ R d } denotes the (d + 1)-parameter Hermite sheet whose covariance is given by

E Z q,d+1 H 0 ,H (s, x)Z q,d+1 H 0 ,H (t, y) = R H 0 (t, s)R H (x, y) if (H 0 , H) = (H 0 , H 1 , . . . , H d ) ∈ 1 2 , 1 d+1 . We denoted by H = (H 1 , . . . , H d ) and R H (t, s) = 1 2 (|t| 2H + |s| 2H -|t -s| 2H ), R H (x, y) = d j=1 R H j (x j , y j ) if s, t ∈ R and x = (x 1 , .., x d ), y = (y 1 , .., y d ) ∈ R d .
The solution to (32) is understood in the mild sense. That is, the mild solution to (32) is a square-integrable process u = {u(t, x); t ≥ 0, x ∈ R d } defined by:

u H 0 ,H (t, x) = t 0 R d G(t -s, x -y)Z q,d+1 H 0 ,H (ds, dy), t ≥ 0, x ∈ R d (33)
living in the space of jointly measurables random fields X(t, x), t ≥ 0, x ∈ R d such that for every

T > 0, sup t∈[0,T ],x∈R d E |X(t, x)| 2 < ∞.
The above integral is a Wiener integral with respect to the Hermite sheet, as introduced in Section 2 and G(t, x) is the Green function (or the fundamental solution) that satisfies ∂u ∂t -∆u = 0, i.e.

G(t, x) = (2πt) -d/2 exp -|x| 2 2t if t > 0, x ∈ R d , 0 if t ≤ 0, x ∈ R d . ( 34 
)
The stochastic heat equation (32) admits a unique mild solution (u H 0 ,H (t, x)) t≥0,x∈R d if and only if (see [START_REF] Slaoui | On the linear stochastic heat equation with Hermite noise[END_REF])

d < 4H 0 + d i=1 (2H i -1) := γ. ( 35 
)
In this case, for every T > 0,

sup t∈[0,T ],x∈R d E u(t, x) 2 < ∞.
We will use the following Parseval-type formula (see Lemma A1 in [START_REF] Balan | The stochastic wave equation with fractional noise: A random field approach[END_REF]): for every f, g ∈ L 2 (a, b) and for every 0

< α < 1 b a b a dudvf (u)g(v)|u -v| -(1-α) = q α R |τ | -α F a,b f (τ )F a,b g(τ ) (36) 
where (F a,b f )(ξ) = b a f (y)e -iξy dy (we use the notation Ff = F -∞,∞ f ) and

q α = (2 1-α π 1/2 ) -1 Γ(α/2) Γ((1 -α)/2) . ( 37 
)
We recall that the Fourier transform of the function

y ∈ R d → G(u, y) is FG(u, •)(ξ) = e -1 2 u|ξ| 2 .
4.1 Limit behavior of the solution when the Hurst index tends to 1

The expression "Hurst index tends to 1"means that at least one component of the Hurst multi-index tends to 1. We will apply Proposition 1 to obtain the asymptotic behavior of the solution (33) when at least one of the Hurst parameters H 0 , H 1 , .., H d converges to 1 and the other parameters are fixed.

Theorem 2 Assume (35) and let A k be as in [START_REF] De La Cerda | Wiener integrals with respect to the Hermite random field and applications to the wave equation[END_REF]. Fix T > 0 and x ∈ R d . Then

1. If (H 0 , H A k ) → (1, .., 1) ∈ R k+1 and H j , j ∈ A k are fixed then the stochastic process (u H 0 ,H (t, x), t ∈ [0, T ]) converges weakly in C[0, T ] to the process (u(t, x), t ∈ [0, T ]) defined by u(t, x) = t 0 du R k dy A k R d-k dZ q,d-k H A k (y A k )G(t -u, x -y). ( 38 
) 2. If H A k → (1, .., 1) ∈ R k and H 0 , H j , j ∈ A k are fixed, then (u H 0 ,H (t, x), t ∈ [0, T ]) converges weakly in C[0, T ] to the stochastic process (u(t, x), t ∈ [0, T ]) u(t, x) = R k dy A k t 0 R d-k dZ q,d+1-k H 0 ,H A k (u, y A k
)G(tu, xy).

3. If (H 0 , H) → (1, ..., 1) ∈ R d+1 , then the weak limit of (u Proof: Consider the function F defined on R + × R given by

H 0 ,H (t, x), t ∈ [0, T ]) in C[0, T ] is (u(t, x), t ∈ [0, T ]) with u(t, x) = t 0 R d G(t -u, x -y)dydu 1 √ q! H q (Z).
F : (u, y) → 1 (0,t) (u)(2π(t -u)) -d 2 e - |x-y| 2 2(t-u) . ( 39 
)
We first show the convergence of finite dimensional distributions Consider the case 1. Let us show that this function belongs to |H H 0 ,H | ∩ H A k , with these two spaces defined by ( 4) and ( 15) respectively. We know from [START_REF] Balan | The stochastic wave equation with fractional noise: A random field approach[END_REF] that, under (35), the function F (39) belongs to the space |H H 0 ,H |.

Let us check that this function belongs to the space H A k . Writting

F (u, y) = F (u, y A k , y A k ) = (2πu) -d 2 e - |x-y A k | 2 2u e - |x-y A k | 2 2u
we have by the definition of the norm in H A (see ( 15)),

F H A k = k j=1 t 0 du R j dy A j R d-j R d-j dy A j dz A j ×(2πu) -d 2 e - |y A j | 2 2u e - |y A j | 2 2u (2πu) -d 2 e - |y A j | 2 2u e - |z A j | 2 2u |y A j -z A j | 2H A j -2 1 2 = k j=1 t 0 du R j dy A j (2πu) -j 2 e - |y A j | 2 2u × R d-j R d-j dy A j dz A j (2πu) -d-j 2 e - |y A j | 2 2u (2πu) -d-j 2 e - |z A j | 2 2u |y A j -z A j | 2H A j -2 1 2 
.

By using Parseval's identity (36)

R d-j R d-j dy A j dz A j (2πu) -d-j 2 e - |y A j | 2 2u (2πu) -d-j 2 e - |z A j | 2 2u |y A j -z A j | 2H A j -2 = C j R d-j dξe -u|ξ| 2 |ξ| 1-2H A j so with C j , C > 0 F H A k = k j=1 C j t 0 du R d-j dξe -u|ξ| 2 |ξ| 1-2H A j 1 2 = C t 0 u -d-j 4 + 1
and the last integral is finite if for every j = 1, .., k

1 - d -j 4 + 1 4 a∈A j (2H a -1) > 0 or d < 4 + j + a∈A j (2H a -1). ( 40 
)
The last bound is true due to (35), so the function F given by (39) belongs to |H H 0 ,H |∩H A k . Take λ j ∈ R, t j ≥ 0 for j = 1, .., N and denote by

Y N (x) = N j=1 λ j u H 0 ,H (t j , x) = ∞ 0 R d   N j=1 λ j 1 (0,t j ) (u)G(t j -u, x -y)   dZ q,d+1
H 0 ,H (u, y).

(41) From the above computations, the integrand N j=1 λ j 1 (0,t j ) (u)G(t j -u, x-y) in (41) belongs to |H H 0 ,H | ∩ H A . Therefore, by Proposition 1, the sequence Y N (x) (41) converges, as

(H 0 , H A k ) → (1, .., 1) ∈ R k+1 to N j=1 λ j t j 0 du R k dy A k R d-k dZ q,d-k H A k (y A k )G(t j -u, x -y) = N j=1 λ j u(t j , x)
with u defined in (38). This gives the convergence of the finite dimensional distribution of (u H 0 ,H (t, x), t ∈ [0, T ]) to the finite dimensional distributions of (u(t, x), t ∈ [0, T ]).

For the case 2., we have similarly

F H A k = k j=1 C j t 0 t 0 dudv|u -v| 2H 0 -2 R d-j dξe -1 2 (u+v)|ξ| 2 |ξ| 1-2H A j 1 2 = C t 0 t 0 dudv|u -v| 2H 0 -2 (u + v) -d-j 2 + 1 2 a∈A j (2Ha-1) 1 2
and the above integral is finite under (35). For the case 3., we notice in addition that the function F given by (39) belongs to L 1 (R d+1 ).

Concerning the tightness, we recall that (see [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF]), for every s, t

∈ [0, T ], x ∈ R d , E |u H 0 ,H (t, x) -u H 0 ,H (s, x)| 2 ≤ C|t -s| γ
with γ > 0 from (35) and C is a constant not depending on s, t, x. Since u H 0 ,H (t, x) is an element of the (q + 1)th Wiener chaos, we use the hypercontractivity property for multiple stochastic integrals to get for every p ≥ 2

E |u H 0 ,H (t, x) -u H 0 ,H (s, x)| 2p ≤ C|t -s| γp (42)
and the tightness follows from (42) and the Billingsley criterion (see [START_REF] Billingsley | Convergence of Probability Measures[END_REF]Theorem 12.3] or [START_REF] Billingsley | Convergence of Probability Measures[END_REF]).

Remark 3 Notice that when (H 0 , H A k ) → (1, .., 1) ∈ R k+1 , the condition (35) "converges" to (40).

Limit behavior when the Hurst index tends to 1 2

Fix T > 0. When at least one of the components of Hurst multi-index goes to one-half, we have a central limit theorem.

Theorem 3 1. Assume (H 0 , H A k ) → 1 2 , ..., 1 2 ∈ R k+1 (43) and d < 1 + k 2 + a∈A k H a . ( 44 
)
Then the process (u H 0 ,H (t, x), t ∈ [0, T ]) given by ( 33) converges weakly in C[0, T ] to the process (u(t, x), t ∈ [0, T ]) where u is the mild solution to the heat equation

∂u ∂t (t, x) = ∆u(t, x) + Ẇ q,d+1 H 0 ,H (t, x), t > 0, x ∈ R d u(0, x) = 0, x ∈ R d ( 45 
)
where

W H 0 ,H (t, A 1 × A 2 ), t ∈ [0, T ], A 1 ∈ B b (R k ), A 2 ∈ B b (R d-k ) is a Gaussian field with covariance E [W H 0 ,H (t, A 1 × A 2 )W H 0 ,H (s, B 1 × B 2 )] = (t ∧ s)λ k (A 1 ∩ B 1 ) A 2 ∩B 2 H A k (2H A k -1)|y A k -z A k | 2H A k -2 dy A k dz A k .
We denoted by λ k the Lebesque measure on R k .

If H

A k → 1 2 , ..., 1 2 ∈ R k , H Bp → (1, .., 1) ∈ R p and d < 2H + k 2 + a∈A k H a . ( 46 
)
then the process (u H 0 ,H (t, x), t ∈ [0, T ]) given by ( 33) converges weakly in C[0, T ] to the process (u(t, x), t ∈ [0, T ]) where u is the mild solution to the heat equation ( 45) where the Gaussian noise has the following covariance

E [W H 0 ,H (t, A 1 × A 2 )W H 0 ,H (s, B 1 × B 2 )] = R H 0 (t, s)λ k (A 1 ∩ B 1 ) A 2 ∩B 2 H A k (2H A k -1)|y A k -z A k | 2H A k -2 dy A k dz A k .
3. If (H 0 , H) → 1 2 , ..., 1 2 ∈ R d+1 and d = 1, then the weak limit of (u H 0 ,H , t ∈ [0, T ]) in C[0, T ] is the solution to the heat equation ( 45) driven by a space-time white noise.

Remark 4

The conditions ( 44), ( 46) and d = 1 are the "limits" of (35) in the cases 1., 2. and 3. respectively.

Proof: We will prove that the finite dimensional distributions of (u H 0 ,H (t, x), t ∈ [0, T ]) converge to those of (u(t, x), t ∈ [0, T ]) which satisfies (45). In order to apply Proposition 2, we need to check conditions (30) and (31).

Checking condition (30). Consider the case 1., i.e. assume (43) and (44).

Take λ j ∈ R, t j ≥ 0 for j = 1, .., N and denote by

Y N (x) = N j=1 λ j u H 0 ,H (t j , x) = ∞ 0 R d   N j=1 λ j 1 (0,t j ) (u)G(t j -u, x -y)   dZ q,d+1 H 0 ,H (u, y).
We first check condition (30) for Y N (x). Let us calculate E Y N (x) 2 . By using the isometry ( 8),

E (Y N (x)) 2 = N j,k=1 λ j λ k H 0 (2H 0 -1)H(2H -1) × t j 0 du t k 0 dv|u -v| 2H 0 -2 R d dy R d dzG(t j -u, x -y)G(t k -v, x -z)|y -z| 2H-2 .
Notice that, if x = (x (1) , .., x (d) ), y = (y (1) , .., y (d) ), z = (z (1) , .., z (d) ) we have

G(t -u, x -y) = 1 (0,t) (u) d a=1 (2π(t -u)) -d 2 e - |x (a) -y (a) | 2 2(t-u)
and so

R d dy R d dzG(t j -u, x -y)G(t k -v, x -z)|y -z| 2H-2 = d a=1 R R dy (a) dz (a) (2π(t j -u)) -1 2 (2π(t k -v)) -1 2 e -|x (a) -y (a) | 2 2(t j -u) e -|x (a) -z (a) | 2 2(t k -v) |y (a) -z (a) | 2Ha-2 .
We will apply the Parseval identity (36) with α = 2H a -1 for every a = 1, .., d.

We get, for every a = 1, .., d, R R

dy (a) dz (a) (2π(t j -u)) -1 2 (2π(t k -v)) -1 2 e - |x (a) -y (a) | 2 2(t j -u) e -|x (a) -z (a) | 2 2(t k -v) |y (a) -z (a) | 2Ha-2 = q 2Ha-1 R dτ |τ | 1-2Ha e -1 2 (t j -u)|τ | 2 e -1 2 (t k -v)|τ | 2 .
Now, by the change of variables τ = (t j + t k -2u)

1 2 τ , R dτ |τ | 1-2Ha e -1 2 (t j -u)|τ | 2 e -1 2 (t k -v)|τ | 2 = (t j + t k -u -v) -1 2 + 2Ha-1 2 R dτ |τ | 1-2Ha e -1 2 |τ | 2 = (t j + t k -u -v) Ha-1 R dτ |τ | 1-2Ha e -1 2 |τ | 2 .
Thus

E (Y N (x)) 2 = N j,k=1 λ j λ k H 0 (2H 0 -1)H(2H -1)q 2H-1 × t j 0 du t k 0 dv|u -v| 2H 0 -2 (t j + t k -u -v) H 1 +...+H d -d d a=1 R dτ |τ | 1-2Ha e -1 2 |τ | 2 (47) 
where q 2Ha-1 is defined in (37) and

q 2H-1 = d a=1 q 2Ha-1 .
Notice that for every H ∈ ( 1 2 , 1), we have

H(2H -1)Γ(H - 1 2 ) = H(2H -1) Γ(H + 1 2 ) H -1 2 → H→ 1 2 2Γ(1) = 2 and then H(2H -1)q 2H-1 → H→ 1 2 (2π) -1 . ( 48 
)
Relation (48) implies

H(2H -1)q 2H-1 → (H 0 ,H A k )→( 1 2 ,.., 1 2 )∈R k+1 (2π) -k q 2H A k -1 . ( 49 
) Let γ := H 1 + ... + H d -d. ( 50 
)
We have, by integrating by parts

H 0 (2H 0 -1) t 0 s 0 dudv|u -v| 2H 0 -2 (t + s -u -v) -γ = H 0 (2H 0 -1) s 0 s 0 dudv|u -v| 2H 0 -2 (t + s -u -v) -γ +H 0 (2H 0 -1) t s s 0 dudv|u -v| 2H 0 -2 (t + s -u -v) -γ = H 0 (2H 0 -1)2 s 0 u 0 dudv|u -v| 2H 0 -2 (t + s -u -v) -γ +H 0 (2H 0 -1) t s s 0 dudv|u -v| 2H 0 -2 (t + s -u -v) -γ = 2H 0 s 0 duu 2H 0 -1 (t + s -u) -γ (51) -H 0 t s duu 2H 0 -1 (t + s -u) -γ -(u -s) 2H 0 -1 (t -u) -γ +2H 0 γ s 0 du u 0 dv(u -v) 2H 0 -1 (t + s -u -v) -γ-1 +H 0 γ t s du u 0 dv(u -v) 2H 0 -1 (t + s -u -v) -γ-1 = 2H 0 s 0 duu 2H 0 -1 (t + s -u) -γ +H 0 t s duu 2H 0 -1 (t + s -u) -γ -(u -s) 2H 0 -1 (t -u) -γ +H 0 γ t 0 du u 0 dv|u -v| 2H 0 -1 (t + s -u -v) -γ-1 (52) 
Assuming (43), from (50)

γ → -   d - k 2 - a∈A k H a   := γ 0
and, by taking the limit as γ → γ 0 and H 0 → 1 2 in (52), we get

H 0 (2H 0 -1) t 0 s 0 dudv|u -v| 2H 0 -2 (t + s -u -v) -γ → s 0 du(t + s -u) -γ 0 + 1 2 t s du (t + s -u) -γ 0 -(t -u) -γ 0 + 1 2 γ 0 t 0 du u 0 dv(t + s -u -v) -γ 0 -1 = 1 2 1 (-γ 0 + 1) (t + s) -γ 0 +1 -|t -s| -γ 0 +1 . ( 53 
)
Consequently, as the limit (43) holds true, by plugging ( 49) and ( 53) into (47), we obtain

EY N (x) 2 → 1 2 1 -γ 0 + 1 (2π) -k N j,k=1 λ j λ k (t j + t k ) -γ 0 +1 -|t j -t k | -γ 0 +1 q 2H A k -1 × a∈A k R dτ e -1 2 |τ | 2 a∈A k R dτ |τ | 1-2Ha e -1 2 |τ | 2 = 1 2 1 -γ 0 + 1 (2π) -k N j,k=1 λ j λ k (t j + t k ) -γ 0 +1 -|t j -t k | -γ 0 +1 ×q 2H A k -1 ( √ 2π) k a∈A k R dτ |τ | 1-2Ha e -1 2 |τ | 2 = 1 2 1 -γ 0 + 1 (2π) -k 2 N j,k=1 λ j λ k t j + t k ) -γ 0 +1 -|t j -t k | -γ 0 +1 ×q 2H A k -1 a∈A k R dτ |τ | 1-2Ha e -1 2 |τ | 2 .
On the other hand, if u is the solution to (45), then

E   N j=1 λ j u(t j , x)   2 = N j,k=1 λ j λ k t j ∧t k 0 du R k dy A k R d-k R d-k dy A k dz A k ×(2π(t j -u) -d 2 e - |y A k | 2 2(t j -u) e - |y A k | 2 2(t j -u) (2π(t k -u) -d 2 e - |y A k | 2 2(t k -u) e - |z A k | 2 2(t k -u) = N j,k=1 λ j λ k t j ∧t k 0 du(2π) -k R k dξe -(t j +t k -2u)|ξ| 2 q 2H A k -1 R d-k dτ e -(t j +t k -2u)|τ | 2 |τ | 1 2 a∈A k (2Ha-1) = N j,k=1 λ j λ k t j ∧t k 0 du(t j + t k -2u) -γ 0 (2π) -k R k dξe -|ξ| 2 q 2H A k -1 a∈A k R dτ e -|τ | 2 |τ | 1-2Ha = 1 2 1 -γ 0 + 1 (2π) -k 2 N j,k=1 λ j λ k (t j + t k ) -γ 0 +1 -|t j -t k | -γ 0 +1 q 2H A k -1 a∈A k R dτ e -|τ | 2 |τ | 1-2Ha .
The point 2. follows similarly. Let us discuss point 3. Assume H 0 , H 1 , .., H d converge all to 1 2 . Notice that in this case condition (35) implies d < 2 so d = 1! Then, from (50)

γ → d 2 = 1 2 .
Therefore, from (52), as

H 0 , H 1 , .., H d → 1 2 H 0 (2H 0 -1) t 0 s 0 dudv|u -v| 2H 0 -2 (t + s -u -v) -γ → 1 2 t 0 du (t -u) -1 2 -(t + s -u) -1 2 + 1 2 × 1 2 t 0 du s 0 dv(t + s -u -v) -3 2 = (t + s) 1 2 -|t -s| 1 2 . ( 54 
)
and we obtain, by combining ( 54) and (47), by taking the limit (43)

EY N (x) 2 → (2π) -1 N j,k=1 λ j λ k (t j + t k ) 1 2 -|t j -t k | 1 2 R dτ e -1 2 |τ | 2 = N j,k=1 λ j λ k (t j + t k ) 1 2 -|t j -t k | 1 2 √ 2π = (2π) -1 2 N j,k=1 λ j λ k (t j + t k ) 1 2 -|t j -t k | 1 2
which coincides with the E N j=1 λ j u(t j , x)

2
where u is the solution of the heat equation (45) driven by a space-time white noise (see [START_REF] Swanson | Variations of the solution to a stochastic heat equation[END_REF] or [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF]).

Checking condition (31).

In order to check condition (31), we need to show in the case 1. (the other situations are similar) that for every t 1 , t 2 , t 3 , t 4 ∈ [0, T ],

I : = sup (H 0 ,H A k )∈[ 1 2 ,1] k+1 t 1 0 du 1 ... t 4 0 du 4 |u 1 -u 2 | -α 0 |u 2 -u 3 | -α 0 |u 3 -u 4 | -β 0 |u 4 -u 1 | -β 0 × R d dy 1 ... R d dy 4 1 (2π(t 1 -u 1 )) d 2 e - |x-y 1 | 2 2(t 1 -u 1 ) 1 (2π(t 2 -u 2 )) d 2 e - |x-y 2 | 2 2(t 2 -u 2 ) × 1 (2π(t 3 -u 3 )) d 2 e - |x-y 3 | 2 2(t 3 -u 3 ) 1 (2π(t 4 -u 4 )) d 2 e - |x-y 4 | 2 2(t 4 -u 4 ) |y 1 -y 2 | -α |y 2 -y 3 | -α |y 3 -y 4 | -β |y 4 -y 1 | -β < ∞ with α = 2(1 -H)r q , β = 2(1 -H)(q -r) q , α 0 = 2(1 -H 0 )r q , β 0 = 2(1 -H 0 )(q -r) q
for every r = 1, .., q -1. After the change of variables t iu i = ũi , ỹ = xy, we will have to show that

I = sup (H 0 ,H A k )∈[ 1 2 ,1] k+1 t 1 0 du 1 ... t 4 0 du 4 |u 1 -u 2 -(t 1 -t 2 )| -α 0 |u 2 -u 3 -(t 2 -t 3 )| -α 0 |u 3 -u 4 -(t 3 -t 4 )| -β 0 |u 4 -u 1 -(t 4 -t 1 )| -β 0 R d dy 1 ... R d dy 4 1 (2πu 1 ) d 2 e - -|y 1 | 2 2u 1 1 (2πu 2 ) d 2 e - -|y 2 | 2 2u 2 1 (2πu 3 ) d 2 e - -|y 3 | 2 2u 3 1 (2πu 4 ) d 2 e - -|y 4 | 2 2u 4 |y 1 -y 2 | -α |y 2 -y 3 | -α |y 3 -y 4 | -β |y 4 -y 1 | -β < ∞.
Next, we write for the integrals

dy i R d dy 1 ... R d dy 4 ... = j∈A k R dy (j) 1 ... R dy (j) 4 1 √ 2πu 1 e - |y (j) 1 | 2 2u 1 ... 1 √ 2πu 4 e - |y (j) 4 | 2 2u 4 × j∈A k R dy (j) 1 ... R dy (j) 4 1 √ 2πu 1 e - |y (j) 1 | 2 2u 1 ... 1 √ 2πu 4 e - |y (j) 4 | 2 2u 4 .
We will separate the integral dy

(j)
1 , for every j = 1, ..,

= |y 1 | (j) > √ 2T dy (j) 1 + |y 1 | (j) √ 2T dy (j) 1 d, as follows R dy (j) 1 
and similarly for the integrals dy

4 . We use the fact that on the set

y 2 > 2T > 2u the function u → 1 √ u e -y 2 2u is increasing and we majorize 1 √ u e -y 2 2u by 1 √ T e -y 2

2T

On the other hand, on the set

y 2 2T
we majorize 1 √ u e -y 2 2u by a constant.

In this way, the quantity I can be bounded by

I ≤ C sup (H 0 ,H A k )∈[ 1 2 ,1] k+1 t 1 0 du 1 ... t 4 0 du 4 |u 1 -u 2 -(t 1 -t 2 )| -α 0 |u 2 -u 3 -(t 2 -t 3 )| -α 0 |u 3 -u 4 -(t 3 -t 4 )| -β 0 |u 4 -u 1 -(t 4 -t 1 )| -β 0
Therefore, in order to conclude, it remains to show that sup

H A k ∈[ 1 2 ,1] k j∈A k R dy (j) 1 ... R dy (j) 4 1 √ 2πT e - |y (j) 1 | 2 2T 1 |y (j) 1 | √ 2T + 1 |y (j) 1 | √ 2T ... 1 √ 2πT e - |y (j) 4 | 2 2T 1 |y (j) 4 | √ 2T + 1 |y (j) 4 | √ 2T ×|y (j) 1 -y (j) 2 | -α j |y (j) 2 -y (j) 3 | -α j |y (j) 3 -y (j) 4 | -β j |y (j) 4 -y (j) 1 | -β j < ∞.
Assume for simplicity A k = {1, 2, .., k}. To check that the above quantity is finite, it suffices to prove that sup .

H∈[ 1 2 ,1] R dy 1 .... R dy 4 e -|y 1 | 2 2T 1 |y 1 | √ 2T + 1 |y 1 | √ 2T .... e -|y 4 | 2 2T 1 |y 4 | √ 2T + 1 |y 4 | √ 2T ×|y 1 -y 2 | -α |y 2 -y 3 | -α |y 3 -y 4 | -β |y 4 -y 1 | -β < ∞. Using 4 i=1 (A i + B i ) = A 1 A 2 A 3 A 4 + A 1 B 2 B 3 B 4 + ....+ B 1 B 2 B 3 B 4 ,
Hence, T 1 can be bounded as follows The term T 3 is thus bounded by

T 1 ≤ sup H∈[ 1 2 ,1] R dy 1 ....
T 3 ≤ C sup H∈[ 1 2 ,1] R dy 1 .... R dy 4 e -1 8T (|y 1 -y 2 | 2 +|y 2 -y 3 | 2 +|y 3 -y 4 | 2 +|y 4 -y 1 | 2 ) ×|y 1 -y 2 | -α |y 2 -y 3 | -α |y 3 -y 4 | -β |y 4 -y 1 | -β
and we follow the proof for the first term.

Remark 5 Notice that the limit process in Theorem coincides in distribution with a bifractional Brownian motion with Hurst parameters

H = 1 2 , K = -γ 0 + 1 = d -k 2 -a∈A k H a (in the case i. ), H = 1 2 , K = d -k 2 -a∈A k H a + (2H -1) (in the case ii.) and H = K = 1 2
(in the case iii.) We refer to [START_REF] Harnett | Decomposition and limit theorems for a class of self-similar Gaussian processes. Stochastic analysis and related topics[END_REF], [START_REF] Tudor | Analysis of variations for self-similar processes. A stochastic calculus approach[END_REF], [START_REF] Tudor | Sample paths of the solution to the fractional-colored stochastic heat equation[END_REF] for the definition of the bifractional Brownian motion and for the link between this process and the solution to the heat equation.

Applications to Hermite Ornstein-Uhlenbeck process

Let Z q,1 := Z q be a (one-parameter) Hermite process defined by [START_REF] Bai | Behavior of the generalized Rosenblatt process at extremes critical exponent values[END_REF]. The Hermite Ornstein Uhlenbeck process has been introduced in [START_REF] Maejima | Wiener Integrals with respect to the Hermite process and a Non-Central Limit Theorem[END_REF]. It is defined as the solution of Langevin equation driven by Hermite noise.

X t = ξ -λ t 0 X s ds + σZ q H (t), t ≥ 1 ( 56 
)
where λ, σ > 0 and the initial condition ξ is a random variable in L 2 (Ω). The unique solution of ( 56) is given by

Y H (t) = e -λt ξ + σ t 0 e λu dZ q H (u) , t ≥ 0 ( 57 
)
where the integral t 0 e λu dZ q (u) exists in the Riemann-Stieljes sense. In particular, by taking the initial condition ξ = σ 0 -∞ e λu dZ H (u) in (57). The unique solution to (56), denoted in the sequel by (X H (t)) t≥0 , can be expressed as

X H (t) = σ t -∞ e -λ(t-u) dZ q H (u), t ≥ 0 ( 58 
)
and the stochastic integral in (58) can be also understood in the Wiener sense. The process X H (t) t≥0 is a stationary process, H-self similar process with stationary increments.

In [START_REF] Slaoui | Limit behaviour of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index[END_REF] the authors have established the asymptotic behavior with respect to H of the Rosenblatt Ornstein Uhlenbeck process which is the solution of (56) driven by the Rosenblatt process, i.e. q = 2. The proof was based on the analysis of the cumulants, but it is well-known that this method does not work for a Wiener chaos of order q ≥ 3. In this section, we will study the behavior as H → 1 and as H → 1 2 of the processes X H (t) t∈[0,T ] and Y H (t) t∈[0,T ] when q > 2 . The results obtained give a complete picture for the asymptotic behavior of the Hermite Ornstein Uhlenbeck of any order q ≥ 1.

Asymptotic behavior of the non stationary Hermite Ornstein-Uhlenbeck

Assume that the initial condition ξ does not depend on H.

Proposition 3

1 Assume H → 1. Then the process Y H (t) t∈[0,T ] converges weakly, in the space of the continuous functions C[0, T ] to the process (Y (t)) t∈[0,T ] given by

Y (t) = e -λt ξ + σ 1 -e -λt H q (Z) √ q! (59)
with Z ∼ N (0, 1)

2 Assume H → 1 2 , the process Y H (t) t∈[0,T ] converges weakly, in the space of the continuous functions C[0, T ] as H → 1 2 to the standard Ornstein Uhlenbeck process (Y 0 (t)) t∈[0,T ] given by

Y 0 (t) = e -λ ξ + σ t 0 e λu dW (u) (60)
that is a Gaussian process with mean EY 0 (t) = e -λt Eξ for any t ≥ 0 and covariance function

Cov(Y 0 (t), Y 0 (s)) = σ 2 2λ e -λ|t-s| -e -λ(t+s)
for every s, t ≥ 0.

Proof: Consider α 1 , . . . , α N ∈ R and t 1 , . . . , t N ∈ [0, T ]. We will study the convergence of the finite dimensional distributions of Y H . u) . Notice that in this case the space H A k given by ( 15) coincides with L 1 (R). Since it is clear that f belongs to |H H | ∩ L 1 (R) (see [START_REF] Slaoui | Limit behaviour of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index[END_REF]), we get immediatly by Proposition 1 the convergence as H → 1 of R f (u)dZ q H (u) to R f (u)du Hq(Z) √ q! . In order to prove the convergence when H → 1 2 , we will apply Proposition 2. Using the same arguments as for the proof of Proposition 5 in [START_REF] Slaoui | Limit behaviour of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index[END_REF], we get lim

Y N = N i=1 α i Y H (t i ) = N i=1 e -λt i ξ + R N i=1 α i 1 [0,t i ] (u)e -λ(t i -u) dZ q H (u) = N i=1 e -λt i ξ + R f (u)dZ q H (u) with f (u) = N i=1 α i 1 [0,t i ] (u)e -λ(t i -
H→ 1 2 H(2H -1) R R f (u)f (v)|u -v| 2H-2 dudv = R (f (u)) 2 du = N i=1 N j=1 α i α j t i ∧t j 0 e -λ(t i +t j -2u) du = N i=1 N j=1 α i α j σ 2 2λ e -λ|t i -t j | -e -λ(t i +t j )
which coincides with the variance of N j=1 α j Y 0 (t j ). The proof is completed by showing that (31) is satisfied. We have

R 4 du 1 ...du 4 f (u 1 )...f (u 4 )|u 1 -u 2 | H-1 |u 2 -u 3 | H-1 |u 3 -u 4 | H-1 |u 4 -u 1 | H-1 ≤ d j 1 ,..,j 4 =1 |α j 1 ....α j 4 | T 0 ... T 0 du 1 ..du 4 ×|u 1 -u 2 | 2(H-1)r q |u 2 -u 3 | 2(H-1)r q |u 3 -u 4 | 2(H-1)(q-r) q |u 4 -u 1 | 2(H-1)(q-r) q
is finite and continuous in H on the set ( 1 4 , 1]. This follows from Lemma 3.3 in [START_REF] Bai | Behavior of the generalized Rosenblatt process at extremes critical exponent values[END_REF] or by applying the power counting theorem with (α 1 , α 2 , α 3 , α 4 ) = 2(H-1)r q , 2(H-1)r q , 2(H-1)(q-r) q , 2(H-1)(q-r) q . We recall (see [START_REF] Slaoui | Limit behaviour of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index[END_REF]) that for p ≥ 1,

E|Y H (t) -Y H (s)| 2p ≤ C p (E|Y H (t) -Y H (s)| 2 ) p ≤ c|t -s| p . (61) 
The tighness follows from (61) and Bilingsley criterium (see [START_REF] Billingsley | Convergence of Probability Measures[END_REF]).

Asymptotic behavior of the stationary Hermite Ornstein-Uhlenbeck

Now we will study the asymptotic behavior of (58). The diffrence to the non-stationary case is that the function f from the last proof has support of infinite Lebesque measure an we need to use an argument based on the power counting theorem when H tends to one half. The proof of this results is similar in spirit to the proofs of Proposition 6 and Proposition 7 in [START_REF] Slaoui | Limit behaviour of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index[END_REF].

Proposition 4

1 Assume H → 1. Then the process X H (t) t∈[0,T ] converges weakly, in the space of the continuous functions C[0, T ] to the process (X(t)) t∈[0,T ] defined by

X(t) = σ λ H q (Z) √ q! (62)
with Z ∼ N (0, 1)

2 Assume H → 1 2 , the process X H (t) t∈[0,T ] converges weakly, in the space of the continuous functions C[0, T ] as H → 1 2 to the stationary Ornstein Uhlenbeck process (X 0 (t)) t∈[0,T ] given by

X 0 (t) = σ t -∞ e -λ(t-u) dW (u) (63)
which is a stationary centered Gaussian process with covariance function

Cov(X 0 (t), X 0 (s)) = σ 2 2λ e -λ|t-s|
for every s, t ≥ 0.

Proof: Consider α 1 , . . . , α N ∈ R and t 1 , . . . , t N ∈ [0, T ]. We will study the convergence of the finite dimensional distributions of Y H . u) . The computations in proofs of Proposition 6 and Proposition 7 in [START_REF] Slaoui | Limit behaviour of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index[END_REF] show that g belongs to |H H | ∩ L 1 (R), we get immediatly by Proposition 1 that the random variable

N i=1 α i X H (t i ) = R N i=1 σα i 1 [-∞,t i ] (u)e -λ(t i -u) dZ q H (u) = R g(u)dZ q H (u) with g(u) = N i=1 α i 1 [-∞,t i ] (u)e -λ(t i -
N i=1 α i X H (t i ) converges to N i=1 α i X(t i ) as H → 1. When H → 1
2 , the proof with slight changes, follows along the same lines as the proof of Proposition 7 in [START_REF] Slaoui | Limit behaviour of the Rosenblatt Ornstein-Uhlenbeck process with respect to the Hurst index[END_REF]. We have

E   d j=1 α j X H (t j )   2 ---→ H→ 1 2 E   d j=1 α j X 0 (t j )   2 .
It remains to prove that the condition (31) holds true. We have

R 4 du 1 ...du 4 g(u 1 )...g(u 4 )|u 1 -u 2 | 2(H-1)r q |u 2 -u 3 | 2(H-1)r q |u 3 -u 4 | 2(H-1)(q-r) q |u 4 -u 1 | 2(H-1)(q-r) q ≤ d j 1 ,j 2 ,..,j 4 =1 |α j 1 ...α j 4 | t j 1 -∞ du 1 .... t j 4 -∞
du m e -λ(t j 1 -u 1 ) ....e -λ(t j 4 -u 4 )

|u 1 -u 2 | 2(H-1)r q |u 2 -u 3 | 2(H-1)r q |u 3 -u 4 | 2(H-1)(q-r) q |u 4 -u 1 | 2(H-1)(q-r) q = d j 1 ,j 2 ,..,j 4 =1 |α j 1 ...α j 4 | ∞ 0 du 1 .... ∞ 0 du 4 e -λ(u 1 +..+u 4 ) ×|u 1 -u 2 -(t j 1 -t j 2 )| 2(H-1)r q |u 2 -u 3 -(t j 1 -t j 2 )| 2(H-1)r q |u 3 -u 4 -(t j 3 -t j 4 )| 2(H-1)(q-r) q |u 4 -u 1 -(t j 4 -t j 1 )| 2(H-1)(q-r) q ≤ e λ 2 (|t j 1 -t j 2 |+...+|t j 4 -t j 1 |) d j 1 ,j 2 ,..,j 4 =1 |α j 1 ...α j 4 | ∞ 0 du 1 ... ∞ 0 du 4 e -λ 2 (|u 1 -u 2 -(t j 1 -t j 2 )|+...+|u 4 -u 1 -(t j 4 -t j 1 )|) × 1 ∨ |u 1 -u 2 -(t j 1 -t j 2 )| 2(H-1)r q 1 ∨ |u 2 -u 3 -(t j 1 -t j 2 )| 2(H-1)r q 1 ∨ |u 3 -u 4 -(t j 3 -t j 4 )| 2(H-1)(q-r) q 1 ∨ |u 4 -u 1 -(t j 4 -t j 1 )| 2(H-1)(q-r) q
We apply the power counting theorem on the set T ′ defined by 2(H-1)(q-r) q |u 4 -u 1 |

T ′ = {u 1 -u 2 -(t j 1 -t j 2 ), ..., u 4 -u 1 -(t j 4 -t j 1 )} with (α 1 , .., α 4 ) = 2(H -1)r q , 2(H -1)r q , 2(H -1)(q -r) q , 2 ( 
2(H-1)(q-r) q is finite and continuous on the set D = {H ∈ (0, 1], H > 1 4 }. The conclusion follows from Proposition 2.

Again the tighness is obtained by (61).

Appendix

The basic tools from the analysis on Wiener space and the power counting theorem proven in [START_REF] Terrin | Power counting theorem in Euclidean space[END_REF] are presented in this appendix.

Multiple stochastic integrals and the Fourth Moment Theorem

Here, we shall only recall some elementary facts; our main reference is [START_REF] Nualart | Malliavin Calculus and Related Topics[END_REF]. Consider H a real separable infinite-dimensional Hilbert space with its associated inner product ., . H , and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process on a probability space (Ω, F, P), which is a centered Gaussian family of random variables such that E (B(ϕ)B(ψ)) = ϕ, ψ H , for every ϕ, ψ ∈ H. Denote by I q the qth multiple stochastic integral with respect to B. This I q is actually an isometry between the Hilbert space H ⊙q (symmetric tensor product) equipped with the scaled norm 1 √ q! • H ⊗q and the Wiener chaos of order q, which is defined as the closed linear span of the random variables H q (B(ϕ)) where ϕ ∈ H, ϕ H = 1 and H q is the Hermite polynomial of degree q ≥ 1 defined by: H q (x) = (-1) q exp x 2 2 d q dx q exp -

x 2 2 , x ∈ R. ( 64 
)
The isometry of multiple integrals can be written as: for p, q ≥ 1, f ∈ H ⊗p and g ∈ H ⊗q , E I p (f )I q (g) = q! f , g H ⊗q if p = q 0 otherwise.

It also holds that: I q (f ) = I q f , where f denotes the canonical symmetrization of f and it is defined by: f (x 1 , . . . , x q ) = 1 q! σ∈Sq f (x σ(1) , . . . , x σ(q) ), in which the sum runs over all permutations σ of {1, . . . , q}.

In the particular case when H = L 2 (T, B(T ), µ) , the rth contraction f ⊗ r g is the element of H ⊗(p+q-2r) , which is defined by: (f ⊗ r g)(s 1 , . . . , s p-r , t 1 , . . . , t q-r ) = T r du 1 . . . du r f (s 1 , . . . , s p-r , u 1 , . . . , u r )g(t 1 , . . . , t q-r , u 1 , . . . , u r ), (66) for every f ∈ L 2 ([0, T ] p ), g ∈ L 2 ([0, T ] q ) and r = 1, . . . , p ∧ q.

An important property of finite sums of multiple integrals is the hypercontractivity. Namely, if

F = n k=0 I k (f k ) with f k ∈ H ⊗k then E|F | p ≤ C p EF 2 p 2 . ( 67 
)
for every p ≥ 2. We will use the following famous result initially proven in [START_REF] Nualart | Central limit theorems for sequences of multiple stochastic integrals[END_REF] that characterizes the convergence in distribution of a sequence of multiple integrals torward the Gaussian law. Another equivalent condition can be stated in term of the Malliavin derivatives of F k , see [START_REF] Nourdin | Normal Approximations with Malliavin Calculus From Stein 's Method to Universality[END_REF].

Power counting theorem

We need to recall some notation and results from [START_REF] Terrin | Power counting theorem in Euclidean space[END_REF] which are needed in order to check the integrability assumption from Proposition 2.

Consider a set T = {M 1 , .., M m } of linear functions on R m . The power counting theorem (see Theorem 1.1 and Corollary 1.1 in [START_REF] Terrin | Power counting theorem in Euclidean space[END_REF]) gives sufficient conditions for the integral For a subset W ⊂ T we denote by s T (W ) = span(W ) ∩ T . A subset W of T is said to be padded if s T (W ) = W and any functional M ∈ W also belongs to s T (W \ {M }). Denote by span (W ) the linear span generated by W and by r(W ) the number of linearly independent elements of W .

I = R ...
Then Theorem 1.1 in [START_REF] Terrin | Power counting theorem in Euclidean space[END_REF] says that the integral I (68) is finite if The condition (69) implies the integrability at the origin while (70) gives the integrability of I at infinity.

d 0 (W ) = r(W ) + s T (W )
There is a similar result if one starts with a set T of affine functionals instead of linear functionals.

  , a d ), b = (b 1 , b 2 , .., b d ), α = (α 1 , .., α d ), ab = d i=1 a i b i , |a -b| α = d i=1 |a 1b 1 | α i , a/b = (a 1 /b 1 , a 2 /b 2 , . . . , a d /b d ), [a, b] = d i=1 [a i , b i ], (a, b) = d i=1 (a i , b i ), N i=0

Remark 2

 2 As usual, by the weak convergence of the family(u H 0 ,H (t, x), t ∈ [0, T ]) to (u(t, x), t ∈ [0, T ]) in C[0, T ] for fixed x ∈ R d wemean the weak convergence of the family of distributions of u H 0 ,H (•, x) to the law of u(•, x) in (C[0, T ], B(C[0, T ])).

R dy 4 e - 1 8T (|y 1 -y 2 | 2 e -y 2 1 2T ≤ e - 1 8T (|y 1 -y 2 | 2 ≤

 112211122 +|y 2 -y 3 | 2 +|y 3 -y 4 | 2 +|y 4 -y 1 | 2 ) |y 1y 2 | -α |y 2y 3 | -α |y 3y 4 | -β |y 4y 1 | -β .and then +|y 2 -y 3 | 2 +|y 3 -y 4 | 2 +|y 4 -y 1 | 2 ) e Ce -1 8T (|y 1 -y 2 | 2 +|y 2 -y 3 | 2 +|y 3 -y 4 | 2 +|y 4 -y 1 | 2 ) .

H - 1 )R

 1 (qr) q and (β 1 , .., β 4 ) = (-γ, ..., -γ)with γ ∈ ( 3 4 , 1]. Since T ′ is the only paddet subset of T ′ , we haved 0 (T ′ ) = 4 -1 + 4(H -1)(qr) q + 4(H -1)(qr) q = 4H -1 > 0 if H > 1 4 and d ∞ (∅) = 4 -1 -4γ < 0 if γ > 1du 1 ...du 4 |g(u 1 )...g(u m )||u 1 -u 2 | 2(H-1)r q |u 2 -u 3 | 2(H-1)r q |u 3 -u 4 |

Theorem 4

 4 Fix n ≥ 2 and let (F k , k ≥ 1) , F k = I n (f k ) ( with f k ∈ H ⊙n for every k ≥ 1), be a sequence of square-integrable random variables in the nth Wiener chaos such thatE F 2 k → 1 as k → ∞.The following are equivalent: 1. the sequence (F k ) k≥0 converges in distribution to the normal law N (0, 1);2. E F 4 k = 3 as k → ∞; 3. for all 1 ≤ l ≤ n -1, it holds that lim k→∞ f k ⊗ l f k H ⊗2(n-l) = 0;

R du 1

 1 ...du m f 1 (M 1 (u 1 , .., u m ))....f m (M m (u 1 , .., u m )) (68)to be finite, wheref i : R → R, i = 1, .., m are such that |f i | is bounded above on (a i , b i ) (0 < a i < b i < ∞) and |f i (y)| ≤ c i |y| α i if |y i | < a i and |f i (y)| ≤ c i |y| β i if |y| > b i .

  W of T with s T (W ) = W and d ∞ (W ) = r(T )r(W ) + T \s T (W ) β i < 0 (70)for any proper subset W of T with s T (W ) = W , including the empty set. If α i > -1 then it suffices to check (69) for any padded subset W ⊂ T . Also, it suffices to verify (70) only for padded subsets of T if β i ≥ -1.

  the last integrals can be expressed as a sum of several terms, involving integrals on the sets|y i | y 2 | -α |y 2y 3 | -α |y 3y 4 | -β |y 4y 1 | -β . y 2 | 2 + |y 2y 3 | 2 + |y 3y 4 | 2 + |y 4y 1 | 2 ≤ 4(y 2 -y 2 | 2 +|y 2 -y 3 | 2 +|y 3 -y 4 | 2 +|y 4 -y 1 | 2 )

	|y i |	√ Let us start with the first summand, namely 2T .		√	2T and
	T 1 :=	sup H∈[ 1 2 ,1] R	dy 1 ....	R	dy 4 e -y 2 1 2T 1 |y 1 |	√	2T e -y 2 2 2T 1 |y 2 |	√ 2T e -y 2 3 2T 1 |y 3 |	√ 2T e -y 2 4 2T 1 |y 4 |	√ 2T
	×|y 1 Since |y 1 -y 2 | 2 ≤ 2(y 2 1 + y 2 2 ) we have			
			|y 1 1 + y 2 2 + y 2 3 + y 2 4 )	(55)
	so									
			e -y 2 1 +y 2 2 +y 2 3 +y 2 4 2T	≤ e -1 8T (|y 1			

a∈A j (2Ha-1) du

2y

for every j = 1, .., d and

Consequently, we can write

Note that R does not depend on H 0 , H A k and sup

We apply the power counting theorem, see the Appendix. Consider the set of affine functionals T ′ = {y 1y 2 , y 2y 3 , y 3y 4 , y 4y 1 }.

The only padded subset of T ′ is T ′ itself. We apply the power counting theorem with

with γ > 0 arbitrarly large. We have (d 0 and d ∞ are given by ( 69) and (70) respectively)

Therefore T 1 is finite. Let us regard the last summand, i.e. We use the bound (which follows from (55)