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Watersheding hierarchies

Deise S. Maia, Jean Cousty, Laurent Najman, and Benjamin Perret

Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM,
F-93162, Noisy-le-Grand, France

Abstract. The computation of hierarchies of partitions from the wa-
tershed transform is a well-established segmentation technique in math-
ematical morphology. In this article, we introduce the watersheding op-
erator, which maps any hierarchy into a hierarchical watershed. The hi-
erarchical watersheds are the only hierarchies that remain unchanged
under the action of this operator. After defining the watersheding oper-
ator, we present its main properties, namely its relation with extinction
values and sequences of minima of weighted graphs. Finally, we discuss
practical applications of the watersheding operator.

1 Introduction

In the context of image segmentation, hierarchies (of partitions) are sequences
of nested partitions of image pixels. At the highest levels of a hierarchy, we have
the most representative regions according to a given criterion, such as size and
contrast. Hierarchies can be equivalently represented by saliency maps [1,6,18],
in which the contours between regions are weighted according to their level of
disappearance in the hierarchy. Thank to the bijection between hierarchies and
saliency maps [6], we work indifferently with any of those notions in this study.

In mathematical morphology, hierarchies are often obtained from the wa-
tershed transform [4,2]. With the definitions proposed in [4], hierarchical wa-
tersheds are optimal in the sense of minimum spanning forests. Furthermore,
efficient algorithms to compute those hierarchies have been designed [5,17]. The
competitive performance of hierarchical watersheds is attested by the quanti-
tative evaluation presented in [19]. Moreover, watersheds can be linked to a
broader family of combinatorial optimization problems, such as random walkers
and graph cuts, as demonstrated in [3].

In this article, we propose the watersheding operator, which, given an edge-
weighted graph ((V,E), w), transforms (the saliency map of) any hierarchy on V
into (the saliency map of) a hierarchical watershed of ((V,E), w). Figure 1 illus-
trates an application of the watersheding operator. The goal is to obtain, from
the image gradient G, a hierarchical watershed of G that highlights the circu-
lar regions of the image I. A straightforward method to achieve this goal is to
compute the hierarchical watershed of G based on a (regularized) circularity at-
tribute, which results in the hierarchy Hc. We can observe that the hierarchy Hc
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I G Hc Hcc Hw

Fig. 1: An image I, the gradient G of I computed using the structured edge detec-
tor introduced in [8], the hierarchical watershed Hc of G based on a regularized
circularity attribute, a circularity based hierarchy Hcc and the watersheding Hw

of Hcc (for G).

does not succeed at highlighting all the main circular regions of the image I.
Alternatively, we can compute another hierarchy Hcc by simply weighing each
contour as the maximum circularity value among the regions that share this con-
tour. The hierarchy Hcc brings to the fore the main circular regions of I, however
it is not a hierarchical watershed of G. By applying the watersheding operator
on Hcc, we obtain the hierarchical watershed Hw. We can see that the circular
regions of the image I are better highlighted in the result of the watersheding
operator Hw when compared to the straightforward approach Hc.

This article is organized as follows. We review basic notions on graphs, hi-
erarchies and saliency maps in section 2. Then, we present the watersheding
operator and some properties of this operator in section 3. Finally, we discuss
applications of the watersheding of hierarchies in section 4.

2 Background notions

In this section, we first introduce hierarchies of partitions. Then, we review the
definition of graphs, connected hierarchies and saliency maps. Subsequently, we
define hierarchical watersheds.

2.1 Hierarchies of partitions

Let V be a set. A partition of V is a set P of non empty disjoint subsets of V
whose union is V . If P is a partition of V , any element of P is called a region
of P. Let V be a set and let P1 and P2 be two partitions of V . We say that P1

is a refinement of P2 if every element of P1 is included in an element of P2.
A hierarchy (of partitions on V ) is a sequence H = (P0, . . . ,Pn) of partitions
of V such that P0 is an arbitrary partition of V , the partition Pn is the set {V }
and Pi−1 is a refinement of Pi, for any i ∈ {1, . . . , n}. For any i in {0, . . . , n},
any region of the partition P i is called a region of H.

Hierarchies of partitions can be represented as trees whose nodes correspond
to regions, as shown in Figure 2. Given a hierarchy H and two regions X and Y
of H, we say that X is a parent of Y (or that Y is a child of X) if Y ⊂ X
and X is minimal for this property. In other words, if X is a parent of Y and if
there is a region Z such that Y ⊆ Z ⊂ X, then Y = Z. It can be seen that any
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Fig. 2: A representation of a hierarchy of partitions H = (P0,P1,P2,P3) on the
set {a, b, c, d, e, f, g, h} and a weighted graph (G,w).

region X of H such that X 6= V has exactly one parent. Thus, for any region X
such that X 6= V , we write parent(X) = Y where Y is the unique parent of X.
For any region R of H, if R is not the parent of any region of H, we say that R
is a leaf region of H. Otherwise, we say that R is a non-leaf region of H.

In Figure 2, the regions of a hierarchy H are linked to their parents and
children by straight lines. The partition P0 ofH contains all the leaf regions ofH.

2.2 Graphs, connected hierarchies and saliency maps

A graph is a pair G = (V,E), where V is a finite set and E is a set of pairs
of distinct elements of V , i.e., E ⊆ {{x, y} ⊆ V |x 6= y}. Each element of V is
called a vertex (of G), and each element of E is called an edge (of G). To simplify
the notations, the set of vertices and edges of a graph G will be also denoted
by V (G) and E(G), respectively.

Let G = (V,E) be a graph and let X be a subset of V . A sequence π =
(x0, . . . , xn) of elements of X is a path (in X) from x0 to xn if {xi−1, xi} is an
edge of G for any i in {1, . . . , n}. The subset X of V is said to be connected
for G if, for any x and y in X, there exists a path from x to y. The subset X is a
connected component of G if X is connected and if, for any connected subset Y
of V such that X ⊆ Y , we have X = Y . In the following, we denote by CC(G)
the set of all connected components of G. It is well known that this set CC(G)
of all connected components of G is a partition of the set V .

Let G = (V,E) be a graph. A partition of V is connected for G if each of its
regions is connected for G and a hierarchy on V is connected (for G) if each of its
partitions is connected. For example, in Figure 2, the hierarchy H is connected
for the graph (G,w).

Let G be a graph. If w is a map from the edge set of G to the set R+ of
positive real numbers, then the pair (G,w) is called an (edge) weighted graph.
If (G,w) is a weighted graph, for any edge u of G, the value w(u) is called the
weight of u (for w).

As established in [6], a connected hierarchy can be equivalently treated by
means of a weighted graph through the notion of a saliency map. Given a graphG
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and a hierarchy H = (P0, . . . ,Pn) connected for G, the saliency map of H (also
known as ultrametric watershed [16] and ultrametric contour map [1]) is the map
from E(G) to {0, . . . , n}, denoted by Φ(H), such that, for any edge u = {x, y}
in E(G), the value Φ(H)(u) is the smallest value i in {0, . . . , n} such that x
and y belong to a same region of Pi. Therefore, the weight Φ(H)(u) of any edge
u = {x, y} is the ultrametric distance between x and y on the hierarchy H. It
follows that any connected hierarchy has a unique saliency map. Moreover, we
can recover any hierarchy H connected for G from the saliency map Φ(H) of H
through the notion of quasi-flat zones [15,13], as established in [6]. For instance,
in Figure 2, the weight map w is the saliency map of the hierarchy H.

2.3 Hierarchies of minimum spanning forests and watersheds

The watershed segmentation [4,2] derives from the topographic notion of water-
sheds lines and catchment basins. A catchment basin is a region whose collected
precipitation drains to the same body of water, as a sea, and the watershed lines
are the separating lines between neighbouring catchment basins. In [4], the au-
thors formalize watersheds in the framework of weighted graphs and show the
optimality of watersheds in the sense of minimum spanning forests. In this sec-
tion, we present hierarchical watersheds following the definition of hierarchies of
minimum spanning forests presented in [7].

Let G be a graph. We say that G is a forest if, for any edge u in E(G), the
number of connected components of the graph (V (G), E(G)\{u}) is larger than
the number of connected components of G. Given another graph G′, we say that
G′ is a subgraph of G, denoted by G′ v G, if V (G′) ⊆ V (G) and E(G′) ⊆ E(G).
Let (G,w) be a weighted graph and let G′ be a subgraph of G. A graph G′′ is a
Minimum Spanning Forest (MSF) of G rooted in G′ if:

1. the graphs G and G′′ have the same set of vertices, i.e., V (G′′) = V (G); and
2. the graph G′ is a subgraph of G′′; and
3. each connected component of G′′ includes exactly one connected component

of G′; and
4. the sum of the weight of the edges of G′′ is minimal among all graphs for

which the above conditions 1, 2 and 3 hold true.

Important notations and notions: in the sequel of this article, the sym-
bol G denotes a tree, i.e., a forest with a unique connected component. This
implies that any map from E(G) into Z+ is the saliency map of a hierarchy
which is connected for G, as established by Properties 9 and 10 of [6]. To shorten
the notation, the vertex set of G is denoted by V and its edge set is denoted
by E. The symbol w denotes a map from E into R+ such that, for any pair
of distinct edges u and v in E, we have w(u) 6= w(v). Thus, the pair (G,w) is
a weighted graph. Every hierarchy considered in this article is connected for G
and therefore, for the sake of simplicity, we use the term hierarchy instead of
hierarchy which is connected for G.

Intuitively, a drop of water on a topographic surface drains in the direction
of a local minimum and there is a correspondence between the catchment basins



Watersheding hierarchies 5

M1 M2 M3 M4

a

b

c

d

e

f

g

h

1 2 3 4

5 7 6

M1 M2 M3 M4

X5

X6

X7

{a} {b} {c} {d} {e} {f} {g} {h}

M1

{a, b}
M2

{c, d}
M3

{e, f}
M4

{g, h}
Y5

{a, c}
Y6

{e, g}
Y7

{c, e}

(G,w) H B

Fig. 3: A weighted graph (G,w) with four minima delimited by the dashed rect-
angles, a hierarchical watershed H of (G,w), and the binary partition hierarchy
by altitude ordering B of (G,w).

of a surface and its local minima. As established in [4], in the context of cuts, a
notion of watershed in the framework of edge-weighted graphs is characterized
as a (graph) cut induced by a minimum spanning forest rooted in the minima of
this graph. Let k be a value in R+. A connected subgraph G′ of G is a (regional)
minimum (for w) at level k if:

1. for any edge u in E(G′), the weight of u is equal to k; and
2. for any edge {x, y} in E(G)\E(G′) such that |{x, y}∩V (G′)| ≥ 1, the weight

of {x, y} is strictly greater than k.

Let {G1, . . . , G`} be a set of graphs. We denote by t{G1, . . . , G`} the
graph (∪{V (Gj) | j ∈ {1, . . . , `}},∪{E(Gj) | j ∈ {1, . . . , `}}). In the following,
we define hierarchical watersheds which are optimal in the sense of minimum
spanning forests [5].

Definition 1 (hierarchical watershed). Let S = (M1, . . . ,Mn) be a sequence of
pairwise distinct minima of w such that {M1, . . . ,Mn} is the set of all minima
of w. Let (G0, . . . , Gn−1) be a sequence of subgraphs of G such that:

1. for any i ∈ {0, . . . , n− 1}, the graph Gi is a MSF of G rooted in t{Mj | j ∈
{i+ 1, . . . , n}}; and

2. for any i ∈ {1, . . . , n− 1}, Gi−1 v Gi.

The sequence T = (CC(G0), . . . , CC(Gn−1)) is called a hierarchical water-
shed of (G,w) for S. Given a hierarchy H, we say that H is a hierarchical water-
shed of (G,w) if there exists a sequence S = (M1, . . . ,Mn) of pairwise distinct
minima of w such that {M1, . . . ,Mn} is the set of all minima of w and such
that H is a hierarchical watershed for S.

A weighted graph (G,w) and a hierarchical watershed H of (G,w) are illus-
trated in Figure 3. We can see that H is the hierarchical watershed of (G,w) for
the sequence S = (M1,M2,M3,M4) of minima of w.

Important notations and notions: since the weight of the edges of G
are pairwise distinct, it follows that any minimum of G is a graph with a single
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edge. The number of minima of w is denoted by n. Moreover, for any sequence S
of pairwise distinct minima of w, the hierarchical watershed of (G,w) for S is
unique. Every sequence of minima of w considered in this article is a sequence
of n pairwise distinct minima of w and, therefore, we use the term sequence of
minima of w instead of sequence of n pairwise distinct minima of w.

3 Watersheding

In this section, we introduce the watersheding (operator), which maps any
saliency map into the saliency map of a hierarchical watershed of (G,w). To
present the watersheding, we first introduce binary partition hierarchies by alti-
tude ordering, whose link with hierarchical watersheds is established in [7].

3.1 Binary partition hierarchies (by altitude ordering)

Binary partition trees [20] are widely used for hierarchical image representation.
In this section, we describe the particular case where the merging process is
guided by the edge weights [7].

Given any set X, we denote by |X| the number of elements of X. Let k be any
element in {1, . . . , |E|}. We denote by uk the edge in E such that there are k−1
edges in E of weight strictly smaller than w(uk). We set B0 = {{x}|x ∈ V }.
The k-partition of V is defined by Bk = (Bk−1\{Bx

k−1,B
y
k−1})∪{B

y
k−1∪Bx

k−1},
where uk = {x, y} and Bx

k−1 and By
k−1 are the regions of Bk−1 that con-

tain x and y, respectively. The binary partition hierarchy (by altitude ordering)
of (G,w), denoted by B, is the hierarchy (B0, . . . ,B|E|).

Let B = (B0, . . . ,B|E|) be the binary partition hierarchy of (G,w) and let k
be a value in {1, . . . , |E|}. Since G is a tree, given uk = {x, y}, it can be seen
that Bx

k−1 and By
k−1 are disjoint. Thus Bk is different from Bk−1. We can affirm

that Bx
k−1 ∪By

k−1 is not a region of Bk′ for any k′ < k. Since B is a hierarchy,
we say that uk is the building edge of the region {By

k−1 ∪Bx
k−1} of B. Given any

edge u in E, we denote by Ru the region of B whose building edge is u.
In Figure 3, we present the binary partition hierarchy B of the graph (G,w).

The building edge of each non-leaf region R of B is shown above the node that
represents R.

Important notation: in the sequel of this article, the binary partition hi-
erarchy by altitude ordering of (G,w) is denoted by B.

Let X and Y be two distinct regions of B. If the parent of X is equal to the
parent of Y , we say that X is a sibling of Y , that Y is a sibling of X and that X
and Y are siblings. It can be seen that X has exactly one sibling and we denote
this unique sibling of X by sibling(X).

3.2 Watersheding operator

The idea underlying the watersheding operator is to invert the method to com-
pute hierarchical watersheds proposed in [17,7]. In order to present this method,
we first present the definition of extinction values and extinction maps.
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Definition 2 (extinction value and extinction map). Let S be a sequence of
minima of w and let R be any region of B. The extinction value of R for S is
zero if there is no minimum of w included in R and, otherwise, it is the maximum
value i in {1, . . . , n} such that the minimum Mi is included in R. Let P be a
map from the regions of B into R+. We say that P is the extinction map for S if,
for any region R of B, the value P (R) is the extinction value of R for S. We say
that P is an extinction map if there exists a sequence of minima S such that P
is the extinction map for S.

The following property characterizes extinction maps. 1

Property 3 (extinction map). Let P be a map from the regions of B into R+.
The map P is an extinction map for w if and only if the following statements
hold true:

– ∪{P (R) | R is a region of B} = {0, . . . , n};
– for any two distinct minima M1 and M2, P (M1) 6= P (M2); and
– for any region R of B, we have P (R) = ∨{P (M) such that M is a minimum

of w included in R}.

Let S be a sequence of minima of w. As established in [7], the saliency
map f of the hierarchical watershed of (G,w) for S can be obtained through the
following steps:

1. computation of the extinction map P for S; and
2. computation of f : for any edge u in E, the weight of u for f is min{P (R) | R

is a child of Ru}.

Inspired by this simple and efficient method to compute hierarchical water-
sheds, we propose the watersheding of hierarchies. From any saliency map f , we
find an approximated extinction map P such that, for any edge u of G, we have
f(u) = min{P (R) | R is a child of Ru}. Then, we define a sequence S of minima
of w ordered in increasing order for P . The watersheding of f is then defined as
the saliency map of the hierarchical watershed of (G,w) for S.

In order to introduce approximated extinction maps, we first present the aux-
iliary notions of supremum descendant values, non-leaf orderings and dominant
regions.

Definition 4 (supremum descendant value). Let f be a map from E into R+

and let R be a region of B. The supremum descendant value of R for f , denoted
by ∨f (R), is defined as ∨f (R) = ∨{f(v) | v ∈ E,Rv ⊆ R}.

Definition 5 (non-leaf ordering). Let f be a map from E into R+ and let R be
a region of B. A non-leaf ordering by f (for B) is a total ordering on the non-
leaf regions of B, denoted by ≺(f,w), such that, for any two non-leaf regions X
and Y whose building edges are u and v, respectively, if ∨f (X) < ∨f (Y ) or
if ∨f (X) = ∨f (Y ) and w(u) < w(v), then X ≺(f,w) Y .
1 The proofs of the lemmas, properties and theorem presented in this article can be
found in [10]
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Fig. 4: A weighted graph (G, f), the suppremum descendant values ∨f for f , and
the approximated extinction map ξf of f for the binary partition hierarchy by
altitude ordering B of Figure 3.

Since the edge weights for w are pairwise distinct, we can conclude that, for
any map f , there is a unique non-leaf ordering ≺(f,w) by f .

Definition 6 (dominant region). Let f be a map from E into R+ and let ≺(f,w)

be the non-leaf ordering by f . Given any non-leaf region R different from V of B,
we say that R is a dominant region for f if:

– sibling(R) ≺(f,w) R; or
– sibling(R) is a leaf region of B.

For instance, consider the weighted graph (G,w) and the binary partition
hierarchy B of (G,w) shown in Figure 3, and the weighted graph (G, f) shown
in Figure 4. The non-leaf ordering ≺(f,w) by f for B is such that M1 ≺(f,w)

M2 ≺(f,w) M3 ≺(f,w) M4 ≺(f,w) Y5 ≺(f,w) Y6 ≺(f,w) Y7. The dominant regions
of B for f are the regions M2, M4, Y6.

Definition 7 (approximated extinction map). Let f be a map from E into R+.
The approximated extinction map of f (for B) is the map ξf from the set of
regions of B into R+ such that:

1. ξf (R) = ∨f (R) + 1 if R is the vertex set V of G ; and
2. ξf (R) = ξf (parent(R)) if R is a dominant region of B; and
3. ξf (R) = f(u), where u is the building edge of parent(R), otherwise.

In Figure 4, we show the approximated extinction map ξf of a map f for
the hierarchy B shown in Figure 3. The next property establishes that ξf is an
extinction map if and only if f is the saliency map of a hierarchical watershed.

Property 8. Let f be a map from E into R+ and let ξf be the approximated
extinction map of f . The map f is the saliency map of a hierarchical watershed
of (G,w) if and only if the map ξf is an extinction map.

By Property 3, we can verify that the map ξf of Figure 4 is not an extinction
map because ∨{P (M1), P (M2)} = 2 is different from P (Y5) = 1. By Property 8,
we may conclude that f is not the saliency map of a hierarchical watershed.

In the next definition, we introduce estimated sequences of minima obtained
through approximated extinction maps.
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Definition 9 (estimated sequence of minima). Let f be a map from E into R+

and let ξf be the approximated extinction map of f . The estimated sequence of
minima (of w) for f is the sequence Sf = (M1, . . . ,Mn) such that for i and j
in {1, . . . , n}, if i < j, then:

– ξf (Mi) < ξf (Mj); or
– ξf (Mi) = ξf (Mj) and Mi ≺(f,w) Mj.

For instance, in Figure 4, we can see that ξf (M2) < ξf (M1) <
ξf (M3) < ξf (M4). Therefore, the estimated sequence of minima for f is Sf =
(M2,M1,M3,M4). The next property establishes that, if f is a hierarchical wa-
tershed of (G,w), then f is the hierarchical watershed of (G,w) for Sf .

Property 10. Let f be a map from E into R+ and let Sf be the estimated
sequence of minima of f . If f is a hierarchical watershed of (G,w), then f is the
hierarchical watershed of (G,w) for Sf .

Having defined approximated extinction maps and estimated sequences of
minima, we formalize the watersheding operator in the following definition.

Definition 11 (watersheding). Given a map f from E into R+, let Sf be the
estimated sequence of minima of f and let P be the extinction map for Sf . The
watersheding of f is the map ω(f) from E into R+ such that, for any edge u:

ω(f)(u) = min{P (R) | R is a child of Ru}.

In Figure 5, we show the watersheding ω(f) of the map f of Figure 4. Af-
ter obtaining the estimated sequence of minima Sf = (M2,M1,M3,M4) for f
(shown in Figure 4), we compute the extinction map P for Sf . Then, the water-
sheding of f is obtained according to Definition 11. We can verify that ω(f) is
the saliency map of a hierarchical watershed of (G,w) of Figure 3. Indeed, the
map ω(f) is the saliency map of the hierarchical watershed H of Figure 3.
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Fig. 5: The extinction map P for the estimated sequence of minima Sf =
(M2,M1,M3,M4) for the map f (Figure 4) and watersheding ω(f) of f .

In the following theorem, we establish that the watersheding of any map is
the saliency map of a hierarchical watershed of (G,w).
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Theorem 12. Let f be a map from E into R+. The watersheding ω(f) of f
is the saliency map of the hierarchical watershed of (G,w) for the estimated
sequence of minima for f .

The following properties establish that the watersheding operator is idempo-
tent and that the saliency maps of the hierarchical watersheds of (G,w) are the
fixed points of the watersheding operator.

Property 13. Let f be a map from E into R+. The watersheding ω(ω(f))
of ω(f) is equal to ω(f).

Property 14. Let f be the saliency map of a hierarchical watershed of (G,w).
The watersheding ω(f) of f is equal to f .

From Theorem 12 and from Properties 13 and 14, we may conclude the
following property, which links the watersheding operator to the problem of
recognition of hierarchical watersheds discussed in [11].

Property 15. Let H be a hierarchy and let f be the saliency map of H. The
hierarchy H is a hierarchical watershed of (G,w) if and only if the watershed-
ing ω(f) of f is equal to f .

4 Discussions and perspectives

In this article, we propose the watersheding operator, which converts any map
into the saliency map of a hierarchical watershed. The genericity of the water-
sheding operator opens a range of potential applications:

– Regularization of hierarchies based on non-increasing attributes. In a hierar-
chical watershed, the order in which catchment basins are merged are often
defined by extinction values associated with increasing regional attributes,
such as area and volume [14]. Given an attribute A, we say that A is in-
creasing if, given any hierarchy H, for any pair of regions R1 and R2 of H,
if R1 ⊂ R2 then A(R1) < A(R2). To compute a hierarchical watershed
of (G,w) based on the attribute A, we first obtain extinction values based
on A [22]. Then, we compute the hierarchical watershed H of (G,w) for the
sequence S of minima w ordered by their extinction values. The hierarchy H
corresponds to a sequence of filterings of the watershed of (G,w) in which
the least important regions according to A are the first regions to be sup-
pressed. However, this property is not guaranteed when A is not increasing.
When dealing with non-increasing attributes, e.g. circularity and perimeter,
we can obtain extinction values by applying a regularization rule [21] on
the attribute values. Alternatively, instead of computing hierarchical water-
sheds from regularized attribute values, we can compute the watersheding
of any hierarchy based on a non-increasing attribute. This is illustrated in
Figure 6. We can see that, in the watersheding Hw of the circularity based
hierarchy Hcc, the circular regions are more highlighted when compared to
the hierarchical watershed Hc computed from regularized circularity values.
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Fig. 6: First row: an image I, a gradient G of I [8], a hierarchical watershed Hc

of G based on regularized circularity attribute values, a circularity based hier-
archy Hcc and the watersheding Hw of Hcc for G. Second row: An image I ′, a
gradient G′ of I ′ [8], the hierarchy H′cob obtained through the method described
in [12] and the watersheding H′w of H′cob for G′.

– Refinement of coarse hierarchies. In [12], the authors propose a high-quality
method (COB) to compute hierarchies. However, in some cases, fine regions
are not included in the resulting hierarchies. This is the case of the hierar-
chy H′cob of Figure 6. The watersheding H′w of H′cob allows fine regions to
appear in the hierarchy while taking into consideration coarse levels of H′cob.

– Learning of optimal attributes to compute hierarchical watersheds. In [9],
the authors showed that combinations of hierarchical watersheds improve
the performance of individual hierarchical watersheds. However, there is no
guarantee that the resulting combinations are hierarchical watersheds them-
selves. By using the watersheding operator, we can compute hierarchical wa-
tersheds from the combinations of hierarchies. If we obtain similar results,
those could be used to learn an attribute A such that the watersheding of
the combinations corresponds to the hierarchical watersheds based on A.

In future work, we will extend the watersheding operator to generic graphs.
We may also perform the experiments suggested here, namely testing the wa-
tersheding operator on hierarchies based on non-increasing attributes, on com-
binations of hierarchical watersheds and on other coarse hierarchies.
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