
HAL Id: hal-02180618
https://hal.science/hal-02180618

Submitted on 30 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Student’s t Information Filter with Adaptive Degree of
Freedom for Multi-Sensor Fusion

Joelle Al Hage, Philippe Xu, Philippe Bonnifait

To cite this version:
Joelle Al Hage, Philippe Xu, Philippe Bonnifait. Student’s t Information Filter with Adaptive Degree
of Freedom for Multi-Sensor Fusion. 22nd International Conference on Information Fusion (FUSION
2019), Jul 2019, Ottawa, Canada. pp.839-846, �10.23919/FUSION43075.2019.9011288�. �hal-02180618�

https://hal.science/hal-02180618
https://hal.archives-ouvertes.fr


Student’s t Information Filter with Adaptive Degree of Freedom for
Multi-Sensor Fusion

Joelle Al Hage, Philippe Xu and Philippe Bonnifait

Abstract— Safety-critical applications such as autonomous
driving require a high-integrity localization system that bounds
the errors of the estimation process. In this paper, the classical
Kalman filter used for multi-sensor data fusion, which is unable
to consistently bound estimation errors with a low probability
risk, is replaced by a Student’s t filter. The degree of freedom
of the t distribution offers a way of shaping the heavy tail of
the distribution that makes the estimation process more robust
in the presence of non-detectable bias and results in a more
consistent confidence interval computation. We make use of
the heavy-tailed property of the t distribution by introducing a
novel real-time adaptive computation of the degree of freedom.
The filtering process is formalized through an informational
form, since this makes it easier to include a fault detection
and exclusion step where a bank of filters is generated. The
performance of the proposed approach is evaluated through a
localization problem using data acquired from an experimental
vehicle equipped with multiple sensors: a GNSS receiver, wheel-
speed sensors, a yaw rate gyro and a smart camera that
can detect several lane markings, together with high-definition
maps.

I. INTRODUCTION

The social acceptability of autonomous vehicles depends
on their ability to operate seamlessly in today’s road net-
works. Accurate and reliable localization is therefore vital.
Localizing autonomous vehicles generally relies on sen-
sors such as GNSS (Global Navigation Satellite System)
receivers, perception sensors (camera, LiDAR) and dead-
reckoning sensors. It also makes use of High Definition
(HD) road maps [1], [2] used to perform a map matching
by associating the estimated position (obtained via GNSS or
dead-reckoning) with the map [3], [4]. Additional informa-
tion from exteroceptive sensors such as cameras can be used
to detect lane markings and to improve positioning.

One of the most commonly used filters for combining data
from different sensors is the Kalman Filter (KF). This filter
is optimal in terms of minimum mean square error for a
linear model with Gaussian noise. However, for autonomous
vehicles, the assumption of a Gaussian distribution is often
not justified, especially in urban environments where the
GNSS signals are affected by multi-path and non-line of
sight. Large errors with small probabilities can appear in
these environments, generating heavy-tailed distributions.

In this work, we are looking for a state estimator that
provides consistency in terms of confidence intervals. Con-
sistency is here a more important criterion than optimality.
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The Student’s t Filter (StF) can be seen as a modification of
KF for managing process and measurement noise that has
a heavy-tailed distribution. This filter is known to be more
robust to large errors and outliers [5], [6]. In this paper we
develop an informational form of the StF to take advantage of
its update step. This form is better suited to multi-sensor data
fusion and to decentralized architectures. The development of
the Student’s t Information Filter (StIF) is done in a similar
way to the development of the Information Filter (IF) [7].
Although the Student’s t filter is quite robust to large errors,
they still affect the localization procedure. For this reason
we add a Fault Detection and Exclusion stage (FDE) to
exclude erroneous measurements that have a direct effect
on the estimation procedure. The Student’s t distribution is
characterized by a degree of freedom (dof) that shapes the
tail of the distribution. It directly affects the performance of
the filter and the computed confidence interval. In order to
avoid setting a fixed degree of freedom, which is difficult
to do when the environment changes, the residual used in
the FDE stage is used to adapt the dof of the StIF in real-
time. The literature has little to say about the determination
of the appropriate dof of a Student’s t filter, apart from the
work done in [8], where the authors propose using a multiple
model adaptive estimation.

We apply our proposed robust StIF with adaptive degree
of freedom to the localization of an autonomous vehicle.
Dead-reckoning measurements are merged with GNSS mea-
surements (GPS and GLONASS) obtained from a low-cost
mono-frequency receiver and with measurements from a
smart camera. The camera returns measurements of detected
lane markings that are used to enhance the localization
procedure after solving the data association with the HD
map.

A second step involves computing a confidence interval
that bounds the position errors with a given risk. Compared to
a classical Gaussian assumption, the Student’s t distribution
is well adapted to this kind of computation. The heavy tail
of the t distribution takes into account errors that have a
small probability. Since we are dealing with autonomous
vehicles, it is interesting to express the confidence interval
in the along-track (AT) and cross-track (CT) directions. This
shows the contribution made by the camera in reducing the
confidence interval in the CT direction.

This paper is organized as follows. After an introduction
on Student’s t distributions, section 2 presents the main con-
tributions of the research, namely the Student’s t information
filter (StIF) and the robust StIF with adaptive degree of
freedom. In this section the FDE stage is also described



in detail. Section 3 presents the localization of a self-
driving car using the proposed robust filter. The computation
of confidence intervals applied to the localization is also
presented in this section. Section 4 reports an experimental
study and the performance of the method on a recorded
dataset in Rambouillet, France. Our conclusion and prospects
for future work are given in section 5.

II. MULTI-SENSOR DATA FUSION USING THE
INFORMATIONAL FORM OF STUDENT’S t FILTER

A. Student’s t distribution

A random variable X is said to follow a multivariate t
distribution with mean vector µ, scale matrix P and degree
of freedom (dof) ν, if it can be written in the form [9]:

X = µ+ ω−
1
2 y (1)

where ω is distributed according to a Gamma distribution
Γ
(
ν
2 ,

ν
2

)
and y has a zero-mean Gaussian distribution with

covariance P . It is denoted as X ∼ St(µ, P, ν).
The degree of freedom of the Student’s t distribution has

a direct effect on the tails of the distribution and if ν →∞
the t distribution converges to a Gaussian distribution. The
covariance of the t distribution is defined only if ν > 2, and
in this case it can be written as Σ = ν

ν−2P . The Student’s
t distribution can also be viewed as a mixture of normal
density [10].

The Student’s t distribution shares some properties with
the Gaussian distribution [9]. For example, for any a and any
non-singular matrix B, the random variable z = BX + a
follows a t distribution in the form: St(Bµ+ a,BPBT , ν).
This property is used in the derivation of Student’s t Kalman
Filter (StF).

B. System modeling

Consider the following evolution and observation models
used in a multi-sensor data fusion problem:

Xk+1 = f(Xk, uk) + vk (2)

Zk = h(Xk) + wk (3)

X is the state vector with scale matrix P
uk is the input vector (for instance speed or acceleration)
Z is the observation vector (typically exteroceptive sensors

measurements)
vk and wk are the process and measurements noises.
Suppose that the initial state and the noises follow Stu-

dent’s t distributions [11], [12], [6]:

p(X0) = St(X0; X̂0, P0, ν0) (4)
p(vk) = St(vk; 0, Qk, γk) (5)
p(wk) = St(wk; 0, Rk, δk) (6)

where X̂0, P0 and ν0 correspond to the initial guess. A scale
matrix Qu is associated with the input vector uk to manage
the input noise.

C. Student’s t Filter

Similarly to the Kalman Filter, the StF includes two steps:
time update and measurement update.

At time k, suppose that p(Xk|Z1:k) follows a t distribu-
tion St(Xk, X̂k/k, Pk/k, νk) and suppose that p(vk) follows
equation 5. In order to derive the StF, these two distributions
have to share a common degree of freedom denoted ν′k [11],
[12]:

p(Xk, vk|Z1/k) =

St

([
Xk

vk

]
;

[
X̂k/k

0

]
,

[
P ′k/k 0

0 Q′k

]
, ν′k

)
(7)

Xk and vk are assumed to be uncorrelated.
In order to preserve the heaviest tails between Xk and

vk, ν′k can be chosen to be the minimum value between
(νk, γk) as proposed in [11]. Then, P ′k/k and Q′k are the
adjusted values of Pk/k and Qk given the common degree
of freedom ν′k. Different methods can be used to adjust
the matrices, such as moment matching or minimizing the
Kullback-Leibler divergence [11].

Suppose that the uncertainty propagation is well modeled
by a first-order Taylor approximation. Then, since linear
transformations preserve the degree of freedom of a Student’s
t distribution (see section II-A), the predicted density can be
approximated as

p(Xk+1|Z1:k) = St(Xk+1;X̂k+1/k, Pk+1/k, ν
′
k) (8)

The predicted estimators X̂k+1/k and Pk+1/k are obtained
as in the case of an Extended KF, using Jacobian matrices
(Fk and Bk):

X̂k+1/k = f(X̂k/k, uk) (9)

Pk+1/k = FkP
′
k/kF

T
k +BkQ

′
uB

T
k +Q′ (10)

Notice that Pk+1/k represents the scale matrix and not the
covariance matrix. The latter can be easily retrieved as a
function of the scale matrix: Σk+1/k =

ν′k
ν′k−2Pk+1/k.

Similarly to the time update, the measurement update
requires an assumption regarding the degree of freedom.
Hence, the joint distribution between the predicted state and
the measurement noise can be written as follows:

p(Xk, wk|Z1:k−1) =

St

([
Xk

wk

]
;

[
X̂k/k−1

0

]
,

[
P ′k/k−1 0

0 R′k

]
, ν′′k

)
(11)

where Xk and wk are assumed to be uncorrelated and
P ′k/k−1 and R′k are the adjusted matrices corresponding to
the joint degree of freedom ν′′k = min(ν′k−1, δk).

The joint distribution of the state and measurement can be
written as

p(Xk, Zk|Z1:k−1) =

St

([
Xk

Zk

]
;

[
X̂k/k−1

Ẑk

]
,

[
P ′k/k−1 P ′k/k−1H

T
k

HkP
′
k/k−1 Sk

]
, ν′′k

)
(12)



where Sk = HkP
′
k/k−1H

T
k + R′k and Hk is the Jacobian

matrix corresponding to the measurement model.
The updated degree of freedom, state vector and scale

matrix are [11]

νk = ν′′k + dZ (13)

X̂k/k = X̂k/k−1 + P ′k/k−1H
T
k S
−1
k (Zk − h(X̂k/k−1))

(14)

Pk/k =
ν′′k + ∆2

k

ν′′k + dZ
(P ′k/k−1 − P

′
k/k−1H

T
k S
−1
k HkP

′
k/k−1)

(15)

=
ν′′k + ∆2

k

ν′′k + dZ
(I −WkHk)P ′k/k−1 (16)

where dZ is the dimension of the observation vector, ∆2
k =

(Zk − h(X̂k/k−1))TS−1
k (Zk − h(X̂k/k−1)) and Wk =

P ′k/k−1H
T
k S
−1
k . The Pk/k matrix is the same as that obtained

in the case of KF, but scaled by a term that depends on the
quality of the observations.

From equation 13 and after the first iteration, the dof
increases to νk. In the absence of a limitation of this dof such
as that presented in the prediction step (ν′k = min(νk, γk)),
it will tend to infinity and the StF will converge to a KF.

D. Informational form of the Student’s t Filter

A derivation of the informational form of the StF can be
given similarly to the informational form of the KF, known
as the Information Filter (IF) [7]. The IF is well adapted to
decentralized multi-sensor data fusion and to multiple Fault
Detection and Exclusion (FDE) thanks to its update step
that is modeled as a simple summation of the information
contributions of the different observations [13]. Likewise, the
IF does not need to inverse a matrix that has the dimension of
the observation vector, meaning that it has a shorter execution
time than the KF in the case of multi-sensor fusion. In this
section we derive the Student’s t Information Filter (StIF)
and examine its advantages in relation to an StF.

The StIF features an information matrix and an infor-
mation vector obtained from the scale matrix (and not the
covariance matrix) and the state vector:

Yk = P−1
k (17)

yk = YkXk (18)

The time update remains unchanged relatively to the IF.
For the measurement update, equation 15 can be expressed
as

Pk/k =
ν′′k + ∆2

k

ν′′k + dZ
(P−1
k/k−1 +HT

k R
−1
k Hk)−1 (19)

This equation is obtained in a similar way to the compu-
tation of the information matrix in the case of the IF.

By setting ck =
ν′′k +∆2

k

ν”k+dZ
, the information matrix can be

written as

Yk/k = c−1
k (Yk/k−1 +HT

k R
−1
k Hk) (20)

The derivation of the information vector is expressed in
the same way as for IF and using the following equations
[7]:

(I −WkHk) = (Pk/k−1 −WkSkW
T
k )P−1

k/k−1

= c−1
k Pk/kP

−1
k/k−1 (21)

Wk = Pk/k−1H
T
k (HkPk/k−1H

T
k +Rk)−1

Wk(HkPk/k−1H
T
k +Rk) = Pk/k−1H

T
k

WkRk = (I −WkHk)Pk/k−1H
T
k

Wk = (I −WkHk)Pk/k−1H
T
k R
−1
k (22)

= c−1
k Pk/kH

T
k R
−1
k (23)

Therefore, using equation 21 and 23, in the linear case, Xk/k

can be written as

X̂k/k = (I −WkHk)X̂k/k−1 +WkZk (24)

X̂k/k = c−1
k Pk/k[Yk/k−1X̂k/k−1 +HT

k R
−1
k Zk] (25)

and the information vector is

ŷk/k = c−1
k ŷk/k−1 + c−1

k HT
k R
−1
k Zk (26)

In the case of multi-sensor data fusion and in a similar
way to the IF, the equations of the StIF are obtained as

Yk/k = c−1
k

(
Yk/k−1 +

N∑
i=1

Ii,k

)
(27)

ŷk/k = c−1
k

(
ŷk/k−1 +

N∑
i=1

ii,k

)
(28)

where
N is the number of observation vectors, assumed to be

uncorrelated with each other,
Ii,k = HT

i,kR
−1
i,kHi,k and ii,k = HT

i,kR
−1
i,kZi,k are the

information contributions of the observation Zi,k.
Note that equations 27 and 28 distribute the computation

of Ii,k and ii,k thanks to the summation part. However, the
quantity c−1 is present in both terms and in its present form
it cannot be computed in a distributed manner since it needs
to determine the value of ∆2

k, and this involves inversing a
matrix S that has the dimension of the observation vector.
Note that S contains correlation terms. A new expression of
∆2
k can be determined using the matrix inversion lemma:

S−1 = (HkPk/k−1H
T
k +Rk)−1 (29)

= R−1
k −R

−1
k Hk(Yk/k−1 +HT

k R
−1
k Hk)−1HT

k R
−1
k

= R−1
k −R

−1
k Hk(Yk/k−1 +

N∑
i=1

HT
i,kR

−1
i,kHi,k)−1HT

k R
−1
k

The term (Yk/k−1 +
∑N
i=1H

T
i,kR

−1
i,kHi,k) has already been

computed and the new expression of S−1 avoids the inver-
sion of a non-diagonal matrix with the dimension of the
observation vector. The matrices Rk and Hk present in this
expression are obtained by concatenation.



Algorithm 1 StIF with fixed degree of freedom.

Input: X̂k−1/k−1, Yk−1/k−1, νk−1,
# We assume that γ = δ (no approximation of the dof
is needed when going from time update to measurement
update)
ν′k−1 = min(νk−1, γ) = γ
Moment matching to adjust the matrices Q and Pk−1/k−1 :
# We suppose that the matrices Q and R are the same as in
the Gaussian case

P ′k−1/k−1 =
ν′k−1 − 2

ν′k−1

νk−1

νk−1 − 2
Pk−1/k−1 (31)

Q′ =
ν′k−1 − 2

ν′k−1

Q (32)

Time update
Xk/k−1 = f(Xk−1/k−1, uk−1) + vk
Pk/k−1 = Fk−1P

′
k−1/k−1F

T
k−1 +Bk−1Q

′
u,k−1B

T
k−1 +Q′k−1

# Fk and Bk are the Jacobian matrices
Measurement update

R′ =
ν′k−1 − 2

ν′k−1

R

ck =
ν′k−1 + ∆2

k

ν′k−1 + dZ

Yk/k = c−1
k (Yk/k−1 +

N∑
i=1

Ii,k)

ŷk/k = c−1
k

(
yk/k−1 +

N∑
i=1

ii,k

)

νk = ν′k−1 + dZ

Covariance matrix: Σk/k = νk
νk−2Y

−1
k/k

Xk/k = Y −1
k/kyk/k

Output: X̂k/k, Yk/k, νk

For non-linear systems, ii,k in equation 28 becomes

ii,k = HT
i,kR

−1
i,k

[(
Zi,k − Ẑi,k

)
+Hi,kX̂k/k−1

]
(30)

The algorithm for the StIF with a fixed degree of freedom
(γ = δ) is given in algorithm 1. Another algorithm will be
given in section II-E after developing a fault detection and
exclusion stage.

E. Robust StIF with adaptive degree of freedom

Although Student’s t Filter is designed to be more robust
to faults than KF insofar as larger errors are taken into ac-
count via the heavier tail of the density function, these faults
still influence the quality of the filter estimation. Therefore
we propose adding a fault detection and exclusion stage in
order to exclude these errors from the fusion procedure. Note
that in the StF, when a fault is presented in the system, ∆2

increases, leading to a significant increase in the value of the
covariance matrix.

The first step of an FDE is the generation of the residual.
In this work, a residual based on the Mahalanobis distance
between the prediction (obtained from dead-reckoning) and
the update estimation (obtained after merging the measure-
ments Z) is constructed as

rk = (X̂k/k − X̂k/k−1)TYk/k(X̂k/k − X̂k/k−1) (33)

where X̂k/k and Yk/k are obtained from a filter that uses all
available measurements at instant k.

Similarly to the use of the Chi-squared distribution in the
Gaussian case for threshold computation, an F-distribution is
employed in the Student’s t case [5]. The variable rk

dX
follows

an F-distribution (FdX ,νk ) with parameter dX (dimension of
the state vector) and νk = ν′k + dZ , and therefore

rk ∼ dXFdX ,νk (34)

The threshold value for the statistical test over rk correspond-
ing to a given false alarm probability PFa is given as

ThPFa
= dXF−1

1−PFa
(FdX ,νk) = dXF−1

P1−Fa
(FdX ,ν′k+dZ )

(35)
where F−1 is the inverse cumulative distribution.

If the residual rk indicates the presence of faults by ex-
ceeding the threshold value, residuals used for the exclusion
stage are generated by creating a bank of StIF where each
one uses only one observation. These residuals are computed
as

ri,k = (X̂i,k/k − X̂k/k−1)TYi,k/k(X̂i,k/k − X̂k/k−1) (36)

where X̂i,k/k and Yi,k/k are obtained from a filter that uses
only the observation i in the update step.

A measurement i is excluded if

ri > Thi = dXF−1
1−PFa

(
FdX ,ν′k+dZ,i

)
(37)

Then, the measurement i is excluded from the fusion pro-
cedure by subtracting its information contribution from the
main filter and by updating the c term. This exclusion step
is more complicated to do when the KF (or StF) is used.

Regarding the degree of freedom of the Student’s t filter,
instead of fixing it as proposed in section II-C, it can be
adapted in real-time by taking into account the value of
the residual. This residual can provide an indication about
the quality of the measurements on this particular sample.
Intuitively, when the residual is large, one may wish to be
more cautious in the estimation process and when computing
the confidence interval, and for this purpose a heavy-tailed
distribution may be preferred. Inversely, when the residual
is small, a Gaussian distribution may be more reasonable.
Starting from large values of the residual, the degree of
freedom increases slowly up to a given limit when the
residual decreases (e.g dof=20), and if rk is greater than a
given value the dof should be limited to 2.1. We propose an
expression of the degree of freedom according to the residual
as follows:{

dofk(rk) = a. exp(b.rk) if rk < d

dofk(rk) = 2.1 if rk > d
(38)



Algorithm 2 Multi-sensor data fusion with FDE

Input: X̂k−1/k−1, Yk−1/k−1, νk−1, γk = δk
if k = 0 then
ν′k−1 = νk−1 = γk = δk

else
γk = δk = ν′k−1, (ν′k−1 obtained in the measurement

update)
Moment matching: Compute P ′k−1/k−1 and Q′ as in algo-
rithm 1
Time update: same as algorithm 1
Measurement update: Compute R′, ck,Yk/k and yk/k as in
algorithm 1.

νk = ν′k−1 + dz (39)

Compute the corresponding residual rk
if rk > Th then

compute the set of residuals ri,k using a bank of StIF
exclude the measurements that have ri,k > Thi,
compute the new value of ck, Yk/k and ŷk/k

X̂k/k = Y −1
k/kŷk/k

if measurements available then
compute the new value of ν′k that will be used in the
next iteration, as in equation 38.

else
ν′k = νk = ν′k−1

Output: X̂k/k, Yk/k, νk, ν
′
k

We note that in the case study given in section III, a , b
and d were tuned with the following values: a =20.1137,
b = −0.0565 and d = 40. With this tuning, the degree of
freedom tends to 20 if rk tends to 0 and to 2.1 if the residual
is greater than d.

Algorithm 1 is then modified to algorithm 2 in order to
take into account the FDE stage and the computation of the
adaptive degree of freedom.

III. CASE STUDY

A. Localization for self-driving vehicles

Let consider the localization problem of a self-driving
vehicle equipped with wheel-speed sensors, a gyro, a low-
cost GNSS receiver, an intelligent camera for lane-marking
detection and an HD map. The localization is defined rela-
tively to a Cartesian ENU frame (East, North, Up) denoted
RO. The vehicle pose is defined at the body frame located
at the middle of the rear wheel axis (frame RB) (see figure
1).

At instant k, the state vector is considered to be the
position and the heading of the vehicle:

X = [ x y θ ]T (40)

The GNSS observation is

Z1 =

 xGNSS
yGNSS
θGNSS

 =

 tx cos θ − ty sin θ + x
tx sin θ + tycos θ + y

θ

 , (41)

Fig. 1: Frames representation.

where [tx ty] is the translation of the antenna (located at
frame RG) with respect to the body frame.

A smart camera detects the lane markings and returns the
coefficients of a Taylor’s expansion of a clothoid in the frame
RM [14]:

y = C3x
3 + C2x

2 + C1x+ C0 (42)

The camera is able to detect up to two markings at a
time on each side (right and left) of the car. In this paper,
we consider only the use of the lateral distance to the lane
markings (the C0 parameter):

Z2,j = C0 (43)

where j ∈ {1, 2, 3, 4} is an index representing the detected
marking: right1, right2, left1 or left2 if they exist.

A camera observation model was developed in [15], [14]
and is given by

C0 =
(Px sin θ + y − yA)xAB − (Px cos θ + x− xA)yAB

xAB · cos θ + yAB · sin θ
where the lane marking is detected on the segment [AB] at
coordinates [xL, yL] expressed in frame RO as

OL =O TB .
BTM .

ML (44)
OTB and BTM are the transformation matrices between (RB
and RO) and (RM and RB) respectively. It results that[

xL
yL

]
=

[
Px cos θ + C0 sin θ + x
Px sin θ − C0 cos θ + y

]
(45)

where ML = [0, C0] and Px is the distance between RB and
RM (figure 1).

For state estimation, the robust StIF developed in algo-
rithm 2 is used. Therefore, the residual rk defined in equation
33 is computed in order to detect the presence of faults. Note
that the prediction is obtained from the wheel speed sensors
and the gyro while the update is done using the GNSS fix and
the Mobileye measurements. Mobileye measurements are not
always available, since the camera cannot operate in highly
curved roads. For the fault exclusion, a set of residual ri,k
is computed (equation 36) for each measurement i, which
can be the GNSS measurement or one of the four Mobileye
measurements.



Let us choose the example of the residual corresponding
to the GNSS measurement (i = gnss, dZ|gnss = 3) as illus-
tration. X̂i,k/k and Yi,k/k are obtained from the following
equations:

S−1 = R−1
i −R

−1
i Hi(Yk/k−1 +HT

i,kR
−1
i,kHi,k)−1HT

i R
−1
i

ci,k =
ν′k + ∆2

k

ν′k + 3

Yi,k/k = c−1
i,k (Yk/k−1 +HT

i,kR
−1
i,kHi,k)

ŷi,k/k = c−1
i,k

(
ŷk/k−1 + ii,k

)
X̂i,k/k = Y −1

i,k/kŷi,k/k

If rgnss >Thgnss = dXF−1
1−PFa

(FdX ,ν′k+3), the GNSS
measurements are excluded from the fusion procedure by
subtracting their information contributions from the main
filter and by updating the ck term.

B. External integrity and computation of protection level

External integrity is an emergent concern for road localiza-
tion. External localization integrity was initially developed
in aeronautical applications in order to provide a measure
of confidence for GNSS navigation solutions [16]. It is
associated with a target integrity risk that represents the
maximum probability that the error in position exceeds a
limit without warning the user. This limit is known as the
Protection Level (PL). In this paper we are seeking to bound
the errors by computing a consistent PL that makes use of
Student’s t distributions. For this computation, the matrix
Pk/k obtained in the output of algorithm 2 is used. The
heavy tail property of Student’s t distribution is essential
for computing a consistent PL without underestimating its
value, which may happen in the Gaussian case [17]. For
this purpose, the matrix Pk/k is adjusted according to the
minimum degree of freedom between ν′k and νk (denoted
M in equations 48 and 49). If this minimum value is
greater than a limit value fixed according to the application
and to the environment, the degree of freedom for the PL
computation is taken to be this limit value. For example,
in urban environments the degree of freedom for the PL
computation should not go above M = 5. After updating
the degree of freedom, the matrix Pk/k is adjusted using the
moment matching. The adjusted matrix is denoted P ′′k and is
only used for the PL computation. The reason for choosing
the degree of freedom in this way is to preserve a heavy tail,
which is necessary in order to obtain a consistent protection
level (for more details the reader can refer to [17]).

For road vehicles, we would like to be able to bound the
errors in the along track (AT) and cross track (CT) directions.
Therefore, the shape matrix in the ENU frame is projected
onto the (AT, CT) frame:

P ′′k/k,proj = RprojP
′′
k/k(1,2),(1,2)R

T
proj (46)

with

Rproj =

[
cos θ sin θ
− sin θ cos θ

]
(47)

where θ is the orientation of the vehicle.
The protection levels are obtained as

PLAT = K(α,N).
√
M.[eigenvalue(P ′′k/k,proj)]1 (48)

PLCT = K(α,N).
√
M .[eigenvalue(P ′′k/k,proj)]2 (49)

where the indexes 1 and 2 denote the first and second ele-
ments of the vector (eigenvalue(P ′′k/k,proj)) and K(α,M)
is obtained from Student’s t distribution with degree of
freedom M according to a given confidence level α [18].

IV. EXPERIMENTAL RESULTS

Fig. 2: Test trajectory of 3.5 km.
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Fig. 3: Error with additive biases on GNSS fix: StIF with
adaptive dof (in blue) and IF (in red). Biases were injected
in the intervals 5000 to 5010 and 10000 to 10010.

In order to evaluate the performance of the proposed ap-
proach, results were processed using sensor data recorded by
an experimental vehicle equipped with wheel-speed sensors
and the yaw rate gyro of the trajectory stability system of the
car, a Ublox 8T which is a single frequency GPS/GLONASS
constellation receiver, a Mobileye camera for lane-marking
detection and a NovAtel SPAN-CPT with network RTK
corrections used as a ground truth. Experiments were carried
out in Rambouillet, France (figure 2). The results shown
were obtained in a challenging environment where the GNSS
measurements were affected by significant bias throughout
the trajectory. The purpose of choosing this kind of trajectory
was to study the performance of our proposed approach in
this kind of challenging environment and to compare the
StIF to the IF. The processing of the data was handled
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Fig. 4: (a) Residual for the fault detection (in blue), threshold
(in green), (b) the associated degree of freedom.

asynchronously. The wheel-speed sensor and the gyro data
were available at a frequency of 50 Hz, the GNSS at 2 Hz
and the frequency of the data from Mobileye camera was
down-sampled to 3.3 Hz. The sampling period of the filter
is the same as for the dead-reckoning data (0.02s).

Figure 3 shows the position errors obtained using an IF
and an StIF without an FDE stage. To provide a better
understanding of the results, simulated biases on GNSS
measurements were injected between the sampling instants
5000 to 5010 and 10000 to 10010. It can be remarked that
after the error source is removed and without an FDE stage,
the Student’s t filter (StIF) convergence is faster than a
Gaussian filter (IF). Although the StIF behaves better than
the IF in the presence of errors, large errors still affect its
behavior. It should be noted that the StIF used for this figure
is the one presented in algorithm 2 without an FDE stage.
The degree of freedom is adapted in real-time according to
the residual value. The values chosen for a , b and d in
equation 38 were a =20.1137, b = 0.0565, and d = 40.

Figure 4 shows the residual used for the fault detection
with the associated threshold value. This threshold varies
with the degree of freedom computed in real-time (figure 4b).
When r indicates the presence of a fault, the set of residuals
used for the fault exclusion are generated (if available)
and are shown in figure 5. Figure 5a shows the residual
corresponding to the GNSS measurements and figures 5b
and 5c show the residuals corresponding to the camera
measurements on the left and right-hand sides respectively.

The errors in the CT and AT directions are shown in figure
6 with the corresponding PL value. The target integrity risk
was fixed to 10−3. The contribution made by the Mobileye
camera in reducing the error and the PL values in the CT
direction (highlighted zone) can be seen. When there is
no camera measurement, the non-observable biases from
GNSS lead to inconsistent PL despite the use of Student’s t
distribution. Moreover, this sensor does not have any effect
on the AT direction, since it is not used to detect markings
in this direction. Therefore, the PL in the AT direction is not
consistent. The limit value of the dof for PL computation was
fixed to M = 5 (see section III-B). Note that if this limit
were fixed to M = 3, the PLs value would be consistent in
the AT and CT directions.

Table I shows the errors and the percentile values before

and after the FDE stage for both the StIF and the IF.
For this experiment where a bias was present throughout
the trajectory, even though the StIF and the FDE stage do
not significantly improve the results, the position estimation
using StIF was more accurate and more consistent than
when using IF. For this particular case, the IF after the FDE
stage results in a larger error than before FDE. The reason
is that the algorithm excludes many camera measurements;
using these measurements would give better results. For this
trajectory, StIF with dof=3 was slightly more accurate than
StIF with adaptive dof. However, on other trajectories, the
StIF with dof=3 may give the poorest results, according
to the error model. This shows that the choice of a fixed
dof may not be straightforward in real applications. In this
experiment, according to the percentile values, it can be
remarked that the largest errors that occur are smaller when
using StIF with FDE than when using an IF (a reduction
from 4.15m to 3.8m for the 97.5 percentile).

From a consistency point of view, table I also shows the
measured integrity risk obtained from the experiment in the
AT and CT directions for a target integrity risk of 10−3.
Given the number of available samples in the experiment,
we cannot perform tests for a target integrity risk below
10−3. However, the Student’s t distribution and the Student’s
t filter are more advantageous and more consistent for small
integrity risk in comparison to the Gaussian cases, especially
when using the moment matching to adjust distributions.
Regarding the measured IR, the StIF is more consistent
than the IF, and the StIF with adaptive dof leads to better
results since the dof is modified according to the residual,
and heavier tails are used when the environment is too noisy.

V. CONCLUSION AND FUTURE WORK

In this paper a new robust Student’s t information filter
was proposed. The StIF, which is the informational form
of the StF, was developed. Using this formulation, a fault
detection and exclusion stage was added in order to exclude
erroneous measurements that have a direct influence on the
state estimation. The computed residual gives an indication
regarding the environmental conditions and the quality of the
measurements in real-time. This residual is used to adapt the
degree of freedom and to avoid setting it a priori. Experi-
mental results using a vehicle equipped with different sensors
showed that the StIF with an adaptive degree of freedom
improves performance, particularly in terms of integrity.

In future works, additional studies on the variation of the
degree of freedom in real-time will be done and the approach
will be tested with trajectories in different environments.
Likewise, the results using the moment matching will be
compared with other approaches, such as minimizing the
Kullback-Leibler divergence.
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