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High Integrity Localization With Multi-Lane Camera Measurements
Joelle Al Hage, Philippe Xu and Philippe Bonnifait

Abstract— Localization with high integrity is crucial for
highly autonomous vehicles. This requires that the localization
system send a warning to a client application when it should
not be used. The concept of integrity was firstly developed
for aviation applications and recently became an active
research area for autonomous vehicles. GNSS information
merged with dead reckoning sensors is not sufficient for lane
level localization in all navigation environments. Map-aided
localization with vision sensors is essential to provide redundant
and complementary information. In this work, a multi-sensor
data fusion method that takes advantage of a high definition
(HD) map is presented and the integrity of the obtained solution
is quantified. A Fault Detection and Exclusion (FDE) step is
added to exclude the faulty measurements from the fusion
procedure. A second step is to bound the estimation errors in
the Along Track (AT) and Cross Track (CT) directions through
Protection Levels (PL). For this step, the usual Gaussian
distribution is replaced by a Student’s distribution with an
adapted degree of freedom chosen according to the navigation
environment. The performance of the approach is evaluated
with an experimental vehicle equipped with a camera able to
detect up to four lane markings simultaneously.

I. INTRODUCTION

Within the scope of this paper, autonomous driving
includes levels 3 to 5 as defined by the Society of Automotive
Engineers (SAE) in Standard J3016. That is when the vehicle
can navigate autonomously either under certain conditions or
without any constraint. Hence, high automation (levels 3 and
4) and full automation (level 5) require the ability of the car
to give warning or to make a safe decision in case of a
problem which is related to the integrity concept.

Reliable and accurate positions are an essential part for
autonomous vehicles in order to navigate safely. Different
sensors can be used like wheel speed sensors, gyros, GNSS,
LiDARs and cameras. Low-cost GNSS receivers available
currently in the market are not adapted for lane level
localization especially in urban environments. Therefore,
autonomous navigation cannot rely only on these kinds of
sensors.

Localizing autonomous vehicles is generally associated
with High Definition (HD) road maps that are used to
retrieve accurate information for the navigation task [1], [2].
Associating an estimated position obtained from GNSS or
dead-reckoning with roads map is done via a map matching
procedure [3], [4]. Additional information from exteroceptive
sensors (e.g. cameras) can be used to detect lane markings
and enhance the positioning output [5], [6].
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Integrity is an emergent concern for road localization.
Indeed, localization integrity was initially developed for
aeronautical applications in order to provide a measure
of confidence for GNSS-based navigation solutions [7]–
[9]. It is associated with a target integrity risk which
represents the maximum probability that the error in position
exceeds a given limit without warning the user. This
limit is known as the Protection Level (PL). Aeronautical
integrity methods cannot be applied to road vehicles for
different reasons [10]. Indeed, they make the assumption
of Gaussian distribution with zero mean and they suppose
the occurrence of one fault at a time. These hypotheses
verified in open sky environments cannot be generalized to
urban applications because of multipath and non-line of sight
signals which are very frequent in such environments [11],
[12]. Moreover, the PL obtained for aeronautical applications
are too conservative to be applied to autonomous vehicles.
Indeed, most airways are eight nautical miles (14 kilometers)
wide while lane width for road vehicles is about 3.5 m.

In this paper, we propose a method for lane level
localization for autonomous vehicles with integrity study. For
this purpose dead-reckoning measurements are merged with
GNSS measurements (GPS and GLONASS) obtained from
a low-cost mono-frequency receiver. A smart camera returns
measurements of detected lane markings that are used to
enhance the localization procedure after associating with a
prior HD map. The enhancement is especially done in the
cross track direction.

Measurements from sensors are affected by errors where
the origin is the sensors or the environmental noises. These
errors have a direct effect on the integrity of the localization
if they are not detected and excluded from the fusion
procedure. Therefore, a Fault Detection and Exclusion (FDE)
step is added in order to test the consistency of the GNSS
and the camera measurements with the dead-reckoning
measurements. A detected error on the camera measurements
can get its origin from the camera or from the map. In
a second step, the purpose is to bound the errors and to
compute a PL after removing all the detected faults. For
this step, the Gaussian distribution is replaced by a Student’s
t−distribution which is heavy tailed and thus permits to take
into account the errors not considered when using a Gaussian
distribution [10]. Likewise, with this distribution, we aim
to avoid an undervaluation of the PL. Since we work with
autonomous vehicles, it is interesting to express the PL in
AT and CT directions; this allows to visualize the benefit of
the camera in reducing the PL values in the CT direction.

This paper is organized as follows. Section 2 presents
the system modeling and the multi-sensor data fusion. The



integrity study divided into FDE and error bounding is
presented in section 3. Section 4 shows the experimental
study and the performance of the method on a recorded
dataset in Rambouillet, France. Conclusion and future work
are given in section 5.

II. SYSTEM MODELING

The system uses wheel speed sensors, a gyro, GNSS, an
intelligent camera for lane markings detection and an HD
map. The localization is defined relatively to a Cartesian
ENU frame (East, North, Up) denoted RO (figure 1). The
origin of this frame can be any position close to the
navigation area. Other working frames are needed, and they
are shown in figure 1. RB is the body frame located in
the middle of the rear wheel axis of the vehicles where
the vehicle pose (x, y, θ) is defined. The detected lanes are
expressed in a virtual frame RM located at the center of
the front bumper while the camera is located behind the
windscreen. The GNSS fix is obtained relatively to the
antenna (frame RG) which is translated with a lever arm
relatively to the body frame.

Fig. 1. Frames representation.

The lanes in the map are represented as polylines with an
absolute accuracy of the order of a few centimeters. A view
of the map is given in figure 2.

At instant k, the state vector is considered to be the
position and the heading of the vehicle:

X = [ x y θ ]T (1)

The GNSS observation is given by:

Z1 =

[
xGNSS
yGNSS

]
=

[
tx cos θ − ty sin θ + x
tx sin θ + tycosθ + y

]
, (2)

where tx and ty are the translation of the antenna with respect
to the body frame.

Fig. 2. Detailed view of an HD map. The lane markings are in green, the
centerline is in purple, pedestrian crossing is the rectangle in green.

A smart camera detects lane markings and returns the
coefficients of a Taylor’s expansion of a clothoid in the frame
RM [13]:

y = C3x
3 + C2x

2 + C1x+ C0 (3)

The camera is able to detect up to two markings at a time
on each side: right and left. In this paper, we consider only
the use of the parameter C0 (the lateral distance between the
lane marking and the frame RM ) to enhance the localization
procedure:

Z2,j = C0 (4)

where j could go from 1 to 4 representing C0,right1,
C0,right2, C0,left1, C0,left2 if they exist.

The camera observation model was developed in [5], [13]
and can be written as:

C0 =
(Px sin θ + y − yA).xAB − (Px cos θ + x− xA).yAB

xAB . cos θ + yAB . sin θ

where the lane marking is detected on the segment [AB] at
coordinates [xL, yL] expressed in frame RO as:

OL =O TB .
BTM .

ML (5)
OTB and BTM are the transformation matrices from RB

to RO and from RM to RB , respectively. Therefore,[
xL
yL

]
=

[
Px cos θ + C0 sin θ + x
Px sin θ − C0 cos θ + y

]
(6)

where ML = [0, C0] and Px is the distance between RB and
RM (view figure 1).

For state estimation, an extended information filter is used.
The information matrix and information vector are updated
as follows [14]:

Yk/k = Yk/k−1 +

n∑
i=1

Ii,k , (7)

yk/k = yk/k−1 +

n∑
i=1

ii,k , (8)

with n the number of observations at instant k and

Ii,k = HT
i,kR

−1
i,kHi,k (9)

ii,k = HT
i,kR

−1
i,k

[(
Zi,k − Ẑi,k

)
+Hi,kXk/k−1

]
. (10)



(Ii,k, ii,k) are the information contributions of the
observation i, that could be the GNSS measurements
or the camera observations (left or right side).
Hi is the observation matrix defined as a Jacobian.
Ri is the covariance associated to observation noise Zi.
It should be noted that the evolution model is obtained

from the odometric model using the wheel speed sensors and
the gyro [10]. The information matrix and the information
vector are obtained as:

Yk+1/k = P−1
k+1/k (11)

yk+1/k = Yk+1/kXk+1/k (12)

with Pk+1/k the covariance matrix.
The simple summations that appear in equations (7) and

(8) are well adapted for multi-sensor data fusion as well as
for multi-fault detection and exclusion.

III. MULTI-SENSOR DATA FUSION WITH INTEGRITY

A. Fault detection and exclusion

The observations from the GNSS receiver or from the
camera can be erroneous or faulty. The origin of the fault
can come from the sensor, the map or the environmental
conditions. Erroneous measurements, if not detected, affect
directly the localization procedure. Hence, a FDE step is
added where the Mahalanobis distance between the predicted
state and the updated state is used as a residual:

rk = (Xk/k −Xk/k−1)
TYk/k(Xk/k −Xk/k−1) (13)

where Xk/k and Yk/k are obtained from a filter that uses
all available measurements at instant k. Please note that
this residual acts in the state space and detects faults which
have a direct influence on the position estimate (it is not an
innovation gating as classically done). A fault is detected if
rk exceeds a threshold value obtained from a Chi-squared
distribution with 3-degrees of freedom according to a given
false alarm probability.

For the exclusion step, residuals that each use
only one observation i (e.g. GNSS fix, C0,right,1,
C0,left,1, C0,right,2, C0,left,2) are generated:

ri,k = (Xk/k,i −Xk/k−1)
TYk/k,i(Xk/k,i −Xk/k−1) (14)

where Xk/k,i and Yk/k,i are obtained from a filter that
uses only the observation i in the update step. Using these
residuals, it is possible to distinguish between GNSS and
camera measurement errors (left and right).

The architecture of the multi-sensor data fusion with FDE
step is given in figure 3 and a summary is given in the
following.

At instant k, if observations are available (GNSS or
camera), the residual for the fault detection can be computed
using the informational contributions of the different
available measurements (equation 13). If this residual
exceeds the threshold value, a fault is detected and its origin
has to be determined in order to proceed to its exclusion from
the fusion procedure. Therefore, the set of residuals ri,k (i ∈
{GNSS, C0,left,1,C0,left,2, C0,right,1, C0,right,2}) is generated by

creating a bank of information filters (EIFi) where each
one uses one observation. Notice that the complete set
of residuals is not always available since the sensors
measurements are introduced in an asynchronous manner.
Moreover, the availability of the camera measurements
depends on the navigation environment. The camera gives
an indication of the quality of the lane marking detection.
Therefore, a lane marking with a quality below a given value
is rejected.

A measurement i is excluded if the corresponding
residual exceeds the threshold value. For example, if
rgnss >threshold, the GNSS measurements are excluded
from the fusion procedure by subtracting their information
contributions from the main filter.

Given that the camera is able to detect up to two lane
markings on the right or left side, the redundancy can be
used to differentiate between camera and map faults which is
useful to detect map errors. Let us take the following example
to illustrate this. At instant k, suppose the camera observes
simultaneously C0,left,1 and C0,left,2. If rC0,left, 1 obtained
from the first observation exceeds the threshold value, we
can conclude that a problem appears on this measurement.
However, we cannot specify if the error comes from the
camera or from the map. Suppose now that the residual
rC0,left, 2 is below the threshold. In this case, at the same
instant and on the same side, the camera gives one good
measurement and one bad measurement. In these conditions,
it is likely that the error comes from the map since the second
measurement, almost in the same environment, is error free
and detected with high confidence. A flag can be stored in the
map to indicate that the map-matched segment is potentially
erroneous. Now, if rC0,left,2 is greater than the threshold, it
cannot be concluded that there is or not an error in the map.
Indeed, if the two observations on the same side are faulty,
the error may get its origin from the environment or from the
camera itself. Likewise, if only one measurement is available
on a given side, the differentiation between the camera and
the map is not possible. Notice that the origin of the error
(camera or map) does not affect the exclusion procedure.
In other words, if rC0,j indicates the presence of a fault,
the measurement C0,j will not be used in the update step
independently from the origin of the camera measurement
error.

Finally, if all the residuals ri indicate the presence
of faults, the hypothesis of a filtering problem or dead-
reckoning problem is likely and an alarm has to be raised.

After determining the origin of the faults (GNSS,
C0,left,1, ...), the faulty measurements are excluded from
the fusion procedure by subtracting their information
contributions from equations 7 and 8.

B. Protection level computation

After removing the faulty measurements, the objective
is now to bound the errors. The aim is to avoid an
underestimation of the PL that may be due to an
undervaluation of the covariance matrix of the filter or
from undetected biases. Therefore, when computing the
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Fig. 3. Architecture of the method to compute an accurate localization with protection levels.

Fig. 4. Experimental environment (Rambouillet, France). The path of the
experimental vehicle is displayed in white.

PL, the multivariate Gaussian distribution is replaced by
a multivariate Student’s distribution which has a heavier
tail compared to the latter [10], [15]. For this purpose, the
matrix Pk/k will be considered as the covariance matrix of
a multivariate Student’s t-distribution with a fixed degree of
freedom N . Notice that when N → +∞, the t-distribution
converges to a Gaussian one. For more details about the
properties of the t−distribution, the reader can refer to [10].

The horizontal protection level is expressed as follows

[16]:

PLk(α) = K(α,N)
√
N − 2

√
max(eigenvalue(Pk/k)),

(15)

where K is obtained from a multivariate t-distribution with
degree of freedom N and according to a given confidence
level α. The K(α,N) value can be computed by solving
numerically the following equation [16]:

α =
2

B
(
d
2 ,

N
2

) ∫ ∞

K

yd−1

(1 + y2)
N+d

2

dy. (16)

where B
(
d
2 ,

N
2

)
is the Beta distribution and d is the

dimension of the t−distribution; for horizontal PL, d = 2.

For road vehicles, we are interested by protection levels in
the AT and CT directions. Therefore, the covariance matrix
in the ENU frame is projected to the (AT, CT) frame using
equation 17:

Pk/k,proj = RprojPk/k(1,2),(1,2)R
T
proj (17)

with

Rproj =

[
cos θ sin θ
− sin θ cos θ

]
(18)

where θ is the orientation of the vehicle.
The AT and CT PLs are obtained as:

PLAT = K(α,N).
√
N − 2

√
[eigenvalue(Pk/k,proj)]1

(19)



PLCT = K(α,N).
√
N − 2

√
[eigenvalue(Pk/k,proj)]2

(20)
where the indexes 1 and 2 denote the first and second
elements of the vector (eigenvalue(Pk/k,proj)).

IV. EXPERIMENTAL RESULTS

For the evaluation of the approach, an experiment
was carried out in the streets of Rambouillet, France
(figure 4), using an experimental vehicle equipped with
Ublox 8T which is a single frequency multi-constellation
GPS/GLONASS receiver, a NovAtel SPAN-CPT with
network RTK corrections used as a ground truth and a
Mobileye camera for lane marking detections.
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Fig. 5. Errors after data fusion compared to GNSS (sampling period of
0.02s).
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The positioning errors in the AT and CT directions after
the data fusion and after the FDE step are compared to the

TABLE I
STATISTICAL VALUES OF THE ERRORS BEFORE THE FDE STEP.

error (m) Horizontal CT AT
Root mean square 0.72

Median -0.014 0.144
Min (absolute value) 2.42×10−5 2.38×10−5

Max (absolute value) 4.34 3.54

TABLE II
STATISTICAL VALUES OF THE ERRORS AFTER THE FDE STEP.

error (m) Horizontal CT AT
Root mean square 0.585

Median -0.016 0.091
Min (absolute value) 0.31×10−5 1.81×10−5

Max (absolute value) 1.76 1.80

case when using only the GNSS as shown in figure 5. It can
be seen that the improvement is more significant in the CT
direction where the errors are most of the time very small.
This shows the importance of lane marking detections in
improving the localization in this direction. The sampling
instant corresponds to the frequency of the dead-reckoning
(0.02 s).

Figure 6 shows the errors before and after the FDE step.
The effect of the undetected errors on the position estimates
is noticeable. Indeed, the surges that appear before the FDE
step (in blue) in the CT and AT directions disappear after
the FDE step (in red).

Some statistical values of the error before and after the
FDE are shown in tables I and II respectively. One can see
the reduction in the maximum errors values in the AT and
CT directions after the FDE step.

A small part of the trajectory is given in figure 7. The
estimated trajectory is displayed with the ground truth and
the map. Note that the map matching algorithm used in this
paper is a point to curve matching [3].

-190 -180 -170 -160 -150 -140 -130 -120

140
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Fig. 7. Zoom in a part of the trajectory: estimated trajectory (blue), ground
truth (magenta), map (node and shape point) (red), matched points on the
map (green and cyan). Scales in meters.

The residual used for the fault detection is shown in figure
8. When r indicated the presence of faults, the residuals used
for the fault exclusion are generated (if available) and are
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displayed in figure 9. Figure 9a shows the residual associated
to the GNSS measurements, and figures 9b and 9c show
the residuals associated to the camera measurements in the
left and right sides, respectively. When two measurements
are available simultaneously on the same side, the residual
associated to the second measurement is displayed in red.

If a fault is detected on a camera measurements, a
visualization of the possible origin of the fault is presented
in figure 10. The blue value indicates that the error probably
comes from the map, the red value indicates that the
origin of the error cannot be specified for one of the two
reasons presented before. Figure 11 shows two areas where
possible faults have been detected on the map. These detected
faults truly correspond to map errors. Indeed, the Mobileye
provided two detections on the left side (the link border and
the centerline) while only the link border is present on the
map which led to an incorrect association.

Let us study the computation of the PL in the AT and
CT directions. As we have mentioned before, the Student’s
t−distribution replaces the Gaussian distribution for this step.
To adjust the degree of freedom of the t−distribution, data
acquisitions with a ground truth system are needed in the
target environment (urban, suburban, open sky, etc.) [10].
The experiment described in this paper has been done in a
suburban area. Accordingly, the degree of freedom of the
t−distribution is fixed to N =6 to preserve a heavy tail
necessary to obtain a consistent PL. The target integrity risk
is fixed to 10−3 since we cannot test with a smaller value
given the available number of samples. The performance of
the computed PL in the AT and CT directions are shown in
figure 12. It can be seen that the perception sensor used for
lane markings detection reduces the PL in the CT direction
down to 1.05 m. The intervals where the PLs in the CT
direction show an increase correspond to situations where
the vehicle is on a roundabout area. Indeed, the camera
cannot detect markings on these kinds of trajectories because
of its limited field of view. Therefore, in these areas, the

localization is done using only dead-reckoning and GNSS
which results in a direct augmentation in the computed PL.
The PL in the AT direction is about 2.5 m. To further
reduce this value, the camera should be used to detect also
information like pedestrian crossing or traffic signs which
has not been done in this work.

It should be noted that the computation of the PLs
was consistent since the measured frequency of errors that
exceeded the PL was lower than the fixed integrity risk:
P (error > PL) = 0 < 10−3 in the AT, CT and horizontal
directions. This is not the case if the Gaussian distribution is
used where the measured frequencies of errors that exceed
the PL are 4.32 × 10−4, 0.0035 and 0.0012 in AT, CT and
horizontal directions, respectively.

V. CONCLUSION AND FUTURE WORK

In this work, we have proposed a localization method
that exploits lane features for autonomous vehicles with
integrity considerations. For this purpose, a FDE strategy
has been proposed. It takes advantage of different types of
sensors measurements present in the system: GNSS, dead-
reckoning, Mobileye for lane markings detection and an HD
map. A bank of information filters was used to determine the
origin of the faults after creating a set of residual tests. The
obtained results confirm the importance of the FDE step as it
improves significantly the localization accuracy. In a second
step, we have proposed a method to bound in a consistent
manner the errors by replacing the Gaussian distribution with
a Student’s distribution. The PLs are computed in the AT and
CT directions in order to give a concrete meaning of PL for
classical road vehicles navigation tasks like path following.
The obtained PL is about 1.05 m in the CT direction (when
data from the perception sensor are available) and about 2.5
m in the AT direction.

In future work, the use of other perception sensors like
velodyne LiDAR will be investigated in order to improve
the results, especially on roundabouts.
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