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Helicopter Ground Resonance Phenomenon With 
Blade Stiffness Dissimilarities: Experimental and 

Theoretical Developments

Recent works have studied ground resonance in helicopters under the aging or damage effects. Indeed, blade lead-lag stiffness may vary 
randomly with time and differ from blade to blade. The influence of stiffness dissimilarities between blades on the stability of the 
ground resonance phenomenon was determined through numerical investigations into the periodic equations of motion, treated using 
Floquet’s theory. A stability chart high-lights the appearance of new instability zones as a function of the perturbation intro-duced on 
the lead-lag stiffness of one blade. In order to validate the theoretical results, a new experimental setup was designed and developed. 
The ground resonance instabilities were investigated using different rotors and the boundaries of stability were determined. A good 
correlation between both theoretical and experimental results was obtained and the new instability zones, found in asymmetric rotors, 
were verified experimentally. The temporal responses of the measured signals highlighted the exponential divergence in the instability 
zones. 

1 Introduction

The ground resonance phenomenon consists in potential insta-
bility, at certain critical rotor speeds, as a result of the coalescence
between the fuselage and cyclic rotor modes of vibrations over the
landing skids of a helicopter while it is on the ground [1,2].

Studies carried out on this subject have concluded that the use
of linearized periodic equations of motions provide accurate fre-
quency prediction of critical zones for articulated, bearingless or
hingeless rotors [3–5]. In all these investigations, only isotropic
rotor configurations (all blades having the same mechanical prop-
erties) have been considered.

Nevertheless, this assumption is no longer valid when consider-
ing the helicopter under the aging or damage effects. Indeed, due
to these effects, the stiffness properties of blades may vary ran-
domly with time, and differ from blade to blade (i.e., anisotropic
rotor). The study of ground resonance in helicopters with aniso-
tropic rotors is very interesting from a practical point of view, as
it enables helicopter maintenance interventions to be optimized by
avoiding the instabilities which characterize the phenomenon.

Wang and Chopra [2] examined the influence of the aging
effects on the ground resonance phenomenon, by assuming a
slight lead-lag stiffness asymmetry of 65% on one blade. The
analysis, conducted using Floquet’s theory, verifies an enlarge-
ment of unstable zones. Their mechanical model does not consid-
ers aerodynamics efforts.

The study of balanced dissimilarities (maximum attained level
of asymmetry is 40%) in rotors containing aerodynamic efforts
has done by Gandhi and Malovrh [6]. Several of his other publica-
tions has focused on the stability augmentation of the aerome-
chanical phenomena through passive and active control
techniques [7,8].

Sanches et al. [9] in his recent work has gone further on the
analysis of the ground resonance phenomenon in helicopters with
anisotropic rotors done by Wang [2]. A parametric study is devel-
oped considering high level of stiffness asymmetries on different
blades. Stability charts, obtained with the Floquet’s theory, show
the complex evolution of the instability zones with respect to the
asymmetries introduced, evidencing the appearance of new criti-
cal zones.

Further analysis on the ground resonance phenomenon with dis-
similar blades was carried out using perturbation technique [10].
The weakly coupled rotor-fuselage dynamic system, by the peri-
odic terms, is treated as a parametrically excited system. The sta-
bility analysis highlighted the existence of first and second order
parametric instabilities, proposing an explanation for the appear-
ance of new critical regions when high blade stiffness asymmetry
(i.e., bigger than 20%) is reached.

It should be noted that, in order to verify all the possible insta-
bility zones, the dissipative efforts provided by viscous dampers
were not considered in the mechanical model.

The present paper aims to validate experimentally the theoreti-
cal results, verifying the appearance of new instability regions in
helicopters under the aging or damage effects (i.e., anisotropic
rotor). For this purpose, a new experimental setup designed and
described. Isotropic and anisotropic rotor configurations are ana-
lyzed. The boundaries of instability, determined by means of ex-
perimental tests, are compared with those predicted when using
Floquet’s theory.

2 Ground Resonance: Derivation of Equations
and Stability Analysis

2.1 Derivation of Equations. Figure 1 shows the mechanical
model considered for the study of the ground resonance phenom-
enon in helicopters with a four-bladed rotor and under the aging
effects. It is based on the one used by Sanches [9,10], nevertheless
taking into account the presence of viscous dampers on the fuse-
lage oscillations and the blade lead-lag rotations.
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The fuselage movements are described as a function of its lon-
gitudinal and lateral displacements, x(t) and y(t), respectively. The
fuselage, with mass mf, is considered as a rigid body. The stiffness
of springs, situated along x and y directions, respectively, is given
by KfX and KfY. They represent the stiffness provided by the land-
ing skids, while the helicopter is on the ground.

Similarly, the damping effects, modeled as a viscous damper,
have coefficients equal to CX and CY in the longitudinal and lateral
directions of the fuselage, respectively. The center of mass of the

fuselage (point O) of the helicopter at equilibrium position is coin-
cident with the origin of the inertial reference frame (X0, Y0, Z0).

The rotor head system is composed of one rigid rotor hub and
an assembly of Nb rigid blades. Each kth blade has mass mbk and a
moment of inertia Izbk around the z-axis located at its center of
mass. The radius of gyration is defined by length b. Each kth blade
has an in-plane lead-lag motion defined by uk(t) and an azimuth
angle defined as fk ¼ 2p k � 1ð Þ=Nb with respect to the x-axis. A
torsional spring and viscous damper are considered on each blade
hinge (point B) with a spring stiffness and viscous damping coeffi-
cient of Kbk and Cbk, respectively.

The origin of a rotational reference frame (x, y, z) is parallel to
the inertial one and is located at the geometric center of the rotor
hub (coincident at point O). The rotor rotates at speed X.

Both body and rotor head are joined by a rigid shaft, and aero-
dynamic forces on the blades are not taken into account. Such
assumption is quite realistic since the helicopter is on the ground
and it adequately predicts the instabilities for an articulated rotor
system [11]. In this work, the rotor is composed of Nb¼ 4 blades.

By applying Lagrange’s equation on the expression of energies
and work of the dynamical system, the equations of motion with
respect to u, which represents the degrees of freedom of the me-
chanical model, are given by

M€uþG _uþKu ¼ Fext (1)

where

MðtÞ ¼

1 0 �rm1 sinðw1Þ �rm2 sinðw2Þ �rm3 sinðw3Þ �rm4 sinðw4Þ
0 1 rm1 cosðw1Þ rm2 cosðw2Þ rm3 cosðw3Þ rm4 cosðw4Þ

�rb1 sinðw1Þ rb1 cosðw1Þ 1 0 0 0

�rb2 sinðw2Þ rb2 cosðw2Þ 0 1 0 0

�rb3 sinðw3Þ rb3 cosðw3Þ 0 0 1 0
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(5)

M, G, and K correspond to the mass, damping and stiffness

matrix, respectively. They are nonsymmetric and nondiagonal

matrices due to the presence of periodic terms. Fext is equal to

zero if all blades have the same inertial and geometrical

properties.
The matrices then expressed in Eq. (1) are written in the same

form as presented in Refs. [9,10], except for diagonal elements of

the damping matrix G. These terms are related to the presence of

viscous dampers in the helicopter, where

Fig. 1 Representation of the mechanical model
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rc1::2 ¼
CX::Y

mf þ
X

Nb

k¼1

mbk

; rckþ2 ¼
Cbk

b2mbk þ Izbk
; k ¼ 1::4

The factors rc1::2 are ratios between the damping coefficient of
the fuselage in x and y directions, respectively, and the total heli-
copter mass, whereas rc3::6 are ratios between the damping coeffi-
cient and the total inertia of blade rotational motion.

The terms xx and xy represent the resonance frequencies of the
fuselage in directions x and y, respectively. Moreover, xb3::6 are
the lead-lag resonance frequencies of blades from 1 to 4.

2.2 Stability Analysis. Floquet’s theory is used to predict the
boundaries of instability of the ground resonance phenomenon
[2,4,9,10,12,13], represented by the periodic equations in Eq. (1).

According to Ref. [14] and based on the Floquet’s theory [15],
there is a transition matrix U that links the state vector v at two
different moments, t0 and t, i.e., from v(t0) to v(t).
The stability of the dynamical system is given by the mono-

dromy matrix R or the floquet transition matrix (FTM) defined as

R ¼ Uðt0 þ T; t0Þ (6)

where T is the period of the equations in Eq. (1).
A special technique, called Picard interactions, is devoted to the

numerical computation of the monodromy matrix [16]. The peri-
odic state-space system S(t) can be approximated by a series of p
step functions during a period. Thus,

1R ¼
Y

p

k¼1

eSk tk�tk�1ð Þ (7)

where matrix Sk, within the interval defined by tk and tk�1, is a
constant value of S(t) at t¼ tk�1.

The stability of Eq. (1) is given by the eigenvalues k of the
monodromy matrix R. If the norm of the eigenvalues, named
characteristic multiplier, is less than one, the mechanical system is
stable.

Accordingly to Ref. [14], the maximum amplitude of the multi-
plier characteristic jkj at each critical region is related to the sys-
tem exponential growth rate. High value for system exponential
growth rate claims for higher damping level.

3 Experimental Setup

An experimental setup was designed and developed to reproduce
the unstable motion of helicopters under the ground resonance phe-
nomenon, contributing towards the physical understanding of the
phenomenon and validating the theoretical results.

3.1 Description. The conceptual design of the experimental
aircraft is based on the same mechanisms and hypotheses consid-
ered for the mechanical system, described in Sec. 2.1 and in Refs.
[9,10]. Figure 2 is an illustration of the final design of the experi-
mental helicopter.

The rotor head is composed of four rigid blades assembled with
a rigid rotor hub. Each blade has, independently, lead-lag oscilla-
tions along a vertical axis, passing through point B. Flexible lami-
nas under bending oscillations, in which it is attached (i.e.,
clamped) at each of its extremities to the rotor hub and to the
blade, gives the blade angular spring stiffness. The driven torque
needed to rotate the rotor system at a constant angular speed X is
obtained using an electric motor.

The electric motor is linked to a chassis and both elements
(motor and chassis) make up the fuselage system. Four laminas,
called fuselage laminas, are linked to the chassis. The fuselage

laminas, when later linked to inertial rigid beams (see Fig. 3(b)),
will support the whole weight of the experimental helicopter.

The fuselage, suspended over an inertial table, can oscillate in
both longitudinal and lateral directions (i.e., x and y directions,
respectively). Similar to the blades, the spring stiffness of the heli-
copter landing skids is given by the fuselage laminas. The kine-
matic couplings at each lamina joint are of clamped-clamped type.

The spring stiffness of the fuselage and blades is strongly de-
pendent on the lamina geometry, when they are made of the same

Fig. 2 The final design of the experimental helicopter for
ground resonance analysis

Fig. 3 The experimental setup: (a) global view and (b) detailed
view
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ter configurations (by altering the spring stiffness) are used for the
blades.

The numerical data of the experimental helicopter (EH) are
shown in Table 1, as well as the main dimensions of the whole
machine, including the inertial table. The transparent safety enclo-
sure cabinet, the pneumatic pistons and the inductive sensors are
elements of the security system (see Fig. 2). The maximum allow-
able rotor speed and the maximum longitudinal displacement of
the fuselage are 600 rpm and 2mm, respectively.

3.2 Measurement System. The measurement system aims to
record the fuselage and blade oscillations in order to identify the
critical rotor speeds which determine the boundaries of the unsta-
ble zone by analyzing the temporal responses.

Accelerometers are used to measure the longitudinal accelera-
tion of the fuselage and the angular acceleration of each blade.
The revolving rotor speed is obtained using an optical encoder
located in the motor. The slip ring element allows the signal to be
transferred from a rotating to a fixed frame (see Fig. 3(b)). A data
acquisition system records the measured signals during an experi-
mental test. The boundary of an instability zone is determined
experimentally by identifying two aspects: high amplitude of
vibration after a certain time, and the envelope of the measured
signals growths exponentially.

A low-pass butterworth filter is applied (cutoff frequency¼ 20 Hz
and order¼ 5) to the measured signals in order to minimize the
influence (i.e., high frequencies) of the magnetic field provided by
the electric motor on the accelerometers.

3.3 Spring Stiffness Determination. By considering the fu-
selage and blade as uncoupled oscillators, their equivalent spring
stiffness is determined dynamically using their natural frequencies
of vibration. The natural frequencies are obtained from their free
oscillations (X¼ 0), when they are shifted from their equilibrium
point independently.

Figure 4 shows the temporal response of a blade fitted with set
1 of blade laminas and its spectrum diagram.

In this case, the frequency spectrum diagram shows three peaks
at 2.25, 4.83, and 7.08Hz on the power spectrum, identifying the
nonlinear behavior of the blades (nonlinear spring stiffness). The
linear equivalent blade spring stiffness is determined by consider-
ing the natural blade frequency equal to that with the maximum
power spectrum peak (i.e., at 2.25Hz).

Both blade and fuselage natural frequencies are then obtained
by repeating this same process. The values obtained are shown in
subsequent sections.

Moreover, the structural damping factor is determined by analyz-
ing the exponential rate decay of the oscillations. A mean structural
damping factor of 0.2% is found for the blades and fuselage.

4 Numerical Versus Experimental Results

Two different approaches, numerical and experimental, were
used for the study of the ground resonance phenomenon for

isotropic (IR) and anisotropic (AR) rotors. In the IR configura-
tions, all blades are fitted with the same set of blade laminas,
while in the AR configuration, one blade is fitted with a lamina
from a different set with respect to the others.

Table 2 indicates the set of blade laminas used for each rotor
configuration studied, as well as the blade natural frequency deter-
mined by following the procedure described in Sec. 3.3.

Even considering the same set of blade laminas (IR configura-
tion), differences on blade-to-blade natural frequencies are veri-
fied. This fact might be explained by slight variations of the
young’s modulus of the material of the blade laminas or by the
boundaries conditions imposed by the fixation of the laminas on
the blades which may vary from each blade.

Fig. 4 Blade oscillations with set 1 of blade laminas in panel
(a) and its frequency spectrum diagram in panel (b)

Table 2 IR and AR rotor configurations: natural blade fre-
quency and the set of laminas of each blade

Blade k 1 2 3 4

IR Set of lamina 2 2 2 2
xbk (Hz) 3.19 3.14 3.47 3.07

AR Set of lamina 1 1 1 2
xbk (Hz) 2.49 2.39 2.35 3.25

Table 1 Data of the experimental helicopter (EH)

System Description Units Value

Fuselage mf kg 45.2

Rotor mb 1.4 kg 2.84
a m 0.1
b m 0.22
Izb kg m2 0.11

Machine Length m 1.28
Width m 1.28
Height m 1.00
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Concerning the equivalent spring stiffness of the fuselage, the
natural frequencies identified are xx¼ 2.55Hz and xy¼ 15.8Hz
in the longitudinal and lateral directions, respectively.

It is important to note that the numerical analyses using
Floquet’s theory are conducted by assuming the period divisions
p¼ 64 parts.

4.1 Isotropic Rotor (IR). Considering the data described in
the previous sections about the experimental helicopter with IR rotor
configuration, Fig. 5 shows the evolution of the characteristic multi-
plier (curved line) with respect to the angular rate X. The predicted
boundaries of instability are represented by the square symbols,
whereas that determined experimentally (see Sec. 3.2) is shown
using diamonds. Table 3 presents their numerical values.

The instability region, at which the ground resonance phenom-
enon occurs for isotropic rotor, is related to the coalescence
between two modes of vibration of the helicopter (i.e., the fuse-
lage mode and a rotor mode) [2].

The existence of only one instability zone (i.e., zone where the
characteristic multiplier is greater than the unit) is observed, even
if the helicopter has two distinct fuselage natural frequencies.
This is explained by the limitation of the experimental setup
(maximum allowable rotor speed is 600 rpm).

The boundaries of instability verified experimentally are corre-
lated with respect to those predicted numerically. A maximum
deviation of 6.68% is presented. This difference might be reduced
by optimizing the experimental procedure to determine the boun-
daries of instability: find the instant when the exponential growth
rate of the measured signal becomes positive.

Regarding the fuselage and blade accelerations measured of the
experimental helicopter in a critical zone, it is possible to verify the
exponential growth of the envelope of those signals (see Fig. 6).
Evidence of the presence of an instability is thus provided.

Accordingly to Ref. [14], the system exponential growth rate at
the critical region (Xcr¼ 7.5Hz) is related to maxðjkjÞ ¼ jkcrj
� 1:12.

A general representation of the rotor deformation shape 1s
before the fuselage reaches the maximum longitudinal displace-

ment is given in Fig. 7. The black lines represent the blade,
whereas the gray dashed line is the origin of the blade lead-lag
angle. In all cases, a shift of the rotor center of mass from the ver-
tical rotating axis is verified.

It is important to note that the lead-lag angles on the figure are
only illustrative, since they are slightly increased for didactic
reasons.

4.2 Anisotropic Rotor (AR). The study of anisotropic rotors
is very interesting from a practical point of view. Indeed, the
effects of aging or failure of mechanical elements may alter the
spring stiffness of blades and consequently change the boundaries
of instability of the ground resonance phenomenon.

Parametric studies have been done recently and they illustrate
the evolution of the boundaries of instabilities as a function of the
blade stiffness asymmetries affected in different blades [9,10].

The present work concerns the study of an arbitrary case of
asymmetric rotors. The blade lead-lag natural frequency of one
blade is slightly increased (see AR in Table 2), having the lag
stiffness similar to those blades of the isotropic rotor.

It is important to remark that this case is similar to that in which
three blades are asymmetric (i.e., lag stiffness level decreased)
with respect to the reference blade (i.e., blade n�4).

The evolution of the characteristic multiplier (curved line) with
respect to the angular rate X, obtained by using Floquet’s theory,
is shown in Fig. 8. The predicted boundary of instability is repre-
sented by the square symbols, whereas that determined experi-
mentally is shown using diamonds. Table 4 presents their
numerical values.

Fig. 5 Comparison between the numerical and experimental
instability prediction for IR configuration

Table 3 Boundaries of instability found using FM and those
determined experimentally for IR configuration

With FM Experimental Deviation (%)

Lower bound 7.33 7.82 6.68
Upper bound 8.63 8.80 1.97

Fig. 6 Time history of the experimental helicopter with IR
configuration at X�7.5Hz; (a) blades and (b) fuselage
accelerations

Fig. 7 Rotor deformation shape for the experimental helicopter
EH with IR atX � 7.5Hz
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Three instability zones are predicted with Floquet’s theory in
the case of one dissimilar blade. It is important to note that the
analysis is conducted until the maximum allowable rotor speed of
the experimental helicopter is reached.

Two new instability zones (i.e., zones 1 and 2) are observed
when compared to an isotropic rotor. The third zone corresponds
to the same critical zone found with the IR configuration.

Experimentally, only zone 1 and the lower and upper limits of
zones 2 and 3, respectively, were able to be determined due to the
resolution of the electric motor. The stable zone between zone 2
and 3 was not found due to their proximity.

Regarding the maximum amplitude of jkj at each critical
region, the zone 1 seems to be very sensible to dissipative efforts
once the exponential growth rate is very low [14].

By introducing blade stiffness asymmetries in three blades, a
decrement of the exponential growth rate is observed (with respect
to IR configuration). The maxðjkjÞ � 1:12 for IR while
maxðjkjÞ � 1:08 for AR (zone 3). However, the new critical zone
2 has an exponential growth rate (i.e., maxðjkjÞ � 1:145) bigger
than that observed with isotropic rotor.

Analytical asymptotic has been developed on the helicopter
equations of motion. The periodic terms (i.e., the coupling terms)
were considered as parametric excitation of the uncoupled
fuselage-rotor dynamic system [10].

The analysis carried out on the parametrically excited dynamic
system leads to the existence of parametric resonances of first and
second order, in which some of them are unstable.

At parametric instabilities of first order, the fuselage is in reso-
nance with the blade(s) and vice versa. It evidences thus the coales-
cence of the fuselage and rotor modes of vibration at the
instabilities. The critical rotor speed, at which the parametric insta-
bilities take place, is given by linear function (i.e., sum and differ-
ence) between the natural frequencies of the fuselage and blade.

These instabilities are found in isotropic and anisotropic (zones 2
and 3) rotors. In isotropic rotor configuration all blades are in reso-
nance with the fuselage, since the lag natural frequency of the blades

are similar. Regarding AR, at zone 2 three blades are in resonance
with the fuselage, and at zone 3 only one blade is in resonance.

Regarding the parametric instabilities of second order, analytical
developments evidence that fuselage is in resonance with their own
vibration. The critical rotor speeds are given as a function of the fu-
selage natural frequencies. These instabilities happens only in AR.

The zone 1 in AR evidence parametric instabilities of second
order and it happens at Xcr¼ 2.81Hz which is close to
xx¼ 2.25Hz. Figure 9 illustrates, at initial time intervals, the ex-
ponential growth of the envelope of only the fuselage accelera-
tion. It evidences the fact of only the fuselage is in resonance at
the unstable region.

5 Conclusions

The dynamics of helicopters on the ground, but under the aging
or damage effects, have recently been studied. In fact, these
effects may result in the spring stiffness of blades varying ran-
domly, compromising the nominal operation of the aircraft and
leading the aircraft to the ground resonance phenomenon. The
investigations predict the existence of new instability zones with
high asymmetries between blades.

A new experimental setup, designed to experimentally repro-
duce the ground resonance phenomenon for isotropic and aniso-
tropic rotors, to further comprehend this phenomenon and to
validate the theoretical results (verifying the existence of new
instabilities regions for anisotropic rotors with respect to the iso-
tropic ones), has been described and presented.

The conceptual design of the apparatus was based on the same
mechanisms and hypotheses considered for the simplified helicop-
ter with hinged blades, used for the theoretical analysis. Efforts
were made to obtain an easily adjustable parametric system (i.e.,
blade mass, blade, and fuselage spring stiffness). During an exper-
imental test, the acceleration signals of the fuselage and the blade
lead-lag rotations were recorded.

For both approaches, numerical (i.e., Floquet’s Theory) and ex-
perimental, the boundaries of instability found were quite similar
for isotropic and anisotropic rotor configurations.

The appearance of new instability zones in anisotropic rotors
with respect to isotropic ones was verified experimentally, as pre-
dicted theoretically. This fact was evidenced by the exponential
divergence of the measured signals, which characterizes the unsta-
ble oscillations during the occurrence of the phenomenon.

Nomenclature

a ¼ rotor eccentricity
b ¼ blade equivalent length

Table 4 Boundaries of instability found using FM and those
determined experimentally for AR configuration

Zone With FM Experimental Deviation (%)

1 — 2.81 2.55 9.20
2 Lower bound 6.60 6.51 1.36

Upper bound 7.66 — —
3 Lower bound 7.69 — —

Upper bound 8.30 7.99 3.73

Fig. 9 Time history of the experimental helicopter with AR con-
figuration atX � 2.5Hz; (a) blades and (b) fuselage accelerations

Fig. 8 Comparison between the numerical and experimental
instability prediction for AR configuration
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Fext ¼ external force vector
G ¼ damping matrix of the dynamical system

IZbk ¼ lag rotational inertia of the kth blade around
its center of gravity

K ¼ stiffness matrix of the dynamical system
Kbk ¼ kth blade lead-lag stiffness

KfX ;KfY ¼ longitudinal and transverse stiffness of fuselage
mf, mbk ¼ fuselage and mass of kth blade

M ¼ mass matrix of the dynamical system
Nb ¼ number of blades in the rotor
rak ¼

ffiffiffiffiffiffiffiffi

arbk
p

rbk ¼ ratio between the static moment over the total lead-
lag rotational inertia of the kth blade

rmk ¼ ratio between the static moment of the kth blade
over the total mass of the helicopter

S ¼ state space matrix
t ¼ time
u ¼ vector of degree of freedom of the system
v ¼ state vector

x(t), y(t) ¼ longitudinal and transverse displacement of the
fuselage

(x, y, z) ¼ mobile coordinate system attached to the rotor hub
(X0, Y0, Z0) ¼ inertial referential coordinate system

uk(t) ¼ lead-lag angle of kth blade

U ¼ transition matrix (Floquet’s Theory)
X ¼ rotor speed
fk ¼ azimuth angle for the kth blade

xbk ¼ lead-lag natural frequencies of kth blade at rest
xx, xy ¼ fuselage natural frequencies in x and y directions

Appendix: Energy Expressions

The kinetic and potential energy expressions and the work
expression of dissipative forces of the dynamical system are pre-
sented as follows separately. They are all written on the inertial
reference frame.

Kinetic Energy. The kinetic energy of the whole dynamical
system consists in the sum of kinetic energy expression of fuse-
lage TFus and rotor head TRH systems. These energies are given
below:

TFus ¼
mf

2
_x2ðtÞ þ _y2ðtÞ

� �

(A1)

TRH ¼ 1

2

X

Np

k¼1

Izbk _u
2
k þ mbk _x2bk þ _y2bk

� �� �

(A2)

¼ 1

2

X

Np

k¼1

Izbk _u
2
k þ

1

2
mbk

X

Np

k¼1

_xþ _yð Þ þ b2 _u2
k þ 2b2X _uk þ b2X2 a2 þ b2ð Þ

2abcos ukð Þ X
2 þ X _uk

� �

þ 2aX � _xsin wkð Þ þ _ycos wkð Þ½ �
2b X _yþ _y _ukð Þcosðwk þ ukÞ � 2b X _xþ _x _ukð Þsinðwk þ ukÞ

8

>

<

>

:
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>

=

>

;

(A3)

Potential Energy. The potential energy of the whole dynami-
cal system consists in the sum of potential energy of fuselage UFus

and rotor head URH systems. The expressions of these energies are
given below:

UFus ¼
1

2
KfXx

2 þ KfYy
2

� �

(A4)

URH ¼ 1

2

X

Np

k¼1

Kbku
2
k (A5)

Work of Dissipative Forces. The work of dissipative forces of
the whole dynamical system consists in the sum of the work done
by dissipative forces acting on the fuselage dFFus and rotor head
dFRH systems. They are given below as:

UFus ¼
1

2
CfX _x

2 þ CfY _y
2

� �

(A6)

URH ¼ 1

2

X

Np

k¼1

Cbk _u
2
k (A7)
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