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The shape of hanging elastic cylinders

Serge Mora,*a Edward Andò,b Jean-Marc Fromental,c Ty Phouc and
Yves Pomeaud

Deformations of heavy elastic cylinders with their axis in the direction of earth’s gravity field are investigated. The specimens, 
made of polyacrylamide hydrogels, are attached from their top circular cross section to a rigid plate. An equilibrium configuration results 
from the interplay between gravity that tends to deform the cylinders downwards under their own weight, and elasticity that resists 
these distortions. The corresponding steady state exhibits fascinating shapes which are measured with lab-based micro-tomography. For any 
given initial radius to height ratio, the deformed cylinders are no longer axially symmetric beyond a critical value of a control parameter that 
depends on the volume force, the height and the elastic modulus: self-similar wrinkling hierarchies develop, and dimples appear at the bottom 
surface of the shallowest samples. We show that these patterns are the consequences of elastic instabilities.

Many materials such as biological tissues can withstand huge
elastic deformations over more than several hundred percent.
By elastic we mean that once the applied forces are released, the
system spontaneously recovers its reference shape. Fascinating
and puzzling shapes can result from these large deformations1–6

which have to be better understood in view of emerging applica-
tions as computer-assisted precision surgery involving human
organs among which some are elastic and can undergo large
deformations.7–9 A physical rationalization of these phenomena
requires first to model materials subjected to basic external loads
in simple geometries.

In this paper, we investigate deformations of elastic cylinders
attached to a rigid plate at the upper cross section, and submitted
to a downwards constant volume force in the vertical direction.
This minimal system is enough to exhibit intriguing shapes such
as those encountered in more complex systems with practical
applications. We demonstrate that when the constant volume
force (e.g., gravity or another acceleration) is switched on and a
new equilibrium steady state is reached, the displacement of
matter inside the cylinder is either divergent (the mass has moved
toward the circumference of the cylinder) or convergent (towards
the axis) depending on the initial slenderness of the cylinder.
In addition, cascading and asymmetric wrinkles develop at

the vertical surface beyond critical volume forces, and dimples
appear along the lower surface of the shallowest cylinders.
We demonstrate that the mechanisms responsible for this variety
of equilibrium shapes arise from elastic instabilities that can
occur simultaneously.

II. Materials and methods

We use aqueous polyacrylamide gels prepared by copolymeri-
zation of acrylamide (concentration ranging from 28 g L�1 to
46 g L�1 depending on the sample) and N,N0-methylene-
bisacrylamide (from 0.18 g L�1 to 0.37 g L�1) in the presence
of initiators, tetramethylenediamine (0.6 g L�1) and sodium
persulfate (0.93 g L�1), in deionized water. Prior to mixing the
constituents, all solutions are saturated with nitrogen gas, to
ensure the near insufficiency of oxygen.10 Polymerization yields
a loose permanent polymer network swollen in water (called
hydrogel). The characteristic time scale of the diffusion of
the solvent through the network is td C c2/Dc, with Dc the
cooperative diffusion coefficient and c a characteristic length. For
polyacrylamide gels Dc B 1 � 10�11 m2 s�1.11 In what follows,
we mainly deal with length scales larger than 1 mm, hence td 4
1 � 105 s, a time scale far larger than those of our experiment.
Hence, the gels can be considered here as incompressible,12,13 with
a mass density r almost equal to that of water. In addition, they
behave as an isotropic elastic material for strains up to several
hundreds percent. The shear modulus m can be tuned by varying the
concentrations in monomers and cross-linkers.

In our experiments, the reagents generating the gels are first
dissolved into ultra-pure water and poured into cylindrical dishes
up to the brim. The radius of the dishes, R, and the height, h, are
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periphery than near the axis of symmetry, yielding a shallow
central depression which can be explained as follows: the
downwards movement of a material point located on the axis
of the cylinder involves deformations over a larger volume of
the elastic material than the downwards movement of a mate-
rial point located near the outer vertical surface of the cylinder,
hence the larger displacements of material points located near
the outer vertical surface. This is true for any aspect ratio in the
limit of the small strains. Let us consider now softer samples.
A central depression subsists and it is more pronounced in
samples (b) and (c). Indeed, in the large aspect ratio limit
(R c h), the volume influenced by the lateral outer surface can
be sketched as a hollow cylinder of thickness h, hence h is the
characteristic width of the hanging corona. The depressions
previously reported are replaced by a bump at the lower surface
of samples (e) and (f). This is because the (initial) radius is not
large enough compared to the (initial) height of these samples
so that displacements of two material points diametrically
opposed are not independent anymore but cooperative. These
arguments are supported by numerical simulations (see Fig. 8).

In Fig. 2 the global stretch ratio defined as the ratio of the
equilibrium height of the hanging cylinder, hmax, to the initial
height, h, is plotted as a function of a. These measurements are
supplemented with a series of further samples that have not
been acquired by micro-tomography (as indicated in Fig. 2).
The inset of Fig. 2 shows, for the same set of samples, a as a
function of R/h, underlining the range of aspect ratios in our
experiments. The dimensionless surface energy b being small
compared to a, the surface energy can be neglected in a first
estimation of the total energy of the hanging cylinders, and we
consider only the sum of gravity and elastic energies. This later

Fig. 1 Mean vertical slices of hanging elastic cylinders whose of initial
domains are indicated by the dashed straight lines (bar length is 1 cm), with
dimensions R � h = 37 mm � 15 mm for (a–c) and 37 mm � 21 mm for
(d–f). The gray level distributions in the mean vertical slices of (e) or (f)
result from non-axially symmetric shapes. The shear modulus of the gels
are m = 77.9 � 1.5 Pa (a and d), 37.9 � 1.5 Pa (b and e), and 29.2 � 1.5 Pa
(c and f). Vertical double arrows define hmax for each sample. The
dimensionless accelerations (a) and surface tensions (b) are respectively
(1.89� 0.04, 0.06� 0.001) for (a); (3.88� 0.1, 0.12� 0.005) for (b); (5.03� 0.2,
0.16 � 0.01) for (c); (3.02 � 0.05, 0.037 � 0.001) for (d); (6.21 � 0.2, 0.077 �
0.003) for (e); and (8.05 � 0.4, 0.1 � 0.005) for (f).

between 36 mm and 150 mm and between 8 mm and 40 mm 
respectively. The shear modulus of the gel is measured by indenta-
tion of a non-adhesive rigid sphere diameter 6 mm at the surface 
of control samples fully covered with pure water in order to remove 
capillary forces.14–16 For the experiments reported here, it lies 
between 10 and 160 Pa, a low value compared to modulus of 
ordinary rubber-like materials (m B 1 MPa), but comparable with 
the modulus of tissues (as liver or brain). After the gel is cured into 
the dish, its top surface is attached by capillary action onto a rigid 
horizontal surface coated with a sheet of paper, and the dish is 
gently removed from below. This results in a hanging cylinder of 
gel attached from the top and deformed by the gravitational 
acceleration g. Samples with shear modulus as low as few tens 
of Pascals are highly sensitive to any perturbations during the 
sample handling. Care is therefore required to avoid damage that 
would lead to changes in the equilibrium deformed shapes of the 
samples. The hanging cylinders spontaneously recover the size 
and shape of the moulds when immersed into pure water, whose 
mass  density is equal  to  that  of the gels.  Moreover, they recover  the  
same deformed shape after being withdrawn from water to air. 
These observations indicate that the deformations are reversible. 
The dimensionless gravity acceleration a is defined as the ratio of 
the characteristic gravitational stress, rgh, to the shear modulus: 
a = rgh/m. a lies between 1 and 16 in the experiments reported 
here. Such large values of a could also be obtained with samples of 
higher shear modulus accompanied by larger heights or stronger 
accelerations. Surface tension is not always negligible with soft 
solids,17–21 and the dimensionless parameter a has to be comple-
mented with another one, namely b = g/(mh), with g the surface 
energy per unit area. For polyacrylamide gels in air, g C 70 mN m�1. 
Taking for instance m B 35 Pa and h B 20 mm as characteristic 
shear modulus and height, one gets b B 0.1.

The difference in X-ray absorption between air and water makes 
X-ray tomography a valuable tool to reveal the structure of these 
hydrogels in 3D. The equilibrium shapes of the hanging cylinders 
are acquired using an RX-Solutions X-ray scanner with a 
Hamamastu L12161-07 micro-focus source and a Varian Paxscan 
DX2520 amorphous silica detector. The machine is set to perform a 
continuous 3601 rotation during tomography acquisition to ensure 
the sample does not move while scanning. To limit drying scanning 
time is reduced by accepting a degraded spatial resolution 
(using the detector in 2 � 2 binning) which allows scans in the 
3–15 minutes time range. Reconstructions yield a three dimen-
sional field quantifying the X-ray attenuation of the object discre-
tized into cubic voxels with size ranging from (50 mm)3 to (200 mm)3 

depending on the size of the specimen. The grey levels of each axial 
slices have been averaged pixel by pixel over the azimuth (from 
0 to 360 degrees by steps of 1 degree), yielding the mean vertical 
slice of the hanging cylinders as presented in Fig. 1 for six samples 
(vertical slices of other samples are shown in Section A2).

III. Global deformation

The shapes of the two stiffer samples (a) and (d) shown in Fig. 1 
share a common feature: the vertical stretching is higher at the
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is estimated by using the strain energy density function of
a isotropic and incompressible neo-Hookean solid, a model
known to well describe polyacrylamide hydrogels. This model is
the natural extension of Hooke’s law, valid for finite deforma-
tions. Depending on the aspect ratio of the reference shape of
the cylinder, the deformation is either located at the border
(shallow cylinders) or in the whole sample. Denoting V the
volume involved in the deformation, the Helmholtz free energy
E can be expressed as:

E
V �

m
2

l2 þ 2

l

� �
� rg

hmax

2
(1)

with l � hmax

h
a characteristic value of the strain. The first term

in the right hand side in eqn (1) is the strain energy density,
and the second term is the gravity energy density. The Helm-
holtz free energy being minimal at equilibrium @E=@hmax ¼ 0ð Þ,

2(hmax/h)3 � a(hmax/h)2 � 2 = 0, (2)

hmax/h computed from this equation is plotted in Fig. 2, with a 
good agreement with measurements. The measured hmax/h is 
slightly smaller than the theoretical estimation due to the surface 
tension and the assumption that h and V are not related.

The multiformity in the deformed shapes goes well beyond 
the occurrence of either a depression or a bump at the bottom 
surface. The gray level distributions in the mean vertical slices 
of (e) or (f) in Fig. 1 result from non-axially symmetric shapes. 
Views of four three-dimensional reconstructions of representative 
samples with a set of horizontal slices at various heights (from 
the top to the bottom of the samples) are presented in Fig. 3.

Wrinkles, with a hierarchical structure for samples with the
largest a, are observed by the top of these samples (Fig. 3(a–c)).
The amplitude of the wrinkles as well as the degree of branching
is the highest at the top of the shape decreasing downwards until
vanishing at the bottom of the hanging cylinder. In addition,
dimples at the lower surface of the samples with the largest aspect
ratio are also observed (Fig. 3(d)).

Note that no detachment at the upper horizontal plane is
observed so that the upper horizontal slice remains circular,
with the radius still being that of the mould.

IV. Cascade of wrinkles

Filled symbols in Fig. 2 indicate axially symmetric deformed
shapes while empty symbols are for non axially symmetric
shapes (with wrinkles and/or dimples). The separation from
axially to non axially symmetric shapes is found to occur for a
given value of the dimensionless acceleration, a C 4.7. Upon
increasing a, the second generation in the wrinkles hierarchy of
size appears in samples with a 4 6.02. Let y be the angle
formed by the tangent of the profile in an axial section and the
horizontal direction in this section at the top of the sample (see
the scheme in Fig. 4). y has been measured for axially sym-
metric hanging cylinders only (this angle is not defined for
samples with wrinkles). From Fig. 4, 1/tan y is found to be
similar to a. Since the threshold for the formation of the
wrinkles is for a = ac = 4.7, one concludes that the wrinkles
begin to develop for deformations so that 1/tan y 4 4.7, i.e.,
y o yc C 0.21 rad. Fringe22,23 or fingering3,24–26 instabilities
have been reported in stretched elastic cylinders or layers

Fig. 2 Global stretch ratio hmax/h as a function of the dimensionless
acceleration a. Filled symbols are for deformed samples with axial sym-
metry. Empty symbols are for deformed samples with a circumferential
asymmetry. Colors indicate the value of the dimensionless surface tension
b. Solid line is the prediction of eqn (2). Circles are for the samples acquired
by micro-tomography, and squares for the other samples. Inset: a as
a function of aspect ratio R/h for all the tested samples. The dashed line,
a = 4.7, shows that the demarcation line between axially symmetric and
circumferential asymmetric deformed samples does not significantly
depend on R/h.

Fig. 3 Three-dimensional views and horizontal slices at various heights
(from the top to the bottom of the samples) of 4 hanging cylinders
with initial dimensions (R � h) and shear modulus: 22 mm � 25 mm,
m = 27.4 � 1.5 Pa (a); 37 mm � 24 mm, m = 29.2 � 1.5 Pa (b); 69 mm �
17 mm, m = 18.6 � 1.5 Pa (c); 72 mm � 9 mm, m = 12.9 � 1.5 Pa (d). In the
slices, the gel is in black; the white areas continuously surrounded by black
areas correspond to the central depression (c and d) or to dimples (d). The
dimensionless accelerations (a) and surface tensions (b) for these samples
are respectively (8.94 � 0.5, 0.1 � 0.006) for (a); (8.05 � 0.4, 0.1 � 0.005)
for (b); (8.96 � 0.7, 0.2 � 0.02) for (c); and (6.84 � 0.8, 0.6 � 0.07) for (d).
Gray bar length is 2 cm.
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attached by their two ends to parallel rigid plates. The analytic 
model developed in ref. 26 and 27 as well as the simulations of 
ref. 23 predict that the interface is linearly unstable for stretch 
ratio such that the angle y at the contact line is smaller than 
0.195 rad. In addition, the bifurcation has been found to be 
sub-critical,26 hence an effective threshold angle larger than 
0.195 rad. Moreover, supplementary experiments in which our 
cylinders made in polyacrylamide gels are attached by their 
ends to two parallel rigid plates and stretched in an extens-
ometer lead to wrinkles, with the cascading structure, that are 
definitely similar to those observed in the hanging specimens 
(see Section B). It is therefore tempting to associate the formation 
of the wrinkles with the mechanism of the fringe/fingering 
instability. This mechanism, which can be seen as an extension 
of  the original idea of M. A. Biot,28 has first been introduced in 
ref. 26, and can be sketched in the case of hanging cylinders as 
follows.

Let us start from a hanging elastic cylinder stretched by the 
gravity and suppose first that the deformed shape is axially 
symmetric. Consider now a circumferential periodic disturbance 
consisting of vertical wrinkles below the rigid plate. The charac-
teristic penetration depth of the disturbance of infinitesimal 
amplitude in the radial direction is finite, laying in between the 
two relevant geometric length scales which are the wavelength of 
the disturbance and the radius of the cylinder.  The disturbance  
causes changes in the stretching along the vertical direction: 
the material is less stretched near the ridges than that it was 
before the perturbations, whereas it is more stretched near 
furrows (Fig. 5). The deformed volume involved in a ridge being 
larger than the volume involved in a furrow, one deduces that 
the perturbation globally lowers the stretching energy. On the 
contrary, the additional shear strain induced by the perturba-
tion causes an increase in the strain energy. The competition 
between the two elastic effects, i.e., the reduction in the

stretching and the increase in the shearing, is responsible for
the instability threshold.

From our experiments, the critical angle yc does not signifi-
cantly change with the initial dimensions of the samples. This
observation, which is consistent with the numerical simula-
tions of ref. 22, is an indication that neither the initial radius
of curvature nor the initial height play a crucial role at the
instability onset, at least for the range of aspect ratios investigated
here. Neglecting surface tension, the remaining characteristic
length for the instability is the depth d0, that demarcates the stable
to the unstable parts of the unruffled surface of a given hanging
cylinder (see Fig. 6(a)). The wavelength of the wrinkles is therefore
expected to scale as d0, the only relevant characteristic length in the
instability mechanism. Inspired by the mechanism presented in

Fig. 4 1/tan y as a function of the dimensionless acceleration a, with y the
angle formed by the horizontal plate and the tangent of the boundary of
the sample in an axial section, measured at the contact line from images
obtained with micro-tomography (for axially symmetric samples). Inset:
Definition of angle y.

Fig. 5 Sketch of a piece of a hanging cylinder perturbed by infinitesimal
wrinkles. k is the penetration depth (in the radial direction) of the perturbation.
The green area in the horizontal section indicates the deformed region near a
ridge, while the red one indicates the deformed region near a furrow.

Fig. 6 Partial sketches of vertical slices, before (a and c) and after (b and d)
an infinitesimal perturbation is applied. In (a) the angle y (formed by the
tangent of the profile at the contact line and the horizontal) is supposed to
be smaller than the threshold yc. The surface is therefore unstable inside a
domain whose depth is d0, leading to the formation of ridges and furrows
(as sketched in (b)) with a wavelength Bd0. In (c) a is larger than in (a and b)
so that the angle y defined for the ridges is now smaller than yc (d). The
top of the ridge is therefore unstable inside a domain of depth d1, leading
to a new generation of wrinkles (not drawn) whose wavelength scales
as d1 (od0).
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require the production of a considerable amount of trial
samples. Furthermore, dimensionless surface tension would
change with the elastic modulus, and it is no longer negligible
for these low shear moduli and small initial heights h. In order
to support the scenario of the formation of the dimples as a
result of the elastic Rayleigh–Taylor instability, we have per-
formed 3D finite element (FE) simulations which consist of

Fig. 7 (a) Deformed shape computed with R/h = 8, a = 5.58 and b = 0.
Colors indicate the ratio of the total displacement to the initial height. (b)
Horizontal slice of the previous deformed shape (a) at the distance h below
the rigid plate.

Fig. 8 Axial sections of hanging cylinders with the aspect ratio R/h = 1 (a–c)
and R/h = 3 (d–f) for a = 2 (a and d), a = 4 (b and e) and a = 6 (c and f),
computed with the assumption of axial symmetry. Dashed lines indicate the
initial shapes. Color maps indicate the magnitude of the strain energy density
divided by m/2, formally tr(FFT � 3) where F is the deformation gradient
tensor, see eqn (A1). (g) Ratio of the thickness of the deformed shape along
the axis of the cylinder (z(0), see (b) or (e)) to the initial height (h) as a function
of a, for two aspect ratios R/h. Dimensionless surface energy is b = 0.

ref. 29 and 30 that accounts for self similar hierarchical wrinkling 
in constrained thin sheets, we propose now an explanation for the 
cascading structure observed in Fig. 3(a–c). If a is so strong that the 
angle y, defined now at the top of the ridges, would be again larger 
than yc, then the previous ridges are themselves unstable. Let d1 be 
the depth separating the unstable to the stable regions of the ridges 
(see Fig. 6(d)). d0 4 d1 because the development of the first 
generation of wrinkles induces a partial release of the vertical 
stretch at a ridge. Since the characteristic wavelength of the 
resulting secondary wrinkles scales as d1, the wavelength of the 
secondary generation is smaller than the wavelength of the first 
one. Repeating this argument, we deduce that the wavelength 
of any new generation scales as the shorter and shorter vertical 
extension of its wrinkles, in accordance with the hierarchical 
structure of the wrinkles.

Note that wrinkles leading to transient hierarchical struc-
tures reminiscent to those observed here with the polyacryl-
amide gels, have been observed at the end-plates of filament 
stretching rheometers during the rapid stretching of visco-
elastic fluid filaments.31,32 Although the above mechanism, 
that is based on the minimization of the energy, cannot directly 
apply to viscoelastic fluids, we think that it can give some 
insights to better understand this destabilization of stretched 
viscoelastic filaments.

V. Depressions as a result of a
Rayleigh–Taylor mechanism

In addition to wrinkles, a massive divergent displacement of 
the matter from the axis to the periphery of the hanging 
cylinders leading to the formation of a unique deep central 
depression is observed in samples with large aspect ratios (see 
Fig. 1(c) and 3(c, d)). Secondary depressions (dimples) appear 
for even larger aspect ratios (see Fig. 3(d)). The limit of an 
‘‘infinite’’ aspect ratio can be approached by considering 
horizontal elastic infinite layers of height h attached at the 
top to a rigid substrate, the lower surface being free to deform. 
This limit has been studied in the past.5,33–35 When subjected 
to the gravitational acceleration g, the elastic Rayleigh–Taylor 
instability makes the downwards facing surface unstable 
beyond a threshold for the dimensionless acceleration, a C 
5.7, leading to the formation of deep depressions organized in a 
hexagonal lattice.5,35 The underlying mechanism is the compe-
tition between gravity (which tends to deform the surface in 
order to lower the center of mass of the system) and elasticity. 
This order of magnitude of this threshold is in agreement with 
the dimensionless acceleration for which the dimples are 
observed (a = 6.84 � 0.8 4 5.7). We have not carried out a 
systematic study by gradually varying a in order to find its 
critical value for a given aspect ratio: for shear modulus as low 
as ten Pascals, any small perturbation in the curing process as a 
slight unpredictable excess of dioxygen in the reactant, would 
lead to significant relative changes in the value of the shear 
modulus. Hence carrying out a series of experiments with 
targeted low shear modulus is a truly difficult task that would
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cylinder geometry, we have demonstrated another effect arising
from this competition, consisting of a dramatic changes in the
global shape of the deformed samples, ranging from convex
(convergent displacement of the matter towards the axis) to
highly concave (formation of a large and deep central depres-
sion). A detailed analytic description of these phenomena
would first require analytic expressions for the base deformed
shapes prior to the occurrence of these patterns. This is a
difficult task due to non-linearities induced by the large defor-
mations in the system.

This work is focused on the equilibrium configurations of
soft gels, for which the Helmholtz energy is maximal. Further
works dealing with dynamical processes, as those involved in
the transition from one equilibrium shape to the another one
as a result of a abrupt change of the volume force, or in the
cutting of such soft materials when they are strongly strained,
would be an interesting continuation of this study and would
require to take into account dissipative processes in addition to
elasticity.

X-ray micro-tomography has proved to be a powerful technique
capable of capturing complex equilibrium shapes of hydrogels
subjected to large deformations, whereas conventional optical
methods are more difficult to handle with these transparent and
folded samples.

SM thanks S. Lin for enlightening discussions about simula-
tions and computations published in ref. 23.
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Appendix A: numerical simulations
of hanging cylinders

This appendix deals with the implementation of simulations of
hanging cylinders and to comparisons with the experiments.
The numerical method based on the finite element (FE)
method, is introduced in Section A1. It consists of the mini-
mization of the augmented energy of a system composed of an
incompressible neo-Hookean cylinder bounded to an upper
plane and subjected to the combined action of gravity and
surface tension. The simulations are used to compute the
deformed shapes of hanging cylinders presented in Fig. 7 of
the main article, with the goal to show that the interplay
between elasticity and gravity can explain the formation of
secondary depressions (dimples) as those observed in the
experiments. The deformed shape of hanging cylinders with
the same parameters (geometry, mass density, gravity, shear
modulus and surface tension) as in the experiments reported in
the main article are also computed in Section A2. These
simulations are made by fixing the azimuthal displacements
to zero, an approximation which amounts to considering a
mean displacement as in the main average slices obtained by
micro-tomography.

minimizing the sum of gravity and neo-Hookean elastic energies 
of a hanging cylinder (see Section A1). Surface tension is 
neglected in these simulations, hence quantitative differences 
are expected with some of the experiments. The important point 
is the similarity between the equilibrium shape of sample (d) in 
Fig. 3 and the shapes found in the simulations (see Fig. 7).

The massive divergent displacement of matter (as in Fig. 3(c) 
and also in Fig. 1(c)) can be viewed as a consequence of the 
Elastic Rayleigh–Taylor mechanism also. Supplementary FE 
simulations have been carried out, again with b = 0 in order 
to emphasize the competition between gravity and elasticity. 
In order to avoid wrinkles that would make the simulations 
more difficult to handle, the simulations have been carried out 
by imposing axially symmetric deformations (see Section A2). 
The displacements at the top end of the cylinder are fixed 
to zero, and the other boundaries are free to deform. Upon 
gradual increases of the dimensionless acceleration a, the 
remaining thickness below the center of the top cross section 
is found to first increase, and then for aspect ratios larger than 
R/h C 2, this thickness abruptly decreases beyond in a narrow 
range of a to reach a value far smaller than the initial height 
(see Fig. 8(d–g)). The evolution of the equilibrium shape can 
therefore be divided into two regimes: a first regime where the 
shape evolves progressively as a is increased. Then beyond a 
critical a, configurations in which the matter is cooperatively 
displaced downwards by the periphery, start to become more 
favorable and the rate of deformation as function of a abruptly 
increases, a mechanism reminiscent to that of the Rayleigh–Taylor  
instability. The value of the critical a (i.e., a B 4.5 for R/h = 3  as  in  
Fig. 8(g)) is smaller than the threshold in the Rayleigh–Taylor 
instability because of the absence of lateral constraints.

VI. Conclusion

Since applications with soft materials often rely on their ability 
to withstand large deformations, hence low elastic modulus, the 
characteristic dimensionless gravitational acceleration a can be 
significant. The competition between elasticity and gravity must 
therefore be considered, with possible dramatic effects, such as 
those highlighted in this paper.

Although the system consisting of a hanging elastic cylinder 
is probably one of the simplest in order to study the mechanical 
response of highly stretchable elastic material, the resulting 
deformations are manifold, whose underlying mechanisms 
have been unveiled in this paper. Hierarchical wrinkles result 
from an elastic instability in which the role of the gravity is just 
to fix the deformation of the unperturbed state (since they also 
develop in the stretched geometry in which gravity is not a key 
parameter). The cascading structure arising from this instabil-
ity has been evidenced, and explained schematically from basic 
physical arguments. In contrast, the large central depression as 
well as the dimples result from the competitive interplay 
between elasticity and gravity. This competition was known to 
drive the formation of hexagonal patterns as a result of the 
elastic Rayleigh–Taylor instability. By considering the hanging
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Eðu; pÞ ¼
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trðFFTÞ � 3
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ð
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The first term in the first integral is the strain energy density
for an isotropic and incompressible neo-Hookean solid. The
second term is the gravity energy density. The Lagrange multiplier
p(r) ensures the incompressibility constraint J = 1. The second
integral accounts for the surface energy, with vector g the accelera-
tion due to gravity at the Earth’s surface. The term ||JF�TN||dS
gives the element of area of the deformed configuration as a
function of the quantities defined on the reference domain O, N
being the unit normal to the reference boundary qO.18,36

Eqn (A1) can be expressed in terms of the dimensionless
quantities a = rgh/m and b = g/(mh) by considering the trans-
formation r = hr0, u = hu0:

Eðu0; pÞ
mh3

¼
ð
O0

1

2
trðFFTÞ � 3
� �

� au0 � ez þ pðJ � 1Þ
� �

dr0

þ b
ð
@O0

JF�TN
�� ��dS0;

(A2)

with O0 a cylinder of height 1 and radius R/h. ez is the down-
wards vertical unit vector.

Our FE formulation is based on the research of the stationary 
points of the total energy functional given by eqn (A2). An ad hoc 
numerical code is developed for the purpose using the FEniCS 
finite element library.37 The displacement vector u0 and the 
Lagrange multiplier p are discretized using Lagrange FEs with a 
quadratic interpolation for u0 and a linear interpolation for p, on  
a triangular mesh (see ch. 20 of ref. 26). The linear mesh density 
in either direction is written nmesh. The nonlinear problem in the 
(u0, p) variables is solved using a Newton algorithm based on a 
direct parallel solver (MUMPS).

Quasi-static simulations are performed by progressively 
increasing the surface tension b up to the desired dimensionless 
value, then by progressively incrementing the load parameter a, 
recording the displacement field and the Lagrange multiplier, 
and reaching convergence at each step.

2. FE simulations with imposed axially symmetric
deformation

A fine mesh density would be required in order to account for the
formation of wrinkles, hence prohibitive computational times.
Here, our strategy is to ignore in the simulations any non axially
symmetric deformation by considering them to be a perturbation
of an axially symmetric base deformation. The shape of this base
(axially symmetric) deformation is computed and compared with
the mean vertical slices obtained by micro-tomography.

The displacement vector is expressed in a cylindrical coordi-
nate system as u = ur(r,z)er + uz(r,z)ez, hence a two-dimensional
problem. The deformation gradient tensor to be inserted in
eqn (A2) is then

F ¼

1þ @ur=@r; 0; @ur=@z

0; 1þ ur=r; 0

@uz=@r; 0; 1þ @uz=@z

0
BBB@

1
CCCA: (A3)

A FE simulation (with enforced axial symmetry) has been
carried out for each samples whose shape has been acquired by
micro-tomography. The shapes, calculated from FE simulations,
are superimposed with the mean vertical slices determined by
micro-tomography in Fig. 9. In order to facilitate the visualization
of the junction between the gel and the rigid upper plate, a
homogeneous mask was added after images reconstruction at the
precise location of the upper plate. Because elastic bodies with
low elastic modulus are sensitive to any slight disturbance, the
deformed samples are never perfectly axially symmetric and one
may observe thin areas close to the boundary of the deformed
cylinder with a progressive change in the gray level, from light to
dark gray. In addition, deformed samples which are non axially
symmetric due to wrinkles or dimples lead to a continuous distri-
bution of the gray level at points with coordinates (r, z) that can be
either inside or outside the sample depending on the azimuth.

In the simulations, the dimensionless acceleration a has been
directly calculated from the value of m determined by indentation
tests, and the dimensionless surface tension b is calculated by
taking for g the surface energy coefficient of water since the gels are
mainly composed of water (more than 99.9% in mass).

The comparison between experiments and numerics is
satisfactory (Fig. 9). The observed discrepancies result from
the uncertainties in the determination of m, and from slight
defects in the samples. The physical ingredients used in the
simulations (the neo-Hookean constitutive law, with gravity
and surface tension) are therefore enough to quantitatively
capture the averaged shape of the hanging cylinders. In cases
of samples with wrinkles or secondary depressions (dimples),
the good agreement between the mean vertical slices and the
axially symmetric FE simulations, support the view of wrinkles
or dimples as perturbations of a axially symmetric base states.

In this appendix, a numerical method has been introduced.
It has been used to show that the interplay between gravity and
elasticity produces dimples at the bottom interface of hanging
cylinders with a large aspect ratio. In addition, enforcing axially
symmetric deformations in the simulations yields to deformed

1. Numerical method

We use numerical computations based on the FE method to predict 
the equilibrium configuration of an elastic cylinder (of radius R and 
height h) under the action of the gravity and capillary forces, with the 
condition of zero displacement at the upper end. We model the body 
as an incompressible neo-Hookean solid (of shear modulus m) with a  
surface energy proportional to the total area of its boundary in the 
current configuration (coefficient of proportionality g). We accept 
that the body can undergo large displacements and deformations, by 
using a fully non-linear kinematical theory.

Let O be the cylindrical domain (height h and radius R) in  
the reference configuration, r be the material point location 
in this reference configuration, u(r) be the displacement 
vector, and F(r) be the deformation gradient tensor (formally, 
F = q(r + u)/qr). To characterize equilibrium configurations, we 
consider the augmented energy
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shapes that well reproduce the mean vertical slices obtained in 
the experiments.

Appendix B: stretched cylinder

This appendix deals with an experiment carried out with a 
cylinder made in polyacrylamide gel, attached by its ends to two 
parallel rigid plates and stretched in an extensometer.

The initial radius is r = 7.2 cm and the initial height is h = 2
cm. The shear modulus of the polyacrylamide hydrogel is m =
51.8� 1.5 Pa. The elasto-capillary length, defined as the ratio of
the surface tension (g B 70 mN m�1) to the shear modulus, is
cec B 1.3 mm.

The sample is stretched step by step by the extensometer
with increments of 3 mm. For each step, the equilibrium shape
is acquired using an X-ray scanner. The resolution is adapted so
that the size of the cubic voxels is (200 mm)3.

Fig. 9 Vertical slices of hanging cylinders captured by micro-tomography, obtained by averaging over the azimuth. The left border of each image is the
axis of revolution of the initial (undeformed) shape, whose initial dimensions are indicated by the red lines. Blue lines reproduce the deformed shapes
computed by FE simulations with nmesh = 20, for which a and b are indicated at the top of each image. Bar length is 1 cm.
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Representative three-dimensional reconstructions of the
deformed cylinder are show in Fig. 10 for three different stretch
ratio. Fig. 10(a) shows the sample in an almost unstretched
configuration. The lateral surface is not straight because of the
effect of gravity. In Fig. 10(b) the stretch ratio is lower than the
threshold reported in ref. 23 and 26 for the fingering instability
and the sample is, accordingly, axially symmetric. In Fig. 10(c)
the threshold has been reached, and one recovers the fingering
instability reported in ref. 22 and 23. In Fig. 10(d) the stretch
ratio is larger and one observes the formation of new generations of
wrinkles.

The outer boundaries of the horizontal slices on the right of
Fig. 10 share common features with horizontal slices in Fig. 3 of
the main article. Note that the characteristic lengthscales in the
observed patterns are larger than the elasto-capillary length cec,
hence capillary effects are not expected to be significant.
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