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On the probabilities of hierarchical watersheds
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Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM,
F-93162, Noisy-le-Grand, France

Abstract. Hierarchical watersheds are obtained by iteratively merging
the regions of a watershed segmentation. In the watershed segmentation
of an image, each region contains exactly one (local) minimum of the
original image. Therefore, the construction of a hierarchical watershed
of any image I can be guided by a total order ≺ on the set of minima of I.
The regions that contain the least minima according to the order ≺ are
the first regions to be merged in the hierarchy. In fact, given any image I,
for any hierarchical watershed H of I, there exists more than one total
order on the set of minima of I which could be used to obtain H. In this
article, we define the probability of a hierarchical watershed H as the
probability of H to be the hierarchical watershed of I for an arbitrary
total order on the set of minima of I. We introduce an efficient method
to obtain the probability of hierarchical watersheds and we provide a
characterization of the most probable hierarchical watersheds.

1 Introduction

Watershed [3, 4] is a well established segmentation technique in the field of math-
ematical morphology. The idea underlying this technique comes from the topo-
graphic definition of watersheds: dividing lines between neighboring catchment
basins, i.e., regions whose collected water drains to a common point. We say
that the point (or region) of lowest altitude of a catchment basin is a (local)
minimum of a topographic surface. In the context of digital image processing,
gray-level images can be treated as topographic surfaces whose altitudes are de-
termined by the pixel gray-levels. The local minima of an image are the regions
of uniform grey-level surrounded by pixels of strictly higher gray-levels. We show
the representation of a gray-scale image with four local minima and a watershed
segmentation in Figure 1(a) and (b), respectively.

Hierarchical watersheds are sequences of nested segmentations equivalent to
filterings of an initial watershed segmentation. Let I be an image. The construc-
tion of a hierarchical watershed of I is often based on a criterion used to order
the minima of I, as the area and the dynamics [13, 8]. More specifically, given
any total order ≺ on the set of minima of I, the hierarchical watershed of I
for ≺ is constructed by iteratively “flooding” the minima of I according to ≺.
For instance, let us consider the total order ≺ on the set of minima {A,B,C,D}
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. (a): A gray-scale image I with four minima. (b) A watershed segmentation of I:
the vertical dashed lines represent the watershed lines. (c), (d) and (e): The watershed
segmentations resulting from iteratively flooding the minima C, D and B, respectively.
(f), (g) and (h): The watershed segmentations resulting from iteratively flooding the
minima D, C and A, respectively.

of the image I of Figure 1(a) such that C ≺ D ≺ B ≺ A. In Figure 1(b), (c), (d)
and (e), we show the sequence of floodings of the minima of I for ≺. The water-
shed segmentation of those floodings are the segmentations of the hierarchical
watershed of I for ≺.

In fact, we may obtain the same hierarchical watershed for several total orders
on the set of minima of an image. For example, we show in Figure 1(b), (f), (g)
and (h) the floodings of the minima of the image I for another total order ≺′
such that D ≺′ C ≺′ A ≺′ B. We can observe that the floodings for the total
orders ≺′ and ≺ induce the same sequence of watershed segmentations. Indeed,
given any image I and any hierarchical watershed H of I, there may exist several
total orders on the set of minima of I whose hierarchical watersheds correspond
to H. In other words, it is possible to order the minima of I according to distinct
criteria and still obtain the same hierarchical watershed.

In this article, (the gradients of) images are represented as weighted graphs.
We define the probability of a hierarchical watershedH as the probability ofH to
be the hierarchical watershed of a given weighted graph (G,w) for an arbitrary
sequence of minima of w. Our contributions are twofold: (1) an efficient method
to obtain the probability of hierarchical watersheds; and (2) a characterization
of the most probable hierarchical watersheds of any weighted graph.

Other studies related to probability and (watershed) segmentations are found
in [1, 2, 12, 9]. In [1], a stochastic watershed segmentation based on random mark-
ers is introduced. In [2], the definitions of watersheds with multiple solutions for
a single image are unified in the definition of tie-zone watersheds, which returns
a unique solution. In [12], the authors propose a method to list the k-minimum
spanning trees that induce distinct segmentations for a given set of markers. In
[9], the authors estimate the probability that any two regions of a watershed
segmentation have the same texture, which is further used to build hierarchies
of segmentations.
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This paper is organized as follows. In section 2, we review graphs, hierarchies
of partitions and saliency maps. In section 3, we propose an efficient method to
compute the probability of hierarchical watersheds and we characterize the most
probable hierarchical watersheds of any weighted graph.

2 Background notions

In this section, we first introduce hierarchies of partitions. Then, we review the
definition of graphs, connected hierarchies and saliency maps. Subsequently, we
define hierarchical watersheds.

2.1 Hierarchies of partitions

Let V be a set. A partition of V is a set P of non empty disjoint subsets of V
whose union is V . If P is a partition of V , any element of P is called a region
of P. Let V be a set and let P1 and P2 be two partitions of V . We say that P1

is a refinement of P2 if every element of P1 is included in an element of P2.
A hierarchy (of partitions on V ) is a sequence H = (P0, . . . ,Pn) of partitions
of V such that Pi−1 is a refinement of Pi, for any i ∈ {1, . . . , n} and such
that Pn = {V }. For any i in {0, . . . , n}, any region of the partition P i is called
a region of H.

Hierarchies of partitions can be represented as trees whose nodes correspond
to regions, as shown in Figure 2(a). Given a hierarchy H and two regions X
and Y of H, we say that X is a parent of Y (or that Y is a child of X) if Y ⊂ X
and if X is minimal for this property. In other words, if X is a parent of Y and
if there is a region Z such that Y ⊆ Z ⊂ X, then Y = Z. It can be seen that any
region X of H such that X 6= V has exactly one parent. Thus, for any region X
such that X 6= V , we write parent(X) = Y where Y is the unique parent of X.
Given any region R of H, if R is not the parent of any region of H, we say that R
is a leaf region of H. Otherwise, we say that R is a non-leaf region of H.

In Figure 2(a), the regions of a hierarchy H are linked to their parents and
children by straight lines. The partition P0 ofH contains all the leaf regions ofH.

2.2 Graphs, connected hierarchies and saliency maps

A graph is a pair G = (V,E), where V is a finite set and E is a set of pairs
of distinct elements of V , i.e., E ⊆ {{x, y} ⊆ V | x 6= y}. Each element of V
is called a vertex (of G), and each element of E is called an edge (of G). To
simplify the notations, the set of vertices and edges of a graph G will be also
denoted by V (G) and E(G), respectively.

Let G = (V,E) be a graph and let X be a subset of V . A sequence π =
(x0, . . . , xn) of elements of X is a path (in X) from x0 to xn if {xi−1, xi} is an
edge of G for any i in {1, . . . , n}. The subset X of V is said to be connected for G
if, for any x and y in X, there exists a path from x to y. The subset X of V is a
connected component of G if X is connected and if, for any connected subset Y
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Fig. 2. (a): A representation of a hierarchy of partitions H = (P0,P1,P2,P3) on the
set {a, b, c, d, e, f, g, h}. (b): A weighted graph (G,w).

of V , if X ⊆ Y , then we have X = Y . In the following, we denote by CC(G)
the set of all connected components of G. It is well known that this set CC(G)
of all connected components of G is a partition of the set V .

Let G = (V,E) be a graph. A partition of V is connected for G if each of its
regions is connected for G and a hierarchy on V is connected (for G) if any of its
partitions is connected. For example, the hierarchy of Figure 2(a) is connected
for the graph of Figure 2(b).

Let G be a graph. If w is a map from the edge set of G to the set R+ of
positive real numbers, then the pair (G,w) is called an (edge) weighted graph.
If (G,w) is a weighted graph, for any edge u of G, the value w(u) is called the
weight of u (for w).

As established in [6], a connected hierarchy can be equivalently defined
with a weighted graph through the notion of a saliency map. Given a weighted
graph (G,w) and a hierarchy H = (P0, . . . ,Pn) connected for G, the saliency
map of H is the map from E(G) to {0, . . . , n}, denoted by Φ(H), such that,
for any edge u = {x, y} in E(G), the value Φ(H)(u) is the smallest value i
in {0, . . . , n} such that x and y belong to a same region of Pi. Therefore, the
weight Φ(H)(u) of any edge u = {x, y} is the ultrametric distance between x
and y on the hierarchy H. It follows that any connected hierarchy has a unique
saliency map. Moreover, we can recover any hierarchy H connected for G from
the saliency map Φ(H) of H. For instance, the weight map depicted in Figure
2(b) is the saliency map of the hierarchy of Figure 2(a).

2.3 Hierarchies of minimum spanning forests and watersheds

In [4], the authors formalize watersheds in the framework of weighted graphs and
show the optimality of watersheds in the sense of minimum spanning forests.
In this section, we present hierarchical watersheds following the definition of
hierarchies of minimum spanning forests presented in [7].

Let G be a graph. We say that G is a forest if, for any edge u in E(G),
the number of connected components of the graph (V (G), E(G)\{u}) is greater
than the number of connected components of G. Given another graph G′, we say
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that G′ is a subgraph of G, denoted by G′ v G, if V (G′) ⊆ V (G) and E(G′) ⊆
E(G). Let (G,w) be a weighted graph and let G′ be a subgraph of G. A graph G′′

is a Minimum Spanning Forest (MSF) of G rooted in G′ if:

1. G′ is a subgraph of G′′; and
2. the graphs G and G′′ have the same set of vertices, i.e., V (G′′) = V (G); and
3. each connected component of G′′ includes exactly one connected component

of G′; and
4. the sum of the weight of the edges of G′′ is minimal among all graphs for

which the above conditions 1, 2 and 3 hold true.

Important notations and notions: in the sequel of this article, the sym-
bol G denotes a tree, i.e., a forest with a unique connected component. This im-
plies that any map from E(G) into Z+ is the saliency map of a hierarchy which
is connected for G. To shorten the notation, the vertex set of G is denoted by V
and its edge set is denoted by E. The symbol w denotes a map from E into R+

such that, for any pair of distinct edges u and v in E, we have w(u) 6= w(v).
Thus, the pair (G,w) is a weighted graph. Every hierarchy considered in this
article is connected for G and therefore, for the sake of simplicity, we use the
term hierarchy instead of hierarchy which is connected for G.

Intuitively, a drop of water on a topographic surface drains in the direction
of a local minimum and there is a correspondence between the catchment basins
of a surface and its local minima. As established in [4], in the context of cuts, a
notion of watershed in the framework of edge-weighted graphs is characterized
as a (graph) cut induced by a minimum spanning forest rooted in the minima of
this graph. Let k be a value in R+. A connected subgraph G′ of G is a (regional)
minimum (for w) at level k if:

1. G′ has at least one edge: E(G′) 6= ∅; and
2. for any edge u in E(G′), the weight of u is equal to k; and
3. for any edge {x, y} in E(G) \ E(G′) such that |{x, y} ∩ V (G′)| ≥ 1, {x, y}

has a weight greater than k.

One can note that, since the weights of the edges of G are pairwise distinct, it
follows that any minimum of G is a graph with a single edge.

Then, we follow the definition of hierarchical watersheds proposed in [5] which
are optimal in the sense of minimum spanning forests. The sequence (M1, . . . ,Mn)
of pairwise distinct subgraphs of G is a sequence of minima of w if Mi is a mini-
mum of w for any i ∈ {1, . . . , n} and if n is equal to the number of minima of w.
In other words, a sequence of minima of w is equivalent to a total order on the
set of minima of w. We denote by Mw the set of all sequences of minima of w.

Definition 1 (hierarchical watershed) Let S = (M1, . . . ,Mn) be a sequence
of minima of w. Let (G0, . . . , Gn−1) be a sequence of subgraphs of G such that:

1. for any i ∈ {0, . . . , n−1}, the graph Gi is a MSF of G rooted in (∪{V (Mj) |
j ∈ {i+ 1, . . . , n}},∪{E(Mj) | j ∈ {i+ 1, . . . , n}}); and

2. for any i ∈ {1, . . . , n− 1}, Gi−1 v Gi.
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Fig. 3. (a): A weighted graph (G,w) with four minima delimited by the dashed rect-
angles. (b): A hierarchical watershed H = (P0,P1,P2,P3) of (G,w). (c): The saliency
map Φ(H) of H.

The sequence T = (CC(G0), . . . , CC(Gn−1)) is called a hierarchical water-
shed of (G,w) for S. Given a hierarchy H, we say that H is a hierarchical
watershed of (G,w) if there exists a sequence S of minima of w such that H is
a hierarchical watershed for S.

A weighted graph (G,w) and a hierarchical watershed H of (G,w) are illus-
trated in Figure 3(a) and (b), respectively. We can see that H is the hierarchical
watershed of (G,w) for the sequence S = (M1,M2,M3,M4) of minima of w.

Since we assumed that the edge weights for w are pairwise distinct, for any
sequence S of minima of w, the hierarchical watershed of (G,w) for S is unique.

3 Studying probabilities of hierarchical watersheds

Let H be a hierarchical watershed of (G,w). In this study, we tackle the follow-
ing problems: (P1) Find the probability of H to be the hierarchical watershed
of (G,w) for an arbitrary sequence of minima of w; and (P2) Characterize the
most probable hierarchical watersheds of (G,w).

In this section, we first introduce binary partition hierarchies by altitude or-
dering, which are closely linked to hierarchical watersheds, as established in [7].
Then, we present our solution to Problem (P1) and a quasi-linear time algo-
rithm to compute probabilities of hierarchical watersheds. Finally, we propose a
solution to Problem (P2).

3.1 Binary partition hierarchies (by altitude ordering)

Binary partition trees are widely used for hierarchical image representation [11].
In this section, we describe the particular case where the merging process is
guided by the edge weights [7].

Given any set X, we denote by |X| the number of elements of X. Let k be any
element in {1, . . . , |E|}. We denote by uk the edge in E such that there are k−1
edges in E of weight strictly smaller than w(uk). We set B0 = {{x}|x ∈ V }.
The k-partition of V is defined by Bk = (Bk−1\{Bx

k−1,B
y
k−1})∪{B

y
k−1∪Bx

k−1},
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Fig. 4. (a) The binary partition hierarchy B of (G,w) of Figure 3(a). (b) A represen-
tation of the saliency map Φ(H) of Figure 3(c).

where uk = {x, y} and Bx
k−1 and By

k−1 are the regions of Bk−1 that con-
tain x and y, respectively. The binary partition hierarchy (by altitude ordering)
of (G,w), denoted by B, is the hierarchy (B0, . . . ,B|E|).

Let B = (B0, . . . ,B|E|) be the binary partition hierarchy of (G,w) and let k
be a value in {1, . . . , |E|}. Since G is a tree, given uk = {x, y}, it can be seen
that Bx

k−1 and By
k−1 are disjoint. Thus Bk is different from Bk−1. We can affirm

that Bx
k−1 ∪By

k−1 is not a region of Bk′ for any k′ < k. Since B is a hierarchy,
we say that uk is the building edge of the region {By

k−1 ∪Bx
k−1} of B. Given any

edge u in E, we denote by Ru the region of B whose building edge is u.
In Figure 4(a), we present the binary partition hierarchy B of the graph (G,w)

of Figure 3(a). The building edge of each non-leaf region R of B is shown above
the node that represents R.

3.2 Finding probabilities of hierarchical watersheds

Let H be a hierarchical watershed of (G,w). As defined previously, there is a
sequence S of minima of w such that H is the hierarchical watershed of (G,w)
for S. Indeed, as illustrated in Figure 1, the hierarchy H may be the hierarchical
watershed of (G,w) for several sequences of minima of w. Thus, for any hierar-
chical watershed H of (G,w), we denote by Sw(H) the set which contains every
sequence S of minima such that the hierarchical watershed of (G,w) for S is H.

Definition 2 (probability of a hierarchical watershed) Let H be a hier-
archical watershed of (G,w). Let S be uniformely distributed on the set Mw of
all sequences of minima of w. We define the probability ofH knowing w, denoted
by p(H|w), as the probability that the hierarchical watershed of (G,w) for S is
equal to H.

Property 3 Let H be a hierarchical watershed of (G,w). The probability p(H|w)
of H knowing w is the ratio k/n where k and n are the numbers of elements
of Sw(H) and of Mw, respectively.

In order to solve the problem of finding the probability of hierarchical water-
sheds, we first introduce watershed-cut edges and maximal regions.
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Definition 4 (watershed-cut edge) Let H be a hierarchical watershed of (G,w)
and let P be the set of leaf regions of H. Let u = {x, y} be an edge of G. If x
and y belong to distinct regions of P, we say that u is a watershed-cut edge of w.

We can observe that any hierarchical watershed of (G,w) has the same set
of leaf regions. For example, the set of watershed-cut edges of the graph (G,w)
of Figure 3(a) is {{a, c}, {c, e}, {e, g}}, which is the set of edges whose vertices
are in distinct leaf regions of the hierarchical watershed H of Figure 3(b).

Definition 5 (maximal region) Let u be a watershed-cut edge of w and let f
be a map from E into R+. Let Ru be the region of B whose building edge is u.
We say that the region Ru is a maximal region of B for f if the value of f on
the building edge u of Ru is greater than the value of f on the building edge of
any region of B included in Ru: i.e., if f(u) > max{f(v), v ∈ E | Rv ⊂ Ru}.

In Figure 4(b), we represent the saliency map Φ(H) of Figure 3(c) on the
binary partition hierarchy by altitude ordering B of Figure 4(a). The weight
above each region R of B is the weight of the building edge of R for Φ(H). We
can see that the only maximal regions of B for Φ(H) are the regions Y5 and Y6.

The following property establishes that, given any hierarchical watershed H
of (G,w), the probability of H knowing w can be defined through the number
of maximal regions of B for the saliency map Φ(H) of H.

Property 6 Let H be a hierarchical watershed of (G,w) and let m be the number
of maximal regions of B for the saliency map Φ(H) of H. The probability of H
knowing w is

p(H | w) =
2m

|Mw|
. (1)

For instance, let us consider the hierarchical watershed H of Figure 3(b).
As stated previously, the hierarchy B has two maximal regions (Y5 and Y6)
for Φ(H). Since the graph (G,w) of Figure 3 has four minima, there are 4!
sequences of minima of w. By property 6, we may conclude that the probability

of H knowing w is 22

4! . Indeed, H is the hierarchical watershed of (G,w) for four
sequences of minima: (M1,M2,M3,M4), (M1,M2,M4,M3), (M2,M1,M3,M4)
and (M2,M1,M4,M3).

From Property 6, we derive a quasi-linear time algorithm (Algorithm 1) to
compute the probability of hierarchical watersheds. The inputs are a weighted
graph ((V,E), w) and the saliency map f of a hierarchical watershed of ((V,E), w).
First, the binary partition hierarchy B of ((V,E), w) is computed in quasi-linear
time with respect to |E| [10]. At lines 2− 7, we compute the number of minima
of w and the set of watershed-cut edges of w in linear time with respect to |E|
using the method proposed in [10]. At lines 8 − 20, we find the number m of
maximal regions of B for f . Both for loops at lines 8 and 15 can be computed
in linear time with respect to |E|. Therefore, the overall time complexity of Al-
gorithm 1 is quasi-linear with respect to |E|. The output of Algorithm 1 is the
probability of H knowing w, which is 2m

numMin! by Property 6.
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Algorithm 1 Probability of hierarchical watersheds

Data: ((V,E), w): a weighted graph whose edges are already sorted in increasing
order according to w
f : the saliency map of a hierarchical watershed H of ((V,E), w)

Result: the probability of H knowing w

// We consider that all variables are implicitly initialized to 0

1: Compute the binary partition hierarchy B of ((V,E), w)
// Identification of watershed edges in WS and counting of minima in

numMin
2: numMin := 1
3: Declare WS as an array of |E| integers
4: for each edge u in E do
5: if none of the children of Ru is a leaf region of B then
6: WS[u] := 1
7: numMin = numMin+ 1

// Identification of maximal region by computing, for any edge u
in E, MaxF [u] = ∨{f(v) | Rv ⊂ Ru}

8: Declare MaxF as an array of |E| real numbers
9: for each edge u in increasing order of weights for w do

10: for each child X of Ru do
11: if X is not a leaf region of B then
12: v := the building edge of X
13: MaxF [u] := max(MaxF [u],MaxF [v])

// Find the number m of maximal regions of B for f
14: m := 0
15: for each edge u in E do
16: if WS[u] = 1 then
17: v1 := the building edge of a child of Ru

18: v2 := the building edge of another child of Ru

19: if f [u] > Max[v1] and f [u] > Max[v2] then
20: m := m+ 1

return 2m

numMin!

3.3 Most probable hierarchical watersheds

Let ` be the number of watershed-cut edges of w. We can affirm that there are at
most ` maximal regions of B for the saliency map of any hierarchical watershed
of (G,w). Thus, we can derive the following Corollary 7, which establishes the
tight upper bound on the probability of any hierarchical watershed of (G,w).

Corollary 7 Let ` be the number of watershed-cut edges of w and let H be a
hierarchical watershed of (G,w). The tight upper bound on the probability of H
knowing w is 2`

|Mw| .

Let u be a watershed-cut edge of w. We say that Ru is a primary region of B
if there is no watershed-cut edge v of w such that Rv ⊂ Ru. Let f be the saliency
map of a hierarchical watershed of (G,w). One can note that the value of f is
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null on non watershed-cut edges of w and non null on the watershed-cut edges
of w. Therefore, given a watershed-cut edge u of w, if Ru is a primary region
of B, then f(u) > max{f(v), v ∈ E | Rv ⊂ Ru} = 0 and, consequently, Ru is
a maximal region of B for f . We conclude that each primary region of B is a
maximal region of B for every saliency map of a hierarchical watershed of (G,w).
We can now define the tight lower bound on the probability of hierarchical
watersheds.

Corollary 8 Let k be the number of primary regions of B and let H be a hi-
erarchical watershed of (G,w). The tight lower bound on the probability of H
knowing w is 2k

|Mw| .

If the map w has more than two minima, then there is at least one watershed-
cut edge u of w such that Ru is not a primary region of B. Therefore, the
tight lower bound and the tight upper bound on the probabilities of hierarchical
watersheds of (G,w) are not equal. This justifies the following definition of most
probable hierarchical watersheds.

Definition 9 (most probable hierarchical watersheds) Let H be a hierar-
chical watershed of (G,w). We say that H is a most probable hierarchical water-
shed of (G,w), if, for any hierarchical waterhsed H′ for (G,w), we have p(H |
w) ≥ p(H′ | w).

Let f be the saliency map of a hierarchical watershed of (G,w). Let R be a
non-leaf region of B and let u be the building edge of R. We define the persistence
value of R for f as the weight f(u) of u. Let H be a hierarchical watershed
of (G,w). By Corollary 7, the probability of H knowing w is maximal when, for
every watershed-cut edge u of w, Ru is a maximal region of B for Φ(H). By the
definition of maximal regions, we can establish the following characterization of
the most probable hierarchical watersheds of (G,w).

Property 10 Let H be a hierarchical watershed of (G,w). H is a most probable
hierarchical watershed of (G,w) if and only if the persistence values for Φ(H)
are increasing on the hierarchy B.

Let H be a most probable hierarchical watershed of (G,w). By Property 10,
we may conclude that the order in which the regions of H are merged along the
partitions of H are constrained by the hierarchy B. Thus, we can deduce the
following corollary from Property 10.

Corollary 11 Let H be a hierarchical watershed of (G,w). H is a most probable
hierarchical watershed of (G,w) if and only if each non-leaf region of H is a
region of B.

In Figure 5, we present four hierarchical watersheds for the weighted graph
of Figure 3(a). Indeed, those are the only hierarchical watersheds for (G,w). For
each hierarchy, we present its saliency map represented on G and on the binary
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Fig. 5. The hierarchical watersheds for the weighted graph (G,w) of Figure 3(a), their
saliency maps represented on the graph (G,w) and on the binary partition hierarchy B.
The probability of each hierarchical watershed knowing w is presented under B.

partition hierarchy by altitude ordering B. Since w has four minima, the number
of sequences of minima of w is 4!. The probability of the hierarchies H1, H2, H3

and H4 knowing w are 4
4! ,

4
4! ,

8
4! and 8

4! , respectively. Therefore, the set of most
probable hierarchical watersheds of (G,w) is {H3,H4}. We can verify that each
non-leaf region of H3 and H4 is a region of B, as established by Corollary 11,
which is not the case for H1 and H2.

From Property 10, we can deduce a recursive method to find the saliency
map f of a most probable hierarchical watershed of (G,w). Let ` be the number
of watershed-cut edges of w and let L be the set {1, . . . , `}. Let R be the root
of the tree representing B and let u be the building edge of R. First, we assign
f(u) to max{1, . . . , `}. Then, we divide the set {1, . . . , `−1} into two subsets L′

and L′′ with n′ − 1 and n′′ − 1 elements, respectively, where n′ and n′′ are the
number of minima included in the children R′ and R′′ of R. Subsequently, the
sets L′ and L′′ are propagated to R′ and R′′, respectively. The subtrees rooted in
R′ and R′′ are treated separately. This process is performed until the weight of
all watershed-cut edges of w have been assigned. An illustration of this method
is presented in Figure 6, where we show two of the most probable hierarchical
watersheds of an image.

4 Conclusion

We proposed an efficient method to obtain the probability of hierarchical water-
sheds in the framework of weighted graphs. We also provided a characterization
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I Grad f1 f2

Fig. 6. An image I, a gradient Grad of I and the saliency maps f1 and f2 of two of
the most probable hierarchical watersheds of Grad.

of the most probable hierarchical watersheds of any weighted graph. In future
work, we will extend the notions presented here to arbitrary graphs, i.e. graphs
that are not trees and graphs whose edge weights are not pairwise distinct.
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