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A variational approach to regularity theory in optimal transportation

This paper describes recent results obtained in collaboration with M. Huesmann and F. Otto on the regularity of optimal transport maps. The main result is a quantitative version of the well-known fact that the linearization of the Monge-Ampère equation around the identity is the Poisson equation. We present two applications of this result. The first one is a variational proof of the partial regularity theorem of Figalli and Kim and the second is the rigorous validation of some predictions made by Carraciolo and al. on the structure of the optimal transport maps in matching problems.

Introduction

Following Caffarelli's groundbreaking papers [START_REF]The regularity of mappings with a convex potential[END_REF][START_REF] Caffarelli | A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity[END_REF], the classical approach to regularity theory for solutions of the optimal transport problem goes through maximum principle arguments and the construction of barriers (see the review paper [START_REF] Philippis | The Monge-Ampère equation and its link to optimal transportation[END_REF]). The aim of this note is to describe a recent alternative approach, more variational in nature and based on the fact that the linearization of the Monge-Ampère equation around the identity is the Poisson equation (see [START_REF] Villani | Topics in optimal transportation[END_REF]). Our main achievement in this direction is an harmonic approximation result which says that if at a given scale the transport plan is close to the identity and if at the same scale both the starting and target measures are close (in the Wasserstein metric) to be constant, then on a slightly smaller scale, the transport plan is actually extremely close to an harmonic gradient field. As in De Giorgi's approach to the regularity theory for minimal surfaces (see [START_REF] Maggi | Sets of finite perimeter and geometric variational problems[END_REF]) this allows to transfer the good regularity properties of harmonic functions to the transport plan and obtain an "excess improvement by tilting" estimate. This may be used to propagate information from the macroscopic scale down to the microscopic scale through a Campanato iteration.

We give two applications of this result. The first one is a new proof of the partial regularity result of Figalli and Kim [START_REF] Figalli | Partial regularity of Brenier solutions of the Monge-Ampère equation[END_REF] (see also [START_REF]Partial regularity for optimal transport maps[END_REF]). The second one is a validation up to the microscopic scale of the prediction by Caracciolo and al. [START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem[END_REF] that for the optimal matching problem between a Poisson point process and the Lebesgue measure, the optimal transport plan is well approximated by the gradient of the solution to the corresponding Poisson equation with very high probability.

The plan of this note is the following. In Section 2 we recall some standard results on optimal transportation. The harmonic approximation theorem is stated together with a sketch of proof in Section 3. We then describe the application to the partial regularity result in Section 4 and to the optimal matching problem in Section 5.

The optimal transport problem

Optimal transportation is nowadays a very broad and active field. We give here only a very basic and short introduction to the topic and refer the reader to the monographs [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF][START_REF] Villani | Topics in optimal transportation[END_REF] for much more details. For µ and λ two positive measures on R d with µ(R d ) = λ(R d ) the optimal transport problem (in its Lagrangian formulation) is

W 2 (µ, λ) = inf π 1 =µ,π 2 =λ R d ×R d |x -y| 2 dπ, (2.1) 
where for a coupling π on R d × R d , π 1 (respectively π 2 ) denotes the first (respectively the second) marginal of π. Under very mild assumptions on µ and λ (for instance compact supports), an optimal transference plan π exists (see [START_REF] Villani | Topics in optimal transportation[END_REF]). The optimality conditions are as follows:

Theorem 2.1. Let π be a coupling between µ and λ.

(i) (Knott-Smith) It is optimal if and only if there exists a convex and lower-semicontinuous function ψ (also called the Kantorovich potential) such that spt π ⊆ Graph(∂ψ).

(ii) (Brenier) Moreover, if µ does not give mass to Lebesgue negligible sets, then there exists a unique ∇ψ, gradient of a convex function, with ∇ψ#µ = λ and π = (id × ∇ψ)#µ. In this case we let T = ∇ψ be the optimal transport map.

Let us point out that assuming that ψ is regular and that both µ and λ are smooth densities, the condition T #µ = λ is nothing else than the Monge-Ampère equation

det ∇ 2 ψ = µ λ • ∇ψ .
In particular, if both µ and λ are close to (the same) constant density, then the Monge-Ampère equation linearizes to the Poisson equation (see [START_REF] Villani | Topics in optimal transportation[END_REF]Ex. 4.1])

∆ψ = µ -λ. (2.2)
We will also use the Eulerian formulation of the optimal transport problem.

Theorem 2.2 (Benamou-Brenier

). There holds

W 2 2 (µ, λ) = inf (ρ,j) R d 1 0 1 ρ |j| 2 : ∂ t ρ + ∇ • j = 0, ρ 0 = µ, ρ 1 = λ . (2.3)
Moreover, if π is an optimal transport plan for (2.1), then the density-flux pair (ρ t , j t ) defined for t ∈ [0, 1] by its action on test functions

(ζ, ξ) ∈ C 0 (R d ) × (C 0 (R d )) d as R d ζdρ t = R d ×R d ζ((1 -t)x + ty)dπ and R d ξ • dj t = R d ×R d ξ((1 -t)x + ty) • (y -x)dπ, (2.4 
) is a minimizer of (2.3).

Let us introduce some further notation. If (ρ, j) is a minimizer of (2.3), we define (ρ, j) the density-flux pair obtained by integrating in time (for instance ρ = 1 0 ρ t ). For R > 0 and µ a positive measure on R d , we denote by

W B R (µ, κ) = W (µ B R , κχ B R dx),
the Wasserstein distance between the restriction of µ to the ball B R and the corresponding constant density κ = µ(B R ) |B R | . In order to obtain a local version of the equivalence between (2.1) and (2.3), we will need an L ∞ bound on the displacement (see [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF][START_REF]Quantitative linearization results for the Monge-Ampère equation[END_REF]).

Lemma 2.3. Let π be a coupling between two measures µ and λ. Assume that spt π is monotone i and that for some ii R > 0, E + D

1 where

E = 1 R d+2 (B 6R ×R d )∪(R d ×B 6R ) |x -y| 2 dπ
(2.5)

and

D = 1 R d+2 W 2 B 6R (µ, κ µ ) + 1 κ µ (κ µ -1) 2 + 1 R d+2 W 2 B 6R (λ, κ λ ) + 1 κ λ (κ λ -1) 2 . (2.6)
Then, for every (x, y)

∈ spt π ∩ (B 5R × R d ) ∪ (R d × B 5R ) |x -y| R (E + D) 1 d+2 . (2.7)
3 The harmonic approximation theorem

We now state the harmonic approximation theorem. By scaling invariance, it is enough to state it at the unit scale R = 1. For µ, λ two positive measures and π an optimal coupling between them, we define the "excess" energy E as in (2.5) and the distance to the data D as in (2.6).

Theorem 3.1. ([19, Th. 1.4]) For every 0 < τ 1, there exist ε(τ ) > 0 and C(τ ) > 0 such that provided E + D ≤ ε, there exists a radius R ∈ (3, 4) such that if Φ is a solution of (ν denotes here the external normal to ∂B R )

∆Φ = c in B R and ν • ∇Φ = ν • j on ∂B R , (3.1) 
where c is the generic constant for which this equation is solvable, then

(B 1 ×R d )∪(R d ×B 1 ) |x -y + ∇Φ(x)| 2 dπ ≤ τ E + CD. (3.2)
The proof of Theorem 3.1 is actually performed at the Eulerian level. Thanks to Lemma 2.3, it is indeed enough to prove:

Theorem 3.2. For every 0 < τ 1, there exist ε(τ ) > 0 and C(τ ) > 0 such that provided E + D ≤ ε, there exists a radius R ∈ (3, 4) such that if Φ solves (3.1), then B 2 1 0 1 ρ |j -ρ∇Φ| 2 ≤ τ E + CD. (3.3)
To simplify a bit the discussion, we will assume from now on that λ = κ µ = 1, so that

D = W 2 B 6 (µ, 1
). The proof of Theorem 3.2 is based on three ingredients. The first of them is the choice of a 'good' radius R. Indeed, as will become apparent in the discussion below, we need a control on various quantities and this seems to be possible only for generic radii. The second ingredient is an almost orthogonality property. The last one is the construction of a competitor for (2.3). We define the measure f = ν • j on ∂B R × (0, 1) and then let f = 1 0 f = ν • j. Before discussing the almost orthogonality property and the construction, let us point out that for our estimates we would need to control the Dirichlet energy B R |∇Φ| 2 by E + D. Since by elliptic regularity,

B R |∇Φ| 2 ∂B R f 2 , (3.4) 
this is only possible if f is controlled in L 2 (or at least in H -1/2 ). In order to solve this issue, (3.3) is first proven with φ instead of Φ where φ solves

∆φ = c in B R and ν • ∇φ = ĝ on ∂B R ,
where ĝ is a regularized version of f in the sense that iii

∂B R ĝ2 E + D and W 2 ( f± , ĝ± ) (E + D) d+3 d+2 . (3.5)
The density ĝ is obtained by projection on ∂B R , using the fact that for 'good' radii, thanks to (2.7), the number of particles crossing ∂B R is controlled by E + D. We will however

iii For a measure µ, we note µ ± its positive/negative part.

forget here about this difficulty and assume that we may choose ĝ = f (and thus φ = Φ).

In particular, in view of (3.5), we will assume that we have the bound

∂B R 1 0 f 2 E + D. (3.6) 
We may now state the almost-orthogonality property:

Lemma 3.3. (Orthogonality) For every 0 < τ 1, there exist ε(τ ) > 0 and C(τ

) > 0 such that if E + D ≤ ε, B 2 1 0 1 ρ |j -ρ∇Φ| 2 ≤ B R 1 0 1 ρ |j| 2 - B R |∇Φ| 2 + τ E + CD. (3.7)
Sketch of proof. Expanding the squares we have

B R 1 0 1 ρ |j -ρ∇Φ| 2 = B R 1 0 1 ρ |j| 2 - B R |∇Φ| 2 + 2 B R 1 0 (∇Φ -j) • ∇Φ + B R (ρ -1)|∇Φ| 2 .
Let us estimate the two error terms. Using integration by parts we have (assuming without loss of generality that B R Φ = 0)

B R 1 0 (∇Φ -j) • ∇Φ = - B R 1 0 (∆Φ -∇ • j)Φ + ∂B R 1 0 ( f -f )Φ = - B R 1 0 ∂ t ρΦ = B R Φd(µ -1)
Forgetting higher order terms (and assuming that µ(B R ) |B R | = 1), we have (recall that the Wasserstein distance is homogeneous to the

H -1 norm) B R Φd(µ -1) B R |∇Φ| 2 1/2 W B R (µ, 1) (3.4)&(3.6) (E + D) 1/2 D 1/2 Young ≤ τ E + C τ D.
(3.8) Regarding the second term, in the case when µ = χ Ω for some set B 6 ⊆ Ω, we may argue as in [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF]Lem. 3.2] and obtain that by McCann's displacement convexity, ρ ≤ 1 and thus B R (ρ -1)|∇Φ| 2 ≤ 0. For generic measures µ the argument is more subtle and requires a combination of elliptic estimates for (a regularized version of) Φ together with the bound

W 2
B R (ρ, 1) E + D, which holds for 'good' radii.

As explained above, the last ingredient is the construction of a competitor: Lemma 3.4. For every 0 < τ 1, there exist ε(τ ) > 0 and C(τ ) > 0 such that if E + D ≤ ε, there exists a density-flux pair ( ρ, j) such that

     ∂ t ρ + ∇ • j = 0 in B R × (0, 1) ρ 0 = µ, ρ 1 = 1 in B R ν • j = f on ∂B R × (0, 1) (3.9) 
and

B R 1 0 1 ρ | j| 2 - B R |∇Φ| 2 ≤ τ E + CD. (3.10)
Sketch of proof. We may assume for simplicity that also µ = 1 in B R . Indeed, otherwise we can connect in the time interval (0, τ ), the measure µ (in B R ) to the constant density 1 at a cost of order

1 τ W 2 B R (µ, 1) = 1 τ D. Let 0 < r
1 be a small parameter to be chosen later on. We make the construction separately in the bulk B R-r × (0, 1) and in the boundary layer B R \B R-r × (0, 1) and set [START_REF] Ajtai | On optimal matchings[END_REF], so that (3.9) is satisfied. The existence of an admissible pair (s, q) satisfying the energy bound

ρ = 1 in B R-r × (0, 1) 1 + s in B R \B R-r × (0, 1), j = ∇Φ in B R-r × (0, 1) ∇Φ + q in B R \B R-r × (0, 1), and require that |s| ≤ 1/2, ∂ t s + ∇ • q = 0 in B R \B R-r × (0, 1), s 0 = s 1 = 0 in B R and ν • q = f -f on ∂B R × (0,
B R \B R-r 1 0 |q| 2 r ∂B R 1 0 (f -f ) 2 (3.11)
as long as r

∂B R 1 0 (f -f ) 2 1/(d+1)
is obtained arguing by duality, in the same spirit as [START_REF] Alberti | Uniform energy distribution for an isoperimetric problem with long-range interactions[END_REF]Lem.3.3] (see [START_REF] Goldman | A variational proof of partial regularity for optimal transportation maps[END_REF]Lem. 2.4]). We may now estimate

B R 1 0 1 ρ | j| 2 - B R |∇Φ| 2 ≤ B R \B R-r 1 0 1 1 + s |∇Φ + q| 2 B R \B R-r |∇Φ| 2 + B R \B R-r 1 0 |q| 2 (3.11) r ∂B R f 2 + r ∂B R 1 0 (f -f ) 2 r ∂B R f 2 ,
where we used that by elliptic regularity,

B R \B R-r |∇Φ| 2 r ∂B R f 2 . Choosing r to be a large multiple of ∂B R 1 0 (f -f ) 2 1/(d+1) yields B R 1 0 1 ρ | j| 2 - B R |∇Φ| 2 ∂B R 1 0 f 2 d+2 d+1 (3.6) (E + D) d+2 d+1 ,
which concludes the proof of (3.10) since d+2 d+1 > 1 and E + D 1.

Proof of Theorem 3.2. By (local) minimality of (ρ, j), we have 

B R 1 0 1 ρ |j| 2 ≤ B R 1 

Application to partial regularity

We now turn to applications of Theorem 3.1 and start with a partial regularity result. Here we are interested in the behavior at small scales. Let us first recall the main regularity result for optimal transport maps due to Caffarelli [START_REF] Caffarelli | A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity[END_REF][START_REF]The regularity of mappings with a convex potential[END_REF]. Theorem 4.1. If µ and λ have compact supports, are absolutely continuous with respect to the Lebesgue measure with densities bounded from above and below on their support and if spt λ is convex, then the optimal transport map T from µ to λ is C 0,α .

The hypothesis that spt λ is convex is not merely technical. Indeed, considering for instance the optimal transport map between one ball and two disjoint balls, it is easy to construct examples where the optimal transport map is discontinuous. However, building on the ideas of Caffarelli to prove Theorem 4.1, Figalli and Kim proved in [START_REF] Figalli | Partial regularity of Brenier solutions of the Monge-Ampère equation[END_REF] that even without the convexity assumption on spt λ, the singular set of T cannot be too big (see also [START_REF]Partial regularity for optimal transport maps[END_REF] for a generalization to arbitrary non-degenerate cost functions). Theorem 4.2. Let µ and λ be probability measures with compact supports, both absolutely continuous with respect to the Lebesgue measure with densities bounded from above and below on their support. Then, there exist open sets Ω ⊆ spt µ and Ω ⊆ spt λ with |spt µ\Ω| = |spt λ\Ω | = 0 and such that the optimal transport map T from µ to λ is a C 0,α homeomorphism between Ω and Ω .

Let us point out that it is actually conjectured that the singular set is much smaller and has the same structure as the singular set of gradients of convex functions i.e. that it is n -1-rectifiable (see [START_REF] Kitagawa | Free discontinuities in optimal transport[END_REF] for a result in this direction). A first application of Theorem 3.1 is a new proof of Theorem 4.2 (under the additional hypothesis that µ and λ are Hölder continuous). For the sake of simplicity, we will assume from now on that µ = χ Ω 1 and λ = χ Ω 2 for some bounded open sets Ω i (so that in particular with the notation of Section 3, D = 0). As in [START_REF]Partial regularity for optimal transport maps[END_REF], we derive Theorem 4.2 combining Alexandrov's Theorem (see [START_REF] Villani | Topics in optimal transportation[END_REF]), which state that T is differentiable a.e., with an ε-regularity theorem. Theorem 4.3. ([20, Th.1.2]) Let T be the optimal transport map from Ω 1 to Ω 2 . For every α ∈ (0, 1), there exists ε(α

) such that if R > 0 is such that B 6R ⊆ Ω 1 ∩ Ω 2 and 1 R d+2 B 6R |T -x| 2 ≤ ε, then T ∈ C 1,α (B R ).
By scaling invariance, we may assume that R = 1. As already alluded to the proof goes through a Campanato iteration. Indeed, by Campanato's characterization of C 1,α spaces (see [START_REF] Campanato | Proprietà di una famiglia di spazi funzionali[END_REF]), it is enough to prove that for every 0 < r ≤ 1 6 , min

A,b 1 r d+2 Br |T -(Ax + b)| 2 r 2α B 1 |T -x| 2 . Defining E(T, R) = 1 R d+2 B 6R |T -x| 2 ,
this is in turn obtained by using iteratively the following proposition. Proposition 4.4. For every α ∈ (0, 1), there exist θ(α) ∈ (0, 1) and ε(α) such that if B 6R ⊆ Ω 1 ∩ Ω 2 and E(T, R) ≤ ε, there exist a symmetric matrix B with det B = 1 and a vector b such that letting

T (x) = B(T (Bx) -b), E( T , θR) ≤ θ 2α E(T, R)
and T is the optimal transport map between Ω1 = B -1 Ω 1 and Ω2 = B(Ω 2 -b).

Sketch of proof. By scaling we may assume that

R = 1. Let τ θ 2α
θ d+2 be fixed. Applying Theorem 3.1, we find the existence of a function Φ which is harmonic in B 2 (under our assumptions c = 0 in (3.1)) and such that (since D = 0)

B 1 |T -(x + ∇Φ)| 2 ≤ τ E(T, 1) (4.1) 
and (recall (3.4) and (3.6))

B 2
|∇Φ| 2 E(T, 1). (4.2)

We then define b = ∇Φ(0) and B = exp(-A/2) where A = ∇ 2 Φ(0). Since Φ is harmonic TrA = 0 and thus det B = 1. Notice that if T = ∇ψ for some convex function ψ (by Theorem 2.1), then T = ∇ ψ with ψ(x) = ψ(Bx) -b • x, which is also a convex function. Therefore T is the optimal transport map between Ω1 and Ω2 . We may now estimate

E( T , θ) = 1 θ d+2 B 6θ | T -x| 2 = 1 θ d+2 B -1 (B 6θ ) |B(T -b) -B -1 x| 2 1 θ d+2 B 7θ |T -b -B -2 x| 2 1 θ d+2 B 1 |T -(x + ∇Φ)| 2 + 1 θ d+2 B 7θ |∇Φ -(Ax + b)| 2 + 1 θ d+2 B 7θ |(exp A -id -A)x| 2 (4.1) τ θ d+2 E(T, 1) + θ 2 sup B 7θ |∇ 3 Φ| 2 + |A| 4 (4.2) τ θ d+2 E(T, 1) + θ 2 E(T, 1) + E(T, 1) 2 .
This concludes the proof since we chose τ θ 2α θ d+2 and since E(T, 1)

1.

Application to the optimal matching problem

We now present an application to the optimal matching problem. As opposed to the previous section, we are interested here at large scales. Over the last thirty years, optimal matching problems have been the subject of intensive work. We refer for instance to the monograph [START_REF] Talagrand | Upper and lower bounds for stochastic processes: modern methods and classical problems[END_REF]. One of the simplest example is the problem of matching the empirical measure of a Poisson point process to the corresponding Lebesgue measure. More specifically, we consider for L 1 a Poisson point process µ on the the torus

Q L = [-L/2, L/2) d (R/LZ) d i.e. µ = n i=1 δ X i
with X i iid random variables uniformly distributed in Q L and n a random variable with Poisson distribution with parameter L d . The problem is to estimate the random variable

1 L d W 2 per (µ, κ),
where W per indicates the Wasserstein distance on the torus Q L , and to understand the structure of the corresponding optimal transport plans. It is well-known since [START_REF] Ajtai | On optimal matchings[END_REF] that iv

E 1 L d W 2 per (µ, κ) ∼ log L if d = 2 1 for d ≥ 3 (5.1)
and thus d = 2 is a critical dimension. Recently, Caracciolo and al. used the ansatz that the optimal displacement should be well approximated by ∇ϕ L , where ϕ L solves the Poisson equation (recall (2.2))

∆ϕ L = µ -κ in Q L (5.2)
to make numerous predictions about the optimal prefactor in (5.1) as well as the correlations (see [START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem[END_REF][START_REF] Caracciolo | Scaling hypothesis for the Euclidean bipartite matching problem. II. Correlation functions[END_REF]). At the macroscopic scale, this ansatz has been partially rigorously justified by Ambrosio and al. (see [START_REF] Ambrosio | A PDE approach to a 2-dimensional matching problem[END_REF][START_REF] Ambrosio | On the optimal map in the 2-dimensional random matching problem[END_REF] and also [START_REF] Ledoux | A fluctuation result in dual Sobolev norm for the optimal matching problem[END_REF] for a result about the fluctuations) in dimension 2. To state their result v , let us introduce some notation. For t > 0, denote the heat kernel on Q L by P t and let ϕ L,t = P t * ϕ L , so that ϕ L,t solves ∆ϕ L,t = P t * µ -κ in Q L .

iv We use the notation log for the natural logarithm.

v The results of [START_REF] Ambrosio | A PDE approach to a 2-dimensional matching problem[END_REF][START_REF] Ambrosio | On the optimal map in the 2-dimensional random matching problem[END_REF] are stated on the unit cube with a (deterministic) number of points n → ∞. However, their results may be easily transposed into our setting by scaling. Moreover, if π L is the optimal transport plan between µ and κ, then setting t L = log 4 L, for L 1 there holds

1 log L E 1 L 2 Q L ×Q L |y -x -∇ϕ L,t L | 2 dπ L log log L log L 1/2
.

(5.4)

Since by (5.3), the displacement y -x is on average of the order of log 1 2 L, (5.4) shows that ∇ϕ L,t L indeed coincides with the displacement to leading order. This leaves open the description of the optimal transport plan π L at the microscopic scale. To state our main result, fix a smooth cut-off function (which plays a similar role as the heat kernel in Theorem 5.1)

η ∈ C ∞ c (B 1 ) with R 2 η = 1, and set η R = 1 R 2 η • R .
In [START_REF] Goldman | [END_REF], we prove the following result (see also [START_REF]Quantitative linearization results for the Monge-Ampère equation[END_REF]Th. 1.2] and [18, Th. 1.1]):

Theorem 5.2. There exists a stationary random variable r * ≥ 1 on Q L with exponential moments such that if x ∈ Q L is such that r * (x) L, then

Q L ×Q L η R (x -x)(y -x)dπ Q L ×Q L η R (x -x)dπ -η R * ∇ϕ L (x) log R R ∀L R r * (x).
(5.5)

Moreover, there exists R = R(x) ∼ r * (x) such that defining the shift h by h(x) =

1 |B R | ∂B R (x) (x -x)ν • ∇ϕ L , we have |h(x)| 2 log L (5.6)
and

sup{|y -x -h(x)| : (x, y) ∈ spt π ∩ (B r * (x) × R 2 )} r * (x) log r * (x) r 2 * (x) 1/4 . (5.7) 
With respect to (5.4), (5.7) proves that (circular) averages of ∇ϕ L coincide with the displacement y -x up to an error which is of order one. Moreover, (5.5) shows that after averaging, the displacement is actually extremely close to averages of ∇ϕ L (notice that the error term log R/R improves as R increases).

By stationarity, it is enough to prove Theorem 5.2 for x = 0. The proof is based on the following deterministic result (which is a small post-processing of [19, Th. 1.2]):

Theorem 5.3. Let µ be a measure on Q L . If for some L r 1, 1 R 2 W 2 B R (µ, κ) log R for all dyadic L R r, (5.8) 
then

Q L ×Q L η R (x)(y -x)dπ Q L ×Q L η R (x)dπ - Q L η R ∇ϕ L log R R ∀L R r.
(5.9)

Moreover, there exists R ∼ r such that letting h

= 1 |B R | ∂B R xν • ∇ϕ L , we have 1 r 2 (Br×R 2 )∪(R 2 ×Br(h))
|y -x -h| 2 dπ log r.

(5.10)

Notice that (5.7) follows from (5.10) and the L ∞ bound (2.7) of Lemma 2.3. In order to obtain Theorem 5.2, Theorem 5.3 is combined with a stochastic argument based on (5.3) and a concentration-of-measure argument which ensures that (5.8) is satisfied for the Poisson point process µ. The main ingredient for the proof of Theorem 5.3 is a Campanato iteration scheme similar to the one leading to Theorem 4.3 (and mainly based on Theorem 3.1) which allows to transfer the information that (5.10) holds at scale L by (5.8) down to the microscopic scale r. This is inspired by the approach developed by Armstrong and Smart in [START_REF] Armstrong | Quantitative stochastic homogenization of convex integral functionals[END_REF] (and further refined in [START_REF] Gloria | A regularity theory for random elliptic operators[END_REF], see also [START_REF] Armstrong | Quantitative stochastic homogenization and large-scale regularity[END_REF]) for quantitative stochastic homogenization. The main ideas of [START_REF] Armstrong | Quantitative stochastic homogenization of convex integral functionals[END_REF] take roots themselves in previous works of Avellaneda and Lin (see [START_REF] Avellaneda | Compactness methods in the theory of homogenization[END_REF]) on periodic homogenization. The outcome of the Campanato scheme may be stated as follows (see [19, Prop. 1.9]) Proposition 5.4. There exists a sequence of approximately geometric radii (5.12)

R k i.e. L ≥ R 0 ≥ • • • ≥ R K 1 with R k-1 ≥ 2R k R k-1 ,
Let us point out that by invariance of the Lebesgue measure under translations, π k is the optimal transport plan between µ and the Lebesgue measure for every k (this is the reason why we make the translation in the target space). Letting h = K-1 k=0 ∇Φ k (0) and undoing the iterative definition of π k , we see that (5.11) directly leads to (5.10) with h replaced by h. The proof of (5.10) is concluded by the estimate (see [START_REF]Quantitative linearization results for the Monge-Ampère equation[END_REF]Prop. 1.10]) |h -h| log r r .

This estimate is also crucial for the proof of (5.9). Let us point out that a naive estimate using (5.12) leads to | h| 2 log 3 L which is suboptimal. In order to obtain a shift with the optimal estimate (5.6) it is therefore important to take into account cancellations and replace h by h.

Let us close this note by pointing out that in dimension d ≥ 3, the optimal transport plans corresponding to a very closely related optimal matching problem, have been used in [START_REF] Huesmann | Optimal transport from Lebesgue to Poisson[END_REF] to construct in the limit L → ∞, a stationary and locally optimal coupling between the Poisson point process on R d and the Lebesgue measure. For d = 2, such a coupling is expected not to exist. However, using (5.7) and passing to the limit L → ∞, it is possible to construct (at least in the sense of Young measures) a coupling between the Poisson point process on R 2 and the Lebesgue measure, which is locally optimal and has stationary increments (see [START_REF]A large-scale regularity theory for the Monge-Ampere equation with rough data and application to the optimal matching problem[END_REF]Th.1.2]).

0 1 ρ

 1 | j| 2 so that combining (3.7) and (3.10) together gives the desired estimate (3.3).

Theorem 5 . 1 .

 51 Let d = 2, then lim

1 R 2 k

 12 R 0 ∼ L and R K ∼ r such that defining recursively the couplings π k by π 0 = π andπ k = (id, id -∇Φ k-1 (0))#π k-1 where Φ k solves ∆Φ k = c in B R k and ν • ∇Φ k = ν • jk on ∂B R k with j k defined as in (2.4) with π k playing the role of π, we have for k ∈ [0, K], (B 6R k ×R 2 )∪(R 2 ×B 6R k ) |x -y| 2 dπ k log R k (5.11)and |∇Φ k (0)| 2 log R k .

i Meaning that for every (x 1 , y 1 ) and (x 2 , y 2 ) in spt π, (x 1 -x 2 ) • (y 1 -y 2 ) ≥ 0.ii We use the short-hand notation A 1 to indicate that there exists ε > 0 depending only on the dimension such that A ≤ ε. Similarly, A B means that there exists a constant C > 0 depending on the dimension such that A ≤ CB.
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