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Abstract

We consider the Wiener integral with respect to a d-parameter Hermite process

with Hurst multi-index H = (H1, .., Hd) ∈
(

1

2
, 1
)d

and we analyze the limit behavior in
distribution of this object when the components of H tend to 1 and/or 1

2
. As examples,

we focus on the solution to the stochastic heat equation with additive Hermite noise
and to the Hermite Ornstein-Uhlenbeck process.
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1 Introduction

The Hermite processes are self-similar processes with long-memory and stationary incre-
ments. These properties made them good models for many applications. The Hermite
processes constitute a non-Gaussian extension of the fractional Brownian motion. Their
Hurst parameter, which is contained in the interval

(

1
2 , 1
)

, characterizes the main proper-
ties of this process. The reader may consult the monographs [20] or [26] for a complete
exposition on Hermite processes.

Our work deals with stochastic partial differential equations (SPDEs) driven by
the Hermite process. Starting with the seminal work [28], many researchers explored the
possibility of solving SPDEs with general noises more general than the standard space-time
white noise. In our work, such a stochastic perturbation is chosen to be the Hermite noise.
Recently, various types of stochastic integral and stochastic equations driven by Hermite
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noises have been considered by many authors. We refer, among others, to [3], [10], [11],
[12], [17], [25], [8], [13], [21], [22]. Our purpose is to analyze the asymptotic behavior in
distribution of the solution to the stochastic heat equation with additive Hermite noise,
when the Hurst parameter (which is also the self-similarity index of the Hermite process)
converges to the extreme values of its interval of definition, i.e when it tends to one and
to one half. Our work continues a recent line of research that concerns the limit behavior
in distribution with respect to the Hurst parameter of Hermite and related fractional-
type stochastic processes. In particular, the papers [5] and [2] deal with the asymptotic
behavior of the generalized Rosenblatt process, the work [1] studies the multiparamter
Hermite processes while the paper [22] investigates the Ornstein-Uhlenbeck process with
Hermite noise of order q = 2.

The solution to the heat equation with Hermite noise in R
d is a (d+ 1)- parameter

random field depending on a Hurst index H ∈
(

1
2 , 1
)d+1

. We prove that the solution
converges in distribution to a Gaussian limit when at least one of the components of H
converges to 1

2 and to a random variable in a Wiener chaos of higher order when at least one
of the components of H tends to 1 (and none of them converges to 1

2). Moreover, the limit
always coincides in distribution with the solution to the stochastic heat equation driven by
the limit of the Hermite noise. The results show that these models offer a large flexibilitily,
covering a large class of probability distributions, from Gaussian laws to distribution of
random variables in Wiener chaos of higher order.

For the proofs we use various techniques, such as the Malliavin calculus and the
Fourth Moment Theorem for the normal convergence, the properties of the Wiener integrals
with respect to the Hermite process and the so-called power counting theorem. Since the
solution to the Hermite-driven heat equation can be expressed as a Wiener integral with
respect to a Hermite sheet, we start our analysis by some more general results, i.e by
studying the behavior with respect to the Hurst index of such Wiener integrals. This allows
to consider other examples, in particular the Hermite Ornstein-Uhlenbeck process.

We organized our paper as follows. Section 2 contains some preliminaries. We
introduce the multidimensional Hermite processes and the Wiener integral with respect to
them. We also recall some known results concerning the asymptotic behavior of the Hermite
sheet. In Section 3, we state general results on the asymptotic behavior of the Wiener-
Hermite integrals with respect to the Hurst parameter. We will give two applications of the
main results obtained. In Section 4 we analyse the asymptotic behavior of the mild solution
of the stochastic heat equation with Hermite noise and finally Section 5 contains the case
of the Hermite Ornstein -Uhlenbeck process. The Appendix (Section 6) contains the basic
elements of the stochastic analysis on Wiener spaces needed in the paper.

2 Preliminaries

In this preliminary section we will introduce the Hermite sheet and the Wiener integral with
respect to this multiparameter process. We also recall the main findings from [1] concerning
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the behavior of the Hermite sheet with respect to its Hurst multi-index. We start with some
multidimensional notation, that we will use throughout our work.

2.1 Notation

For d ∈ N\ {0} we will work with multi-parametric processes indexed by elements of
R
d. We shall use bold notation for multi-indexed quantities, i.e., a = (a1, a2, . . . , ad),

b = (b1, b2, .., bd), α = (α1, .., αd), ab =
∏d

i=1 aibi, |a − b|α =
∏d

i=1 |a1 − b1|αi , a/b =

(a1/b1, a2/b2, . . . , ad/bd), [a,b] =

d
∏

i=1

[ai, bi], (a,b) =

d
∏

i=1

(ai, bi),

N
∑

i=0

ai =

N1
∑

i1=0

N2
∑

i2=0

. . .

Nd
∑

id=0

ai1,i2,...,id

if N = (N1, .., Nd), a
b =

d
∏

i=1

abii , and a < b iff a1 < b1, a2 < b2, . . . , ad < bd (analogously for

the other inequalities).
We write a − 1 to indicate the product

∏d
i=1(ai − 1). By β we denote the Beta

function β(p, q) =
∫ 1
0 z

p−1(1− z)q−1dz, p, q > 0 and we use the notation

β(a,b) =

d
∏

i=1

β
(

a(i), b(i)
)

if a = (a(1), .., a(d)) and b = (b(1), .., b(d)).
Let us recall that the increment of a d-parameter processX on a rectangle [s, t] ⊂ R

d,
s = (s1, . . . , sd), t = (t1, . . . , td), with s ≤ t (denoted by ∆X([s, t])) is given by

∆X([s, t]) =
∑

r∈{0,1}d
(−1)d−

∑d
i=1 riXs+r·(t−s). (1)

When d = 1 one obtains ∆X([s, t]) = Xt − Xs while for d = 2 one gets ∆X([s, t]) =
Xt1,t2 −Xt1,s2 −Xs1,t2 +Xs1,s2 .

2.2 Hermite processes and Wiener-Hermite integrals

We recall the definition and the basic properties of multiparameter Hermite processes. For
a more complete presentation, we refer to [9], [20] or [26]. Let q ≥ 1 integer and the
Hurst multi-index H = (H1,H2, . . . ,Hd) ∈ (12 , 1)

d. The Hermite sheet of order q and with

self-similarity index H , denoted (Zq,d
H

(t), t ∈ R
d
+) in the sequel, is given by

Zq,d
H

(t) = c(H, q)

∫

Rd·q

∫ t(1)

0
. . .

∫ t(d)

0





q
∏

j=1

(s1 − y1,j)
−
(

1
2
+

1−H1
q

)

+ . . . (sd − yd,j)
−
(

1
2
+

1−Hd
q

)

+





dsd . . . ds1 dW (y1,1, . . . , yd,1) . . . dW (y1,q, . . . , yd,q)
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= c(H, q)

∫

Rd·q

∫

t

0

q
∏

j=1

(s− yj)
−
(

1
2
+1−H

q

)

+ ds dW (y1) . . . dW (yq) (2)

for every t = (t1, ..., td) ∈ R
d
+, where x+ = max(x, 0). The above stochastic integral

is a multiple stochastic integral with respect to the Wiener sheet (W (y),y ∈ R
d), see

Section 6.1. The constant c(H, q) ensures that E
(

Zq
H
(t)
)2

= t2H for every t ∈ R
d
+. As

pointed out before, when q = 1, (2) is the fractional Brownian sheet with Hurst multi-index

H = (H1,H2, . . . ,Hd) ∈ (12 , 1)
d. For q ≥ 2 the process Zq,d

H
is not Gaussian and for q = 2

we denominate it as the Rosenblatt sheet.
The Hermite sheet is a H-self-similar stochastic process and it has stationary incre-

ments. Its paths are Hölder continuous of order δ < H, see [20] or [26]. Its covariance is
the same for every q ≥ 1 and it coincides with the covariance of the d-parameter fractional
Brownian motion, i.e.

EZq,d
H

(t)Zq,d
H

(s) =

d
∏

j=1

(

1

2

(

t2Hi

i + s2Hi

i − |ti − si|2Hi

)

)

=: RH(t, s), ti, si ≥ 0. (3)

We will denote by |HH| the space of measurable functions f : Rd → R such that

‖f‖2|HH| <∞

where

‖f‖2|HH| := H(2H− 1)

∫

Rd

∫

Rd

dudv|f(u)| · |f(v)||u − v|2H−2 (4)

= H(2H− 1)

∫

Rd

∫

Rd

du(1)...du(d)dv(1)...dv(d)

×f(u(1), .., u(d))f(v(1), .., v(d))
d
∏

j=1

|u(j) − v(j)|2Hj−2

where u = (u(1), .., u(d)),v = (v(1), .., v(d)) ∈ R
d.

Notice that the space |HH| satisfies the following inclusion (see Remark 3 in [9])

L1(Rd) ∩ L2(Rd) ⊂ L
1
H (Rd) ⊂ |HH|. (5)

The Wiener integral with respect to the Hermite sheet Zq,d
H

has been defined in [9]
(following the idea of [15] in the one-parmeter case). In particular, it is well-defined for
measurable integrands f ∈ |HH| via the formula

∫

Rd

f(s)dZq,d
H

(s) =

∫

Rd.q

(Jf)(y1, ...,yq)dW (y1)...dW (yq) (6)
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where
(

W (y),y ∈ R
d
)

is a d-parameter Wiener process and

(Jf)(y1, ...,yq) = c(H, q)

∫

Rd

duf(u)(u− y1)
−
(

1
2
+ 1−H

q

)

+ . . . (u− yq)
−
(

1
2
+ 1−H

q

)

+ (7)

with c(H, q) from (2). The stochastic integral
∫

Rd.q(Jf)(y1, ...,yq)dW (y1)...dW (yq) is a
multiple Wiener-Itô integral with respect to the Wiener sheet W .

We have the isometry formula, for f, g ∈ |HH|

E

(∫

Rd

f(s)dZq,d
H

(s)

∫

Rd

g(s)dZq,d
H

(s)

)

= H(2H− 1)

∫

Rd

∫

Rd

dudvf(u)g(v)|u − v|2H−2

:= 〈f, g〉HH
. (8)

By ‖f‖2HH
we denote 〈f, f〉HH

.

2.3 Behavior of the Hermite sheet with respect to the Hurst parameter

In a first step, we analyze the convergence of the integral
∫

Rd f(s)dZ
q,d
H

(s) when the Hurst
indices Hi goes to 1 and/or 1

2 .
Let us introduce the following notation: if {j1, .., jk} ⊂ {1, .., d} with 1 ≤ k ≤ d we

will denote

Ak = {j1, .., jk}, HAk
= (Hj1 , ...,Hjk) ∈

(

1

2
, 1

)k

, 〈t〉Ak
= t(j1)....t(jk) if t = (t(1), .., t(d)).

(9)
We will separate our study into following two situations:

1. At least one parameter converges to 1 and none to 1
2 . Then the limit will be a non-

Gaussian random variable related to the Hermite distribution.

2. At least one parameter Hi converges to 1
2 and the other indices are fixed in (12 , 1) or

converges to 1, i.e. if Ak is as above, Bp = {l1, .., lp} ⊂ {1, .., d} with p + k ≤ d and
Ak ∩Bp = ∅, we assume HAk

→ (12 , ...,
1
2) ∈ R

k and HBp → (1, .., 1) ∈ R
p. In this case

we will see that the limit of
∫

Rd f(s)dZ
q,d
H

(s) is a centered Gaussian random variable
with an explicit variance.

We start by recalling the main result in [1] concerning the asymptotic behavior of
the Hermite sheet.

Theorem 1 Let
(

Zq,d
H

(t)
)

t≥0
be given by (2) and let Ak, Bp be as in (9). Fix T > 0.
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1. Assume HAk
→ (1, .., 1) ∈ R

k. Assume that the parameters Hj , j ∈ Ak are fixed.

Then the process Zq,d
H

converges weakly in C([0, T ]d) to the d-parameter stochastic
process (Xt)t≥0 defined by

Xt = 〈t〉Ak
Zq,d−k
H

Ak

(tAk
) (10)

where

(

Zq,d−k
H

Ak

(tAk
)

)

t
Ak

∈Rd−k
+

is a (d− k)-parameter Hermite process of order q with

Hurst index HAk
∈
(

1
2 , 1
)d−k

.

2. Assume (H1, ..,Hd) → (1, .., 1) ∈ R
d. Then the process Zq,d

H
converges weakly in

C([0, T ]d) to the d-parameter stochastic process (Xt)t≥0 defined by

Xt = 〈t〉d
1√
q!
Hq(Z) (11)

where Z ∼ N(0, 1) and Hq is the qth Hermite polynomial (see (64)).

3. Assume HAk
→
(

1
2 , ...,

1
2

)

∈ R
k. Assume that the parameters Hj, j ∈ Ak are fixed.

Then the process Zq,d
H

converges weakly in C([0, T ]d) to a d-parameter centered Gaus-
sian process (X(t))t≥0 with covariance

EXtXs =





∏

a∈Ak

(

t(a) ∧ s(a)
)









∏

b∈Ak

RHb
(t(b), s(b))



 (12)

with RHb
defined in (3).

4. Assume HAk
→
(

1
2 , ..,

1
2

)

∈ R
k and HBp → (1, .., 1) ∈ R

p. Assume that the Hj

with j ∈ {1, 2, .., d} \ (Ak ∪ Bp) are fixed. Then the process Zq,d
H

converges weakly in
C([0, T ]d) to a d-parameter Gaussian process (X(t))t≥0 with covariance

EXtXs =





∏

a∈Ak

(t(a) ∧ s(a))









∏

b∈Bp

t(b)s(b)









∏

c∈Ak∪Bp

RHc(t
(c), s(c))



 . (13)

We will use the above result in order to get the limit behavior with respect to the
Hurst parameter of the Hermite Wiener integral.

3 Convergence of the Wiener-Hermite integrals with respect

to the Hurst parameter

Let us start the analysis of the behavior of the Wiener-Hermite integral (6) when the
components of the self-similarity index H tends to their extreme values. As mentioned
above, we will separate our study into two cases: at least one component of H converges to
1 (and no component tends to 1

2 ) and at least one component of H converges to one-half.
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3.1 Convergence around 1

We need to introduce new spaces for the deterministic integrand in (6). Working on these
spaces will ensure the convergence of the Hermite-Wiener integral.

Let Ak be as in (9) and assume 1 ≤ k < d. We introduce the space HAk
of

measurable functions f : Rd → R such that

‖f‖H
Ak

:= (14)

k
∑

j=1

∫

Rj

duAj

∣

∣

∣

∣

∫

Rd−j

dvAj

∫

Rd−j

dwAj
|f(uAj

,vAj
)| · |f(uAj

,wAj
)||vAj

−wAj
|2HAj

−2
∣

∣

∣

∣

1
2

=

k
∑

j=1

∫

Rj

duAj
‖f(uAj

, ·)‖HH
Aj

<∞ (15)

with the norm ‖ · ‖HH
Aj

defined in (4). Notice that for f ∈ HAk
, the integral

∫

Rk

duAk

∫

Rd−k

dZq,d
H

(uAk
)f(u) (16)

is well-defined in L1(Ω). Indeed,

E

∣

∣

∣

∣

∫

Rk

duAk

∫

Rd−k

dZq,d
H

(uAk
)f(u)

∣

∣

∣

∣

≤
∫

Rk

duAk
E

∣

∣

∣

∣

∫

Rd−k

dZq,d
H

(uAk
)f(u)

∣

∣

∣

∣

≤
∫

Rk

duAk

(

E

∣

∣

∣

∣

∫

Rd−k

dZq,d
H

(uAk
)f(u)

∣

∣

∣

∣

2
) 1

2

=
(

HAk
(2HAk

− 1)
) 1

2

∫

Rk

duAk

∣

∣

∣

∣

∫

Rd−k

dvAk

∫

Rd−k

dwAk
|f(uAk

,vAk
)| · |f(uAk

,wAk
)||vAj

−wAj
|2HAj

−2
∣

∣

∣

∣

1
2

≤
(

HAk
(2HAk

− 1)
)

1
2

k
∑

j=1

∫

Rj

duAj

∣

∣

∣

∣

∫

Rd−j

dvAj

∫

Rd−j

dwAj
|f(uAj

,vAj
)| · |f(uAj

,wAj
)||vAj

−wAj
|2HAj

−2
∣

∣

∣

∣

1
2

=
(

HAk
(2HAk

− 1)
) 1

2 ‖f‖H
Ak
<∞.

If k = d, we define HAk
= HAd

to be the set of measurable functions f : Rd → R such that

‖f‖H
Ak

:= ‖f‖L1(Rd)
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+

d−1
∑

j=1

∫

Rj

duAj

∣

∣

∣

∣

∫

Rd−j

dvAj

∫

Rd−j

dwAj
|f(uAj

,vAj
)| · |f(uAj

,wAj
)||vAj

−wAj
|2HAj

−2
∣

∣

∣

∣

1
2

:= ‖f‖L1(Rd) + ‖f‖H
Ad−1

<∞. (17)

Remark 1 Notice that the order of integration in (16) is important. That is, the integral

∫

Rd−k

dZq,d
H

(uAk
)

∫

Rk

duAk
f(u)

is not necesarily well-defined for f ∈ HAk
.

We have the following non-central limit theorem.

Proposition 1 Let Ak be as in (9) and assume f ∈ HAk
∩ |HH|.

• Assume 1 ≤ k < d and

HAk
→ (1, .., 1) ∈ R

k and HAk
∈
(

1

2
, 1

)d−k

is fixed.

Then the family of random variables
(

XH,H ∈
(

1
2 , 1
)d
)

XH :=

∫

Rd

f(u)dZq,d
H

(u) (18)

converges in distribution to the random variable

X :=

∫

Rd

f(u(1), .., u(d))dZq,d−k

Ak
(uAk

)duAk
=

∫

Rk

(∫

Rd−k

f(uAk
,uAAk

)dZq,d−k

Ak
(uAk

)

)

duAk
.

(19)

• Assume k = d and
H → (1, .., 1) ∈ R

d.

Then the limit in distribution of the family
(

XH,H ∈
(

1
2 , 1
)d
)

given by (18) is

∫

Rd

f(u(1), .., u(d))du
1√
q!
Hq(Z)

with Z ∼ N(0, 1) and Hq the Hermite polinomial of degree q (64).

Proof: We will check the convergence of the characteristic function of XH. That is, we
will show that for every α ∈ R,

EeiαX
H →HAk

→(1,..,1)∈Rk EeiαX .
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The idea is to approximate first X by a sequence of random variables that can be
written in terms of the linear combinaisons of Zq,d

H
and to use the result in Theorem 1.

Consider a sequence of step functions

fn(u) =

n
∑

l=1

al1(tl,tl+1](u) =

n
∑

l=1

al1(t(1)
l

,t
(1)
l+1]

(u(1))....1
(t

(d)
l

,t
(d)
l+1]

(u(d))

(where we used again the notation u = (u(1), .., u(d)) and tl = (t
(1)
l , .., t

(d)
l ) for l = 1, .., n)

such that

‖fn − f‖H
Ak

→n→∞ 0 and ‖fn − f‖|HH| →n→∞ 0. (20)

The choice of such a sequence (fn)n≥1 is possible because for any positive function f ∈
HAk

∩ |HH|, there exists an increasing sequence of step functions in fn ∈ HAk
∩ |HH|

which converges poinwise to f and satisfies |fn − f | ≤ |f |, and by dominated convergence
theorem, it converges in HAk

and in |HH|. Then, we use the fact that a general function
can be decomposed into its positive and negative parts.

Consider the Hermite Wiener integral of fn with respect to the Hermite sheet

Xn,H =

∫

Rd

fn(u)dZ
q,d
H

(u) =
n
∑

j=1

al(∆Z
q,d
H

)((tl, tl+1])

with ∆Zq,d
H

given by (1). Then we know from [9], Section 3 that Xn,H converges in L2(Ω)
to XH if fn converges to f in |HH| due to the isometry of the Hermite Wiener integral (8).
So we have

Xn,H →n→∞ XH :=

∫

Rd

f(s)dZq,d
H

(s) in L2(Ω).

Consequently, we can write

lim
HAk

→(1,..,1)∈Rk
EeiαX

H

= lim
HAk

→(1,..,1)∈Rk
lim
n→∞

EeiαX
n,H

. (21)

Now, we aim at exchanging the two limits above. Recall that if fj, j ≥ 1 is a
sequence of functions on D ⊂ R converging uniformly to f on D and if a is a limit point for
D, then limj→∞ limx→a fj(x) = limx→a f(x) provided that limx→a f(x), limx→a fj(x) exist.

Therefore it suffices to show that EeiαX
n,H

converges uniformly with respect to HAk
to

EeiαX
H
.
By the mean value theorem

∣

∣

∣
EeiαX

n,H −EeiαX
H
∣

∣

∣
≤ |α|E

∣

∣Xn,H −XH
∣

∣ ≤ |α|
(

E
∣

∣Xn,H −XH
∣

∣

2
) 1

2
.

Thus, in order to invert the limits in (21), it suffices to show that for some ε > 0

9



sup
HAk

∈[ 1
2
+ε,1]k

E
∣

∣Xn,H −XH
∣

∣

2 →n→∞ 0

that is proved in Lemma 1 below. The relation (21) becomes

lim
HAk

→(1,..,1)∈Rk
EeiαX

H

= lim
n→∞

lim
HAk

→(1,..,1)∈Rk
EeiαX

n,H

. (22)

Assume k < d. Since, from Theorem 1 Zq,d
H

converges weakly to the process (Ut)t≥0

given by
Ut = 〈t〉Ak

Zq,d−k
H

Ak

(tAk
)

it follows from (22) that

lim
HAk

→(1,..,1)∈Rk
EeiαX

H

= lim
n→∞

lim
HAk

→(1,..,1)∈Rk
Eeiα

∑n
l=1 al(∆Zq,d

H
)((tl,tl+1])

= lim
n→∞

Eeiα
∑n

l=1 al(∆U)((tl,tl+1]). (23)

At this point we need to study the convergence as n→ ∞ of the sequence

Xn :=

n
∑

l=1

al(∆U)((tl, tl+1]) (24)

as n→ ∞. If Ak = {j1, .., jk}, let us use the notation

(tl, tl+1]Ak
= (t

(j1)
l , t

(j1)
l+1 ]× .... × (t

(jk)
l , t

(jk)
l+1 ].

Then it is not difficult to see that

(∆U)((tl, tl+1]) = (∆〈t〉Ak
)(tl, tl+1]Ak

(∆Zq,d−k

Ak
)(tl, tl+1]Ak

.

and therefore the sequence (24) can be expressed as follows

Xn =

n
∑

l=1

al(∆U)((tl, tl+1]] =

n
∑

l=1

al(∆〈t〉Ak
)(tl, tl+1]Ak

(∆Zq,d−k
H

Ak

)(tl, tl+1]Ak

=

∫

Rd

fn(u
(1), .., u(d))duAk

dZq,d−k
H

Ak

(uAk
).

Now, we show that

Xn →n→∞ X in L1(Ω) (25)

where the random variable X is given by (19). We have

E|Xn −X| = E

∣

∣

∣

∣

∫

Rk

duAk

∫

Rd−k

dZq,d
H

(uAk
)(fn(uAk

,uAk
)− f(uAk

,uAk
))

∣

∣

∣

∣

10



≤
∫

Rk

duAk
E

∣

∣

∣

∣

∫

Rd−k

dZq,d
H

(uAk
)(fn(uAk

,uAk
)− f(uAk

,uAk
))

∣

∣

∣

∣

≤
∫

Rk

duAk

(

E

∣

∣

∣

∣

∫

Rd−k

dZq,d
H

(uAk
)(fn(uAk

,uAk
)− f(uAk

,uAk
))

∣

∣

∣

∣

2
) 1

2

=
(

HAk
(2HAk

− 1)
)

1
2

∫

Rk

duAk

∣

∣

∣

∣

∫

Rd−k

∫

Rd−k

dvAk
dwAk

|vAk
−wAk

|2HAk
−2

×
(

fn(uAk
,vAk

)− f(uAk
,vAk

)
)(

fn(uAk
,wAk

)− f(uAk
,wAk

)
)∣

∣

∣

1
2

≤
(

HAk
(2HAk

− 1)
)

1
2 ‖fn − f‖H

Ak
→n→∞ 0

where the last convergence comes from (20). We obtain from (23) and (25)

lim
HAk

→(1,..,1)∈Rk
EeiαX

H

= lim
n→∞

EeiαX
n

= EeiαX

and the proof is complete for 1 ≤ k < d.
If k = d, the proof is similar. We know that the process Zq,d

H
converges weakly in

C[0, T ] to the process

〈t〉d
1√
q!
Hq(Z).

Using the same lines as above, we get

lim
H→(1,..,1)∈Rd

EeiαX
H

= lim
n→∞

EeiαX
n

and in this case the sequence (24) becomes

Xn =
n
∑

i=1

(∆〈t〉d)[tl, tl+1]
1√
q!
Hq(Z) =

∫

R

fn(u)du
1√
q!
Hq(Z)

Clearly, by (20)

E|Xn −
∫

Rd

f(u)du
1√
q!
Hq(Z)| ≤

(
∫

R

|fn(u)− f(u)|du
)

1√
q!
Hq(Z) →n→∞ 0.

using the definition of the norm in HAk
for k = d. Then

lim
n→∞

EeiαX
n

= Ee
iα(

∫

Rd
f(u)du) 1√

q!
Hq(Z)

.

The below lemma has been needed in the proof of Proposition 1.

11



Lemma 1 Let Ak be as in (9) with 1 ≤ k ≤ d. Assume f ∈ HAk
∩ |HH| and consider a

sequence (fn)n≥1 of step functions on R
d such that (20) holds true. Let

Xn,H =

n
∑

l=1

al(∆Z
q,d
H

)((tl, tl+1]).

Then for every ε > 0 small enough

sup
HAk

∈[ 1
2
+ε,1]k

E
∣

∣Xn,H −XH
∣

∣

2 →n→∞ 0.

Proof: From the isometry property (8) and from (20) we have for every H ∈ (12 , 1)
d,

E
∣

∣Xn,H −XH
∣

∣

2 → 0. (26)

Let us show that the above convergence is uniform with respect to HAk
∈ [12 + ε, 1]k. By

(8),

E
∣

∣Xn,H −XH
∣

∣

2
= H(2H− 1)

∫

Rd

∫

Rd

fn(u)fn(v)|u − v|2H−2dudv

−2H(2H− 1)

∫

Rd

∫

Rd

fn(u)f(v)|u − v|2H−2dudv

+H(2H− 1)

∫

Rd

∫

Rd

f(u)f(v)|u− v|2H−2dudv

:= G(HAk
) (27)

with the function G considered on the interval [12 + ε, 1]k. Assume k < d. Let 1(Ak) =
(1, .., 1) ∈ R

k. Then from (27)

G(1(Ak))

= HAk
(2HAk

− 1)

∫

Rk

duAk

∫

Rk

dvAk

∫

Rd−k

duAk

∫

Rd−k

dvAk
fn(uAk

,uAk
)fn(vAk

,vAk
)|uAk

− vAk
|2HAk

−2

−2HAk
(2HAk

− 1)

∫

Rk

duAk

∫

Rk

dvAk

∫

Rd−k

duAk

∫

Rd−k

dvAk
fn(uAk

,uAk
)f(vHAk

,vAk
)|uAk

− vAk
|2HAk

−2

+HAk
(2HAk

− 1)

∫

Rk

duAk

∫

Rk

dvAk

∫

Rd−k

duAk

∫

Rd−k

dvAk
f(uAk

,uAk
)f(vAk

,vAk
)|uAk

− vAk
|2HAk

−2

and this can be written

G(1(Ak))

=

∫

Rk

duAk

∫

Rk

dvAk
〈(fn − f)(uAk

, ·), (fn − f)(vAk
, ·)〉HH

Ak

≤
∫

Rk

duAk

∫

Rk

dvAk
‖(fn − f)(uAk

, ·)‖HH
Ak

‖(fn − f)(vAk
, ·)‖HH

Ak

12



=

(
∫

Rk

duAk
‖(fn − f)(uAk

, ·)‖HH
Ak

)2

= HAk
(2HAk

− 1)

[

∫

Rk

duAk

∣

∣

∣

∣

∫

Rd−k

dvAk

∫

Rd−k

dwAk
|f(uAk

,vAk
)| · |f(uAk

,wAk
)||vAk

−wAk
|2HAk

−2
∣

∣

∣

∣

1
2

]2

≤ HAk
(2HAk

− 1)‖fn − f‖2H
Ak

(28)

where we used the definition (15).
Now, the function G is continuous on [12+ε, 1]

k so there exists H0 = (H0,1, ..,H0,k) ∈
[12 + ε, 1]k such that

sup
HAk

∈[ 1
2
+ε,1]k

G(HAk
) = G(H0).

If H0 = 1(Ak), then the conclusion follows from (28) and the assumption (20). If
H0 has the form

H0 = (1, .., 1,H0,j+1, ...,H0,k)

with j < k then a similar calculation to (28) shows that

G(H0)

≤ HAj
(2HAj

− 1)

[

∫

Rj

duAj

∣

∣

∣

∣

∫

Rd−j

dvAj

∫

Rd−j

dwAj
|f(uAj

,vAj
)| · |f(uAj

,wAj
)||vAj

−wAj
|2HAj

−2
∣

∣

∣

∣

1
2

]2

≤ HAj
(2HAj

− 1)‖fn − f‖2H
Ak

(29)

and again G(H0) → 0 as HAk
→ (1, .., 1) ∈ R

k from (20).
Otherwise, if all H0,i, i = 1, .., k are in [12 + ε, 1), then the conclusion follows from

(26).
If k = d, the conclusion follows in the same way. Let G be given by (27) and let

H0 = (H0,1, ..,H0,k) ∈ [12 + ε, 1]d such that

sup
H∈[ 1

2
+ε,1]g

G(H) = G(H0).

If H0 = (1, .., 1) ∈ R
d, notice that in this case G(1d) = G(1, ..., 1) = ‖fn −

f‖2
L1(Rd)

→n→∞ 0. If H0 has the form

H0 = (1, .., 1,H0,j+1, ...,H0,d)

with j < d then G(H0) satisfies (29) and consequently it converges to zero from the as-
sumption (20). Il all components of H0 are strictly contained in the interval

(

1
2 , 1
)

, then
we conclude by (26).
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3.2 Convergence around 1
2

In this section, we will study the convergence in distribution of the Hermite Wiener integral
(18) when at least one Hurst index converges to one half. Actually, we will assume (recall
notation (9) from the previous section)

HAk
→
(

1

2
, ...,

1

2

)

∈ R
k

and
HBp → (1, .., 1) ∈ R

p

with 1 ≤ k ≤ d, 0 ≤ p ≤ d and p + k ≤ d. Note that k ≥ 1 means that at least one Hurst
parameter converges to 1

2 while p ≥ 0 means that some Hurst parameters (possibly zero)
converges to 1.

We have the following result.

Proposition 2 Assume Ak is as in (9) and Bp = {l1, .., lp} ⊂ {1, .., d} with 0 ≤ p ≤ d, 1 ≤
k ≤ d, p + k ≤ d and Ak ∩Bp = ∅ (if p = 0 then Bp = ∅.). Let f ∈ |HH|. Assume that the
following limit exists

lim
HAk

→( 1
2
,..., 1

2
)∈Rk

H(2H− 1)

∫

Rd

∫

Rd

f(u)f(v)|u− v|2H−2dudv := σ2f,H
Ak

(30)

and that

sup
HAk

∈[ 1
2
,1]k

∫

Rd

∫

Rd

∫

Rd

∫

Rd

dudvdu′dv′f(u)f(u′)f(v)f(v′)

×|u− v|
2(H−1)r

q |u′ − v′|
2(H−1)r

q |u− u′|
2(H−1)(q−r)

q |v − v′|
2(H−1)(q−r)

q <∞. (31)

If

HAk
→
(

1

2
, ...,

1

2

)

∈ R
k,HBp → (1, .., 1) ∈ R

p and HAk∪Bp
∈
(

1

2
, 1

)d−k−p

is fixed

then the Hermite Wiener integral
∫

Rd f(u)dZ
q,d
H

(u) converges in distribution to the Gaussian
law N(0, σ2f,H

Ak

).

Proof: Recall that by (6),
∫

Rd f(u)dZ
q,d
H

(u) = Iq(Jf) with the operator J defined in (7).
We can apply the Fourth Moment Theorem to study the normal convergence of (18).

First notice that by assumption (30), we have

E

(
∫

Rd

f(u)dZq,d
H

(u)

)2

= H(2H− 1)

∫

Rd

∫

Rd

f(u)f(v)|u− v|2H−2dudv

14



converges to σ2f,H
Ak

. Therefore, in order to apply the Fourth Moment Theorem (see Theo-

rem 4 in the Appendix), it suffices to show that

‖Jf ⊗r Jf‖L2(Rd(2q−2r)) → 0

for every r = 1, ..., q − 1.
Now, as in the proof of Theorem 3 in [1] (based on relation (13) in this reference)

(Jf ⊗r Jf)(y1, ..,y2q−2r) =

∫

(Rd)r
Jf(u1, ..,ur,y1, ..,yq−r)Jf(u1, ..,ur,yq−r−1, ..,y2q−2r)du1...dur

= c(H, q)2
∫

(Rd)r
du1...dur

∫

Rd

f(u)





q−r
∏

j=1

(u− yj)
−
(

1
2
+1−H

q

)

+









r
∏

j=1

(u− uj)
−
(

1
2
+1−H

q

)

+



 du

×
∫

Rd

f(v)





2q−2r
∏

j=q−r+1

(v − yj)
−
(

1
2
+1−H

q

)

+









r
∏

j=1

(v − uj)
−
(

1
2
+1−H

q

)

+



 dv

= c(H, q)2β

(

1

2
− 1−H

q
,
2− 2H

q

)r ∫

Rd

∫

Rd

dudvf(u)f(v)|u − v|
2(H−1)r

q





q−r
∏

j=1

(u− yj)
−
(

1
2
+1−H

q

)

+









2q−2r
∏

j=q−r+1

(v − yj)
−
(

1
2
+1−H

q

)

+





by using the Fubini theorem and again relation (13) in [1], this leads to

‖Jf ⊗r Jf‖2L2(Rd(2q−2r))

= c(H, q)4β

(

1

2
− 1−H

q
,
2− 2H

q

)2r

β

(

1

2
− 1−H

q
,
2− 2H

q

)2q−2r

∫

Rd

∫

Rd

∫

Rd

∫

Rd

dudvdu′dv′(u)f(u′)f(v)f(v′)

×|u− v|
2(H−1)r

q |u′ − v′|
2(H−1)r

q |u− u′|
2(H−1)(q−r)

q |v − v′|
2(H−1)(q−r)

q

=
1

q!2
(H(2H− 1))2

∫

Rd

∫

Rd

∫

Rd

∫

Rd

dudvdu′dv′f(u)f(u′)f(v)f(v′)

×|u− v|
2(H−1)r

q |u′ − v′|
2(H−1)r

q |u− u′|
2(H−1)(q−r)

q |v − v′|
2(H−1)(q−r)

q .

The last quantity converges to zero under assumption (31).

Notice that q = 2 and d = 1 we retrieve the results in [22]. For f = 1, the results in
this section reduces to those in Theorem 1 from [1].
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4 Applications to the stochastic heat equation with Hermite

noise

We will apply the main results in the previous section to some particular cases. First, we
look to the solution to the heat equation driven by an Hermite noise. That is, we consider
the following linear stochastic heat equation driven by an additive Hermite sheet with d+1
parameters

{

∂u
∂t (t,x) = ∆u(t,x) + Żq,d+1

H0,H
(t,x), t ≥ 0,x ∈ R

d

u(0,x) = 0, x ∈ R
d (32)

We denoted by ∆ the Laplacian on R
d and Zq,d

H0,H
= {Zq,d+1

H0,H
(t,x); t ≥ 0,x ∈ R

d}
denotes the (d+ 1)-parameter Hermite sheet whose covariance is given by

E
(

Zq,d+1
H0,H

(s,x)Zq,d+1
H0,H

(t,y)
)

= RH0(t, s)RH(x,y)

if (H0,H) = (H0,H1, . . . ,Hd) ∈
(

1
2 , 1
)d+1

. We denoted by H = (H1, . . . ,Hd) and

RH(t, s) =
1

2
(|t|2H + |s|2H − |t− s|2H), RH(x,y) =

d
∏

j=1

RHj
(xj , yj)

if s, t ∈ R and x = (x1, .., xd),y = (y1, .., yd) ∈ R
d.

The solution to (32) is understood in the mild sense. That is, the mild solution to
(32) is a square-integrable process u = {u(t,x); t ≥ 0,x ∈ R

d} defined by:

uH0,H(t,x) =

∫ t

0

∫

Rd

G(t− s,x− y)Zq,d+1
H0,H

(ds, dy), t ≥ 0,x ∈ R
d (33)

living in the space of jointly measurables random fields
(

X(t,x), t ≥ 0,x ∈ R
d
)

such that

for every T > 0, supt∈[0,T ],x∈Rd E |X(t,x)|2 <∞.
The above integral is a Wiener integral with respect to the Hermite sheet, as in-

troduced in Section 2 and G(t,x) is the Green function (or the fundamental solution) that
satisfies ∂u

∂t −∆u = 0, i.e.

G(t,x) =

{

(2πt)−d/2 exp
(

− |x|2
2t

)

if t > 0,x ∈ R
d,

0 if t ≤ 0, x ∈ R
d.

(34)

The stochastic heat equation (32) admits a unique mild solution (uH0,H(t,x))t≥0,x∈Rd

if and only if (see [21])

d < 4H0 +

d
∑

i=1

(2Hi − 1) := γ. (35)
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In this case, for every T > 0, sup
t∈[0,T ],x∈Rd

E
(

u(t,x)2
)

<∞.

We will use the following Parseval-type formula (see Lemma A1 in [4]): for every
f, g ∈ L2(a, b) and for every 0 < α < 1

∫ b

a

∫ b

a
dudvf(u)g(v)|u − v|−(1−α) = qα

∫

R

|τ |−αFa,bf(τ)Fa,bg(τ) (36)

where (Fa,bf)(ξ) =
∫ b
a f(y)e

−iξydy (we use the notation Ff = F−∞,∞f) and

qα = (21−απ1/2)−1 Γ(α/2)

Γ((1− α)/2)
. (37)

We recall that the Fourier transform of the function y ∈ R
d → G(u,y) is FG(u, ·)(ξ) =

e−
1
2
u|ξ|2 .

4.1 Limit behavior of the solution when the Hurst index tends to 1

The expression ”Hurst index tends to 1”means that at least one component of the Hurst
multi-index tends to 1. We will apply Proposition 1 to obtain the asymptotic behavior of
the solution (33) when at least one of the Hurst parameters H0,H1, ..,Hd converges to 1
and the other parameters are fixed.

Theorem 2 Assume (35) and let Ak be as in (9). Fix T > 0 and x ∈ R
d. Then

1. If

(H0,HAk
) → (1, .., 1) ∈ R

k+1 and Hj, j ∈ Ak are fixed

then the stochastic process (uH0,H(t,x), t ∈ [0, T ]) converges weakly in C[0, T ] to the
process (u(t,x), t ∈ [0, T ]) defined by

u(t,x) =

∫ t

0
du

∫

Rk

dyAk

∫

Rd−k

dZq,d−k
H

Ak

(yAk
)G(t− u,x− y). (38)

2. If HAk
→ (1, .., 1) ∈ R

k and H0,Hj , j ∈ Ak are fixed, then (uH0,H(t,x), t ∈ [0, T ])
converges weakly in C[0, T ] to the stochastic process (u(t,x), t ∈ [0, T ])

u(t,x) =

∫

Rk

dyAk

∫ t

0

∫

Rd−k

dZq,d+1−k
H0,HAk

(u,y
Ak

)G(t − u,x− y).

3. If (H0,H) → (1, ..., 1) ∈ R
d+1, then the weak limit of (uH0,H(t,x), t ∈ [0, T ]) in

C[0, T ] is (u(t,x), t ∈ [0, T ]) with

u(t,x) =

(
∫ t

0

∫

Rd

G(t− u,x− y)dydu

)

1√
q!
Hq(Z).
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Remark 2 As usual, by the weak convergence of the family (uH0,H(t,x), t ∈ [0, T ]) to
(u(t,x), t ∈ [0, T ]) in C[0, T ] for fixed x ∈ R

d we mean the weak convergence of the family
of distributions of uH0,H(·,x) to the law of u(·,x) in (C[0, T ],B(C[0, T ])).

Proof: Consider the function F defined on R+ × R given by

F : (u,y) → 1(0,t)(u)(2π(t − u))−
d
2 e

− |x−y|2
2(t−u) . (39)

We first show the convergence of finite dimensional distributions Consider the case 1. Let
us show that this function belongs to |HH0,H| ∩ HAk

, with these two spaces defined by (4)
and (15) respectively. We know from [4] that, under (35), the function F (39) belongs to
the space |HH0,H|.

Let us check that this function belongs to the space HAk
. Writting

F (u,y) = F (u,yAk
,yAk

) = (2πu)−
d
2 e−

|x−yAk
|2

2u e−
|x−y

Ak
|2

2u

we have by the definition of the norm in HA (see (15)),

‖F‖H
Ak

=

k
∑

j=1

∫ t

0
du

∫

Rj

dyAj

∣

∣

∣

∣

∫

Rd−j

∫

Rd−j

dyAj
dzAj

×(2πu)−
d
2 e−

|yAj
|2

2u e−
|y

Aj
|2

2u (2πu)−
d
2 e−

|yAj
|2

2u e−
|z

Aj
|2

2u |yAj
− zAj

|2HAj
−2

∣

∣

∣

∣

∣

1
2

=

k
∑

j=1

∫ t

0
du

∫

Rj

dyAj
(2πu)−

j
2 e−

|yAj
|2

2u

×
∣

∣

∣

∣

∣

∫

Rd−j

∫

Rd−j

dyAj
dzAj

(2πu)−
d−j
2 e−

|y
Aj

|2

2u (2πu)−
d−j
2 e−

|z
Aj

|2

2u |yAj
− zAj

|2HAj
−2

∣

∣

∣

∣

∣

1
2

.

By using Parseval’s identity (36)

∫

Rd−j

∫

Rd−j

dyAj
dzAj

(2πu)−
d−j
2 e−

|y
Aj

|2

2u (2πu)−
d−j
2 e−

|z
Aj

|2

2u |yAj
−zAj

|2HAj
−2

= Cj

∫

Rd−j

dξe−u|ξ|2 |ξ|1−2H
Aj

so with Cj , C > 0

‖F‖H
Ak

=

k
∑

j=1

Cj

∫ t

0
du

∣

∣

∣

∣

∫

Rd−j

dξe−u|ξ|2 |ξ|1−2H
Aj

∣

∣

∣

∣

1
2

= C

∫ t

0
u
− d−j

4
+ 1

4

∑

a∈Aj
(2Ha−1)

du

18



and the last integral is finite if for every j = 1, .., k

1− d− j

4
+

1

4

∑

a∈Aj

(2Ha − 1) > 0 or d < 4 + j +
∑

a∈Aj

(2Ha − 1). (40)

The last bound is true due to (35), so the function F given by (39) belongs to |HH0,H|∩HAk
.

Take λj ∈ R, tj ≥ 0 for j = 1, .., N and denote by

YN (x) =

N
∑

j=1

λjuH0,H(tj ,x) =

∫ ∞

0

∫

Rd





N
∑

j=1

λj1(0,tj )(u)G(tj − u,x− y)



 dZq,d+1
H0,H

(u,y).

(41)
From the above computations, the integrand

∑N
j=1 λj1(0,tj )(u)G(tj−u,x−y) in (41) belongs

to |HH0,H| ∩ HA. Therefore, by Proposition 1, the sequence YN (x) (41) converges, as
(H0,HAk

) → (1, .., 1) ∈ R
k+1 to

N
∑

j=1

λj

∫ tj

0
du

∫

Rk

dyAk

∫

Rd−k

dZq,d−k
H

Ak

(y
Ak

)G(tj − u,x− y) =

N
∑

j=1

λju(tj ,x)

with u defined in (38). This gives the convergence of the finite dimensional distribution of
(uH0,H(t,x), t ∈ [0, T ]) to the finite dimensional distributions of (u(t,x), t ∈ [0, T ]).

For the case 2., we have similarly

‖F‖H
Ak

=
k
∑

j=1

Cj

∣

∣

∣

∣

∫ t

0

∫ t

0
dudv|u − v|2H0−2

∫

Rd−j

dξe−
1
2
(u+v)|ξ|2 |ξ|1−2H

Aj

∣

∣

∣

∣

1
2

= C

∣

∣

∣

∣

∫ t

0

∫ t

0
dudv|u− v|2H0−2(u+ v)

− d−j
2

+ 1
2

∑

a∈Aj
(2Ha−1)

∣

∣

∣

∣

1
2

and the above integral is finite under (35). For the case 3., we notice in addition that the
function F given by (39) belongs to L1(Rd+1).

Concerning the tightness, we recall that (see [26]), for every s, t ∈ [0, T ],x ∈ R
d,

E |uH0,H(t,x) − uH0,H(s,x)|2 ≤ C|t− s|γ

with γ > 0 from (35) and C is a constant not depending on s, t,x. Since uH0,H(t,x) is an
element of the (q + 1)th Wiener chaos, we use the hypercontractivity property for multiple
stochastic integrals to get for every p ≥ 2

E |uH0,H(t,x)− uH0,H(s,x)|2p ≤ C|t− s|γp (42)

and the tightness follows from (42) and the Billingsley criterion (see [6, Theorem 12.3]
or [7]).

Remark 3 Notice that when (H0,HAk
) → (1, .., 1) ∈ R

k+1, the condition (35) ”converges”
to (40).
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4.2 Limit behavior when the Hurst index tends to 1
2

Fix T > 0. When at least one of the components of Hurst multi-index goes to one-half, we
have a central limit theorem.

Theorem 3 1. Assume

(H0,HAk
) →

(

1

2
, ...,

1

2

)

∈ R
k+1 (43)

and

d < 1 +
k

2
+
∑

a∈Ak

Ha. (44)

Then the process (uH0,H(t,x), t ∈ [0, T ]) given by (33) converges weakly in C[0, T ] to
the process (u(t,x), t ∈ [0, T ]) where u is the mild solution to the heat equation

{

∂u
∂t (t,x) = ∆u(t,x) + Ẇ q,d+1

H0,H
(t,x), t > 0,x ∈ R

d

u(0,x) = 0, x ∈ R
d (45)

where
(

WH0,H(t, A1 ×A2), t ∈ [0, T ], A1 ∈ Bb(R
k), A2 ∈ Bb(R

d−k)
)

is a Gaussian field
with covariance

E [WH0,H(t, A1 ×A2)WH0,H(s,B1 ×B2)]

= (t ∧ s)λk(A1 ∩B1)

∫

A2∩B2

HAk
(2HAk

− 1)|yAk
− zAk

|2HAk
−2
dyAk

dzAk
.

We denoted by λk the Lebesque measure on R
k.

2. If HAk
→
(

1
2 , ...,

1
2

)

∈ R
k , HBp → (1, .., 1) ∈ R

p and

d < 2H +
k

2
+
∑

a∈Ak

Ha. (46)

then the process (uH0,H(t,x), t ∈ [0, T ]) given by (33) converges weakly in C[0, T ] to
the process (u(t,x), t ∈ [0, T ]) where u is the mild solution to the heat equation (45)
where the Gaussian noise has the following covariance

E [WH0,H(t, A1 ×A2)WH0,H(s,B1 ×B2)]

= RH0(t, s)λk(A1 ∩B1)

∫

A2∩B2

HAk
(2HAk

− 1)|yAk
− zAk

|2HAk
−2
dyAk

dzAk
.

3. If (H0,H) →
(

1
2 , ...,

1
2

)

∈ R
d+1 and d = 1, then the weak limit of (uH0,H, t ∈ [0, T ]) in

C[0, T ] is the solution to the heat equation (45) driven by a space-time white noise.
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Remark 4 The conditions (44), (46) and d = 1 are the ”limits” of (35) in the cases 1., 2.
and 3. respectively.

Proof: We will prove that the finite dimensional distributions of (uH0,H(t,x), t ∈ [0, T ])
converge to those of (u(t,x), t ∈ [0, T ]) which satisfies (45). In order to apply Proposition
2, we need to check conditions (30) and (31).

Checking condition (30). Consider the case 1., i.e. assume (43) and (44).
Take λj ∈ R, tj ≥ 0 for j = 1, .., N and denote by

YN (x) =

N
∑

j=1

λjuH0,H(tj ,x) =

∫ ∞

0

∫

Rd





N
∑

j=1

λj1(0,tj )(u)G(tj − u,x− y)



 dZq,d+1
H0,H

(u,y).

We first check condition (30) for YN (x). Let us calculate E
(

YN (x)2
)

. By using the
isometry (8),

E (YN (x))2 =

N
∑

j,k=1

λjλkH0(2H0 − 1)H(2H − 1)

×
∫ tj

0
du

∫ tk

0
dv|u− v|2H0−2

∫

Rd

dy

∫

Rd

dzG(tj − u,x− y)G(tk − v,x− z)|y − z|2H−2.

Notice that, if x = (x(1), .., x(d)),y = (y(1), .., y(d)), z = (z(1), .., z(d)) we have

G(t− u,x− y) = 1(0,t)(u)

d
∏

a=1

(2π(t− u))−
d
2 e

− |x(a)−y(a)|2
2(t−u)

and so
∫

Rd

dy

∫

Rd

dzG(tj − u,x− y)G(tk − v,x− z)|y − z|2H−2

=
d
∏

a=1

∫

R

∫

R

dy(a)dz(a)(2π(tj − u))−
1
2 (2π(tk − v))−

1
2 e

− |x(a)−y(a)|2
2(tj−u) e

− |x(a)−z(a)|2
2(tk−v) |y(a) − z(a)|2Ha−2.

We will apply the Parseval identity (36) with

α = 2Ha − 1 for every a = 1, .., d.

We get, for every a = 1, .., d,

∫

R

∫

R

dy(a)dz(a)(2π(tj − u))−
1
2 (2π(tk − v))−

1
2 e

− |x(a)−y(a)|2
2(tj−u) e

− |x(a)−z(a)|2
2(tk−v) |y(a) − z(a)|2Ha−2
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= q2Ha−1

∫

R

dτ |τ |1−2Hae−
1
2
(tj−u)|τ |2e−

1
2
(tk−v)|τ |2 .

Now, by the change of variables τ̃ = (tj + tk − 2u)
1
2 τ ,

∫

R

dτ |τ |1−2Hae−
1
2
(tj−u)|τ |2e−

1
2
(tk−v)|τ |2

= (tj + tk − u− v)−
1
2
+ 2Ha−1

2

∫

R

dτ |τ |1−2Hae−
1
2
|τ |2 = (tj + tk − u− v)Ha−1

∫

R

dτ |τ |1−2Hae−
1
2
|τ |2 .

Thus

E (YN (x))2

=
N
∑

j,k=1

λjλkH0(2H0 − 1)H(2H − 1)q2H−1

×
∫ tj

0
du

∫ tk

0
dv|u− v|2H0−2(tj + tk − u− v)H1+...+Hd−d

d
∏

a=1

∫

R

dτ |τ |1−2Hae−
1
2
|τ |2(47)

where q2Ha−1 is defined in (37) and

q2H−1 =
d
∏

a=1

q2Ha−1.

Notice that for every H ∈ (12 , 1), we have

H(2H − 1)Γ(H − 1

2
) = H(2H − 1)

Γ(H + 1
2)

H − 1
2

→H→ 1
2
2Γ(1) = 2

and then
H(2H − 1)q2H−1 →H→ 1

2
(2π)−1. (48)

Relation (48) implies

H(2H− 1)q2H−1 →(H0,HAk
)→( 1

2
,.., 1

2
)∈Rk+1 (2π)−kq2H

Ak
−1. (49)

Let
γ := H1 + ...+Hd − d. (50)

We have, by integrating by parts

H0(2H0 − 1)

∫ t

0

∫ s

0
dudv|u− v|2H0−2(t+ s− u− v)−γ
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= H0(2H0 − 1)

∫ s

0

∫ s

0
dudv|u − v|2H0−2(t+ s− u− v)−γ

+H0(2H0 − 1)

∫ t

s

∫ s

0
dudv|u− v|2H0−2(t+ s− u− v)−γ

= H0(2H0 − 1)2

∫ s

0

∫ u

0
dudv|u− v|2H0−2(t+ s− u− v)−γ

+H0(2H0 − 1)

∫ t

s

∫ s

0
dudv|u− v|2H0−2(t+ s− u− v)−γ

= 2H0

∫ s

0
duu2H0−1(t+ s− u)−γ (51)

−H0

∫ t

s
duu2H0−1

(

(t+ s− u)−γ − (u− s)2H0−1(t− u)−γ
)

+2H0γ

∫ s

0
du

∫ u

0
dv(u − v)2H0−1(t+ s− u− v)−γ−1

+H0γ

∫ t

s
du

∫ u

0
dv(u− v)2H0−1(t+ s− u− v)−γ−1

= 2H0

∫ s

0
duu2H0−1(t+ s− u)−γ

+H0

∫ t

s
duu2H0−1

(

(t+ s− u)−γ − (u− s)2H0−1(t− u)−γ
)

+H0γ

∫ t

0
du

∫ u

0
dv|u− v|2H0−1(t+ s− u− v)−γ−1 (52)

Assuming (43), from (50)

γ → −



d− k

2
−
∑

a∈Ak

Ha



 := γ0

and, by taking the limit as γ → γ0 and H0 → 1
2 in (52), we get

H0(2H0 − 1)

∫ t

0

∫ s

0
dudv|u− v|2H0−2(t+ s− u− v)−γ

→
∫ s

0
du(t+ s− u)−γ0

+
1

2

∫ t

s
du
(

(t+ s− u)−γ0 − (t− u)−γ0
)

+
1

2
γ0

∫ t

0
du

∫ u

0
dv(t+ s− u− v)−γ0−1

=
1

2

1

(−γ0 + 1)

(

(t+ s)−γ0+1 − |t− s|−γ0+1
)

. (53)
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Consequently, as the limit (43) holds true, by plugging (49) and (53) into (47), we obtain

EYN (x)2 → 1

2

1

−γ0 + 1
(2π)−k

N
∑

j,k=1

λjλk
(

(tj + tk)
−γ0+1 − |tj − tk|−γ0+1

)

q2H
Ak

−1

×
∏

a∈Ak

∫

R

dτe−
1
2
|τ |2 ∏

a∈Ak

∫

R

dτ |τ |1−2Hae−
1
2
|τ |2

=
1

2

1

−γ0 + 1
(2π)−k

N
∑

j,k=1

λjλk
(

(tj + tk)
−γ0+1 − |tj − tk|−γ0+1

)

×q2H
Ak

−1(
√
2π)k

∏

a∈Ak

∫

R

dτ |τ |1−2Hae−
1
2
|τ |2

=
1

2

1

−γ0 + 1
(2π)−

k
2

N
∑

j,k=1

λjλk
(

tj + tk)
−γ0+1 − |tj − tk|−γ0+1

)

×q2H
Ak

−1

∏

a∈Ak

∫

R

dτ |τ |1−2Hae−
1
2
|τ |2 .

On the other hand, if u is the solution to (45), then

E





N
∑

j=1

λju(tj ,x)





2

=
N
∑

j,k=1

λjλk

∫ tj∧tk

0
du

∫

Rk

dyAk

∫

Rd−k

∫

Rd−k

dyAk
dzAk

×(2π(tj − u)−
d
2 e

−
|yAk

|2

2(tj−u) e
−

|y
Ak

|2

2(tj−u) (2π(tk − u)−
d
2 e

−
|yAk

|2

2(tk−u) e
−

|z
Ak

|2

2(tk−u)

=
N
∑

j,k=1

λjλk

∫ tj∧tk

0
du(2π)−k

∫

Rk

dξe−(tj+tk−2u)|ξ|2q2H
Ak

−1

∫

Rd−k

dτe−(tj+tk−2u)|τ |2 |τ |
1
2

∑

a∈Ak
(2Ha−1)

=

N
∑

j,k=1

λjλk

∫ tj∧tk

0
du(tj + tk − 2u)−γ0(2π)−k

∫

Rk

dξe−|ξ|2q2H
Ak

−1

∏

a∈Ak

∫

R

dτe−|τ |2 |τ |1−2Ha

=
1

2

1

−γ0 + 1
(2π)−

k
2

N
∑

j,k=1

λjλk
(

(tj + tk)
−γ0+1 − |tj − tk|−γ0+1

)

q2H
Ak

−1

∏

a∈Ak

∫

R

dτe−|τ |2 |τ |1−2Ha .

The point 2. follows similarly. Let us discuss point 3. Assume H0,H1, ..,Hd converge all to
1
2 . Notice that in this case condition (35) implies d < 2 so d = 1! Then, from (50)

γ → d

2
=

1

2
.
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Therefore, from (52), as H0,H1, ..,Hd → 1
2

H0(2H0 − 1)

∫ t

0

∫ s

0
dudv|u − v|2H0−2(t+ s− u− v)−γ

→ 1

2

∫ t

0
du
(

(t− u)−
1
2 − (t+ s− u)−

1
2

)

+
1

2
× 1

2

∫ t

0
du

∫ s

0
dv(t+ s− u− v)−

3
2

=
(

(t+ s)
1
2 − |t− s| 12

)

. (54)

and we obtain, by combining (54) and (47), by taking the limit (43)

EYN (x)2 → (2π)−1
N
∑

j,k=1

λjλk

(

(tj + tk)
1
2 − |tj − tk|

1
2

)

∫

R

dτe−
1
2
|τ |2

=

N
∑

j,k=1

λjλk

(

(tj + tk)
1
2 − |tj − tk|

1
2

)√
2π

= (2π)−
1
2

N
∑

j,k=1

λjλk

(

(tj + tk)
1
2 − |tj − tk|

1
2

)

which coincides with the E
(

∑N
j=1 λju(tj ,x)

)2
where u is the solution of the heat equation

(45) driven by a space-time white noise (see [23] or [26]).

Checking condition (31). In order to check condition (31), we need to show in the
case 1. (the other situations are similar) that for every t1, t2, t3, t4 ∈ [0, T ],

I : = sup
(H0,HAk

)∈[ 1
2
,1]k+1

∫ t1

0
du1...

∫ t4

0
du4|u1 − u2|−α0 |u2 − u3|−α0 |u3 − u4|−β0 |u4 − u1|−β0

×
∫

Rd

dy1...

∫

Rd

dy4
1

(2π(t1 − u1))
d
2

e
− |x−y1|2

2(t1−u1)
1

(2π(t2 − u2))
d
2

e
− |x−y2|2

2(t2−u2)

× 1

(2π(t3 − u3))
d
2

e
− |x−y3|2

2(t3−u3)
1

(2π(t4 − u4))
d
2

e
− |x−y4|2

2(t4−u4)

|y1 − y2|−α|y2 − y3|−α|y3 − y4|−β|y4 − y1|−β <∞

with

α =
2(1−H)r

q
, β =

2(1 −H)(q − r)

q
, α0 =

2(1 −H0)r

q
, β0 =

2(1 −H0)(q − r)

q

for every r = 1, .., q − 1. After the change of variables ti − ui = ũi, ỹ = x− y, we will have
to show that

I = sup
(H0,HAk

)∈[ 1
2
,1]k+1

∫ t1

0
du1...

∫ t4

0
du4
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|u1 − u2 − (t1 − t2)|−α0 |u2 − u3 − (t2 − t3)|−α0 |u3 − u4 − (t3 − t4)|−β0 |u4 − u1 − (t4 − t1)|−β0

∫

Rd

dy1...

∫

Rd

dy4
1

(2πu1)
d
2

e
−−|y1|2

2u1
1

(2πu2)
d
2

e
−−|y2|2

2u2
1

(2πu3)
d
2

e
−−|y3|2

2u3
1

(2πu4)
d
2

e
−−|y4|2

2u4

|y1 − y2|−α|y2 − y3|−α|y3 − y4|−β|y4 − y1|−β <∞.

Next, we write for the integrals dyi

∫

Rd

dy1...

∫

Rd

dy4...

=
∏

j∈Ak

∫

R

dy
(j)
1 ...

∫

R

dy
(j)
4

1√
2πu1

e
− |y(j)1 |2

2u1 ...
1√
2πu4

e
− |y(j)4 |2

2u4

×
∏

j∈Ak

∫

R

dy
(j)
1 ...

∫

R

dy
(j)
4

1√
2πu1

e
− |y(j)1 |2

2u1 ...
1√
2πu4

e
− |y(j)4 |2

2u4 .

We will separate the integral dy
(j)
1 , for every j = 1, .., d, as follows

∫

R

dy
(j)
1 =

∫

|y1|(j)>
√
2T
dy

(j)
1 +

∫

|y1|(j)6
√
2T
dy

(j)
1

and similarly for the integrals dy
(j)
2 , dy

(j)
3 , dy

(j)
4 . We use the fact that on the set

y2 > 2T > 2u

the function

u→ 1√
u
e−

y2

2u is increasing

and we majorize
1√
u
e−

y2

2u by
1√
T
e−

y2

2T

On the other hand, on the set
y262T

we majorize
1√
u
e−

y2

2u by a constant.

In this way, the quantity I can be bounded by

I ≤ C sup
(H0,HAk

)∈[ 1
2
,1]k+1

∫ t1

0
du1...

∫ t4

0
du4

|u1 − u2 − (t1 − t2)|−α0 |u2 − u3 − (t2 − t3)|−α0 |u3 − u4 − (t3 − t4)|−β0 |u4 − u1 − (t4 − t1)|−β0
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∏

j∈Ak

∫

R

dy
(j)
1 ...

∫

R

dy
(j)
4

(

1√
2πT

e−
|y(j)

1
|2

2T 1|y(j)1 |>
√
2T

+ 1|y1|(j)6
√
2T

)

×...
(

1√
2πT

e−
|y(j)4 |2

2T 1|y(j)4 |>
√
2T

+ 1|y4|(j)6
√
2T

)

×|y(j)1 − y
(j)
2 |−αj |y(j)2 − y

(j)
3 |−αj |y(j)3 − y

(j)
4 |−βj |y(j)4 − y

(j)
1 |−βj

×R

with αj =
2(1−Hj)r

q , βj =
2(1−Hj)(q−r)

q for every j = 1, .., d and

R =
∏

j∈Ak

∫

R

dy
(j)
1 ...

∫

R

dy
(j)
4

(

1√
2πT

e−
|y(j)

1
|2

2T 1|y(j)1 |>
√
2T

+ 1|y1|(j)6
√
2T

)

×...
(

1√
2πT

e−
|y(j)4 |2

2T 1|y(j)4 |>
√
2T

+ 1|y4|(j)6
√
2T

)

×|y(j)1 − y
(j)
2 |−αj |y(j)2 − y

(j)
3 |−αj |y(j)3 − y

(j)
4 |−βj |y(j)4 − y

(j)
1 |−βj .

Consequently, we can write

I ≤ C sup
H0∈[ 12 ,1]

∫ t1

0
du1...

∫ t4

0
du4

|u1 − u2 − (t1 − t2)|−α0 |u2 − u3 − (t2 − t3)|−α0 |u3 − u4 − (t3 − t4)|−β0 |u4 − u1 − (t4 − t1)|−β0

sup
HAk

∈[ 1
2
,1]k

∏

j∈Ak

∫

R

dy
(j)
1 ...

∫

R

dy
(j)
4

(

1√
2πT

e−
|y(j)

1
|2

2T 1|y(j)1 |>
√
2T

+ 1|y(j)1 |6
√
2T

)

.....

(

1√
2πT

e−
|y(j)4 |2

2T 1|y(j)4 |>
√
2T

+ 1|y(j)4 |6
√
2T

)

|y(j)1 − y
(j)
2 |−αj |y(j)2 − y

(j)
3 |−αj |y(j)3 − y

(j)
4 |−βj |y(j)4 − y

(j)
1 |−βj

×R.

Note that R does not depend on H0,HAk
and

sup
H0∈[ 12 ,1]

∫ t1

0
du1...

∫ t4

0
du4

|u1 − u2 − (t1 − t2)|−α0 |u2 − u3 − (t2 − t3)|−α0 |u3 − u4 − (t3 − t4)|−β0 |u4 − u1 − (t4 − t1)|−β0

≤
∫ T

0
du1...

∫ T

0
du4|u1 − u2|−α0 |u2 − u3|−α0 |u3 − u4|−β0 |u4 − u1|−β0

which is finite by Lemma 3.3 in [2] since

2α+ 2β + 4 = 2(2H − 2) + 4 = 4H > 1.
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Therefore, in order to conclude, it remains to show that

sup
HAk

∈[ 1
2
,1]k

∏

j∈Ak

∫

R

dy
(j)
1 ...

∫

R

dy
(j)
4

(

1√
2πT

e−
|y(j)1 |2

2T 1|y(j)1 |>
√
2T

+ 1|y(j)1 |6
√
2T

)

...

(

1√
2πT

e−
|y(j)4 |2

2T 1|y(j)4 |>
√
2T

+ 1|y(j)4 |6
√
2T

)

×|y(j)1 − y
(j)
2 |−αj |y(j)2 − y

(j)
3 |−αj |y(j)3 − y

(j)
4 |−βj |y(j)4 − y

(j)
1 |−βj <∞.

Assume for simplicity Ak = {1, 2, .., k}. To check that the above quantity is finite,
it suffices to prove that

sup
H∈[ 1

2
,1]

∫

R

dy1....

∫

R

dy4

(

e−
|y1|2
2T 1|y1|>

√
2T + 1|y1|6

√
2T

)

....

(

e−
|y4|2
2T 1|y4|>

√
2T + 1|y4|6

√
2T

)

×|y1 − y2|−α|y2 − y3|−α|y3 − y4|−β|y4 − y1|−β <∞.

Using
∏4

i=1(Ai+Bi) = A1A2A3A4+A1B2B3B4+ ....+B1B2B3B4, the last integrals
can be expressed as a sum of several terms, involving integrals on the sets |yi| >

√
2T and

|yi| 6
√
2T .
Let us start with the first summand, namely

T1 := sup
H∈[ 1

2
,1]

∫

R

dy1....

∫

R

dy4e
− y21

2T 1|y1|>
√
2T e

− y22
2T 1|y2|>

√
2T e

− y23
2T 1|y3|>

√
2T e

− y24
2T 1|y4|>

√
2T

×|y1 − y2|−α|y2 − y3|−α|y3 − y4|−β|y4 − y1|−β .

Since |y1 − y2|2 ≤ 2(y21 + y22) we have

|y1 − y2|2 + |y2 − y3|2 + |y3 − y4|2 + |y4 − y1|2 ≤ 4(y21 + y22 + y23 + y24) (55)

so

e−
y21+y22+y23+y24

2T ≤ e−
1
8T

(|y1−y2|2+|y2−y3|2+|y3−y4|2+|y4−y1|2).

Hence, T1 can be bounded as follows

T1 ≤ sup
H∈[ 1

2
,1]

∫

R

dy1....

∫

R

dy4e
− 1

8T
(|y1−y2|2+|y2−y3|2+|y3−y4|2+|y4−y1|2)

|y1 − y2|−α|y2 − y3|−α|y3 − y4|−β|y4 − y1|−β.
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We apply the power counting theorem, see the Appendix. Consider the set of affine func-
tionals

T ′ = {y1 − y2, y2 − y3, y3 − y4, y4 − y1}.
The only padded subset of T ′ is T ′ itself. We apply the power counting theorem with

(α1, α2, α3, α4) =

(

−2(1 −H)r

q
,−2(1 −H)r

q
,−2(1−H)(q − r)

q
,−2(1 −H)(q − r)

q

)

and
(β1, β2, β3, β4) = (−γ,−γ,−γ,−γ)

with γ > 0 arbitrarly large. We have (d0 and d∞ are given by (69) and (70) respectively)

d0(T
′) = r(T ′) +

4
∑

i=1

αi = 3 + 2(2H − 2) = 4H − 1 > 0 for H >
1

4

and

d∞(∅) = 4− 1− 4γ < 0 if γ >
3

4
.

Therefore T1 is finite. Let us regard the last summand, i.e.

T2 := sup
H∈[ 1

2
,1]

∫

R

dy1....

∫

R

dy41|y1|6
√
2T ...1|y4|6

√
2T

×|y1 − y2|−α|y2 − y3|−α|y3 − y4|−β |y4 − y1|−β <∞.

This is clearly finite by Lemma 3.3 in [2] since

2α+ 2β + 4 = 4H − 4 + 4 = 4H > 1

when H > 1
4 .

The other summands can be handled by combining the arguments used for the two
terms above. For instance, consider

T3 := sup
H∈[ 1

2
,1]

∫

R

dy1....

∫

R

dy4e
− y21

2T 1|y1|>
√
2T 1|y2|6

√
2T 1|y3|6

√
2T 1|y4|6

√
2T

×|y1 − y2|−α|y2 − y3|−α|y3 − y4|−β|y4 − y1|−β.

We use the bound (which follows from (55)

y21 ≥ 1

4
(|y1 − y2|2 + |y2 − y3|2 + |y3 − y4|2 + |y4 − y1|2)− (y22 + y23 + y24)
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and then

e−
y21
2T ≤ e−

1
8T

(|y1−y2|2+|y2−y3|2+|y3−y4|2+|y4−y1|2)e
y22+y23+y24

2T

≤ Ce−
1
8T

(|y1−y2|2+|y2−y3|2+|y3−y4|2+|y4−y1|2).

The term T3 is thus bounded by

T3 ≤ C sup
H∈[ 1

2
,1]

∫

R

dy1....

∫

R

dy4e
− 1

8T
(|y1−y2|2+|y2−y3|2+|y3−y4|2+|y4−y1|2)

×|y1 − y2|−α|y2 − y3|−α|y3 − y4|−β|y4 − y1|−β

and we follow the proof for the first term.

Remark 5 Notice that the limit process in Theorem coincides in distribution with a bifrac-
tional Brownian motion with Hurst parameters H = 1

2 ,K = −γ0 + 1 = d− k
2 −∑a∈Ak

Ha

(in the case i. ), H = 1
2 ,K = d− k

2 −
∑

a∈Ak
Ha+(2H−1) (in the case ii.) and H = K = 1

2
(in the case iii.) We refer to [14], [26], [27] for the definition of the bifractional Brownian
motion and for the link between this process and the solution to the heat equation.

5 Applications to Hermite Ornstein-Uhlenbeck process

Let Zq,1 := Zq be a (one-parameter) Hermite process defined by (2). The Hermite Ornstein
Uhlenbeck process has been introduced in [15]. It is defined as the solution of Langevin
equation driven by Hermite noise.

Xt = ξ − λ

∫ t

0
Xsds+ σZq

H(t), t ≥ 1 (56)

where λ, σ > 0 and the initial condition ξ is a random variable in L2(Ω). The unique
solution of (56) is given by

Y H(t) = e−λt

(

ξ + σ

∫ t

0
eλudZq

H(u)

)

, t ≥ 0 (57)

where the integral
∫ t
0 e

λudZq(u) exists in the Riemann-Stieljes sense.

In particular, by taking the initial condition ξ = σ
∫ 0
−∞ eλudZH(u) in (57). The

unique solution to (56), denoted in the sequel by (XH(t))t≥0, can be expressed as

XH(t) = σ

∫ t

−∞
e−λ(t−u)dZq

H(u), t ≥ 0 (58)
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and the stochastic integral in (58) can be also understood in the Wiener sense. The process
(

XH(t)
)

t≥0
is a stationary process, H-self similar process with stationary increments.

In [22] the authors have established the asymptotic behavior with respect to H
of the Rosenblatt Ornstein Uhlenbeck process which is the solution of (56) driven by the
Rosenblatt process, i.e. q = 2. The proof was based on the analysis of the cumulants, but
it is well-known that this method does not work for a Wiener chaos of order q ≥ 3. In this
section, we will study the behavior as H → 1 and as H → 1

2 of the processes
(

XH(t)
)

t∈[0,T ]

and
(

Y H(t)
)

t∈[0,T ]
when q > 2 . The results obtained give a complete picture for the

asymptotic behavior of the Hermite Ornstein Uhlenbeck of any order q ≥ 1.

5.1 Asymptotic behavior of the non stationary Hermite Ornstein-Uhlenbeck

Assume that the initial condition ξ does not depend on H.

Proposition 3 1 Assume H → 1. Then the process
(

Y H(t)
)

t∈[0,T ]
converges weakly,

in the space of the continuous functions C[0, T ] to the process (Y (t))t∈[0,T ] given by

Y (t) = e−λtξ + σ
(

1− e−λt
) Hq(Z)√

q!
(59)

with Z ∼ N (0, 1)

2 Assume H → 1
2 , the process

(

Y H(t)
)

t∈[0,T ]
converges weakly, in the space of the

continuous functions C[0, T ] as H → 1
2 to the standard Ornstein Uhlenbeck process

(Y0(t))t∈[0,T ] given by

Y0(t) = e−λ

(

ξ + σ

∫ t

0
eλudW (u)

)

(60)

that is a Gaussian process with mean EY0(t) = e−λtEξ for any t ≥ 0 and covariance
function

Cov(Y0(t), Y0(s)) =
σ2

2λ

(

e−λ|t−s| − e−λ(t+s)
)

for every s, t ≥ 0.

Proof: Consider α1, . . . , αN ∈ R and t1, . . . , tN ∈ [0, T ]. We will study the convergence of
the finite dimensional distributions of Y H .

YN =

N
∑

i=1

αiY
H(ti) =

N
∑

i=1

e−λtiξ +

∫

R

N
∑

i=1

αi1[0,ti](u)e
−λ(ti−u)dZq

H(u)

=

N
∑

i=1

e−λtiξ +

∫

R

f(u)dZq
H(u)

31



with f(u) =
∑N

i=1 αi1[0,ti](u)e
−λ(ti−u).

Notice that in this case the space HAk
given by (15) coincides with L1(R). Since it

is clear that f belongs to |HH | ∩ L1 (R) (see [22]), we get immediatly by Proposition 1 the

convergence as H → 1 of
∫

R
f(u)dZq

H(u) to
(∫

R
f(u)du

) Hq(Z)√
q!

.

In order to prove the convergence when H → 1
2 , we will apply Proposition 2. Using

the same arguments as for the proof of Proposition 5 in [22], we get

lim
H→ 1

2

H(2H − 1)

∫

R

∫

R

f(u)f(v)|u− v|2H−2dudv =

∫

R

(f(u))2 du

=

N
∑

i=1

N
∑

j=1

αiαj

∫ ti∧tj

0
e−λ(ti+tj−2u)du =

N
∑

i=1

N
∑

j=1

αiαj
σ2

2λ

(

e−λ|ti−tj | − e−λ(ti+tj)
)

which coincides with the variance of
∑N

j=1 αjY0(tj). The proof is completed by showing
that (31) is satisfied. We have

∫

R4

du1...du4f(u1)...f(u4)|u1 − u2|H−1|u2 − u3|H−1|u3 − u4|H−1|u4 − u1|H−1

≤
d
∑

j1,..,j4=1

|αj1 ....αj4 |
∫ T

0
...

∫ T

0
du1..du4

×|u1 − u2|
2(H−1)r

q |u2 − u3|
2(H−1)r

q |u3 − u4|
2(H−1)(q−r)

q |u4 − u1|
2(H−1)(q−r)

q

is finite and continuous inH on the set (14 , 1]. This follows from Lemma 3.3 in [2] or by apply-

ing the power counting theorem with (α1, α2, α3, α4) =
(

2(H−1)r
q , 2(H−1)r

q , 2(H−1)(q−r)
q , 2(H−1)(q−r)

q

)

.

We recall (see [22]) that for p ≥ 1,

E|Y H(t)− Y H(s)|2p ≤ Cp(E|Y H(t)− Y H(s)|2)p ≤ c|t− s|p. (61)

The tighness follows from (61) and Bilingsley criterium (see [7]).

5.2 Asymptotic behavior of the stationary Hermite Ornstein-Uhlenbeck

Now we will study the asymptotic behavior of (58). The diffrence to the non-stationary case
is that the function f from the last proof has support of infinite Lebesque measure an we
need to use an argument based on the power counting theorem when H tends to one half.
The proof of this results is similar in spirit to the proofs of Proposition 6 and Proposition
7 in [22].

Proposition 4 1 Assume H → 1. Then the process
(

XH(t)
)

t∈[0,T ]
converges weakly,

in the space of the continuous functions C[0, T ] to the process (X(t))t∈[0,T ] defined by

X(t) =
σ

λ

Hq(Z)√
q!

(62)

with Z ∼ N (0, 1)
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2 Assume H → 1
2 , the process

(

XH(t)
)

t∈[0,T ]
converges weakly, in the space of the continuous

functions C[0, T ] as H → 1
2 to the stationary Ornstein Uhlenbeck process (X0(t))t∈[0,T ] given

by

X0(t) = σ

∫ t

−∞
e−λ(t−u)dW (u) (63)

which is a stationary centered Gaussian process with covariance function

Cov(X0(t),X0(s)) =
σ2

2λ
e−λ|t−s|

for every s, t ≥ 0.

Proof: Consider α1, . . . , αN ∈ R and t1, . . . , tN ∈ [0, T ]. We will study the convergence of
the finite dimensional distributions of Y H .

N
∑

i=1

αiX
H(ti) =

∫

R

N
∑

i=1

σαi1[−∞,ti](u)e
−λ(ti−u)dZq

H(u)

=

∫

R

g(u)dZq
H (u)

with g(u) =
∑N

i=1 αi1[−∞,ti](u)e
−λ(ti−u).

The computations in proofs of Proposition 6 and Proposition 7 in [22] show that
g belongs to |HH | ∩ L1 (R), we get immediatly by Proposition 1 that the random variable
∑N

i=1 αiX
H(ti) converges to

∑N
i=1 αiX(ti) as H → 1.

When H → 1
2 , the proof with slight changes, follows along the same lines as the

proof of Proposition 7 in [22]. We have

E





d
∑

j=1

αjX
H(tj)





2

−−−→
H→ 1

2

E





d
∑

j=1

αjX0(tj)





2

.

It remains to prove that the condition (31) holds true. We have

∫

R4

du1...du4g(u1)...g(u4)|u1 − u2|
2(H−1)r

q |u2 − u3|
2(H−1)r

q |u3 − u4|
2(H−1)(q−r)

q |u4 − u1|
2(H−1)(q−r)

q

≤
d
∑

j1,j2,..,j4=1

|αj1 ...αj4 |
∫ tj1

−∞
du1....

∫ tj4

−∞
dume

−λ(tj1−u1)....e−λ(tj4−u4)

|u1 − u2|
2(H−1)r

q |u2 − u3|
2(H−1)r

q |u3 − u4|
2(H−1)(q−r)

q |u4 − u1|
2(H−1)(q−r)

q

=

d
∑

j1,j2,..,j4=1

|αj1 ...αj4 |
∫ ∞

0
du1....

∫ ∞

0
du4e

−λ(u1+..+u4)
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×|u1 − u2 − (tj1 − tj2)|
2(H−1)r

q |u2 − u3 − (tj1 − tj2)|
2(H−1)r

q

|u3 − u4 − (tj3 − tj4)|
2(H−1)(q−r)

q |u4 − u1 − (tj4 − tj1)|
2(H−1)(q−r)

q

≤ e
λ
2
(|tj1−tj2 |+...+|tj4−tj1 |)

d
∑

j1,j2,..,j4=1

|αj1 ...αj4 |
∫ ∞

0
du1...

∫ ∞

0
du4

e−
λ
2
(|u1−u2−(tj1−tj2 )|+...+|u4−u1−(tj4−tj1 )|)

×
(

1 ∨ |u1 − u2 − (tj1 − tj2)|
2(H−1)r

q

)(

1 ∨ |u2 − u3 − (tj1 − tj2)|
2(H−1)r

q

)

(

1 ∨ |u3 − u4 − (tj3 − tj4)|
2(H−1)(q−r)

q

)(

1 ∨ |u4 − u1 − (tj4 − tj1)|
2(H−1)(q−r)

q

)

We apply the power counting theorem on the set T ′ defined by

T ′ = {u1 − u2 − (tj1 − tj2), ..., u4 − u1 − (tj4 − tj1)}

with

(α1, .., α4) =

(

2(H − 1)r

q
,
2(H − 1)r

q
,
2(H − 1)(q − r)

q
,
2(H − 1)(q − r)

q

)

and (β1, .., β4) = (−γ, ...,−γ)

with γ ∈ (34 , 1]. Since T
′ is the only paddet subset of T ′, we have

d0(T
′) = 4− 1 +

4(H − 1)(q − r)

q
+

4(H − 1)(q − r)

q
= 4H − 1 > 0 if H >

1

4

and

d∞(∅) = 4− 1− 4γ < 0 if γ > 1− 1

4
=

3

4
.

Therefore, the function

H →
∫

R

...

∫

R

du1...du4|g(u1)...g(um)||u1−u2|
2(H−1)r

q |u2−u3|
2(H−1)r

q |u3−u4|
2(H−1)(q−r)

q |u4−u1|
2(H−1)(q−r)

q

is finite and continuous on the set D = {H ∈ (0, 1],H > 1
4}. The conclusion follows from

Proposition 2.
Again the tighness is obtained by (61).

6 Appendix

The basic tools from the analysis on Wiener space and the power counting theorem proven
in [24] are presented in this appendix.
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6.1 Multiple stochastic integrals and the Fourth Moment Theorem

Here, we shall only recall some elementary facts; our main reference is [18]. Consider H a
real separable infinite-dimensional Hilbert space with its associated inner product 〈., .〉H,
and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process on a probability space (Ω,F,P), which
is a centered Gaussian family of random variables such that E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H, for
every ϕ,ψ ∈ H. Denote by Iq the qth multiple stochastic integral with respect to B. This Iq
is actually an isometry between the Hilbert spaceH⊙q (symmetric tensor product) equipped
with the scaled norm 1√

q!
‖ · ‖H⊗q and the Wiener chaos of order q, which is defined as the

closed linear span of the random variables Hq(B(ϕ)) where ϕ ∈ H, ‖ϕ‖H = 1 and Hq is
the Hermite polynomial of degree q ≥ 1 defined by:

Hq(x) = (−1)q exp

(

x2

2

)

dq

dxq

(

exp

(

−x
2

2

))

, x ∈ R. (64)

The isometry of multiple integrals can be written as: for p, q ≥ 1, f ∈ H⊗p and g ∈ H⊗q,

E
(

Ip(f)Iq(g)
)

=

{

q!〈f̃ , g̃〉H⊗q if p = q

0 otherwise.
(65)

It also holds that:
Iq(f) = Iq

(

f̃
)

,

where f̃ denotes the canonical symmetrization of f and it is defined by:

f̃(x1, . . . , xq) =
1

q!

∑

σ∈Sq

f(xσ(1), . . . , xσ(q)),

in which the sum runs over all permutations σ of {1, . . . , q}.
In the particular case when H = L2(T,B(T ), µ) , the rth contraction f ⊗r g is the

element of H⊗(p+q−2r), which is defined by:

(f ⊗r g)(s1, . . . , sp−r, t1, . . . , tq−r)

=
∫

T r du1 . . . durf(s1, . . . , sp−r, u1, . . . , ur)g(t1, . . . , tq−r, u1, . . . , ur), (66)

for every f ∈ L2([0, T ]p), g ∈ L2([0, T ]q) and r = 1, . . . , p ∧ q.
An important property of finite sums of multiple integrals is the hypercontractivity.

Namely, if F =
∑n

k=0 Ik(fk) with fk ∈ H⊗k then

E|F |p ≤ Cp

(

EF 2
)

p
2 . (67)

for every p ≥ 2.
We will use the following famous result initially proven in [19] that characterizes the

convergence in distribution of a sequence of multiple integrals torward the Gaussian law.
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Theorem 4 Fix n ≥ 2 and let (Fk, k ≥ 1) , Fk = In (fk) ( with fk ∈ H⊙n for every k ≥ 1
), be a sequence of square-integrable random variables in the nth Wiener chaos such that
E
[

F 2
k

]

→ 1 as k → ∞. The following are equivalent:

1. the sequence (Fk)k≥0 converges in distribution to the normal law N (0, 1);

2. E
[

F 4
k

]

= 3 as k → ∞;

3. for all 1 ≤ l ≤ n− 1, it holds that lim
k→∞

‖fk ⊗l fk‖H⊗2(n−l) = 0;

Another equivalent condition can be stated in term of the Malliavin derivatives of Fk,
see [16].

6.2 Power counting theorem

We need to recall some notation and results from [24] which are needed in order to check
the integrability assumption from Proposition 2.

Consider a set T = {M1, ..,Mm} of linear functions on R
m. The power counting

theorem (see Theorem 1.1 and Corollary 1.1 in [24]) gives sufficient conditions for the
integral

I =

∫

R

...

∫

R

du1...dumf1(M1(u1, .., um))....fm(Mm(u1, .., um)) (68)

to be finite, where fi : R → R, i = 1, ..,m are such that |fi| is bounded above on (ai, bi)
(0 < ai < bi <∞) and

|fi(y)| ≤ ci|y|αi if |yi| < ai and |fi(y)| ≤ ci|y|βi if |y| > bi.

For a subset W ⊂ T we denote by sT (W ) = span(W )∩ T . A subset W of T is said
to be padded if sT (W ) = W and any functional M ∈ W also belongs to sT (W \ {M}).
Denote by span (W ) the linear span generated by W and by r(W ) the number of linearly
independent elements of W .

Then Theorem 1.1 in [24] says that the integral I (68) is finite if

d0(W ) = r(W ) +
∑

sT (W )

αi > 0 (69)

for any subset W of T with sT (W ) =W and

d∞(W ) = r(T )− r(W ) +
∑

T\sT (W )

βi < 0 (70)

for any proper subset W of T with sT (W ) = W , including the empty set. If αi > −1 then
it suffices to check (69) for any padded subset W ⊂ T . Also, it suffices to verify (70) only
for padded subsets of T if βi ≥ −1.

The condition (69) implies the integrability at the origin while (70) gives the inte-
grability of I at infinity.

There is a similar result if one starts with a set T of affine functionals instead of
linear functionals.
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