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Taylor expansion, finiteness and strategies ∗

Jules Chouquet

October 17, 2019

Abstract

We examine some recent methods introduced to extend Ehrhard and
Regnier’s result on Taylor expansion: infinite linear combinations of approx-
imants of a lambda-term can be normalized while keeping all coefficients
finite. The methods considered allow to extend this result to non-uniform
calculi; we show that when focusing on precise reduction strategies, such
as Call-By-Value, Call-By-Need, PCF or variants of Call-By-Push-Value,
the extension of Ehrhard and Regnier’s finiteness result can hold or not,
depending on the structure of the original calculus.

In particular, we introduce a resource calculus for Call-By-Need, and
show that the finiteness result about its Taylor expansion can be derived
from our Call-By-Value considerations. We also introduce a resource
calculus for a presentation of PCF with an explicit fixpoint construction,
and show how it interferes with the finiteness result. We examine then
Ehrhard and Guerrieri’s Bang Calculus which enjoys some Call-By-Push-
Value features in a slightly different presentation.

1 Introduction

The past decade saw the appearance a revival of Girard’s quantitative semantics
of λ-calculus, with proposals of new models, and extensions of the existing results
to various calculi: other operational semantics (Call-by-Value, PCF, Call-By-
Push-Value) or non-deterministic extensions (probabilistic [11, 14], algebraic [28]).
A crucial feature of quantitative interpretation is the analyticity of the functions
denoting the λ-terms. Girard’s original model of normal functors [15] used
set-valued power series representing analytic maps between modules. Linear
logic’s birth is presented as a result of this study, and still plays a central role in
quantitative semantics’ recent works [3, 27].

The models that have since been proposed in that direction have permitted
the study of precise operational and quantitative properties of the calculus,
such as execution time [6], or probabilities [11, 14]. The relation between such

∗This work is funded by the french ANR project RAPIDO (ANR-14-CE25-0007). The
author thanks the anonymous reviewers for their useful comments, Lionel Vaux-Auclair and
Michele Pagani for their advices, and is very grateful to Christine Tasson for her help and
support.
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aspects of the calculus and the power series-oriented semantics has been, in
particular, exhibited clearly with the introduction of an interface between the
syntax and the semantics: following models like Ehrhard’s finiteness spaces [7],
Ehrhard and Regnier constructed a variant of λ-calculus which corresponds to
the multilinear approximations of the analytic maps in the models. This variant,
called resource calculus, and coming from Boudol’s calculi with multiplicities [2],
is the multilinear fragment of differential λ-calculus [12], and comports multilinear
terms — where “linear” has to be understood in the computational sense: the
available resources are used exactly once during the computation. For example,
the λ-term (λxxx)y, which calls for the duplication of the argument, will be
approximated by the resource term 〈λx〈x〉[x]〉[y, y], where 〈m〉n stands for the
multilinear application of a term to a multiset of terms: if the term in function
position calls for k arguments (in our example, λx〈x〉[x] calls for 2 arguments),
then the multiset in argument position must contain k terms (in our example,
[y, y], for k = 2), otherwise the reduction leads to a nullary sum of terms.

This resource calculus is said to be an interface between the original calculus
and the model because it allows to mimic the identities of quantitative semantics
through Taylor expansion construction, which is the subject of the present
paper. Taylor expansion is a syntactic analogue to the well-known Taylor
formula, and consists also in the correspondence between a non-linear object
(in the model: an analytic function; in the syntax: a pure λ term) and a
sum (generally infinite) of multilinear approximants (in the model: multilinear
maps; in the syntax: resource terms). In ordinary λ-calculus, the key case of
the definition of Taylor expansion concerns essentially the application, since
it contains the non-linear part of λ-calculus, and can be presented as follows:
T (MN) =

∑
k∈N

1
k! 〈T (M)〉T (N)k where T (N)k is a multiset of k copies of

T (N). The construction is also linear in two ways: all summands are resource
terms, and syntactic constructs commute with sums. A model is compatible with
Taylor expansion if the interpretation of M is the same as the interpretation
of T (M). This is a property shared by structures like the weighted relational
model [21], finiteness spaces [7], probabilistic coherent spaces [5], convenient
vector spaces [18] in which most of recent quantitative studies have been produced.
However, this treatment of λ-calculus interpretation brings a difficulty: Taylor
expansion is a potentially infinite weighted sum, and there is no guarantee that
coefficients remain finite under reduction. Indeed, the notion of reduction we
put on resource terms has to allow the simultaneous calculus of an unbounded
number of redexes in order to simulate β-reduction.

Consider for instance MN →β MN ′. The resource approximants of this
term are of the shape 〈m〉[n1, . . . , nk] (with m being an approximant of M ,
and the ni being approximants of N), and we have to reduce all the ni in
one step to reach a term 〈m〉[n′1, . . . , n′k] which approximates MN ′. Consider
now a family (mi)i∈N such that for all i, mi is a resource term of the shape
〈λx[x]〉[〈λx[x]〉[. . . 〈λx[x]〉[y]]], with i applications of the identity to the variable
y. All these terms reduce in parallel to y, and if we define a parallel reduction ⇒
over infinite linear combinations of terms, then we are led to let appear an infinite
coefficient:

∑
i∈Nmi ⇒ ∞ · y which is not always defined in the models we
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consider (when the semimodule we work on is not built on a complete semiring,
as is the case for example in the weighted relational model [21], all sums are
not guaranteed to converge). Moreover, keeping coefficients finite is important
as it implies, for instance, that the calculation of a value always terminates. A
way to ensure that infinite coefficient do not appear is to show that each term
has a finite number of antireducts in the combinations we consider, which is not
the case in the above example. The first result concerning this issue is Ehrhard
and Regnier’s one: they proved that when dealing with pure non-uniform λ-
calculus, coefficients stay finite under reduction and that normalization and
Taylor expansion commute [13]. The problem of extending this finiteness result
to other calculi has been very studied recently. Indeed, solving it is a necessary
step to ensure that one can provide a quantitative interpretation of the calculus,
consistent with the algebraic behaviour of the models mentioned above. Ehrhard
extended that result to a non-uniform variant of System F, putting a finiteness
structure on the resource terms [8]. This methods then was extended by Pagani,
Tasson and Vaux-Auclair to all strongly normalizable terms in a calculus endowed
with non-deterministic sums [23]. Then, Vaux-Auclair brought an even more
general approach, dealing with algebraic λ-calculus, and extending the argument
to weakly-normalizable terms [28, 29]. We used with Vaux-Auclair the method
of that latter paper to study Taylor expansion of linear logic proof nets in a
comparable way [4].

The key result concerning Taylor expansion, namely, the definability of a
parallel reduction on it, demands technical proofs, which differ depending on
the structure of the original calculus. We propose here the study of different
calculi, with different operational semantics: Call-By-Value, Bang Calculus [10],
Call-By-Need [1], and PCF [25].

Our present contribution is to show that in those various calculi, the finiteness
results hold, up to a convenient definition of the resource calculi and to the
choice of arguments depending on those calculi’s precise features. Call-By-Value
Taylor expansion has already been defined by Ehrhard [9], and shown to be
compatible with Böhm trees by Kerinec, Manzonetto and Pagani [17], but in
a qualitative way (i.e. coefficients are not considered). We show in Section 2.1
that a parallel reduction is definable on Taylor expansion with coefficients, and
this remains true if we provide an algebraic extension of Call-By-Value calculus,
because the method used by Vaux-Auclair can be adapted to this setting.

We also define in Section 2.2 a resource calculus adapted to Call-By-Need
reduction, and observe that the specificities of its operational semantics implies
that its Taylor expansion consists in the same set of resource terms as Call-By-
Value one.

For the two calculi of Section 2 and for the Bang calculus, the finiteness result
is proven thanks to a combinatorial study of the parallel reduction and the size
of resource terms in the Taylor expansion, following Vaux-Auclair’s method [29].
The key result is then about cardinalities of sets, size of terms, and concerns the
sets underlying to Taylor expansion. This implies in particular that uniformity is
not a necessary property for the proofs to be valid, and that algebraic extensions
of the calculus would not interfere with the arguments.
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The situation is different in presence of an explicit fixpoint. We focus on
PCF calculus to study the consequences of endowing the syntax with a fixpoint
operator in a typed setting. We consider a presentation of PCF extract from
Ehrhard, Pagani and Tasson’s work [11], and we are motivated by the quantitative
semantics they provide for it. The presence of the fixpoint is here crucial, since
the argument used before cannot apply anymore, for a reason linked to the
fact that there is no way to give a finiteness structure interpreting terms with
fixpoints (see e.g. Tasson and Vaux-Auclair for a detailed examination of this
point [26]). In order to show that Taylor expansion and parallel reduction are
still definable in this setting, we have to provide an argument relying on a
coherence relation between resource terms following Ehrhard and Regnier [13]. It
is sufficient to prove the finiteness result in a uniform setting, but this reveals the
fact that, when dealing with both an explicit fixpoint and non-uniformity (such
as non-deterministic choice, probabilities), the finiteness result becomes false: we
can build a term whose Taylor expansion contains an infinity of resource terms
reducing at the same time.

We then consider in Section 4 Ehrhard and Guerrieri’s Bang Calculus [10]
(see also Guerrieri and Manzonetto [16]), which is a linear logic-inspired calculus
subsuming Call-By-Name and Call-By-Value disciplines, and for which Taylor
expansion has been defined in the introductory paper [10]. The Bang Calculus
can be seen as an untyped variant of Levy’s Call-By-Push-Value. We discuss in
conclusion the distinctions and difficulties appearing when switching from the
former to the latter.

Terminology We denote as N the set of positive integers, whose elements
will often be written k, l, . . . . For k ∈ N, Sk is the set of permutations of
{1, . . . , k}. We use the notation [m1, ,mk] for the multisets, and [m, . . . ,m]k,
or just [m]k for the multiset with k occurrences of the same term m. We use
the standard additive notation [m1, . . . ,mk] + [mk+1, . . . ,mk+l] to represent the
multiset [m1, . . . ,mk+l]. Multisets [m1, . . . ,mk] might be denoted m or −→m.

We consider degx(m) the degree of x in m as the number of free occurrences
of x in m, for any term m in any of the calculi we introduce. We might represent
distinct occurrences of x by x1, , xk, especially when dealing with resource
reductions.

For any set X, we consider the multiset construction X ! = {[x1, . . . , xk] | k ∈
N, xi ∈ X}. For any lambda term or resource term µ, its size #µ is defined in the
usual way : #x = 1,#λxµ = #µ+ 1,#(µµ′) = #µ+ #µ′ + 1,#[µ1, . . . , µk] =∑
i∈{1,...,k}#µi.

In the following, the lower script ()V will often stand for Call-By-Value
calculus, ()b for Bang calculus, and ()need for Call-By-Need. ()rV , ()rb and ()rneed
refer to corresponding resource calculi.
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2 Call-By-Value and Call-By-Need

2.1 Call-By-Value

Kerinec, Manzonetto and Pagani show that defining a natural coherence
relation between Call-By-Value resource terms introduced by Ehrhard [9] leads
to consider Taylor expansion as maximal cliques for this relation [17] (Prop.
3.16). With that result together with Ehrhard and Regnier’s methods [13],
we can expect that finiteness of antireducts in Taylor expansion is provable,
and more precisely that for a given resource term m, and a given ΛV -term
N , {n ⇒rV m | n ∈ TV(N)} contains always at most one element, where ΛV
represents the Call-By-Value calculus, TV its Taylor expansion, and ⇒rV is a
parallel Call-By-Value resource reduction.

But, one of our motivations is to endow ΛV with non-deterministic sums, or
with coefficients, so that uniformity will be lost. In such a setting, the coherence
method no longer applies since it relies precisely on uniformity. Similarly to
Vaux-Auclair [29], we use a technique to bound the number of antireducts of a
given term in Taylor expansion, independently of uniformity hypothesis. This
opens the path to the study of Call-By-Value Taylor expansion as power series
with coefficients, since it ensures that coefficients remain finite under parallel
reduction of combinations of terms. Moreover, Taylor normal form is always
well-defined in such a setting.

Definition 1 (Call-By-Value calculus ΛV).

V ::= x | λxM ΛV : M,N ::= V |MN

The reduction rule is the following : (λxM)V →βV M [V/x], and closed by
abstraction and application contexts.

Definition 2 (Call-By-Value resource calculus ∆V [9]).

∆V : m,n ::= [x1, . . . , xk] | [λx1m1, . . . , λxkmk] | mn

The reduction rule is the following1, closed by application and abstraction
contexts, and where x1, , xl represent l distinct occurrences of x:

[λxm][n1, . . . , nl]→rV m1[nf(1)/x1, . . . , nf(l)/xl] if l = degx(m1), f ∈ Sl

The term [λy1m1, . . . , λykmk][n1, . . . , nl] has no reduct if k 6= 1.

Definition 3 (Call-by-Value Taylor expansion [9]). Taylor expansion is defined
as a function from ΛV to sets of terms of ∆V :

• TV(λxM) = {[λxm1, . . . , λxmn];n ∈ N,mi ∈ TV(M)}

• TV(x) = {[x, . . . , x]k | k ∈ N}
1We differ from the usual presentations, since instead of having a term reducing in a finite

sum of resource terms, our reduction is non-deterministic and corresponds to a relation between
a term and the support of its usual reduct.
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• TV(MN) = {mn | m ∈ TV(M), n ∈ TV(N)}

The method we use here consists in setting a measure on resource terms that
is bounded for all terms belonging in Taylor expansion of some ΛV -term. This
measure is defined below, and corresponds to the number of nested applications
in a term. We show that this notion of depth will be sufficient to establish that for
any integer k, resource term m, and ΛV -term M , {m′ ⇒rV m | ApD(m′) ≤ k}
is finite. Here, ⇒rV is the parallel Call-By-Value resource reduction which has to
be introduced for the following reason: it permits to simulate →βV in resource
calculus (in particular, it reduces all terms of a multiset in one step), it is
confluent, and allows to keep a bound on applicative depth so as to apply our
argument to iterated reduction, as we shall see.

Definition 4 (Applicative depth). For any term m of ∆V , we define its applica-
tive depth ApD(m) as follows : ApD([x1, . . . , xk]) = 0, ApD([λx1n1, . . . λxnnk]) =
max{ApD(ni) | i ∈ {1, . . . , k}}, ApD(mm′) = max{ApD(m),ApD(m′)}+ 1.
We do the same for terms of ΛV : ApD(x) = 0, ApD(λxM) = ApD(M), and
ApD(NN ′) = max{ApD(N),ApD(N ′)}+ 1.

Lemma 1. Let M be a term of ΛV . Then for all m ∈ TV(M),ApD(m) ≤
ApD(M).

Proof. By induction on M :

• If M = x, then m = [x, . . . , x]k, and ApD(m) = ApD(M) = 0.

• IfM = λxN , thenm = [λxn1, . . . , λxnk], and ApD(m) = max{ApD(ni) |
i ∈ {1, . . . , k}}. By induction hypothesis, for all i, ApD(ni) ≤ ApD(N).
Then ApD(m) ≤ ApD(M).

• If M = NN ′, then m = nn′, and ApD(m) = max{ApD(n),ApD(n′)}+1.
By induction, ApD(n) ≤ ApD(N) and ApD(n′) ≤ ApD(N ′), then
ApD(m) ≤ ApD(M).

As explained in introduction, the notion of reduction we focus on must be
a parallel one. Indeed, it is straightforward that for resource terms in Taylor
expansion of some Call-By-Value term, the reduction→rV is not sufficient to sim-
ulate →βV . Indeed, if we consider M →βV M

′, and n = [λx1m1, . . . , λxkmk] ∈
TV(λxM), if k > 1, there is generally2 no n′ ∈ ∆V such that n →rV n′ and
n′ ∈ TV(λxM ′). In order to examine resource dynamics that correspond to →βV

reduction, and thus to semantics identities, we must introduce the following
parallel resource reduction:

Definition 5 (Parallel reduction of resource terms ⇒rV).

• m⇒rV m for all m ∈ m
2It can happen that the mi are already in TV(M ′), for example if M,M ′ are values and

the mi are empty bags.
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• If mi ⇒rV m
′
i for all i ∈ {1, . . . , k}, then [m1, . . . ,mk]⇒rV [m′1, . . .m

′
k]

• If m⇒rV m
′ and n⇒rV n

′, mn⇒rV m
′n′.

• If mi ⇒rV m
′
i for all i ∈ {1, . . . , k}, n ⇒rV n

′, and k = degx(n) then we
set [λxn][m1, . . . ,mk]⇒rV n

′[m′f(1)/x1, . . . ,m
′
f(k)/xk] for any permutation

f ∈ Sk.

Note that ⇒rV is strictly included in the reflexive transitive closure of →rV .
The redexes created during the reduction are not reduced by ⇒rV . For example,
one can check that for m = [λx[x][z]][λy[y]], m →∗rV [z], but m ⇒rV [λy[y]][z]
and cannot be reduced further in the same parallel step.

The following lemma ensures that the applicative depth of resource terms
allows to bound the loss of size during parallel reduction, and that this measure
is still bounded after one reduction step: we will then be able to extend the
argument to iterated reduction.

Lemma 2. There exist non decreasing functions ϕ : (N ×N) → N and ψ :
N→ N such that for any m,n ∈ ∆V , if m⇒rV n, then #m ≤ ϕ(#n,ApD(m)).
Moreover, ApD(n) ≤ ψ(ApD(m)).

The proof can be obtained as an adaptation of Vaux-Auclair’s result [29]
(Lemma 26, ϕ(k, l) = 4lk and ψ(k) = 2kk), to a Call-By-Value setting, as we
sketch below:

The idea here is to prevent an unbounded collapse of the size under parallel
reduction. A critical example of what we call a collapse (because the size
reduces drastically, since an unbounded number of variables disappear) is the
set: X = {[λx1x1][[λx2x2][. . . [λxkxk][z]] . . . ]]] | k ∈ N}. We observe that for all
m ∈ X, m⇒rV [z]. There is no way to give a bound to the size of antireducts of
[z] in X, and we can immediately see that the applicative depth is not bounded
in X either.

Vaux-Auclair observed that the collapse depends on the depth of antireducts,
and that the cardinality of multisets does not interfere with it. Then, since
Taylor expansion consists of sets of terms of unbounded multisets, but of bounded
depth, it excludes subsets of terms like X in the above example.

The adaptation of this result to Call-By-Value is then a corollary of Lemma
1 and relies on the structure of the sets TV(M), having the necessary properties
for Lemma 2 to be valid. We conclude by observing that ⇒rV has the same
combinatorial properties that the unrestricted parallel resource reduction of
Vaux-Auclair’s works, since it is strictly included in it and behaves in the same
way: it is a particular case of Ehrhard and Regnier’s resource reduction.

Corollary 1. Let n ∈ ∆V , k ∈ N and M ∈ ΛV . {m ∈ TV(M) | m ⇒k
rV n} is

finite.

Proof. It is sufficient to observe that for any given k ∈ N, {m ∈ ∆V | #m ≤ k}
is finite. Then, by Lemma 1, terms in {m ∈ TV(M) | m ⇒rV n} have a
bounded applicative depth. We then show by induction on k that {m⇒k

rV n |
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ApD(m) ≤ l} is finite for any l. By Lemma 2, we conclude for k = 1. Then,
the result can be iterated since if m⇒k+1

rV n, m⇒rV m
′ ⇒k

rV n. By Lemma 2,
ApD(m′) ≤ ψ(ApD(m)), we apply induction hypothesis and conclude for all
k ∈ N.

Let us consider now a quantitative version of Taylor expansion as a power
series with coefficients T qV (M) =

∑
m∈TV(M) (T qV (M))m ·m, where (T qV (M))m

represents the coefficient of m in T qV (M) taken in some semiring S. Motivated
by the quantitative semantics identities which identify the denotation of M with
its Taylor normal form, we want to define this object, but we have first to tackle
a difficulty: the combination tnf(M) =

∑
m∈TV(M) (T qV (M))m · nf(m) (where nf

is the normal form operator, always defined for resource terms, since resource
reduction induces a strict decrease of the size of terms) might contain terms
with infinite coefficients. It is the case if {m ∈ TV(M) | (T qV (M)i)m 6= 0,m⇒∗rV
nf(m)} is infinite.

Let us define a reduction relation between infinite linear combination of
terms denoted as:

∑
i∈I aimi ⇒

∑
i∈I aini if mi ⇒rV ni for all i ∈ I, and if

for all ni, {j ∈ I | mj ⇒rV ni, aj 6= 0} is finite. Corollary 1 ensures that the
reduction T qV (M)⇒ ξ is well-defined for any combination ξ. In particular, the
simulation of a reduction M →βV N through a reduction T qV (M) ⇒ T qV (N) is
well-defined. If M is normalizable, and M →k

βV
nf(M), we can also deduce

immediately T qV (M) ⇒k tnf(M) and that for all m ∈ |tnf(M)| (|tnf(M)|being
the support of tnf(M)), we have (tnf(M))m finite.

As a further study in that direction, we shall mention Kerinec, Manzonetto
and Pagani’s works [17], that defines Call-By-Value Böhm trees and establish
BT (TV(M)) = tnf(M) in a qualitative setting. We leave as a future work the
quantitative extension of this equation, but we have set the possibility of dealing
with finite coefficients in the reduction of Call-By-Value Taylor expansion.

2.2 Call-By-Need

Our resource-oriented study of strategies of reductions calls to observe the
particular setting of Call-By-Need, which is a strategy that optimises the number
of reduction steps: in Call-By-Need, the reduction does not proceed to useless or
inefficient reduction as in Call-By-Value and Call-By-Name. Assume M →M ′:
useless reduction would be the Call-By-Value evaluation of M in N = (λyx)M ,
because N →β y and M →βV (λyx)M ′ →βV y: Call-By-Name strategy proceeds
to the erasure of the argument, which is optimal regarding to the number of
reduction steps. An inefficient reduction would be the Call-By-Name reduction
of the most external redex in N ′ = (λxxx)M before the evaluation of M , because
N ′ →β MM →β M

′M →β M
′M ′ while N →βV (λxxx)M ′ →βV M ′M ′: Call-

By-Value is optimal in this case. Call-By-Need is optimal in both cases, since
it prohibits the reduction of terms like (λyM)N if y has no free occurrences in
M , or in general if N is doomed to be erased in a further reduction. And if not,
Call-By-Need demands N to be reduced to a value before substituted in M . We
give some intuitions sufficient to make some observations :
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• We can define a resource calculus corresponding to Call-By-Need, in which
the reduction rules enjoy the property of optimization explained in the
above paragraph (neither useless nor inefficient reductions).

• Taylor expansion in this setting leads to the identical construction as the
Call-By-Value one. The distinction between the two calculi is not visible at
this level, but when observing the evaluation steps and the distinct normal
forms3.

We introduce a resource calculus able to simulate Call-By-Need reduction: our
terms are approximants of Call-By-Need syntax introduced by Pedrot and
Saurin [24], which is shown to be equivalent to Ariola and Felleisen’s original
calculus [1]. We formalize this simulation in Appendix A, but the intuition is
sufficient here to understand the remarks below.

Pedrot and Saurin’s calculus presents Call-By-Need reduction in a quite
concise syntax, since the constraints on the reduction are contained in the
contexts and the marking of lambdas: a term λxt will be rewritten lxt when
it is in the function position of a redex, or shall be reduced to one. Then, the
contexts e are able to characterize reducible redexes in the following sense: a
term of the shape e[lxe[[x, . . . , x]]]c[−→v ] is a term where the bag of variables x
is at a place where it won’t be erased. Then, the argument, if it is a value,
can be substituted. We detail neither this dynamics nor the sharing properties,
and refer to Pedrot and Saurin’s paper for explanations of the calculus, because
those properties at the resource level are similar: the reader can nonetheless
ascertain that the definition of the contexts ensures that the reduction enjoys
the optimization properties described in the above paragraph.

Definition 6 (Call-By-Need resource calculus ∆need).

terms : t, u ::= [v1, . . . , vk] | tu | lxt values : v ::= x | λxt
contexts : c ::= [] | c1[lxc2]t e ::= [] | et | lxe | c[lxe1[[x, . . . , x]]e2

Reduction rules:

c[[λxt]]→rneed c[lxt]

c[[λx1t1, . . . , λxktk]]u→rneed 0 if k 6= 0

c1[lxe[[x1, . . . , xk]]c2[[v1, . . . , vm]]→rneed 0 if m < k

e[t]→rneed e[t
′] if t→rneed t

′

c1[lxe[[x1, . . . , xk]]c2[−→v ]→rneed c2[c1[lxe[[v1, . . . , vk]]]−→v ′] for all [v1, . . . , vk] +−→v ′ = −→v

From a resource point of view, which is ours, the first observation is that the
terms above correspond to Call-By-Value ones. Indeed, if we omit the terms
with marked lambdas lxt, the syntax is the same, and the distinction is all
contained in operational semantics. In particular, if we define Taylor expansion

3We shall precise that Call-By-Need and Call-By-Value normal forms are distinct, since Call-
By-Need is observationally equivalent to weak Call-By-Name (where no reductions are allowed
under lambda’s). This was established for instance, and in an elegant way by Kesner [19].
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of Call-By-Need following that presentation, we shall proceed exactly as we did
for Call-By-Value. Corollary 1 would apply immediately when the convenient
notion of parallel reduction is defined. It is not hard to examine the dynamics
and to conclude that bounds about size and depth can be established for this
calculus.

One can consider an approximation relation C between Call-By-Need terms
and ∆need, defined informally as follows : mCM if m has recursively the same
shape than M (following notation used by Tsukada, Asada and Ong to define
Taylor expansion [27]). See the appendix for a formal presentation. One can then
consider some λ-term M , and convince oneself that {m ∈ ∆need | mCM} and
TV(M) are exactly the same sets. In particular, if we define a parallel, confluent
extension of →rneed, say ⇒need, the following proposition is easily derived from
considerations of Section 2.1:

Proposition 1. Let M be a term of Call-By-Need, and n ∈ ∆need. {mCM |
m⇒need n} is finite.

It is sufficient to observe that the reduction can be seen as a particular case
of resource reduction, in the sense that we can bound the growing of applicative
depth under parallel reduction, and that there is no arbitrary collapse during
parallel reduction : the arguments differ from Call-By-Value in the management
of the contexts and of the sharing properties of the calculus, but that do not
intervene in the key properties we need.

We give below an example of Call-By-Need Taylor expansion to illustrate
the interaction between Call-By-Need reduction and our resource constructions.

Example 1. Consider the following λ term : M = (λz(λxy)(II)(zz))(II),
where I = λxx. We can already see that the most external abstraction calls for
a duplication of the evaluation (II) if we stand in a Call-By-name discipline,
while the subterm (λxy)(II) calls for a useless evaluation of (II) if we are in
a Call-By-Value discipline. The Call-By-Need evaluation starts by reducing the
rightmost (II) to I, and then, other reductions are forbidden, except a possible
garbage collection rule that leads immediately to the term yI, which is the common
normal form of M .

Let us consider Taylor expansion of M , and see how Call-By-Value and
Call-By-Need differ in the reductions (we omit terms of the shape [λx1, . . . , λxn]t,
since they reduce to 0 in both calculi):

TV(M) =
⋃
−→
k ∈N

{[
λz
[
λx[y]ky

] (
[λx[x]kx ][λx′[x′]kx′ ]kλx′

) (
[z]kz [z]k′z

)]
([λw[w]kw ][λv[v]kv ]kλv )

}
If we follow the reduction, we are led to observe that there is only one term of
the above sum that reduces to the normal resource term [y][λv[v]]4: It is the
point of TV(M) where kx, kλ′

x
= 0, kz, k

′
z, ky = 1, kw, kλv, kv = 2. Call-By-Need

reduction is more permissive in this sense, since all cardinalities are acceptable
for kλx′ and kx : those terms are the arguments of the function subterm λx[y],

4Notice that this a single example taken among the infinite set TV (yI).
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and shall never be evaluated, but erased by the garbage collection, if considered. In
Call-By-Value reduction, if kλx′ and kx are not null, there will be an evaluation
(a useless one, corresponding to the reduction of the intern II to I in M) before
ending with the reduction to 0.

3 PCF

We announced in the introduction that the results we exhibited for Call-By-
Value and Call-By-Need are valid even in the presence of an explicit fixpoint, but
we are forced to change our proof method. Indeed, Ehrhard already observed
that an explicit fixpoint prevents the calculus to be endowed with a finiteness
structure [7]. Since resource calculus’ purpose is to mimick the identities of
the semantics, it is not surprising that the finiteness property of the reduction
of Taylor expansion becomes false when an explicit fixpoint is added to the
syntax. The intuition behind this remark is that it contains potentially an
infinite number of applications, and then its interpretation explodes the cell of
finiteness structures, and the resource calculus necessary to simulate this dynamic
contains approximants of the fixpoint construction, but those approximants are
of unbounded applicative depth.

We propose the study of a calculus endowed with such an explicit fixpoint
constructor. We focus on a variant of Plotkin’s PCF similar to Ehrhard Pagani
and Tasson calculus [11].

A quantitative model of that language has already been proposed by Ehrhard
and Tasson in the category of probabilistic coherence spaces [5, 11]. In this
model, the derivation operation is not always defined, but the Taylor formula,
which takes the derivatives only at zero, is valid and is then subject to our
considerations.

There is a ground type ι corresponding to integers, and the syntax of types
is given by :

σ, τ, . . . ::= ι | σ → τ

Definition 7 (PCF ). Let k range over N and x over a countably infinite set
of variables.

M,N, . . . ::= k | x | suc(M) | λxM |MN | If(M,N, z ·N ′) | fix(M)

Reduction rules :

(λxM)N →pcf M [N/x] fix(M)→pcf M(fix(M))

If(k + 1,M, x ·N)→pcf N [k/x] If(0,M, x ·N)→pcf M

suc(k)→pcf k + 1

We define evaluation contexts E, for all terms T,U .

E ::= [] | EM |ME | If(E,M, x ·N) | suc(E) | λxE

and we set as an additional reduction rule E[M ] →pcf E[M ′] for each M,M ′

such that M →pcf M
′.
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Definition 8 (PCF resource calculus ∆PCF).

∆PCF : m,n ::= x | k | λxm | 〈m〉[n1, . . . , nk] | (m = m′) · n

Reduction rules:

• 〈λxm〉[n1, . . . , nk]→rpcf m[nf(1)/x1, . . . , nf(k)/xk] for all f ∈ Sk if degx(m) =
k.

• (m = k) · n→rpcf n if m = k.

• We define evaluation contexts e, for all terms m,n of ∆PCF :

e ::= [] | 〈e〉m | 〈m〉e | [e,m1, . . . ,mk] | (e = k) ·m | λxe

and set the additional rule e[m] →rpcf e[m
′] if m →rpcf m

′ by one of the
above rules.

We define for all n ∈ N a set of terms fixn as follows, with fix0 = ∅:

fixn+1 =
{
λx〈x〉 [〈f1〉[x]l1 , . . . , 〈fk〉[x]lk ] | k, l1, . . . , lk ∈ N,∀i ≤ k : fi ∈ fixn

}
.

We can now define the sets of resource terms corresponding to Taylor expansion
of PCF:

• Tpcf(x) = {x}

• Tpcf(k) = {k}

• Tpcf(suc(M)) = {(m = k) · k + 1 | m ∈ Tpcf(M), k ∈ N}

• Tpcf(λxM) = {λxm | m ∈ Tpcf(M)}

• Tpcf(MN) = {〈m〉n | m ∈ Tpcf(M), n ∈ Tpcf(N)!}

• Tpcf(fix(M)) = {〈f〉m | f ∈
⋃
k∈N fixk,m ∈ Tpcf(M)!}

• Tpcf(If(M,N, x ·N ′)) = {(m = 0) · n | m ∈ Tpcf(M), n ∈ Tpcf(N)} ∪ {(m =
k + 1) · n′[k/x] | m ∈ Tpcf(M), n′ ∈ Tpcf(N ′), k ∈ N}

Remark 1. A first notable observation we do with respect to the considerations of
Section 2.1 is that the first property of Call-By-Value Taylor expansion (Lemma 1)
is no more valid in PCF. Indeed, provided we extend the definition of applicative
depth to ∆PCF, in the natural way, for all n ∈ N, the set fixn is made of terms
whose applicative depth belongs to {1, . . . , n}. We conclude immediately that for
any term M ∈ PCF, if M has a subterm of the shape fixx(M), then Tpcf(M) is
a set of terms of unbounded applicative depth.

We are not able anymore to adapt Vaux-Auclair’s method to PCF. Notice
that this point would hold in every calculus with explicit fixpoint, and a similar
study could be done with PCF, for example. We have to come back to Ehrhard
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and Regnier’s works [13] if we hope to achieve the wanted finiteness results. This
implies that our framework will be uniform, and that the argument would not
apply to an algebraic, or even non-deterministic setting, since uniformity would
be lost. The extension of the result to such a system remains an open question.
In the following, we introduce a binary coherence relation and use Ehrhard and
Regnier’s method in order to establish that it fits to specific constructions as
conditional and explicit fixpoint in our resource construction ∆PCF.

Example 2 (Probabilistic PCF). Consider Ehrhard and Tasson’s probabilistic
PCF [11], which is an extension of PCF with, in particular a coin construc-
tor, which reduction rule is the following: coin(p) → 0 with probability p, and
coin(p) → 1 with probability 1 − p, for all p ∈ [0, 1]. The natural extension
of Taylor expansion to this new setting is T ′pcf(coin(p)) = {0, 1}5, (which is a
non-uniform set, according to Definition 9). Let us consider now the follow-
ing term: M = fix(If(coin(p), λxx, z · λxy)) for some fixed p. The conditional
reduces to λxx with probability p, and to λxy with probability (1 − p). If we
develop the definition of T ′pcf , we can observe that T ′pcf(M) contains as a subset
X = {〈f〉[(0 = 0) ·λxx]k+[(1 = 1) ·λxy] | k ∈ N, f ∈ fixk+1} (the argument of f
is the sum of the two multisets). The normal form of Tpcf(M) is not empty since
each element of X eventually reduces to y. But precisely, y has then an infinite
number of antireducts in X, hence in T ′pcf(M), which contradicts our finiteness
result. Notice that it does not mean that the coefficient of y would be necessarily
infinite, in the weighted definition of T ′pcf , but that the finiteness result is not
general anymore and shall be replaced by a close study of the coefficients involved
in Taylor expansion establishing the convergence, or divergence of the weighted
infinite sums of terms. For further details about Taylor expansion of probabilistic
lambda calculus, we refer to the recent study of Dal Lago and Leventis [20].

3.1 Uniformity and coherence

We define a binary coherence relation between elements of ∆PCF, which is shown
to be stable under parallel reduction ⇒pcf, and is such that Taylor expansion of
a term in PCF defines always a clique for this relation. This will lead us to infer
the finiteness result : for all n ∈ ∆PCF,M ∈ PCF, {m ∈ Tpcf(M) | m⇒pcf n}
has at most one element.

Definition 9 (Coherence on resource terms of ∆PCF).

• x ¨ x for all x.

• k ¨ k′ if k = k′.

• λxm ¨ λxm′ if m ¨ m′.

• 〈m〉n ¨ 〈m′〉n′ if m ¨ m′ and n ¨ n′.

5Because we do not need to consider the coefficients for the argument. Otherwise, the
definition is T ′pcf(coin(p)) = p · 0 + (1− p) · 1.
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• (m = k) · n ¨ (m′ = k′) · n′ if m ¨ m′ and k = k′ → n ¨ n′

• [m1, . . .mk] ¨ [mk+1, . . . ,mk+l] if ∀i, j ∈ {1, . . . , k + l},mi ¨ mj.

Lemma 3. For all term M of PCF, Tpcf(M) is a clique for the relation ¨.

Proof. The proof is by induction on M . We only detail the fixpoint case, other
constructions following from straightforward induction steps. Let M = fix(N).
Tpcf(M) = {〈f〉n; f ∈ ∪k∈Nfixk, n ∈ T (N)!}. Induction hypothesis implies that
it is sufficient to prove that ∪k∈Nfixk is a clique. Let f ∈ fixk and f ′ ∈ fixl for
k, l ∈ N.

• If k = l, then by induction (starting from 1 because fix0 = ∅):

– If k, l = 1, then f = f ′ = λx〈x〉[] (fix1 is a singleton).

– If k = l = k′ + 1, then f = λx〈x〉[〈f1〉x, . . . , 〈fl′〉x], with for all
i ∈ {1, . . . , l′}, fi ∈ fixk′ and f ′ = λx〈x〉[〈f ′1〉x, . . . , 〈f ′l′′〉x] with for
all j ∈ {1, . . . , l′′}, f ′j ∈ fixk′ . By induction hypothesis, fi ¨ f ′j for
all i ∈ {1, . . . , l′} and all j ∈ {1, . . . , l′′}. Moreover, all bags x are
pairwise coherent. So, f ¨ f ′.

• If k > l. Then, by induction on k :

– If k = 1, then f ′ = λx〈x〉[] and f = λx〈x〉n for n ∈ fix!
m−1. By

definition, [] ¨ n for all n, so f ¨ f ′.

– If k > 1 then f = λx〈x〉[〈f1〉x, . . . , 〈fl′〉x], where for all i ∈ {1, . . . , l′},
fi ∈ fixl−1. Moreover, f ′ = λx〈x〉[〈f ′1〉x, . . . , 〈f ′l′′〉x] where for all
j ∈ {1, . . . , l′′}, f ′j ∈ fixk−1. By induction hypothesis, fi ¨ f ′j for all
i ∈ {1, . . . , l′} and all j ∈ {1, . . . , l′′}, because fi ∈ fixl−1, f ′j ∈ fixk−1
and l − 1 > k − 1. Bags x being pairwise coherent, we have f ¨ f ′.

The coherence relation we introduced allows to compare terms having the
same shape. In particular, if two terms are coherent and are redexes, there is a
way to have a pair of reductions leading to reducts also pairwise coherent, even
if coherence is not preserved by reduction in general. This point is made explicit
in the following lemma.

The constraint we set on the two reductions is to avoid pairs like 〈λxm〉n ¨
〈λxm′〉n′, reducing respectively to m[nf(1)/x1, . . . , nf(k)/xk ] and to 〈λxm〉n′′ if
n′ →rpcf n

′′. In this case, the two reducts are obviously not pairwise coherent.

Lemma 4. Let m,m′, n, n′ such that m ¨ m′, and either:

• m = 〈λxr〉u, m′ = 〈λxr′〉u′, n = r[u1/xf(1), . . . , uk/xf(k)] and n′ =
r′[u′1/xf ′(1), . . . , u

′
k′/xf ′(k′)]

• m = (u = (j, v)) · r, m′ = (u′ = (j′, v′)) · r′, n = r and n′ = r′.
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• m = e[u], m′ = e[u′], n = e[r] and n′ = e[r′] with the pair of reductions
n→rpcf r u

′ →rpcf r
′ follows any of the above schemes.

Then n ¨ n′. If moreover n = n′, then m = m′.

Proof. We refer to Ehrhard and Regnier’s proof of Theorem 10 [13] for the first
redex case. The other reductions follow by a straightforward induction.

Our goal now is to show, thanks to the previous results, that if for some M ,
two terms m,m′ ∈ Tpcf(M) reduce to a same term n, then m = m′. We establish
this for parallel resource reduction ⇒pcf defined below.

Definition 10 (Parallel reduction of PCF resource terms).

• m⇒pcf m for all m ∈ ∆PCF.

• If mi ⇒pcf m
′
i for all i ∈ {1, . . . , n} then [m1 . . . ,mn]⇒pcf [m′1, . . .m

′
n].

• If m⇒pcf m
′, [n1 . . . , nk]⇒pcf [n′1, . . . n

′
k] degx(m) = k, and f ∈ Sk, then

〈λxm〉[n1, . . . , nk]⇒pcf m
′[n′1/xf(1), . . . , n

′
k/xf(k)].

• If m⇒pcf m
′ then λxm⇒pcf λxm

′

• If m⇒pcf m
′ and n⇒pcf n

′, then (m = k) · n⇒pcf (m′ = k) · n′

• If m⇒pcf m
′ and n⇒pcf n

′ then (m = k) · n⇒pcf n
′ if m = k.

• If m⇒pcf m
′ and n⇒pcf n

′ then 〈m〉n⇒pcf 〈m′〉n′.

Lemma 5. Let m,m′, n, n′ such that m ¨ n, m ⇒pcf m
′ and n ⇒pcf n

′. If
m′ = n′ then m = n.

Proof. The proof is by induction on m. The contextual reductions follow from
induction hypothesis, and redex cases follow from Lemma 4. We only give the
initialisation and examples of such two reductions, the other calling for identical
arguments.

• If m = x then m′ = n = n′ = x.

• If m = λxs, then n = λxr for s ¨ r, m′ = λxs′ for s⇒pcf s
′ and n′ = λxr′

for r ⇒pcf r
′. By induction hypothesis, and since s′ = r′, we have s = r

and then m = n.

• If m = 〈λxr〉[s1, . . . , sn] and m′ = r′[s′1/xf(1), . . . , s
′
k/xf(k)], then we ob-

serve that there exist v ¨ r, wi ¨ si such that n = 〈λxv〉[w1/xg(1), . . . , wl/xg(l)].
Since m⇒pcf m

′, by a classical standardization argument, m→rpcf m
′′ =

r[s1/xf(1), . . . , sk/xf(k)]⇒pcf m
′ and n→rpcf n

′′ = v[w1/xg(1), . . . , wl/xg(l)]⇒pcf

n′. We can now apply Lemma 4 and deduce that m′′ ¨ n′′, and conclude
by induction hypotheses as above.
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By combining Lemmas 4 and 5, we obtain the following result which was
our goal, and which is a particular case of the finiteness property of Taylor
expansion :

Corollary 2. Let n ∈ ∆PCF, and M a term of PCF. #{m ∈ ∆PCF;m ∈
Tpcf(M),m⇒ n} ≤ 1.

We can then reproduce the arguments we set for Call-By-Value to state that
a quantitative version of Taylor expansion makes sense, with respect to the
finiteness of coefficients keeping true under reduction, and then in Taylor normal
form.

4 The Bang calculus

Pursuing the investigation of the relations between Taylor expansion and
reduction strategies, Ehrhard and Guerrieri introduced a fine grain calculus
that permits the embedding of Call-By-Name and Call-By-Value in it [10].
Guerrieri and Manzonetto studied more recently the correspondence between
these embeddings and the respective operational semantics of Call-By-Name and
Call-By-Value [16]. We briefly explain how our finiteness result applies in this
particular setting.

A motivation behind this study is to approach a calculus close to Levy’s Call-
By-Push-Value[22]. In order to do so, a first step is to study then Bang Calculus
that has similar properties to Call-By-Push-Value, with respect to the embeddings
of distinct strategies of evaluation. We are interested in Call-By-Push-Value
because Ehrhard and Tasson provided an interpretation of it in probabilistic
coherent spaces, and extending our results to a Call-By-Push-Value resource
calculus would generalize the construction for all the evaluation strategies that
can be embedded here. This extension in discussed in the conclusion.

Bang calculus also differs from PCF because of PCF being typed, in order
to stay consistent with Ehrhard, Pagani and Tasson’s model, while Ehrhard and
Guerrieri use reflexive objects of shape X ∼= !X & (!X ( X) in the semantics,
so as to work is an untyped setting.

This Bang calculus denoted as Λb and the corresponding resource calculus
denoted as ∆b are defined below. In addition to the usual β-reduction rule, the
calculus is endowed with a dereliction/promotion rule ()!/der, which “opens” a
multiset, giving access to its content. It is equivalent to the opening of a box in
Linear Logic proof nets,

Definition 11 (Bang Calculus Λb [10]).

V ::= x |M ! Λ! : M,N ::= λxM | der(M) |MN

The reduction rules are the following : der(M !) →b M (λxM)V →b

M [V/x]
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Definition 12 (Bang resource calculus ∆b [10]).

∆b : m,n ::= x | λxm | 〈m〉n | [m1, . . . ,mk] | der(m)

The reduction rules are the following :

der([m])→rb m 〈λxm〉y →rb m[y/x]

〈λxm〉[n1, . . . , nk]→rb m[n1/xf(1), . . . , nk/xf(k)] if k = degx(m) and f ∈ Sk

The Call-By-Name and Call-By-Value embeddings ()name and ()val of usual
pure λ-calculus into the Bang calculus run as follows:

xname = der(x) xval = x

(λxM)name = λxMname (λxM)val = (λxM val)!

(MN)name = (Mname)(Nname)! (MN)val = (der(M val))N val

These two embeddings follow the well-known translations of intuitionistic impli-
cation A → B to linear logic formulas !A( B (Call-By-Name) and !A( !B
(Call-By-Value). This is a striking feature of linear logic to permit the distinction
between the two evaluation strategies through the management of exponentials
formulas. The multiset construction of Taylor expansion defined below is then di-
rected by the promotion construct ()!, while, roughly speaking, in Call-By-Name
or Call-By-Value, it was directed by the intuitive distinction function/argument.

Definition 13 (Bang Calculus Taylor expansion [10]).

Tb(x) = x Tb(λxM) = {λxm | m ∈ Tb(M)}
Tb(MN) = {〈m〉n | m ∈ Tb(M), n ∈ Tb(N)} Tb(der(M)) = {der(m) |m ∈ Tb(M)}
Tb(M !) = {[m1, . . . ,mk] | k ∈ N,∀i : mi ∈ Tb(M)}

We can observe that for any 〈λxm〉n ∈ Tb(((λxM)N)val), reducing the
external redex is possible if and only if N is a value. Indeed, in this case, n is
a multiset. Otherwise, n must be evaluated before the external redex. On the
other hand, if 〈m〉n ∈ Tb

(
((λxM)N)

name)
, then n is always a multiset and the

external redex can always be reduced. We even have, for any term M of pure
λ-calculus, a close correspondence between Tb(M val) and TV(M), up to some
technical differences related to the dereliction and the variables, but the multiset
structure is the same. This remark also holds for usual Call-By-Name Taylor
expansion T (M) defined by Ehrhard and Regnier, and Tb(Mname). We can now
announce the finiteness result for the Bang calculus, because we can naturally
define a parallel reduction ⇒rb included in the reflexive transitive closure of →rb,
necessary for simulate β-reduction.

Proposition 2. Let M ∈ Λ!, n ∈ ∆!, k ∈ N. {m ∈ Tb(M) | m⇒k
rb n} is finite.

We do not detail the proof, because it would rely on the same ingredients
and arguments we set for Call-By-Value: it is not difficult to observe that for
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all M ∈ Λ!, Tb(M) enjoys the necessary properties for proposition 2 to be
established. Notice that we did not consider here any σ-rules, as Guerrieri and
Ehrhard, but it will be necessary in further works in order to study issues about
normal forms, and clashes during the reduction. An observation of Definition 13
is sufficient to see that the applicative depth of terms in Tb(M) cannot exceed
the depth in M , and the argument about the size, leading to Lemma 1 in the
Call-By-Value calculus appears valid for the Bang calculus too. In other words,
the applicability of the method does not depend essentially on the choice of a
reduction strategy, because in particular the depth of resource terms appearing
in Taylor expansion does not depend on how we deal with exponentials.

5 Conclusion and perspectives

We introduced the necessary definitions to study Taylor expansion in various
settings which demand respectively distinct proof methods. A possible extension
of this work is to generalize these results in a common setting thanks to our
work with Vaux-Auclair on linear logic-proof nets [4]. Indeed, there exist already
well-known embeddings of Call-By-Name and Call-By-Value into proof nets, and
the results about Taylor expansion become then a syntactic work, of presenting
these translations and proving that they commute with Taylor expansion (e.g.
that Taylor expansion of the proof net coming from a Call-By-Value translation
corresponds to the translation of Call-By-Value Taylor expansion of Section 2.1).
But a construction of proof nets corresponding to Call-By-Need, Bang Calculus
and to PCF would be of great interest in that perspective.

The other direction of work that is suggested by our study is to define
Taylor expansion for Levy’s Call-By-Push-Value [22]. Indeed, we saw with Bang
Calculus that a calculus endowing Call-By-Name and Call-By-Value can be
simulated by a resource calculus, and that the finiteness property of its Taylor
expansion can be adapted from Call-By-Name and Call-By-Value constructions,
and that the extension to an explicit exponential and dereliction causes no
damage to the good behaviour of our proof methods. On the other hand, we
saw with PCF that we can deal with a typed setting with explicit fixpoint,
if we come back to arguments relying on coherence between resource terms.
Then we have good hope to extend our results to a linear logic-based variant
of Call-By-Push-Value, interpreted in Ehrhard and Tasson’s work [14]. But we
cannot proceed easily in that way, because of the expressivity of the calculus, and
the management of types both making it difficult to introduce a resource calculus
with an adequate notion of reduction. In particular, an application (λxM)V
is a redex if V has a positive type (that is !,⊗, or ⊕). This implies that the
quantitative interpretation of V will not always correspond to the exponential,
and hence will not always be considered as a multiset, from a resource point of
view, but can be a pair (v1, v2) for example, if V is of a product type. In that
case, Ehrhard and Tasson use semantical arguments (relied to the presence of
morphisms of coalgebras in the model) to state that positive types are freely
duplicable, but giving an account of this property in the syntax is not a trivial
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task and calls for a detailed construction of a particular resource calculus, that
cannot be easily imported from the existent ones, where only the reducible
applications have always an argument interpreted by an exponential, and thus
approximated by a multiset.
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A Call-By-Need approximation

Definition 14 (Call-By-Need calculus Λneed [24]).

Terms : T,U ::= x | λxT | lxT | TU
Values : V ::= λxT

Contexts : C ::= [] | C1[lxC2]T

E ::= [] | ET | lxE | C[lxE1[x]]E2

Reduction rules : C[λxT ]U →need C[lxT ]U

C1[lxE[x]]C2[V ]→need C2[C1[lxE[V ]]V ]

Definition 15 (Resource approximation of Call-By-Need calculus).

• Approximation of Λneed terms:

– [x, . . . , x]C x

– [λxt1, . . . , λxtk]C λxT if ∀i ∈ {1, . . . , k}, ti C T
– tuC TU if tC T et uC U

– lxtC lxT if tC T .

• Approximation of contexts C. cC C if :

– c = C = []

– c = c1[lxc2]t, C = C1[lxC2]T , c1 C C1, c2 C C2 et tC T .

• Approximation of contexts E. eC E if :

– e = E = []

– e = lxe2, E = lxE2, et e2 C E2

– e = e2t, E = E2T, e2C E2 et tC T

– e = c[lxe2[[x, . . . , x]]]e3, E = C[lxE2[x]]E3, e2 CE2, e3 CE3 et cC C.

Lemma 6. If tC T and cC C, then c[t]C C[T ]

Proof. Induction on contexts :

• c = [], straightforward by the hypothesis tC T
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• c = c1[lxc2]u. By definition, C = C1[lxC2]U with ci C Ci and uC U . By
induction hypothesis, we have c2[t]C C2[T ]. We extend (by definition of
C) to lxc2[t]C lxC2[T ]. By induction hypothesis on c1, and because uCU ,
we deduce c1[lxc2[t]]uC C1[lxC2[T ]]U.

Lemma 7. If eC E and tC T , then e[t]C E[T ]

Proof. Similar induction on contexts e.

Lemma 8.

(i) If tCT and T = C[U ], then there exists uCU and cCC such that t = c[u].

(ii) If tCT and T = E[U ], then there exists uCU and eCE such that t = e[u].

Proof. (i) induction on C.

• If C = [], then T = U , and t fits.

• If C = C1[lxC2]T ′, then by definition of C, if t C T , t = st′ with s C
C1[lxC2[U ]] and t′ C T ′. By induction hypothesis on C1, s = c1[lxw] with
c1 C C1 and w C C2[U ].

Similarly, by induction hypothesis on C2, w = c2[u] with c2CC2 and uCU .
We then have t = c1[lxc2[u]]t′, and ci C Ci, uC U, t′ C T ′.

(ii) : similar induction on E;

Lemma 9. Let T →need U . For all t C T , either t →rneed 0, or there is some
uC U such that t→rneed u.

Proof. Induction on the reduction:

• T = C[λxT ′]T ′′, and U = C[lxT1]T2. By Lemma 8, if t C T , there exist
t1, . . . tk C t′, t′′ C T ′′, c C C such that t = c[[λxt1, . . . λxtk]]t′′. If k 6= 1,
t→rneed 0. Otherwise, t→rneed c[lxt1]t′′ C U .

• T = C1[lxE[x]]C[V ], U = C[C1[lxE[V ]]V ]. By Lemma 8, if t C T , then
t = c′[lxe[[x1, . . . , xk]]c[[v1, . . . , vk]+−→v ] with c′CC ′, cCC, eCE,∀i : viCV .
We have t→rneed c[c1[lxe[[v1, . . . , vk]]]−→v ]C U

Lemma 10. Let T →need U . For all uC U , there exists tC T such that t→ u.

Proof. Induction on the reduction.

• U = C[lxU ′]U ′′ et T = C[λxU ′]U ′′. By Lemma 8, if u C U , then u =
c[lxu′]u′′ for some cC C, u′ C U ′, u′′ C u′′. It is then sufficient to consider
t = c[[λxu′]]u′′, because in that case, tC T .

• U = C[C1[lxE[V ]]V ], T = C1[lxE[x]]C[V ] : similar argument.
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