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INVARIANTS OF FORMAL PSEUDODIFFERENTIAL OPERATOR

ALGEBRAS AND ALGEBRAIC MODULAR FORMS

FRANÇOIS DUMAS AND FRANÇOIS MARTIN

Abstract. We study from an algebraic point of view the question of extending an action of a
group Γ on a commutative domain R to a formal pseudodifferential operator ring B = R((x ; d))

with coefficients in R, as well as to some canonical quadratic extension C = R((x1/2 ; 1
2
d))2 of

B. We give a necessary and sufficient condition of compatibility between the action and the
derivation d of R for such an extension to exist, and we determine all possible extensions of the
action to B and C. We describe under suitable assumptions the invariant subalgebras BΓ and
CΓ as Laurent series rings with coefficients in RΓ.

The main results of this general study are applied in a numbertheoretical context to the case
where Γ is a subgroup of SL(2,C) acting by homographies on an algebra R of functions in one
complex variable. Denoting by Mj the vector space of algebraic modular forms in R of weight j
(even or odd), we build for any nonnegative integer k a linear isomorphism between the subspace
CΓ
k of invariant operators of order ≥ k in CΓ and the product space Mk =

∏
j≥kMj , which

can be identified with a space of algebraic Jacobi forms of weight k. It results in particular a
structure of noncommutative algebra onM0 and an algebra isomorphism Ψ :M0 → CΓ

0 , whose
restriction to the particular case of even weights was previously known in the litterature. We
study properties of this correspondence combining arithmetical arguments and the use of the
algebraic results of the first part of the article.

Introduction

Several studies in deformation or quantization theories have shown in various contexts that
significant combinations of Rankin-Cohen brackets on modular forms of even weights correspond
by isomorphic transfer to the noncommutative composition product in some associative algebras
of invariant operators (see for instance [Zag94], [CMZ97], [UU96], [BTY07], [CL07], [Pev12],
[Yao14], [Lee18]). The main goal of this paper is to produce such a correspondence in a formal
algebraic setting for modular forms of any weights (even or odd), which allows the construction
to be applied to Jacobi forms.

The first part deals with the general algebraic problem to extend a group action from a ring R to
a ring of formal pseudodifferential operators with coefficients in R, and to describe the subring
of invariant operators. More precisely, let R be a commutative domain of characteristic zero
containing the subfield of rational numbers, U(R) its group of invertible elements, d a derivation
of R and Γ a group acting by automorphisms on R. We denote by B = R((x ; d)) the ring of
formal pseudodifferential operators with coefficients in R. The elements of B are the Laurent
power series in one indeterminate x with coefficients in R and the noncommutative product in
B is defined from the commutation law:

xf =
∑

i≥0 d
i(f)xi+1 for any f ∈ R.
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We also consider some quadratic extension C = R((y ; δ))2 of B, with y2 = x, δ = 1
2d and

commutation law:

yf =
∑

k≥0

(
(2k)!

2k(k!)2

)
δk(f)y2k+1 for any f ∈ R.

This type of skew power series rings was already introduced in various ringtheoretical papers, see
references in [Dum92]. We prove (theorem 1.2.5) that the action of Γ on R extends to an action
by automorphisms on B if and only if there exists a multiplicative 1-cocycle p : Γ→ U(R) such
that γdγ−1 = pγ .d for any γ ∈ Γ. We describe under this assumption all possible extensions of
the action; they are parametrized by the arbitrary choice of a map r : Γ → R satisfying some
compatibility condition related to p. We give (theorem 1.3.1) sufficient conditions for the ring
BΓ of invariant operators to be described as a ring of formal pseudodifferential operators with
coefficients in RΓ. We prove (theorems 1.2.9 and 1.3.2) similar results for the ring C; in this case
a necessary and sufficient condition to extend the action of Γ from R to C is the existence of
some multiplicative 1-cocycle s : Γ→ U(R) satisfying γdγ−1 = s2

γ .d for any γ ∈ Γ. The subring

B is then necessarily stable under the extended actions, and BΓ is a subring of CΓ.

These general results are applied in the second part of the paper to the case of the complex
homographic action. We fix a C-algebra R of functions in one variable z stable under the
standard derivation ∂z and a subgroup Γ of SL(2,C) acting on R by:

(f.γ)(z) = f(az+bcz+d) for any f ∈ R and γ =
(
a b
c d

)
∈ Γ.

Applying the previous general construction for the derivation d = −∂z and the 1-cocycles
s : γ 7→ cz+d and p = s2, we define an action of Γ on C = R((y ; −1

2∂z))2. We give in theorems
2.2.3 and 2.2.5 a combinatorial description of this action, whose restriction to B = R((x ; −∂z))
with x = y2 corresponds to the action already introduced in section 1 of [CMZ97]. We consider
for any k ∈ Z the subspace CΓ

k of elements in CΓ whose valuation related to y is greater or equal

to k. It is easy to check that the image of the canonical projection πk : CΓ
k → R is included

in the subspace Mk of algebraic modular forms of weight k. We construct a family (ψk)k≥0 of
splitting maps ψk : Mk → CΓ

k which gives rise canonically (theorem 2.3.2) to a vector space
isomorphism:

Ψ :M0 → CΓ
0 , with M0 =

∏
k≥0Mk.

This correspondence makes it possible on the one hand to identify CΓ
k with a vector space of

algebraic Jacobi forms of weight k (see corollary 2.3.3), on the other hand to obtain by transfer a
noncommutative product onM0. This multiplication on modular forms of nonnegative weights
(even or odd) can be described in terms of linear combinations of Rankin-Cohen brackets with
combinatorial rational coefficients:

f ? g = Ψ−1(ψk(f).ψ`(g)) =
∑

n≥0 αn(k, `)[f, g]n

for any f ∈Mk, g ∈M`, k, ` ≥ 0. The restriction to modular forms of even nonnegative weights
gives the isomorphism:

Ψ2 :Mev
0 → BΓ

0 , with Mev
0 =

∏
k≥0M2k and BΓ

0 = B ∩ CΓ
0 ,

considered in section 3 of [CMZ97] (see also [UU96], [Yao07]). We discuss at the end of paragraph
2.3 the obstructions for possible extensions of theorem 2.3.2 to modular forms of negative weights.
The purpose of paragraph 2.4 is to go further in the study of the isomorphism Ψ2 using the
structure of BΓ

0 deduced from the general theorem 1.3.1. More precisely, assuming that R
contains an invertible modular form χ of weight 2, BΓ

0 is the skew power series algebra RΓ[[u ; D]]
with coefficients in RΓ where u denotes the invariant operator xχ and D is the derivation −χ−1∂z
of RΓ. A natural question is then to describe as a sequence of modular forms the inverse image
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by Ψ2 of any invariant operator in BΓ
0 , or equivalently of any power uk for k ≥ 0. The value of

Ψ−1
2 (uk) is entirely determined by some family (gk,k+i)i,k≥0 of modular forms of weight 2k + 2i,

which are zero if i is odd, and which can be calculated for even i’s in terms of Rankin-Cohen
brackets of powers of the modular form χ. Paragraph 2.5 explores some ways to extend the
previous results to negative odd weights. We finally mention in paragraph 2.6 as an open
question the possibility of considering the whole study of the second part of this paper for other
choices of the parameter r in the extension of the initial action from functions to operators.

1. Actions and invariants on pseudodifferential and quadratic
pseudodifferential operator rings

1.1. Definitions and preliminary results. We fix a commutative domain R of characteristic
zero containing Q. We denote by U(R) the group of invertible elements in R. We denote by
R〈〈x〉〉 the left R-module of formal power series

∑
i≥0 fix

i with fi ∈ R for any i ≥ 0. It is well
known that, for any nonzero derivation d of R, we can define an associative noncommutative
product on R〈〈x〉〉 from the commutation law:

xf = fx+ d(f)x2 + d2(f)x3 + · · · =
∑
n≥0

dn(f)xn+1 for any f ∈ R, (1)

and more generally for any integer i ≥ 0:

xi+1f = fxi+1 + (i+ 1)d(f)xi+2 + (i+1)(i+2)
2 d2(f)xi+3 + · · · =

∑
n≥i
(
n
i

)
dn−i(f)xn+1. (2)

We obtain so a noncommutative ring denoted by B0 = R[[x; d]]. The element x generates a
two-sided ideal in B0 and we can consider the localized ring B = R((x; d)) of B0 with respect
of the powers of x. The elements of B are the Laurent series q =

∑
i≥m fix

i with m ∈ Z and

fi ∈ R for any i ≥ m. The valuation vx(q) of q is defined by vx(q) = min{i ∈ Z ; fi 6= 0} for
q 6= 0 and vx(0) =∞. The map vx is a valuation function B → Z ∪ {∞} and B0 is the subring
{q ∈ B ; vx(q) ≥ 0}. It follows in particular that B0 and B are domains. The invertible elements
of B are the series q =

∑
i≥m fix

i such that fm ∈ U(R).

Definition 1.1.1. The noncommutative domain B = R((x; d)) is called the ring of formal
pseudodifferential operators in d with coefficients in R.

Denoting by ∂ the derivation −d, relation (1) can be rewritten:

x−1f = fx−1 + ∂(f) for any f ∈ R. (3)

It is well known that this relation defines an associative noncommutative product in the subset
A of polynomials in the variable t = x−1 with coefficients in R (see for instance [GW04] pages
11 and 19). This subset A is then a subring of B, denoted by A = R[t ; ∂].

Definition 1.1.2. The noncommutative domain R[t ; ∂] is called the ring of formal differential
operators in ∂ with coefficients in R.

Denoting by y instead of x the variable in the left R-module R〈〈y〉〉, another structure of non-
commutative ring (see example 1.3.(d) in [Dum92]) can be defined on R〈〈y〉〉 for any nonzero
derivation δ of R from the commutation law:

yf = fy + δ(f)y3 + 3
2δ

2(f)y5 + 5
2δ

3(f)y7 + 35
8 δ

4(f)y9 + · · · =
∑
k≥0

(
(2k)!

2k(k!)2

)
δk(f)y2k+1, (4)
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and more generally for any integer i ≥ 0:

yi+1f = fyi+1 +
∑
k≥1

 k∏
j=1

2(j − 1) + i+ 1

j

 δk(f)y2k+i+1 for any f ∈ R. (5)

This ring is denoted by C0 = R[[y; δ]]2. As in the previous case, C0 can be embedded in the
localization C = R((y; δ))2 of Laurent series q =

∑
i≥m fiy

i with m ∈ Z and fi ∈ R for any

i ≥ m. The valuation vy(q) is defined by vy(q) = min{i ∈ Z ; fi 6= 0} for q 6= 0 and vy(0) =∞.
The map vy is a valuation function C → Z ∪ {∞} and C0 is the subring {q ∈ B ; vy(q) ≥ 0}.
In particular C0 and C are domains. The invertible elements of C are the series q =

∑
i≥m fiy

i

such that fm ∈ U(R).

Definition 1.1.3. The noncommutative domain C = R((y; δ))2 is called the ring of quadratic
formal pseudodifferential operators in δ with coefficients in R.

By elementary calculations it follows from (5) that:

y2f = fy2 + 2δ(f)y4 + 4δ2(f)y6 + · · · =
∑
k≥1

(2δ)k−1(f)y2k for any f ∈ R, (6)

which is equivalent to

y−2f = fy−2 − 2δ(f) for any f ∈ R. (7)

This observation gives rise to the following result.

Proposition 1.1.4. Let R be a commutative domain of characteristic zero containing Q. Let d
be a nonzero derivation of R.

(i) The ring of quadratic pseudodifferential operators C = R((y ; δ))2 for δ = 1
2d contains as

a subring the ring of pseudodifferential operators B = R((x ; d)) for x = y2, and therefore
the ring of differential polynomials A = R[t ; ∂] for t = x−1 = y−2 and ∂ = −d.

A = R[t ; −d] ⊂ B = R((x ; d)) ⊂ C = R((y ; 1
2d))2.

(ii) We have vy(q) = 2vx(q) for any q ∈ B, and the subrings B0 = R[[x ; d]] and C0 =
R[[y ; δ]]2 satisfy B0 = B ∩ C0.

(iii) We have C = B ⊕By, with By = yB, (By)(By) = B and (By)B = B(By) = By.

Proof. Follows by obvious calculations from identities (6) and (7). �

The following proposition shows that any automorphism of B (respectively C) stabilizing R is
continuous with respect of the x-adic (respectively the y-adic) topology. A similar property is
proved in [AD95] for different commutation laws and in the particular case where R a field. We
start with a preliminary technical result.

Lemma 1.1.5. Data and notations are those of the previous proposition. Let ` be a positive
integer.

(i) For any q ∈ B of the form q = 1 +
∑

i≥1 fix
i with fi ∈ R for any i ≥ 1, there exists an

element r in B such that q = r`.
(ii) For any q ∈ C of the form q = 1 +

∑
i≥1 fiy

i with fi ∈ R for any i ≥ 1, there exists an

element r in C such that q = r`.
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Proof. The proof is the same in the two cases and we write it for B = R((x; d)). We consider
in B an element of nonnegative valuation r =

∑
i≥0 gix

i with gi ∈ R for any i ≥ 0. For any

integer ` ≥ 1, we denote r` =
∑

i≥0 g`,ix
i with g`,i ∈ R for any i ≥ 0. By a straightforward

induction using (2), we check that g`,i = `g`−1
0 gi + h`,i where the rest h`,i depends only on

previous g0, g1, . . . , gi−1 and their images by some powers of d. Then for any sequence (fi)i≥1

of elements in R, we can determine inductively a unique sequence (gi)i≥0 such that g0 = 1 and
g`,i = fi for any i ≥ 1, that is (

∑
i≥0 gix

i)` = 1 +
∑

i≥1 fix
i. �

Proposition 1.1.6. Data and notations are those of the previous proposition.

(i) Let γ be an automorphism of B whose restriction to R is an automorphism of R. Then
vx(γ(q)) = vx(q) for any q ∈ B. In particular the restriction of γ to B0 determines an
automorphism of B0.

(ii) Let γ be an automorphism of C whose restriction to R is an automorphism of R. Then
vy(γ(q)) = vy(q) for any q ∈ C.

(iii) Let γ be an automorphism of C whose restriction to R is an automorphism of R. Then
the restriction of γ to B determines an automorphism of B.

Proof. Let γ be an automorphism of B such that γ(R) = R. This implies γ−1(R) = R. We
introduce m = vx(γ(x)) ∈ Z and suppose that m < 0. Then the element z = 1 + x−1 satisfies
γ(z) = 1 + γ(x)−1 ∈ B0. We set an integer ` ≥ 2 and consider by point (i) of lemma 1.1.5
an element r ∈ B0 such that r` = γ(z). Applying the automorphism γ−1 we have vx(z) =
`vx(γ−1(r)), which gives a contradiction because vx(z) = −1 by definition. Hence we have
proved that m ≥ 0. It follows in particular that γ(B0) ⊂ B0. By the same argument for γ−1,
we conclude that γ(B0) = B0. In other words, the restrictions of γ and γ−1 to B0 determine
automorphisms of B0. We prove now that m = 1. In B0, we can write γ(x) = f(1 +w)xm, with
f ∈ U(R) (because γ(x) is invertible in B) and w ∈ B0 such that vx(w) ≥ 1. It follows that
x = γ−1(f)γ−1(1+w)γ−1(x)m, and then vx(γ−1(f))+vx(γ−1(1+w))+mvx(γ−1(x)) = 1. Since
γ−1(R) = R, we have vx(γ−1(f)) = 0. The element 1+w is invertible in B0, hence γ−1(1+w) is
invertible in B0, therefore vx(γ−1(1 +w)) = 0. We conclude that mvx(γ−1(x)) = 1, then m = 1
and the proof of point (i) is complete. The proof of point (ii) is similar replacing B0 by C0, x
by y and vx by vy.

Let γ be an automorphism of C such that γ(R) = R. We deduce from relation (7) that
γ(y)−2γ(f) − γ(f)γ(y)−2 = −γ(d(f)) for any f ∈ R. With notation z = γ(y)−2, we obtain
zf −fz = −γdγ−1(f) ∈ R for any f ∈ R. By point (ii), we have vy(z) = −2. Using point (iii) of
proposition 1.1.4, we have z = q+q′y with q, q′ ∈ B, vy(q) = −2, vy(q

′) ≥ −2. Since qf−fq ∈ B
for any f ∈ R, we deduce from previous identity that q′yf−fq′y ∈ B for any f ∈ R. Suppose that
q′ 6= 0 and denote q′y =

∑
i≥` f2i+1y

2i+1, with ` ≥ −1, f2i+1 ∈ R for any i ≥ −1 and f2`+1 6= 0.

Using (5), we have in C for any f ∈ R the development: q′yf−fq′y = (2`+1)f2`+1δ(f)y2`+3+· · ·
which is incompatible with the fact that q′yf − fq′y ∈ B and δ is a nonzero derivation. Then
we have necessarily q′ = 0, that is z ∈ B. In other words, γ(x−1) ∈ B. Hence γ(x) ∈ B and the
proof is complete. �

1.2. Extension to B and C of actions by automorphisms on R.

Notations 1.2.1. We take all data and notations of proposition 1.1.4. We consider a group Γ
acting by automorphisms on the ring R. We denote this action on the right:

(f · γ) · γ′ = f · γγ′ for all f ∈ R, γ, γ′ ∈ Γ. (8)
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A 1-cocycle for the action of Γ on the group U(R) is a map s : Γ→ U(R) , γ 7→ sγ satisfying:

sγγ′ = (sγ · γ′)sγ′ for all γ, γ′ ∈ Γ. (9)

We denote by Z1(Γ, U(R)) the multiplicative abelian group of such 1-cocycles.

We answer the following two questions: give necessary and sufficient conditions for the existence
of an action of Γ by automorphisms on B or C extending the given action on R, and describe
all possible extended actions. We need some definitions.

Definitions 1.2.2. Data and notations are those of 1.2.1.

(i) The action of Γ on R is said to be d-compatible when for any γ ∈ Γ, there exists
pγ ∈ U(R) such that:

d(f) · γ = pγd(f · γ) for any f ∈ R. (10)

This condition defines uniquely a map p : Γ → U(R) , γ 7→ pγ , and p ∈ Z1(Γ, U(R)).
This map p is called the 1-cocycle associated to the d-compatibility.

(ii) The action of Γ on R is said to be quadratically d-compatible when there exists an
element s ∈ Z1(Γ, U(R)) such that:

d(f) · γ = s2
γd(f · γ) for any γ ∈ Γ and any f ∈ R. (11)

Such a map s is called a 1-cocycle associated to the quadratic d-compatibility. It
is not necessarily unique since any map s′ = εs where ε is a multiplicative function
Γ → {−1,+1} is another element of Z1(Γ, U(R)) satisfying (11).

Remark 1.2.3. Any quadratically d-compatible action is also d-compatible. Since δ = 1
2d and

∂ = −d, the d-compatibility is obviously equivalent to the δ-compatibility or the ∂-compatibility.

Examples 1.2.4. 1. For any commutative field k of characteristic zero, the group Γ =
k o k× for the product (µ, λ)(µ′, λ′) = (λµ′ + µ, λλ′) acts by k-automorphisms on
the domain R = k[z] by (f · γ)(z) = f(λz + µ) for γ = (µ, λ) ∈ Γ. It is clear that
∂z(f) · γ = λ−1∂z(f · γ) for any polynomial f ∈ R. Hence this action is ∂z-compatible,
with p ∈ Z1(Γ,k×) defined by p : (µ, λ) 7→ λ−1. If k is not algebraically closed, the
action is not necessarily quadratically ∂z-compatible.

2. Let k be any commutative field of characteristic zero and R = k(z) the field of rational
functions in one variable with coefficients in k. The group Γ = SL(2,k) acts by k-

automorphisms on R by (f · γ)(z) = f(λz+µηz+ξ ) where γ = ( λ µη ξ ) ∈ Γ. We have ∂z(f) · γ =

(ηz + ξ)2∂z(f · γ) for any rational function f ∈ R. Hence this action is quadratically

∂z-compatible, with s ∈ Z1(Γ, R×) defined by s : ( λ µη ξ ) 7→ ηz + ξ. This kind of action is

the main object of the second part of the paper.

We are now able to answer for B to the questions formulated at the beginning of this paragraph.

Theorem 1.2.5. The action of Γ by automorphisms on R extends in an action of Γ by auto-
morphisms on B = R((x; d)) if and only if it is d-compatible. We have then:

x−1 · γ = pγx
−1 + pγrγ for any γ ∈ Γ, (12)

where p ∈ Z1(Γ, U(R)) is the 1-cocycle associated to the d-compatibility and r is an arbitrary
map Γ→ R satisfying the identity:

rγγ′ = rγ′ + p−1
γ′ (rγ · γ′) for all γ, γ′ ∈ Γ. (13)

In particular, this action extends in an action on B if and only if it extends in an action on the
subring A = R[x−1;−d].



INVARIANTS OF FORMAL PSEUDODIFFERENTIAL OPERATOR ALGEBRAS 7

Proof. Suppose that Γ acts by automorphisms on B with R · γ = R for any γ ∈ Γ. We can
apply point (i) of proposition 1.1.6 to write x−1 · γ = g−1x

−1 + g0 +
∑

j≥1 gjx
j , with gj ∈ R for

any j ≥ −1 and g−1 6= 0. Moreover x−1 ∈ U(B) implies (x−1 · γ) ∈ U(B) which is equivalent to
g−1 ∈ U(R). Applying γ to (3), we obtain: (x−1 · γ)(f · γ)− (f · γ)(x−1 · γ) = −d(f) · γ for any
f ∈ R. Since f · γ ∈ R, we can develop this identity:

[g−1x
−1(f · γ)− (f · γ)g−1x

−1] + [g0(f · γ)− (f · γ)g0] +
∑
j≥1

[gjx
j(f · γ)− (f · γ)gjx

j ] = −d(f) · γ.

The first term is: g−1[x−1(f · γ) − (f · γ)x−1] = −g−1d(f · γ) ∈ R. The second term is zero by
commutativity of R. The third term is of valuation ≥ 1. So we deduce that:

−g−1d(f · γ) = −d(f) · γ and
∑
j≥1

[gjx
j(f · γ)− (f · γ)gjx

j ] = 0 for any f ∈ R.

Denoting pγ = g−1, we have pγ ∈ U(R) and the first equality means by definition that the
action of Γ is d-compatible. We claim that the second assertion implies gj = 0 for all j ≥ 1.
Suppose that there exists a minimal index m ≥ 1 such that gm 6= 0. Calculating with relation
(2), we have

∑
j≥m[gjx

j(f · γ)− (f · γ)gjx
j ] = 0, then mgmd(f · γ)xm+1 + · · · = 0 and therefore

d(f · γ) = 0 for any f ∈ R. It follows by d-compatibility of the action that d = 0, hence a
contradiction. We have proved that x−1 · γ = g−1x

−1 + g0 with pγ = g−1 ∈ U(R) satisfying
definition 1.2.2 (i). Then we set rγ = (g−1)−1g0. We have x−1 · γ = pγx

−1 + pγrγ . Relations (9)
for p and (13) for r follow from relation (x−1 · γ) · γ′ = x−1 · γγ′.

Conversely, let us assume that the action of Γ on R is d-compatible. Denote by p the 1-cocycle
associated to the d-compatibility. Let us choose a map r : Γ→ R satisfying (13). For any γ ∈ Γ,
we denote qγ = pγrγ and calculate for all f ∈ R:

(pγx
−1 + qγ)(f · γ)− (f · γ)(pγx

−1 + qγ) = pγ(x−1(f · γ)− (f · γ)x−1) = −pγd(f · γ).

Using (10) we obtain (pγx
−1 +qγ)(f ·γ)−(f ·γ)(pγx

−1 +qγ) = −d(f) ·γ for any f ∈ R. Hence by
(3) we obtain an action of Γ by automorphisms on the polynomial algebra A extending the initial
action on R by setting: x−1 ·γ = pγx

−1 +pγrγ . The element pγ + qγx is invertible in B0 and the
element x−1 ·γ = pγx

−1 +qγ is invertible in B because pγ ∈ U(R). Then we define an action of Γ
by automorphisms on B extending the action on A by setting: x·γ = (x−1 ·γ)−1 = x(pγ+qγx)−1.
The condition (u · γ) · γ′ = u · γγ′ for any γ, γ′ ∈ Γ and any u ∈ B follows from (9) for p and
(13) for r. �

Corollary 1.2.6. If the action of Γ by automorphisms on R is d-compatible, then it extends in
an action of Γ by automorphisms on B defined by:

x−1 · γ = pγx
−1, or equivalently x · γ = xp−1

γ =
∑
j≥0

dj(p−1
γ )xj+1 for any γ ∈ Γ, (14)

where p ∈ Z1(Γ, U(R)) is the 1-cocycle associated to the d-compatibility.

Proof. We just apply theorem 1.2.5 for the trivial map r defined by rγ = 0 for any γ ∈ Γ which
satisfies obviously (13). �

Examples 1.2.7. We consider a d-compatible action of Γ on R. Let p be the 1-cocycle associated
to the d-compatibility. Relation (13) can be interpreted as a 1-cocycle condition for the right
action of Γ on R defined by 〈f | γ〉 = p−1

γ (f ·γ) for any γ ∈ Γ and f ∈ R. We denote by Z1
p(Γ, R)

the additive group of maps r : Γ → R satisfying (13). We consider here various examples for
the choice of r ∈ Z1

p(Γ, R).
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1. The case r = 0 corresponds to the extension described in corollary 1.2.6. If r is a
coboundary (i.e. there exists f ∈ R such that: rγ = p−1

γ (f ·γ)−f for any γ ∈ Γ), then we

can suppose up to a change of variables that r = 0, because the element x′ = (x−1−f)−1

satisfies B = R((x′ ; d)) = R((x ; d)) and x′−1 · γ = pγx
′−1 for any γ ∈ Γ.

2. A straightforward calculation proves that the map r : Γ→ R defined by: rγ = −p−1
γ d(pγ)

for any γ ∈ Γ is an element of Z1
p(Γ, R). The corresponding action of Γ on B is given

by: x−1 · γ = pγx
−1 − d(pγ) = x−1pγ for any γ ∈ Γ.

3. Since Z1
p(Γ, R) is a left RΓ-module, κ r is an element of Z1

p(Γ, R) for any r ∈ Z1
p(Γ, R)

and any κ ∈ RΓ. The corresponding action of Γ on B is given by: x−1 ·γ = pγx
−1+κ pγrγ

for any γ ∈ Γ. If we suppose moreover that κ ∈ U(R), then x′ = (κ−1x−1)−1 satisfies
B = R((x ; d)) = R((x′ ; κ−1d)), and we obtain x′−1 · γ = pγx

′−1 + pγrγ for any γ ∈ Γ.
Up to a change of variables, theses cases where κ ∈ U(R) reduce to the case κ = 1.

In order to provide for C an extension theorem similar to 1.2.5, we need the following technical
lemma about square roots in C.

Lemma 1.2.8. Let q =
∑

i≥2 giy
i be an element of C, with gi ∈ R for any i ≥ 2, g2 6= 0. We

suppose that there exists e ∈ U(R) such that g2 = e2.

(i) There exists a unique element z ∈ C of the form z = ey+
∑

i≥2 eiy
i with ei ∈ R for any

i ≥ 2, such that q = z2.
(ii) The only other series z′ satisfying z′ 2 = q is z′ = −z.
(iii) Moreover, if q ∈ B, then z ∈ By.

Proof. We compute inductively the coefficients ei of z for i ≥ 2 by identification in the equality∑
i≥2 giy

i = (ey +
∑

j≥2 eiy
i)2. Using (5) in the development of the right hand side, we observe

that z2 = e2y2 + (2e2e)y
3 + (2e3e+ e2

2 + eδ(e))y4 + · · · = e2y2 +
∑

i≥3(2eei−1 +hi−2)yi where the
rest hi−2 ∈ R depends only on previous elements e, e2, . . . , ei−2 and their images by δ. Therefore
ei−1 = (2e)−1(gi − hi−2) and the proof of (i) follows by induction.

Since R is a domain, the only other element e′ ∈ R satisfying e′ 2 = g2 is e′ = −e, then point
(ii) follows from point (i).

By point (iii) of 1.1.4, we have z = u+ u′y with u, u′ ∈ B, vy(u) ≥ 2, vy(u
′) = 0. Suppose that

u 6= 0. We denote u =
∑

i≥m f2iy
2i and u′ =

∑
i≥0 f

′
2iy

2i, with m ≥ 1, f2i, f
′
2i ∈ R, f2m 6= 0 and

f ′0 = e. Then q = (u+ u′y)2 = (u2 + u′yu′y) + (uu′y + u′yu) and the assumption q ∈ B implies
uu′y + u′yu = 0 using point (iii) of proposition 1.1.4. By (4) and (6) we have:

uu′y + u′yu = (f2my
2m + · · · )(ey + · · · ) + (ey + · · · )(f2my

2m + · · · ) = 2f2mey
2m+1 + · · ·

with 2f2me 6= 0. Hence a contradiction. �

Theorem 1.2.9. The action of Γ by automorphisms on R extends in an action of Γ by au-
tomorphisms on C = R((y; 1

2d))2 if and only if it is quadratically d-compatible. In this case
B = R((x; d)) is stable under the extended action.

Proof. Suppose that the action extends in an action by automorphisms on C. By point (ii) of
proposition 1.1.6, we can consider the map Γ → U(R) , γ 7→ sγ defined by y · γ = s−1

γ y + · · · .
Writing (y · γ) · γ′ = (s−1

γ · γ′)s−1
γ′ y + · · · , we observe with (9) that s ∈ Z1(Γ, U(R)). Moreover

it follows from point (iii) of proposition 1.1.6 that the action restricts in an action of B. Since
x−1 · γ = (y−1 · γ)2 = (sγy

−1 + · · · )2 = s2
γx
−1 + · · · , we deduce from theorem 1.2.5 that sγ

satisfies condition (11), therefore the action is quadratically d-compatible.
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Conversely, we assume now that the action of Γ on R is quadratically d-compatible. There
exists some s ∈ Z1(Γ, U(R)) satisfying (11). Then the map p : γ 7→ s2

γ lies in Z1(Γ, U(R)) and
satisfies (10). Let r be any map Γ → R satisfying (13). By theorem 1.2.5, we define an action
by automorphisms on B by setting x−1 · γ = pγx

−1 + pγrγ for any γ ∈ Γ. The development of
its inverse in B is of the form x · γ = s−2

γ x+ · · · . By lemma 1.2.8, there exists a unique element

yγ ∈ C such that y2
γ = x ·γ and whose development is of the form yγ = s−1

γ y+ · · · . In particular
it follows from the action of γ on relation (6) that:

y2
γf = fy2

γ +
∑
k≥2

2k−1((δk−1(f · γ−1)) · γ) y2k
γ for any f ∈ R. (15)

We extend the action of γ to C by setting y · γ = yγ . To prove that q 7→ q · γ defines a
automorphism of C, it is sufficient by (4) to prove that:

yγf = fyγ +
∑
k≥1

(2k)!
2k(k!)2 ((δk(f · γ−1)) · γ) y2k+1

γ for any f ∈ R. (16)

Since yγ = s−1
γ y+· · · with s−1

γ ∈ U(R), any element of C can be written as a series in the variable

yγ with coefficients in R. In particular, for any f ∈ R, we have yγf = fyγ +
∑

n≥1 δn(f)yn+1
γ ,

where (δn)n≥1 is a sequence of additive maps R→ R. Hence y2
γf = fy2

γ +
∑

n≥2 ∆n(f)yn+1
γ with

notation ∆n =
∑n−1

j=0 δjδn−j−1. The identification with (15) leads to ∆n = 0 for even n, and

∆n = (2δ′)k−1 for odd n = 2k − 1 where δ′ is defined by δ′(f) = δ(f · γ−1) · γ for any f ∈ R. It
follows by a straightforward induction that δn = 0 for any odd n, then ∆2k−1 =

∑
i+j=k−1 δ2jδ2i,

and finally δ2k = (2k)!
2k(k!)2 δ

′k. So relation (16) is satisfied. Because (s−1
γ · γ′)s−1

γ′ = s−1
γγ′ for all

γ, γ′ ∈ Γ, we deduce from (x · γ) · γ′ = x · γγ′ with lemma 1.2.8 that (y · γ) · γ′ = y · γγ′. We
conclude that it defines an action of Γ by automorphisms on C. �

Corollary 1.2.10. We suppose that the action of Γ by automorphisms on R is quadratically
d-compatible.

(i) Let s ∈ Z1(Γ, U(R)) be a 1-cocycle associated to the quadratic d-compatibility. For
γ ∈ Γ, let yγ be the square root of xs−2

γ whose coefficient of minimal valuation in its

development as a series in the variable y is s−1
γ . Then the action extends in an action

of Γ by automorphisms on C defined from

y · γ = yγ = s−1
γ y + · · · for any γ ∈ Γ (17)

(ii) The other extensions of the action are given by y · γ = εγyγ for any γ ∈ Γ, where ε is a
multiplicative map Γ→ {−1,+1}.

Proof. We apply the second part of the proof of theorem 1.2.9 to the case where r is defined by
rγ = 0 for any γ ∈ Γ. �

1.3. Invariants in B and C for the extensions of actions on R. We take all data and
notations of proposition 1.1.4. For Γ a group acting by automorphisms on B (respectively on
C) stabilizing R, we give sufficient conditions for the invariant ring BΓ (respectively CΓ) to
be described as a ring of pseudodifferential (respectively quadratic pseudodifferential) operators
with coefficients in RΓ.

Theorem 1.3.1. Let Γ be a group acting by automorphisms on B = R((x; d)) stabilizing R. We
assume that there exists in BΓ an element of the form w = gx−1 + h with h ∈ R and g ∈ U(R).
Then the derivation D = gd restricts to a derivation of RΓ, and we have AΓ = RΓ[w;−D],
BΓ

0 = RΓ[[w−1;D]] and BΓ = RΓ((w−1;D)).
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Proof. We consider the subring A = R[x−1;−d] ⊂ B and commutation law (3). We denote by
D the derivation of R defined by D(f) = gd(f) = −(gx−1f − fgx−1) = −(wf − fw). Then
A = R[w;−D]. For any f ∈ RΓ, wf − fw ∈ RΓ because w ∈ BΓ. Hence the restriction of D
to RΓ is a derivation of RΓ. Since w is invariant, an element of A written as a polynomial in
w with coefficients in R is invariant if and only if any coefficient lies in RΓ. We conclude that
AΓ = RΓ[w;−D].

The element u = w−1 ∈ BΓ
0 satisfies vx(u) = 1 and its dominant coefficient g−1 is invertible in

R. We have x = g(1 + z)u for some z ∈ B0 satisfying vx(z) ≥ 1. Then u is a uniformizer of
the valuation vx in B0, which means that any element of B0 can be written as a power series
in the variable u with coefficients in R. In particular, for q =

∑
i≥0 fix

i an element of BΓ
0 with

fi ∈ R, it follows from point (i) of proposition 1.1.6 that f0 ∈ RΓ and q − f0 ∈ BΓ
0 . We have

q − f0 = q′u with q′ = (
∑

i≥0 fi+1x
i)g(1 + z) ∈ B0. Since q, f0 and u belong to BΓ

0 we deduce

that q′ ∈ BΓ
0 . We have proved that for any q ∈ BΓ

0 , there exist f0 ∈ RΓ and q′ ∈ BΓ
0 such

that q = f0 + q′u. Applying this process for q′, there exist f ′0 ∈ RΓ and q′′ ∈ BΓ
0 such that

q = f0 + f ′0u + q′′u2. It follows by induction that q lies in the left RΓ-module RΓ〈〈u〉〉 of power
series in the variable u with coefficients in RΓ. We conclude that BΓ

0 ⊂ RΓ〈〈u〉〉. The converse
inclusion is clear, so BΓ

0 = RΓ〈〈u〉〉. In particular, RΓ〈〈u〉〉 is a subring of B0. Hence for any
f ∈ RΓ, there exist a sequence (δn(f))n≥0 of elements of RΓ such that uf =

∑
n≥0 δn(f)un+1.

The commutation relation wf − fw = −D(f) becomes uf − fu = uD(f)u. We compute:
uf = fu + uD(f)u = fu + [D(f)u + uD2(f)u]u = fu + D(f)u2 + [D2(f)u + uD3(f)u]u2, and
conclude by iteration that δn(f) = Dn(f) for any n ≥ 0. In other words, BΓ

0 = RΓ[[u;D]].

Let RΓ((u;D)) be the localized ring of BΓ
0 with respect of the powers of u. Since u is invertible

in B, we have RΓ((u;D)) ⊂ B, and therefore RΓ((u;D)) ⊂ BΓ. Conversely for any f ∈ BΓ,
there exists an integer n ≥ 0 such that fun ∈ B0; since fun ∈ BΓ

0 = RΓ[[u;D]], we deduce that
f ∈ RΓ((u;D)). Hence BΓ = RΓ((u;D)) and the proof is complete. �

Theorem 1.3.2. Let Γ be a group acting by automorphisms on C = R((y; δ))2 stabilizing R.
Denote by s the 1-cocycle in Z1(Γ, U(R)) defined by: y · γ = s−1

γ y + · · · for any γ ∈ Γ. We

assume that there exists in CΓ an element of the form w = e2y−2 + h with h ∈ R and e ∈ U(R)
such that e · γ = s−1

γ e for any γ ∈ Γ. Then the derivation ∆ = e2δ restricts to a derivation of

RΓ, and denoting by v the square root of w−1 whose development starts with v = e−1y+ · · · , we
have CΓ = RΓ((v ; ∆))2.

Proof. Let us recall that the existence of the map s follows from point (ii) of proposition
1.1.6. We know by point (iii) of proposition 1.1.6 that B is stable under the action of Γ on
C. We can apply theorem 1.3.1 with g = e2 to deduce that D = e2d = 2e2δ restricts to a
derivation of RΓ and BΓ = RΓ[[u ; D]] where u = w−1 ∈ BΓ

0 . Since u = e−2y2 + · · · lies in
B, it follows from lemma 1.2.8 that there exist in C two elements v =

∑
j≥1 gjy

j and v′ = −v
such that v2 = v′2 = u, with notations gj ∈ R for any j ≥ 1, gj = 0 for any even index
j and g1 = e−1. For any γ ∈ Γ, we have: u = u · γ = (v · γ)2. Then v · γ = ±v. Since
v · γ = (e−1y + · · · ) · γ = sγe

−1(s−1
γ y + · · · ) + · · · = e−1y + · · · , we are necessarily in the case

v · γ = v. Therefore v ∈ CΓ.

Let us denote v = e−1(1 + z)y where z =
∑

j≥2 egjy
j−1 ∈ C0 with vy(z) ≥ 1. Similarly there

exists z′ ∈ C0 with vy(z
′) ≥ 1 such that y = e(1 + z′)v. Then v is a uniformizer of the valuation

vy in C0, which means that any element of C0 can be written as a power series in the variable
v with coefficients in R. Using inductively point (ii) of proposition 1.1.6, we can prove on the
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same way as in the proof of 1.3.1 that CΓ
0 = RΓ〈〈v〉〉. In particular, RΓ〈〈v〉〉 is a subring of

C0. Hence for any f ∈ RΓ, there exists a sequence (δn(f))n≥0 of elements of RΓ such that
vf =

∑
n≥0 δn(f)vn+1. Comparing with relation v−2f − fv−2 = −D(f) which follows from

theorem 1.3.1, direct calculations show that δi = 0 for any odd index i, and δ2k = (2k)!
2k(k!)2 (D2 )k.

In other words CΓ = RΓ((v ; ∆))2 with notation ∆ = 1
2D. �

Corollary 1.3.3. Under the assumptions of the previous theorem, and defining in RΓ the deriva-
tions ∆ = e2δ and D = 2∆ = e2d, we have the following ring embeddings:

A = R[x−1 ; −d] �
� // B = R((x ; d)) �

�

x=y2
// C = R((y ; δ))2

AΓ = RΓ[w ;−D] �
� //

?�

OO

BΓ = RΓ((w−1 ; D)) �
�

w−1=v2
//

?�

OO

CΓ = RΓ((v ; ∆))2

?�

OO

Proof. It is a joint formulation of theorems 1.3.1 and 1.3.2. �

1.4. Weighted invariants in R and equivariant splitting maps. The data and notations
are those of 1.2.1. We introduce here for any quadratically d-compatible action of a group Γ on
R a natural link between the invariants in C or B and some weighted invariants in R.

Definitions 1.4.1. For any 1-cocycle s in Z1(Γ, U(R)) and any integer k we define:

(f |kγ) = s−kγ (f · γ) for any f ∈ R, γ ∈ Γ. (18)

It follows from relations (8) and (9) that:

((f |kγ)|kγ′) = (f |kγγ′) for any f ∈ R, γ, γ′ ∈ Γ. (19)

Hence relation (18) defines a right action of Γ on R named the weight k action associated to s.
In particular the weight zero action is just the original action of Γ by automorphisms on R:

(f |0γ) = f · γ for any f ∈ R, γ ∈ Γ. (20)

We introduce the additive subgroup of weight k invariants:

Mk = {f ∈ R ; (f |kγ) = f for any γ ∈ Γ} = {f ∈ R ; f · γ = skγf for any γ ∈ Γ}. (21)

We have M0 = RΓ and MkM` ⊆Mk+` for all k, ` ∈ Z.

Notations 1.4.2. We suppose that the action of Γ on R is quadratically d-compatible. Let
s ∈ Z1(Γ, U(R)) be a 1-cocycle associated to the quadratic d-compatibility. We define p = s2 ∈
Z1(Γ, U(R)) and we choose a map r : Γ → R satisfying (13). We consider the action of Γ on
B and C determined by theorems 1.2.5 and 1.2.9. We denote by BΓ and CΓ the corresponding
invariant rings. For any integer k, we introduce:

Ck = {q ∈ C ; vy(q) ≥ k}, CΓ
k = Ck ∩ CΓ,

Bk = {q ∈ B ; vx(q) ≥ k}, BΓ
k = Bk ∩BΓ.

Proposition 1.4.3. Let k be an integer.

(i) Let πk : Ck → R be the canonical projection
∑

i≥k fiy
i 7→ fk. The restriction of πk to

CΓ
k defines an additive map πk : CΓ

k →Mk.
(ii) Let π̂k : Bk → R be the canonical projection

∑
i≥k fix

i 7→ fk. Then π̂k is the restriction

of π2k to Bk, and its restriction to BΓ
k defines an additive map π̂k : BΓ

k →M2k.
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Proof. For any q =
∑

i≥k fiy
i ∈ Ck with fi ∈ R, fk 6= 0, and for any γ ∈ Γ, it follows from

theorem 1.2.9 that: q · γ = (fk · γ)(s−1
γ y + · · · )k + (fk+1 · γ)(s−1

γ y + · · · )k+1 + · · · . Then

q · γ = (fk · γ)s−kγ yk + · · · . Hence q · γ = q implies (fk · γ)s−kγ = fk, or equivalently fk ∈Mk by
(21). Point (ii) follows from the second part of theorem 1.2.9. �

Problem 1.4.4. Point (i) of this proposition leads to the natural question of finding additive
right splitting maps ψk : Mk → CΓ

k such that πk ◦ ψk = idMk
. Solutions arise by restriction if

we can construct ψk : R→ Ck satisfying πk ◦ ψk = idR and the equivariance condition:

ψk((f |kγ)) = ψk(f) · γ for any γ ∈ Γ, f ∈ R. (22)

In the particular case of even weights the corresponding question of finding splitting maps
ψ2k : M2k → BΓ

k was solved in [CMZ97] and [UU96] in various contexts involving modular
forms.

2. Application to algebraic modular forms

2.1. Homographic action on R.

Notations 2.1.1. In order to apply the previous algebraic results in the arithmetical context
of modular forms, we specialize the data and notations of 1.2.1. From now Γ is a subgroup of
SL(2,C), and R is a commutative C-algebra of functions in one variable z, which is a domain.
We suppose in the following that:

(i) Γ acts on the right by homographic automorphisms on R:

(f · γ)(z) = f

(
az + b

cz + d

)
for any f ∈ R and γ =

(
a b
c d

)
∈ Γ, (23)

(ii) z 7→ cz + d ∈ U(R) for any γ =
(
a b
c d

)
∈ Γ,

(iii) R is stable under the standard derivation ∂z with respect to z.

Examples 2.1.2. A formal algebraic example of such a situation is the case where R = C(z),
the field of complex rational functions in one indeterminate. Numbertheoretical examples can
arise from the following construction. Assume that Γ is a subgroup of SL(2,R) and denote by
H = {z ∈ C; Im (z) > 0} the Poincaré upper half-plane. Then H is stable by the homographic
action of Γ, and various subalgebras R of holomorphic or meromorphic functions on H satisfy
the previous conditions. For instance:

(1) R1 = Hol(H) the algebra of holomorphic functions on H.
(2) R2 = Mer(H) the field of meromorphic functions on H.
(3) For Γ ⊂ SL(2,Z), R3 is the field of f ∈ Mer(H) such that, for any p ∈ P1(Q), there

exists Vp a H-neighborhood of p such that f has neither zero nor pole in Vp. Here we

consider the hyperbolic topology on H = H ∪ P1(Q), where a fundamental system of
H−neighborhoods of p ∈ P1(Q) is given by the upper half-planes {Im (z) > M} for
p =∞ and by the open disks Dr = {z ∈ H; |z − (p+ ir)| < r} for p ∈ Q. We can prove

(see for instance [FB93] theorem 2.1.1) that R
SL(2,Z)
3 = C((j)) where j is the modular

invariant. It follows in particular that the field R3 satisfies RΓ
3 6= C for any subgroup Γ

of SL(2,Z).

Notations 2.1.3. With data and notations 2.1.1, we introduce moreover, according to propo-
sition 1.1.4, the noncommutative C-algebras:

A = R[x−1 ; ∂z] ⊂ B = R((x ; dz)) ⊂ C = R((y ; δz)) with x = y2, dz = −∂z, δz =
1

2
dz. (24)
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Lemma 2.1.4. The map s : Γ→ U(R), γ 7→ sγ defined by:

sγ(z) = cz + d for any γ =
(
a b
c d

)
∈ Γ (25)

is a 1-cocycle for the action of Γ.

Proof. A straightforward calculation using (23) proves that (9) is satisfied. �

Definitions 2.1.5. Since s ∈ Z1(Γ, U(R)), we can apply 1.4.1 to introduce for any integer k
the weight k action of Γ on R defined by:

(f |kγ)(z) = (cz + d)−kf

(
az + b

cz + d

)
for any f ∈ R and γ =

(
a b
c d

)
∈ Γ, (26)

and the C-vector space of algebraic weight k modular forms on R:

Mk = {f ∈ R ; (f |kγ) = f for any γ ∈ Γ}. (27)

In particular for k = 0

(f |0γ) = f · γ and M0 = RΓ. (28)

Remark 2.1.6. We use in the following the notations

Mj =
∏
k≥j

Mk, Mev
j =

∏
k≥j

M2k for any j ∈ Z and M∗ =
⋃
j∈Z
Mj , Mev

∗ =
⋃
j∈Z
Mev

j

with the conventionMj1 ⊂Mj2 for j1 ≥ j2. Throughout the rest of the paper, we suppose that
Mk∩M` = {0} for all integers k 6= `. In the classical situations, it is sufficient for this additional
hypothesis to assume that Γ contains at least one matrix

(
a b
c d

)
such that (c, d) /∈ {0} × U∞.

Observe that this excludes the unipotent cases where Γ ⊂ {( 1 a
0 1 ) ; a ∈ R}. Then an element f̃

of Mj can be denoted unambiguously by f̃ =
∑

k≥j fk, where fk ∈Mk.

Remark 2.1.7. For k and m nonnegative integers, denote by Jk,m the space of algebraic Jacobi
forms on R of weight k and index m, defined as functions Φ : H× C→ C satisfying the Jacobi
transformation equation:

Φ(
az + b

cz + d
,

Z

cz + d
) = (cz + d)ke

2iπmcZ2

cz+d Φ(z, Z) for any γ =
(
a b
c d

)
∈ Γ,

and admitting around Z = 0 a Taylor expansion Φ(z, Z) =
∑

ν≥0Xν(z)Zν with Xν ∈ R for any

ν ≥ 0. Note that Jk,m is isomorphic to Jk,1 for any m ≥ 1 via the map Z 7→
√
mZ. Then, for

any k ≥ 0 and m ≥ 1, the vector space Jk,m is isomorphic toMk ; an isomorphism is explicitly
described page 34 of [EZ85] where the space Jk,m is denoted by Mk,m.

2.2. Homographic action on B and C. The data and notations are those of 2.1.3.

Lemma 2.2.1. The homographic action of Γ on R is quadratically ∂z-compatible, and an asso-
ciated 1-cocycle is the map s defined by (25).

Proof. We have already observed in example 2 of 1.2.4 that, for any γ =
(
a b
c d

)
∈ Γ and any

f ∈ R, we have ∂z(f · γ)(z) = (cz + d)−2∂zf(az+bcz+d). In other words, ∂zf · γ = s2
γ∂z(f · γ). From

definition 1.2.2 (ii) and lemma 2.1.4, the lemma is proved. �

We can then apply the results of the first part of the paper: for the canonical choice r = 0 (see
example 1 of 1.2.7) we obtain the following results.

Proposition 2.2.2.
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(i) The homographic action of Γ on R extends in an action by automorphisms on B defined
by:

(x−1|γ) = (cz + d)2x−1 for any γ =
(
a b
c d

)
∈ Γ. (29)

Consequently, for any q =
∑

n>−∞ fnx
n ∈ B with fn ∈ R, we have:

(q|γ) =
∑
n>−∞

(fn · γ)(x−1|γ)−n for any γ ∈ Γ. (30)

(ii) The homographic action of Γ on R extends in an action by automorphisms on C defined
by:

(y|γ) = (cz + d)−1y + · · · for any γ =
(
a b
c d

)
∈ Γ, (31)

where this Laurent series is the square root in C of (x|γ) = x(cz + d)−2 whose term of
minimal valuation is (cz + d)−1y. Consequently, for any q =

∑
n>−∞ fny

n ∈ C with
fn ∈ R, we have (q|γ) =

∑
n>−∞(fn · γ)(y|γ)n for any γ ∈ Γ.

(iii) The subalgebra B of C is stable under the action (ii), and the action (i) is the restriction
to B of the action (ii).

Proof. We apply theorem 1.2.5 and theorem 1.2.9. �

The two following theorems give explicit formulas describing the action of Γ on B and C intro-
duced in proposition 2.2.2.

Theorem 2.2.3. The extension to B and C of the homographic action of Γ on R given by
proposition 2.2.2 satisfy:

(x|γ) =
∑
n≥0

(n+ 1)!(cz + d)−2

(
c

cz + d

)n
xn+1 (32)

(y|γ) =
∑
u≥0

(2u+ 1)!(2u)!

16u(u)!3
(cz + d)−1

(
c

cz + d

)u
y2u+1 (33)

for any γ =
(
a b
c d

)
∈ Γ.

Proof. We have, from relations (1) and (29),

(x|γ)=(x−1|γ)−1 =x(cz + d)−2 =
∑
u≥1

du−1
z ((cz + d)−2)xu =

∑
u≥1

u!

c2

(
c

cz + d

)u+1

xu

which proves formula (32). We find here the action of Γ described in [CMZ97] formula 1.7.
In order to prove (33), we introduce the development (y|γ)=

∑
i≥1 aiy

i in C with ai ∈ R. Using

the identity (y|γ)2 = (x|γ) we prove by induction on i that ai = 0 for even i and that there

exists a sequence (ρj)j≥1 of complex numbers such that (y|γ) =
∑

j≥1
ρj
c

(
c

cz+d

)j
y2j−1. Then

we have

(y|γ)2 =
∑
n,m≥1

ρnρm
c2

(
c

cz + d

)n [
y2n−1

(
c

cz + d

)m]
y2m−1.

From (5), and using the combinatorial identity

s−1∏
i=0

(2m+ 1 + 2i) = 2−s
(2m+ 2s)!m!

(m+ s)!(2m)!
for any m ≥ 0 and s ≥ 1, (34)
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we have y2n−1f =
∑

`≥n−1
(2`)!(n−1)!
`!(2n−2)!

d`−n+1
z (f)

4`−n+1(`−n+1)!
y2`+1, and an easy computation gives dtz

((
c

cz+d

)m)
=

(m+t−1)!
(m−1)!

(
c

cz+d

)m+t
. We deduce that:

(y|γ)2 =
∑
n,m≥1

ρnρm
c2

∑
`≥n−1

(2`)!(n− 1)!(m+ `− n)!

4`−n+1(`− n+ 1)!(2n− 2)!`!(m− 1)!

(
c

cz + d

)`+m+1

y2`+2m

=
∑
u≥1

(
u∑

m=1

u∑
i=m

ρu+1−iρm
4i−m(i−m)!

(2u− 2m)!(u− i)!(i− 1)!

(2u− 2i)!(u−m)!(m− 1)!

)
1

c2

(
c

cz + d

)u+1

y2u,

with the change of variables u = ` + m, and i = u + 1 − n. By identification in the equality
(y|γ)2 = (x|γ), the coefficients ρj satisfy, for any u ≥ 1, the equation:

u∑
m=1

u∑
i=m

ρu+1−iρm
4i−m(i−m)!

(2u− 2m)!(u− i)!(i− 1)!

(2u− 2i)!(u−m)!(m− 1)!
= u! (35)

The relation for u = 1 gives ρ2
1 = 1, then the choice of sign for ρ1 determines inductively all

the terms ρu, u ≥ 1. Hence relation (35) determines uniquely up to sign the sequence (ρu)u≥1.

Therefore the proof will be complete if we check that the coefficients ρu = (2u−1)!(2u−2)!
16u−1(u−1)!3

satisfy

relation (35). Then we have to prove that for any u ≥ 1:

u∑
m=1

(2u− 2m)!(2m− 1)!(2m− 2)!

42u+m−2(m− 1)!4(u−m)!
A(u,m) = u! (36)

with notations A(u,m) =
∑u

i=mG(u,m, i) and G(u,m, i) = 4i(i−1)!(2u−2i+1)!
(i−m)!(u−i)!2 . Using Zeilberger’s

algorithm (see [PWZ96]) we obtain the following relation which is easy to check directly:

(4u+ 6)G(u,m, i)− (u+ 1−m)G(u+ 1,m, i) = H(u,m, i+ 1)−H(u,m, i)

where H(u,m, i) = 4i(i−1)!(2u+3−2i)!
(i−m−1)!(u+1−i)!2 . The summation on i gives the relation (4u+ 6)A(u,m)−

(u+ 1−m)A(u+ 1,m) = 0, so A(u,m) = A(m,m)
∏u−1
t=m

2(2t+3)
t+1−m . Using A(m,m) = 4m(m− 1)!

and (34) we obtain A(u,m) = 4m (m−1)!(2u+1)!m!
(u−m)!(2m+1)!u! . So equation (36) is equivalent to T (u) = 1,

where T (u) =
∑u

m=1K(u,m) with K(u,m) = (2u+1)!
16u−1u!2

(2m−2)!(2m−1)!m!(2u−2m)!
(2m+1)!(m−1)!3(u−m)!2

. Using again

Zeilberger’s algorithm we find the relation

K(u+ 1,m)−K(u,m) = J(u,m)− J(u,m+ 1)

with J(u,m) = (2u−2m+2)!(2u+1)!(2m−2)!
16uuu!(u+1)!(m−1)!(m−2)!(u+1−m)!2

. The summation on m gives T (u+1)−T (u) = 0,

so T (u) = T (1) = 1 for any u ≥ 1, and the proof is complete. �

The next step is to describe the action of Γ on any power of y. We proceed depending on the
parity and the sign of the exponent. In particular relations (38) and (37) below are related to
the action (32) on B and already appeared in previous studies about modular forms of even
weight ([CMZ], [UU]).

Lemma 2.2.4. For any k ∈ N, we have:

(y−2k|γ) = (x−k|γ) =
k−1∑
u=0

u!

(
k

u

)(
k − 1

u

)
(cz + d)2k

(
c

cz + d

)u
xu−k, (37)
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(y2k|γ) = (xk|γ) =
∑
u≥0

u!

(
k + u− 1

u

)(
k + u

u

)
(cz + d)−2k

(
c

cz + d

)u
xu+k, (38)

(y2k+1|γ) =
(k + 1)!k!

(2k + 2)!(2k)!

∑
u≥0

(2k + 2u)!(2k + 2u+ 2)!

16uu!(k + u)!(k + u+ 1)!
(cz + d)−2k−1

(
c

cz + d

)u
y2k+1+2u,

(39)

(y−2k+1|γ) =
(2k)!(2k − 2)!

k!(k − 1)!
(cz+d)2k−1

[
k−1∑
u=0

(k − u)!(k − 1− u)!

16uu!(2k − 2u)!(2k − 2− 2u)!
(

c

cz + d
)uy−2k+1+2u

−
∑
u≥0

(2u)!(2u+ 2)!

u!(u+ 1)!

1

16u+k(u+ k)!
(

c

cz + d
)u+ky2u+1

 . (40)

Proof. For the negative even powers of y (the negative powers of x), we prove relation (37)
inductively using the formulas (x−1|γ) = (cz + d)2x−1 and (x−k−1|γ) = (x−1|γ)(x−k|γ) for
k > 0 with the relation x−1f = fx−1 + ∂zf .
For the positive even powers of y (the positive powers of x) denote, for any k ≥ 1, (y2k|γ) =∑

n≥0 ak(n)(cz + d)−2k−ncny2k+2n with ak(n) ∈ C. Equations (x−1|γ) = (cz + d)−2x−1 and

(y2k|γ) = (x−1|γ)(y2k+2|γ) give the relations ak+1(n) = (2k + n + 1)ak+1(n − 1) + ak(n) for
n ≥ 1. Then a double induction on k and n proves relation (38) using the expression of a1(n)
for any n ≥ 0 and ak(0) = 1 for any k > 0.
We consider now relation (39). Let k ≥ 0; using (38), (33) and the relation (y2k+1|γ) =

(xk|γ)(y|γ) we obtain: (y2k+1|γ) =
∑

s≥0 αk(s)(cz + d)−2k−1
(

c
cz+d

)s
y2k+1+2s, where αk(s) =∑s

r=0
(2r+1)!(2r)!(s−k+r−1)!

16rr!4(k−1)!k!
βk,s(r), with βk,s(r) =

∑s−r
j=0

(k+s−r−j)!(r+j)!
(s−r−j)!j! . By Zeilberger’s algo-

rithm we obtain (k + s + 2)βk,s(r) − (s − r + 1)βk,s+1(r) = 0, which proves that βk,s(r) =
k!r!(k+s+1)!

(s−r)!(k+r+1)! ; more precisely: (k + s + 2)b(s, j) − (s − r + 1)b(s + 1, j) = G(s, j + 1) − G(s, j)

where b(s, j) = (k+s−r−j)!(r+j)!
(s−r−j)!j! and G(s, j) = (k+s−r−j+1)!(r+j)!

(j−1)!(s−r−j+1)! . Applying again Zeilberger’s

algorithm to C(s, r) = (2r+1)!(2r)!(k+s−r−1)!
16rr!3(s−r)!(k+r+1)!

, we obtain:

(2s+ 2k + 3)(2s+ 2k + 1)C(s, r)− 4(s+ 1)(k + s+ 2)C(s+ 1, r) = H(s, r + 1)−H(s, r),

with H(s, r) = 4(k+s−r)!(2s+1)!(2r)!
16r(s−r+1)!(k+r)!(r−1)!r!2

. It follows that αk(s) = (k+1)!k!(2k+2s)!(2k+2s+2)!
(2k+2)!(2k)!16ss!(k+s)!(k+s+1)! ,

which proves formula (39).
Finally, for formula (40), denote (y−2k+1|γ) =

∑
j≥0 α−k(j)(cz + d)2k−1( c

cz+d)jy−2k+1+2j with

α−k(j) ∈ C. The equality (y−2k−1|γ) = (x−1|γ)(y−2k+1|γ) gives for any nonnegative j the
relation

α−(k+1)(j) = α−k(j) + (2k − j)α−k(j − 1), (41)

with the convention α−k(−1) = 0. We proceed then inductively on k: the expression of
α0(j) is given by equation (33). We have α−k(0) = 1 for any k ≥ 0, and by (41) α−1(j) =

−4j2 (2j−1)!(2j−2)!
16jj!3

for j ≥ 1 proves formula (40) for k = 1 and gives the base case.

For the inductive step, we prove that α−(k+1)(j) is equal to the corresponding term of formula
(40) separating the three cases j ≤ k−1, j = k and j ≥ k+ 1. We check by direct computations
using induction hypothesis for k that the right hand side of formula (41) corresponds to the
expected expression in formula (40) for α−(k+1)(j). �

We are now in position to give an unified formula for the action of Γ on any power of y.
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Theorem 2.2.5. For any k ∈ Z, we have:

(yk|γ) =
∑
u≥0

ωk(u)(cz + d)−k
(

c

cz + d

)u
y2u+k (42)

with notation ωk(0) = 1 and ωk(u) = 1
4uu!

∏u−1
i=0 (k + 2i)(k + 2i+ 2) for any u ≥ 1.

Proof. Using formula (34), we check that formula (42) corresponds in each case (k even or odd,
positive or negative) to formulas (38)-(40). �

2.3. Equivariant splitting maps and noncommutative product on modular forms.
The data and notations are those of previous paragraphs 2.1 and 2.2. In order to simplify the
notations, we will denote f (n) = ∂nz f for any f ∈ R and n ≥ 0. According to problem 1.4.4 and
in connection with the construction already known in the even case, we seek to construct for
any m ∈ Z a linear morphism ψm : R→ C satisfying the conditions:

(C1) ψm((f |mγ)) = (ψm(f)|γ) for any f ∈ R, γ ∈ Γ;

(C2) there exists some complex sequence (αm(n))n≥0 such that ψm(f) =
∑

n≥0 αm(n)f (n)ym+2n

for any f ∈ R;
(C3) αm(0) = 1.

We prove in the following that such a map ψm exists and is unique for m ≥ 0 (proposition
2.3.1), exists but is not unique if m is negative and even (remark 2.3.5), and doesn’t exist if m
is negative and odd (proposition 2.3.6).

Proposition 2.3.1. For any nonnegative integer m, the linear map ψm : R→ C0 defined by:

ψm(f) =
∑
n≥0

(−1)n

4nn!

(
n−1∏
i=0

(m+ 2i)(m+ 2i+ 2)

(m+ i)

)
f (n)ym+2n for any f ∈ R (43)

is the unique map satisfying the three conditions (C1), (C2) and (C3).

Proof. The aim is to prove for any nonnegative integer k the following formulas:

ψ2k(f) =
∑
n≥0

(2k − 1)! (n+ k − 1)!

(n+ 2k − 1)! (k − 1)!

(
−k − 1

n

)
f (n)xk+n (44)

ψ2k+1(f) =
k!2

(2k + 1)!

∑
n≥0

(−1)n

16n
(2k + 1 + 2n)!(2k + 2n)!

n!(2k + n)!(k + n)!2
f (n)y2k+1+2n (45)

For even weights, formula (44) and the unicity follow from propositions 2 and 6 of [CMZ97] up
to a multiplicative constant in order to assure condition (C3). We prove now formula (45) and
show that this is the unique map satisfying the conditions (C1), (C2) and (C3) for odd positive
weights.
We use at first the following equality for m ≥ 0 and n ≥ 0 integers:

((f |nγ))(m) (z) =
m∑
r=0

(−1)m−rm!(m+ n− 1)!

r!(m− r)!(n− 1 + r)!(cz + d)n+2r

(
c

cz + d

)m−r
(f (r) · γ)(z) (46)

that can be easily checked by induction on m. Let (α2k+1(n))n≥0 be a sequence of com-

plex numbers, and let φ2k+1(f) =
∑

n≥0 α2k+1(n)f (n)y2k+1+2n. On the one hand, we have
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(φ2k+1(f)|γ) =
∑

n≥0 α2k+1(n)(f (n) · γ)(y2k+1+2n|γ). Using (39) we obtain (with u = r + n):

(φ2k+1(f)|γ)(z) =
∑
u≥0

u∑
n=0

α2k+1(n)(k + n+ 1)!(k + n)!(2k + 2u)!(2k + 2u+ 2)!

(2k + 2n)!(2k + 2n+ 2)!(k + u)!(k + u+ 1)!16u−n

(cz + d)−2k−1−2n

(u− n)!

(
c

cz + d

)u−n
(f (n) · γ)(z)y2k+1+2u.

On the other hand, using (46) we have:

φ2k+1(f |2k+1γ)(z) =
∑
u≥0

α2k+1(u)(f |2k+1γ)(u)(z)y2k+1+2u

=
∑
u≥0

u∑
n=0

α2k+1(u)
u!(u+ 2k)!(−1)u−n

n!(n+ 2k)!

(cz + d)−2k−1−2n

(u− n)!

(
c

cz + d

)u−n
(f (n) · γ)(z)y2k+1+2u.

Then we deduce that condition (C1) holds for φ2k+1 if and only if the sequence (α2k+1(n))n≥0

satisfies, for any u ≥ 0 and any 0 ≤ n ≤ u, the equality:

α2k+1(u)
u!(u+ 2k)!(−1)u−n

n!(n+ 2k)!
= α2k+1(n)

(k + n+ 1)!(k + n)!(2k + 2u)!(2k + 2u+ 2)!

(2k + 2n)!(2k + 2n+ 2)!(k + u)!(k + u+ 1)!16u−n
.

(47)
This equation is true for n = u for any u ≥ 0. Let u ≥ 1, and consider n = u− 1. Then relation
(47) is equivalent to

−u(u+ 2k)α2k+1(u) =
α2k+1(u− 1)

16

(k + u)!(k + u− 1)!(2k + 2u)!(2k + 2u+ 2)!

(k + u)!(k + u+ 1)!(2k + 2u)!(2k + 2u− 2)!

= α2k+1(u− 1)(k + u+ 1
2)(k + u− 1

2).

Assuming that α2k+1(0) = 1 to satisfy condition (C3), we obtain as a necessary condition that,

for any u ≥ 1,
α2k+1(u)
α2k+1(u−1) = − (u+k+ 1

2
)(u+k− 1

2
)

u(u+2k) . Using formula (34), it follows that:

α2k+1(u) = (−1)u
u∏
i=1

(k + 1/2 + i)(k − 1/2 + i)

i(2k + i)
=

(−1)u

16u
k!2

(2k + 1)!

(2k + 2u+ 1)!(2k + 2u)!

u!(u+ 2k)!(u+ k)!2
.

It proves consequently the unicity of the sequence (α2k+1(u))u≥0.

Let now u ≥ 1 and 0 ≤ n ≤ u, and let α2k+1(u) = (−1)u

16u
k!2

(2k+1)!
(2k+2u+1)!(2k+2u)!
u!(u+2k)!(u+k)!2

. We have on

the one hand:

α2k+1(u)
u!(u+ 2k)!(−1)u−n

n!(u− n)!(n+ 2k)!
=

(−1)n

16u
k!2

(2k + 1)!

(2k + 2u+ 1)!(2k + 2u)!

n!(u− n)!(n+ 2k)!(u+ k)!2
,

and on the other hand:

α2k+1(n)
(k + n+ 1)!(k + n)!(2k + 2u)!(2k + 2u+ 2)!

(2k + 2n)!(2k + 2n+ 2)!(k + u)!(k + u+ 1)!16u−n(u− n)!

=
(−1)n

16u
k!2

(2k + 1)!

(2k + 2u+ 1)!(2k + 2u)!

n!(u− n)!(n+ 2k)!(u+ k)!2

which proves that the sequence (α2k+1(u))u≥0 satisfies equation (47) for any u ≥ 0 and 0 ≤ n ≤
u, and gives the existence of the lifting ψ2k+1. �
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According to the general principle of quantization by deformation, we can now transfer to
modular forms the noncommutative product on operators in CΓ

0 . The case of even weights was
considered in [CMZ97] and [UU96].

Theorem 2.3.2. We use notations 2.1.3 and 2.1.6 and we denote M0 =
∏
j≥0Mj and Mev

0 =∏
j≥0M2j. We consider the algebras B0 = R[[x ; dz]] ⊂ C0 = R[[y ; δz]]2.

(i) The map Ψ : M0 → CΓ
0 defined by Ψ(f̃) =

∑
m≥0 ψm(fm) for any f̃ =

∑
m≥0 fm is a

vector space isomorphism, and M0 is an associative C-algebra for the noncommutative
product:

f̃ ? g̃ = Ψ−1(Ψ(f̃) ·Ψ(g̃)) for all f̃ , g̃ ∈M0. (48)

(ii) In particular for any modular forms f, g of respective nonnegative weights k and ` (even
or odd), the product f ? g in M0 is:

f ? g = Ψ−1(ψk(f) · ψ`(g)) =
∑
n≥0

αn(k, `)[f, g]n ∈M0, (49)

where the coefficients αn(k, `) are rational constants depending only on k, ` and n, and

[f, g]n =
∑n

j=0(−1)j
(
k+n−1
n−j

)(
`+n−1
j

)
f (j)g(n−j) ∈ Mk+`+2n is the n-th Rankin-Cohen

bracket of f and g.
(iii) The restriction of Ψ to the subspace Mev

0 determines a vector space isomorphism Ψ2

between Mev
0 and BΓ

0 .

Proof. It is clear that Ψ is linear and injective. Let q =
∑+∞

m=m0
hmy

m an element of valuation

m0 ≥ 0 in CΓ
0 . Then hm0 ∈ Mm0 , and by condition (C3) the element q − ψm0(hm0) lies in CΓ

0

and its valuation is greater than m0. It follows by induction that q ∈ Ψ(Mm0). Then Ψ is a
vector space isomorphism, and point (i) is obtained by transfer of structures. Point (ii) is a
consequence of condition (C2) satisfied by ψm, and of the property of Rankin-Cohen brackets

to be (up to constant) the unique operator
∑n

k=0 anf
(k)g(n−k) with an ∈ C mapping Mk ×Ml

to Mk+l+2n (see for instance the end of paragraph 1 of [Zag94]). Point (iii) is clear by condition
(C2). �

Corollary 2.3.3. The invariant subspace CΓ
k is for any k ≥ 0 isomorphic to the space Jk,m of

algebraic Jacobi forms on R of weight k and positive index m. In particular relation (48) defines
a structure of noncommutative algebra on Jk,m.

Proof. Follows from theorem 2.3.2 by remark 2.1.7. �

Remark 2.3.4. The isomorphisms Ψ and Ψ−1 are explicit ; we can separate even and odd

weights cases. In the even case, relations between the coefficients of an element f̃ =
∑

n≥1 f2n

of Mev
0 and its image Ψ2(f̃) =

∑
m≥1 hmx

m in BΓ
0 are (as proved in [CMZ97]):

hm =

m−1∑
r=0

(m− 1)!(2m− 2r − 1)!

(m− r − 1)!(2m− r − 1)!

(
−m+ r − 1

r

)
f

(r)
2m−2r, (50)

f2n =
(n− 1)!

(2n− 2)!

n−1∑
r=0

(2n− 2− r)!
(n− 1− r)!

(
n

r

)
h

(r)
n−r, (51)

and the coefficients αn(2k, 2`) are computed for instance in [CMZ97], [UU96], [Yao07].
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In the odd case, technical calculations give the following relations between the coefficients of

f̃ =
∑

n≥0 f2n+1 of
∏
n≥0M2n+1 and its image Ψ(f̃) =

∑
m≥0 h2m+1y

2m+1:

h2m+1 =
(2m+ 1)!(2m)!

m!2

m∑
r=0

(−1)r(m− r)!2

16rr!(2m− 2r + 1)!(2m− r)!
f

(r)
2m−2r+1, (52)

f2n+1 =
(2n)!(2n+ 1)!

(2n− 1)!n!2

n∑
r=0

(2n− 1− r)!(n− r)!2

16r(2n− 2r)!r!(2n− 2r + 1)!
h

(r)
2n−2r+1. (53)

Remarks 2.3.5. (i) The coefficients αm(n) = (−1)n

4nn!

∏n−1
i=0

(m+2i)(m+2i+2)
(m+i) appearing in propo-

sition 2.3.1 are also well defined for m even and non-positive. For n ≥ −m2 , αm(n) = 0

since α−2k(n) = 1
4nn!

∏n−1
i=0

(2k−2i)(2k−2−2i)
(2k−i) vanishes for n ≥ k because of the term

i = k − 1. Therefore relation (44) can be completed for k > 0 by:

ψ−2k(f) =

k∑
n=0

k! (2k − n)!

(k − n)! (2k)!

(
k − 1

n

)
f (n)x−k+n. (54)

The map ψ−2k : R → B satisfies the three conditions (C1), (C2) and (C3), see for
instance [CMZ97]. Then we can build a vector space isomorphism Ψ2 : Mev

∗ → BΓ

whose restriction to Mev
0 is the isomorphism Ψ2 of point (iii) of theorem 2.3.2.

(ii) Observe however that the lifting ψ−2k is not the only map satisfying the three conditions
(C1), (C2) and (C3). Indeed, using the well-known Bol’s identity:

(f |2−hγ)(h−1) = (f (h−1)|hγ) for any γ ∈ SL(2,C), f ∈ R, h > 0, (55)

the operator φc : f 7→ ψ−2k(f) + cψ2k+2(f (2k+1)) satisfies for any c ∈ C conditions (C2)
and (C3), as well as the equivariancy condition (C1):

(φc(f)|γ) = (ψ−2k(f)|γ) + c(ψ2k+2(f (2k+1))|γ)

= ψ−2k(f |−2kγ) + cψ2k+2(f (2k+1)|2k+2γ)

= ψ−2k(f |−2kγ) + cψ2k+2

(
(f |−2kγ)(2k+1)

)
= φc(f |−2kγ).

The lifting map ψ−2k is canonical in the sense that it’s the only one which is polynomial,

that is of the form ψ−2k(f) =
∑k

n=0 αnf
(n)xn−k ∈ A for any f ∈ R.

The coefficients αm(n) introduced in remark 2.3.5 (i) are not defined for m = −2k+1 with k > 0
(for n ≥ 2k the denominator vanishes without vanishing of the numerator). In this negative and
odd case, we have the following result.

Proposition 2.3.6. Let k be a positive integer. There is no map ψ−2k+1 : R → C satisfying
the three conditions (C1), (C2) and (C3). More precisely, the only map ψ−2k+1 : R → C

satisfying conditions (C1) and (C2) is defined (up to constant) by ψ−2k+1(f) = ψ2k+1(f (2k)) for
any f ∈ R, and it doesn’t satisfy condition (C3).

Proof. Relation (46) can be extended to the cases where m ≥ 0 and n ∈ Z by:

(f |nγ)(m)(z) =
m∑
r=0

m!

r!

(
m+ n− 1

m− r

)
(−c)m−r

(cz + d)n+m+r
f (r)(γz) (56)

which gives Bol’s identity in the particular case m = 1 − n. Let k > 0, suppose that there
exists a linear morphism ψ−2k+1 : R → C satisfying (C1) and (C2). Using (40) and (56), we
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can show as in the proof of proposition 2.3.1 that the coefficients of the series ψ−2k+1(f) =∑
n≥0 α−2k+1(n)f (n)y−2k+1+2n must satisfy the equality α−2k+1(n)n!

r!

(
n−2k
n−r

)
(−1)n−r =

α−2k+1(r)
16n−r(n−r)!

(2k−2r)!(2k−2r−2)!(k−n)!(k−n−1)!
(k−r)!(k−r−1)!(2k−2n)!(2k−2n−2)! if r ≤ n ≤ k − 1,

− α−2k+1(r)
16n−r(n−r)!

(2k−2r)!(2k−2r−2)!(2n−2k)!(2n−2k+2)!
(k−r)!(k−r−1)!(n−k)!(n−k+1)! if r ≤ k − 1 < n,

α−2k+1(r)
16n−r(n−r)!

(r−k+1)!(r−k)!(2n−2k)!(2n−2k+2)!
(2r−2k+2)!(2r−2k)!(n−k)!(n−k+1)! if k ≤ r ≤ n.

For n = 2k and r < 2k we deduce that α−2k+1(r) = 0 (separating the cases r > k and r ≤ k).
Then condition (C3) can not be satisfied. Moreover, if we fix α−2k+1(2k) = 1, it is easy to show
that we have α−2k+1(n) = α2k+1(n − 2k) for any n ≥ 2k, which proves the second assertion of
the proposition. �

2.4. Invariants for the homographic action on B. The data and notations are those of
previous paragraphs 2.1, 2.2 and 2.3.

Theorem 2.4.1. We assume that there exists a weight 2 modular form χ ∈ R which is invertible
in R. Then BΓ = RΓ((u ; D)) and BΓ

0 = RΓ[[u ; D]] for u = xχ ∈ BΓ and D = −χ−1∂z.

Proof. It is clear that u = xχ lies in BΓ, since its inverse w = χ−1x−1 is invariant by (29). Then
we apply theorem 1.3.1 with g = χ−1, h = 0 and d = −∂z. �

Remark 2.4.2. It follows from this theorem that the invariant algebra BΓ is noncommutative
if and only if the restriction of D to RΓ is not trivial, or equivalently RΓ 6= C. Since the product
of any modular form of even weight 2k by χ−k lies in RΓ, this condition is also equivalent to
M2k 6= Cχk. In the degenerate case where RΓ = C, the product ? defined by (49) is commutative
and most of the following results become much more simple. We refer to 2.1.2 to give examples
of fields R such that RΓ is different from C, and containing an invertible weight 2 modular form.

Problem 2.4.3. The explicit description of BΓ given by theorem 2.4.1 and the isomorphism
Ψ2 :Mev

∗ → BΓ introduced in 2.3.5 lead naturally to the question of finding relations between
the terms of a sequence of modular forms inMev

∗ and the coefficients in RΓ of its image in BΓ by
Ψ2. We answer this problem for positive weights, that is for the isomorphism Ψ2 :Mev

0 → BΓ
0 .

Our first goal is to calculate, for any invariant pseudodifferential operator q ∈ BΓ
0 , the modular

forms f2m ∈ M2m appearing in Ψ−1
2 (q) =

∑
m≥0 f2m. For this we introduce the following

notation for the powers of the generator u:

for any k ∈ N, Ψ−1
2 (uk) =

∑
n≥k

gk,2n, with gk,2n ∈M2n. (57)

Proposition 2.4.4. The assumptions are those of theorem 2.4.1. Let q ∈ BΓ
0 and (ak)k≥0 be

the sequence of elements of RΓ such that q =
∑

k≥0 aku
k. Then the modular forms f2m ∈ M2m

appearing as the terms of Ψ−1
2 (q) =

∑
m≥0 f2m are given by:

f2m = (−1)m
(m− 1)!

(2m− 2)!

m∑
k=0

m∑
n=k

(−1)n
(2n− 1)!(m− n)!

(n− 1)!(m+ n− 1)

(
m

m− n

)
[ak, gk,2n]m−n.

Proof. The expression of any element of BΓ
0 as q =

∑
k≥0 aku

k with ak ∈ RΓ follows directly
from theorem 2.4.1. By theorem 2.3.2 we have:

Ψ−1
2 (q) =

∑
k

Ψ−1
2 (aku

k) =
∑
k

ak ?Ψ−1
2 (uk) =

∑
k,n

ak ? gk,2n =
∑
k,n,r

αr(0, 2n)[ak, gk,2n]r.
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Then f2m =
∑m

k=0

∑m
n=k αm−n(0, 2n)[ak, gk,2n]m−n for any m ≥ 0.

By formula (44), we obtain ak · ψ2n(gk,2n) =
∑

t≥n htx
t, with

ht =
(2n− 1)!(t− 1)!

(t+ n− 1)!(n− 1)!

(
−n− 1

t− n

)
ak (gk,2n)(t−n) .

We deduce with formula (51) that, for any m ≥ n ≥ k:

αm−n(0, 2n)[ak, gk,2n]m−n =
(m− 1)!

(2m− 2)!

m−1∑
r=0

(2m− 2− r)!
(m− 1− r)!

(
m

r

)
h

(r)
m−r.

The left hand side is equal to

αm−n(0, 2n)
m−n∑
i=0

(−1)i
(
m− n− 1

m− n− i

)(
m+ n− 1

i

)
a

(i)
k g

(m−n−i)
k,2n ,

and expanding the right hand side gives the formula

(m− 1)!(2n− 1)!

(2m− 2)!(n− 1)!

m−n∑
i=0

a
(i)
k g

(m−n−i)
k,2n

i!

[
m−n∑
r=i

(2m− 2− r)!r!
(m− r + n− 1)!(r − i)!

(
m

r

)(
−n− 1

m− r − n

)]
.

Identifying the terms for i = m− n of each side gives the identity

αm−n(0, 2n) = (−1)m−n
(m− 1)!(2n− 1)!(m− n)!

(2m− 2)!(n− 1)!(m+ n− 1)

(
m

m− n

)
which proves the proposition. �

The next step is to obtain an explicit expression of the modular forms gk,2n as functions of χ.

Proposition 2.4.5. For any nonnegative integers k and i, we have:

gk,2k+2i = (−1)i
(k + i)!(k + i− 1)!

(2k + 2i− 2)!k!

∑
(t1,...,tk)∈(Z≥0)k

t1+...+tk=i

γi(t1, . . . , tk)
χ(t1)

(t1 + 1)!
· · · χ(tk)

(tk + 1)!
(58)

where the coefficients γi(t1, . . . , tk) are defined for (t1, . . . , tk) ∈ (Z≥0)k such that
∑k

j=1 tj = i
by:

γi(t1, . . . , tk) =
i∑

r=0

(−1)r
(2k + 2i− 2− r)!
(k + i− 1− r)!

∑
b1+...+bk=r

0≤b1≤t1
...

0≤bk≤tk

(
t1 + 1

b1

)
. . .

(
tk + 1

bk

)
(59)

and satisfy:

γi(t1, . . . , tk)

(k + i− 1)!
=

∑
a1+...+ak≤k+i−1

(
k + i− 2

a1 + . . .+ ak − 1

) k∏
j=1

[(−1)tjδ(aj = 0) + δ(aj = tj + 1)] (60)

with notation δ for the Kronecker symbol.

Proof. Firstly let us observe that the sum in the right hand side of (60) contains 2k − 2 terms
corresponding to all k-tuples (a1, a2, . . . , ak) with aj ∈ {0, tj + 1} for any 0 ≤ j ≤ k, except the
two k-tuples (0, 0, . . . , 0) and (t1 + 1, t2 + 1, . . . , tk + 1).



INVARIANTS OF FORMAL PSEUDODIFFERENTIAL OPERATOR ALGEBRAS 23

The proofs of identities (58), (59) and (60) are straightforward but quite technical, and we give
only the main steps omitting intentionally some details. Applying relation (2) to u = xχ we
prove by induction on k that

uk =
∑
n≥0

(
(−1)n(k + n)!

k!

∑
s1+...+sk=n

χ(s1)

(s1 + 1)!
. . .

χ(sk)

(sk + 1)!

)
xk+n.

Then we apply (51) to obtain:

gk,2n =
(−1)n−kn!(n− 1)!

(2n− 2)!k!

∑
t1+...+tk=n−k

(
n−k∑
r=0

(−1)r(2n− 2− r)!
(n− 1− r)!

βr(t1, . . . , tk)

)
χ(t1)

(t1 + 1)!
. . .

χ(tk)

(tk + 1)!

where, for any 0 ≤ r ≤ n− k,

βr(t1, . . . , tk) =
∑

b1+...+bk=r
b1 6=t1+1,...,bk 6=tk+1

(
t1 + 1

b1

)
. . .

(
tk + 1

bk

)
,

which proves (58) and (59) with γi(t1, . . . , tk) =
∑i

r=0(−1)r (2k+2i−2−r)!
(k+i−1−r)! βr(t1, . . . , tk). Observe

that βr(t1, . . . , tk) is the Xr-coefficient in the polynomial A(X) =
∏k
j=1[(X + 1)tj+1 −Xtj+1].

We have γi(t1, . . . , tk) = Q(k+i−1)(1) with notation

Q(X) =

i∑
r=0

(−1)rβr(t1, . . . , tk)X
2k+2i−2−r = X2i+2k−2A(− 1

X
).

We deduce that:

γi(t1, . . . , tk) =

Xk+i−2
k∏
j=1

(
(X − 1)tj+1 − (−1)tj+1

)(k+i−1)
∣∣∣∣∣∣∣
X=1

,

which leads to (60) using the relations:[
Xk+i−2

](b)
∣∣∣∣
X=1

=

{
(k+i−2)!

(k+i−2−b)! = b!
(
k+i−2
b

)
if b ≤ k + i− 2,

0 if b = k + i− 1,

and [
(X − 1)tj+1 − (−1)tj+1

](aj)∣∣∣
X=1

= aj !
[
(−1)tjδaj=0 + δaj=tj+1

]
.

�

Corollary 2.4.6. We have gk,2k+2i = 0 for any nonnegative integer k and any nonnegative odd
integer i.

Proof. We use the expression of the gk,2k+2i given in the previous proposition. Let i an odd

integer, and (t1, . . . , tk) ∈ (Z≥0)k such that t1 + . . .+ tk = i. In the right-hand side of (60), we
can group into pairs the k-tuples (a1, . . . , ak) and (t1 + 1− a1, . . . , tk + 1− ak). The associated
summands are opposite numbers because i is odd. Hence γi(t1, . . . , tk) = 0. �

Remark 2.4.7. The result obtained in corollary 2.4.6 as a consequence of proposition 2.4.5 can
also be proved by theoretical arguments using algebraic properties of the product ? defined in
(49) and some combinatorial identity conjectured in relation (3.4) of [CMZ97] (see [Yao07] for
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a proof). We proceed by induction on k ≥ 2. For k = 2, applying (49) with notations (57) we
have:

Ψ−1
2 (u2) = χ ? χ =

∑
n≥0

αn(2, 2)[χ, χ]n,

which proves by (−1)i-symmetry of the Rankin-Cohen brackets that g2,4+2i = αi(2, 2)[χ, χ]i = 0

for any odd i. Suppose now that Ψ−1
2 (uk) =

∑
i∈2Z≥0

gk,2k+2i with gk,2k+2i ∈ M2k+2i. Then we
compute:

Ψ−1
2 (uk+1) = Ψ−1

2 (uk · u) =
∑

n≥k, 2|n−k

gk,2n ? χ =
∑

n≥k, 2|n−k

∑
m≥0

αm(2n, 2)[gk,2n, χ]m

and similarly:

Ψ−1
2 (uk+1) = Ψ−1

2 (u · uk) =
∑

n≥k, 2|n−k

χ ? gk,2n =
∑

n≥k, 2|n−k

∑
m≥0

αm(2n, 2)[χ, gk,2n]m

Hence we deduce that, for each r ≥ k + 1:∑
n+m=r

αm(2n, 2)[gk,2n, χ]m =
∑

n+m=r

αm(2, 2n)(−1)m[gk,2n, χ]m = gk+1,2r.

It follows from formula (3.4) of [CMZ97] that αm(2, 2n) = αm(2n, 2). Using this identity and
the induction hypothesis gk,2n = 0 if n− k is odd, we conclude that:

gk+1,2r =

r−k∑
m=0
m odd

αm(2r − 2m, 2)[gk,2r−2m, χ]m = −
r−k∑
m=0
m odd

αm(2, 2r − 2m)[gk,2r−2m, χ]m = 0.

Remark 2.4.8. For even nonnegative integers i, the modular forms gk,2k+2i defined by (57) are
described in proposition 2.4.5 as multidifferential polynomials of the fundamental weight two
modular form χ. Then we can necessarily express them in terms of Rankin-Cohen brackets. For
small values of i, we compute:

gk,2k = χk,

gk,2k+4 =
(k + 2)!

72(2k + 1)(k − 2)!
χk−2[χ, χ]2,

gk,2k+8 = 2
(2k + 1)!(k + 4)!(k + 5)!

(2k + 6)!(k − 1)!(k − 2)!
χk−4

(
[χ, χ3]4
16920

+
47k2 − 187k + 282

121824k
[χ, χ]22

)
.

2.5. Invariants for the homographic action on C. The data and notations are those of
previous paragraphs 2.1, 2.2 and 2.3. A natural question is whether there exists for the action
of Γ on C studied in paragraph 2.2 a description of the invariant subalgebra CΓ similar to the
one obtained in theorem 2.4.1 for BΓ.

Theorem 2.5.1. We suppose that there exists a weight 1 modular form ξ which is invertible in
R. Then we have CΓ = RΓ((v ; ∆))2 for ∆ = −1

2ξ
−2∂z and v = ξy + · · · a square root of y2ξ2.

Proof. It is the direct application in the modular situation of theorem 1.3.2. �

Remark 2.5.2. The previous theorem describes the elements of CΓ = RΓ((v ; ∆))2 as series
with coefficients in RΓ where the uniformizer v is choosen as a square root of u = xξ2 = ψ2(ξ2).
In particular CΓ contains the ring of differential operators AΓ = RΓ[u−1 ; −2∆]. The main
obstacle to explicit calculations in this case is the complicated shape of the square root v.
Another more natural idea would be to consider the uniformizer z = ψ1(ξ). By reasoning as in
theorem 1.3.2, we can prove then that CΓ = RΓ((z ; S)) where the product zf with f ∈ RΓ is
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twisted by some higher derivation S = (δk)k≥0 giving rise to commutation laws more general
than (1) or (4) (see [Dum92] for precise definitions). The main difficulty lies in this case in the
complexity of these commutation laws.

Straightforward calculations show that z−2 = u−1 − 5
64

[ξ,ξ]2
ξ6 u − 5

64
[ξ,ξ2]3
ξ9 u2 + · · · In particular

z−2 6= fu−1 + g for any f, g ∈ RΓ, f 6= 0. By uniqueness of the subring AΓ in CΓ (see section
5.3 of [Dum92]), it follows that the higher derivation S is actually different of the sequence

( (2k) !
2k(k !)2d

k)k≥0 of (4) for any derivation d of RΓ.

Under the assumption of theorem 2.5.1 we can extend part of theorem 2.3.2 to the space M∗
introduced in remark 2.1.6.

Proposition 2.5.3. We suppose that there exists a weight 1 modular form ξ which is invertible
in R. Let us define for k > 0 the vector space morphism ψ−k : M−k → CΓ

−k by

ψ−k(f) = ψ2k(ξ
2k)−1ψk(fξ

2k). (61)

Then the morphisms ψm defined by (43) if m ≥ 0 and by (61) if m < 0 induce canonically a
vector space isomorphism Ψ : M∗ → CΓ which defines by transfer a structure of associative
algebra on M∗.

Proof. Let k > 0 and let f ∈ M−k, f 6= 0. Then fξ2k ∈ Mk and ψk(fξ
2k) ∈ CΓ

k . In the

same way ξ2k ∈M2k, so ψ2k(ξ
2k) ∈ CΓ

2k. Since its 2k-valuation term is ξ2ky2k and ξ ∈ U(R) by

assumption, we deduce that ψ2k(ξ
2k) ∈ U(CΓ) and so ψ2k(ξ

2k)−1 ∈ CΓ
−2k. We have consequently

ψ−k(f) ∈ CΓ
−k, and it is easily checked that its term of valuation −k is fy−k. The map ψ−k

is clearly linear, and we prove the surjectivity of Ψ recursively as in demonstration of theorem
2.3.2. �

Remarks 2.5.4. (i) Notice that we don’t have in the previous proposition an equivalent of
point (ii) of theorem 2.3.2, because the morphism ψk doesn’t satisfy condition (C2) for
k < 0.

(ii) For k < 0 an even integer, the map ψk defined by (61) can be replaced by the more
canonical one introduced previously in formula (54), which satisfies condition (C2). In
this case, the isomorphism Ψ2 in the remark 2.3.5 is the restriction of Ψ to Mev

∗ .

2.6. Additional comment. The action of Γ on B and C described in proposition 2.2.2 and
studied throughout the rest of the article is based on the choice r = 0 in formula (12). For the
same 1-cocycle s defined by (25), we know by example 2 of 1.2.7 that another choice for r could
be the map r′ : Γ→ R defined by r′γ = −s−2

γ d(s2
γ). Using (25), we have r′γ = (cz+ d)−2∂z((cz+

d)2) = 2c
cz+d for any γ =

(
a b
c d

)
∈ Γ. In other words, the homographic action of Γ on R extends

in an action by automorphisms on B defined by:

(x−1|γ)1 = (cz + d)2(x−1 +
2c

cz + d
) for any γ =

(
a b
c d

)
∈ Γ. (62)

As explained in example 3 of 1.2.7, we can extend for any κ ∈ C∗ the homographic action of Γ
on R by the action by automorphisms on B defined by:

(x−1|γ)κ = (cz + d)2(x−1 + κ
2c

cz + d
) for any γ =

(
a b
c d

)
∈ Γ, (63)

but the algebraic study of these actions and associated invariant algebras reduces to the case
κ = 1. Arithmetical interpretations of these actions have been studied in [CMZ97].
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[PWZ96] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. A = B. A K Peters, Ltd., Wellesley, MA,
1996. With a foreword by Donald E. Knuth, With a separately available computer disk.

[Sil94] Joseph H. Silverman. Advanced topics in the arithmetic of elliptic curves, volume 151 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1994.
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