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In the European Union, timber is used in structural applications and must 
be graded with a Conformité Européene (CE) mark. To achieve 
standard, machine strength grading is used. A common technology for 
these machines is based on using the vibrational response of each wood 
board to estimate the timber modulus of elasticity and modulus of 
rupture. The first Eigen frequency is usually used to predict these 
mechanical properties. However, in heterogeneous wood species such 
as oak, this parameter is less correlated with mechanical properties. The 
current study proposes two new methods based on an extended 
exploitation of the vibrational response that predicts oak wood 
mechanical properties. The first method was based on the mechanical 
parameters deduced from several Eigen frequencies that were chosen 
with regards to a stepwise regression. The second method was based on 
the full vibrational spectrum and used a partial least squares method. 
The first method slightly improved the prediction of the modulus of 
elasticity compared with the first Eigen frequency in edgewise 
transversal vibration. Both methods significantly improved the prediction 
of the modulus of rupture. 
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INTRODUCTION 

The characterization of timber mechanical properties is needed for structural 

applications of wood. However, wood heterogeneity requires the individual 

characterization of each board. European standards have defined different grades based 

on three characteristics (EN 338 (2016); EN 384 (2016)): density, modulus of elasticity 

(MOE), and modulus of rupture (MOR). The reference for these properties is based on a 

four point bending test according to the EN 408 (2012) standard. However, in the frame 

of machine strength grading described in EN 14081 (2016), these properties must be 

determined nondestructively. Different mechanical grading methods and machines are 

commercially available and based on technologies including X-rays, vibrational methods, 

or stress ratings (Hanhijarvi et al. 2005; Baillères et al. 2012). Mechanical properties are 

typically predicted from the board’s density or dynamic measurement of the MOE, and 

sometimes with the help of the detection of singularities like knots or fiber direction.  

The board mass and dimensions allow for the measurement of the global board 

density. MOE can also be estimated by dynamic methods (Hanhijarvi et al. 2005; 

Baillères et al. 2012). The most challenging characteristic to predict is the MOR. The 

efficiency of prediction is typically evaluated with the coefficient of determination (R²) 

between indicating properties and destructively obtained variables. However, it is also 

essential to estimate the mean error of prediction to evaluate each model. The coefficient 

of determination between the measured MOR and MOR indicating property obtained by 

non-destructive techniques can reach R² = 0.68 for Spruce and R² = 0.58 for Douglas fir 

(Viguier et al. 2015). However, there is little data available in the literature concerning 



the prediction of hardwood mechanical properties and particularly oak wood. It could be 

mentioned, nonetheless, that the coefficient of determination between static MOE and 

MOR for chestnut was R² = 0.36 in Vega et al. (2013), which is lower than spruce with 

R² = 0.71 in Viguier et al.  (2017). Grading oak is a major difficulty for the large 

commercialization of structural applications (Collet et al. 2011). Thus, more effort is 

needed to improve its characterization and non-destructive grading.  

This paper describes the use of vibrational analysis to predict MOE and MOR. 

The first Eigen frequency allows the prediction of the MOE (Hanhijarvi et al. 2005; 

Baillères et al. 2012). Guindos and Guaita (2013, 2014) showed that MOR depends on 

knot characteristics including shape, position, etc. Detecting these characteristics is 

essential for MOR prediction. Roohania et al. (2015) observed the influence of the 

position and orientation of a local heterogeneity on the resonance frequencies by 

comparing clear beams and beams that were drilled. The behavior of the free flexural 

vibration was different depending on the position and orientation of the heterogeneity. 

When the drilling axis lies in the vibration bending plane, the weakening of frequency 

was maximal at the location of an antinode of vibration. However, the frequency offset 

was maximal in the vibration node when the drilling axis was orthogonal to the bending 

plane. This particular behavior could be used for grading lumber because it takes into 

account the presence of defects by the estimation of the static MOE and the MOR. For 

the same purpose, Sobue et al. (2010) detected the position of defects by looking at the 

resonance frequency shifts in longitudinal vibrating. Indeed, the shift was large when the 

defect coincided with a node of vibration, while no shift was observed when the defect 

coincided with an antinode of vibration. The proposed method worked only to identify a 

maximum of two dominant defects. Another study from Yang et al. (2002) detected some 

defects such as knots by comparing clear and defected boards. The criterion used was the 

variation of the mode shape of transversal vibration waves. The theoretical and 

experimental mode shapes coincided with clear beams and differed near a defect.  None 

of the previous studies went beyond heterogeneity detection to predict MOR from 

vibrational signals.  

The current study proposed two analysis techniques based only on vibrational 

measurements to predict MOE and MOR. The first method was based on a stepwise 

regression and considered several output parameters from the vibration test. Stepwise 

regression detects the most representative parameters that explain most of the variance in 

MOE and MOR. The second technique was related to frequency spectrum standardization 

in frequency and in amplitude. In the second method, the partial least squares (PLS) 

statistical method was used, such that each frequency of the spectrum was a predictive 

variable. Brancheriau and Baillères (2003) conducted a similar analysis for larch species, 

but they did not standardize the frequency vectors. Thus, their analysis was dependent on 

the board dimensions. The current study standardized the amplitude and the frequency, 

which resulted in the removal of the percussion impact effect and board dimensions 

effect. These two analysis techniques were compared to the more classical use of the 

dynamic MOE, based on the first Eigen frequency in longitudinal vibration as an 

indicating property of static MOE and MOR. 

EXPERIMENTAL 

Sampling 
A total of 164 boards of French oak wood (Quercus petraea and Quercus robur) 

were tested in normal laboratory conditions of 20 °C and 65% humidity as noted in the 

EN 408 (2012) standard. The boards were selected according to the NF B52 001-1 (2011) 



visual grading standard to ensure an almost equal distribution between the three grades of 

D30, D24, and D18 (Table 1). The waste category was over-represented because the goal 

of machine grading is to reduce the underestimation of visual grading. Four different 

board dimensions were chosen (Table 2). The number of boards was different in each 

section because the wood board manufacturing process reduced the final number of 

exploitable boards. 

Apparatus  
Four points bending 

A four point bending test was performed according to EN 408 (2012) using the 

distance between edge supports equals to 18 times the board’s height, and a distance 

between the central loading heads equals to 6 times the board’s height. These distances 

were modified according to each cross-section. The longitudinal position of the boards 

was chosen so that the supposed critical board’s zone was between loading heads. The 

tension edge was selected at random. Global MOE and MOR were determined in 

accordance with the EN 408 (2012) standard and constituted the observations for 

statistical methods. 

Table 1. Board Grading based on Visual Method (NF B52 001-1 (2011)) 

Grades Number of Boards 

1 (D30) 30 
2 (D24) 37 
3 (D18) 25 
Waste 72 

Table 2. Board Numbers for Each Section

Number of Boards Dimensions (mm) 

51 2200 x 76 x 23 

52 2000 x 97 x 24 

38 2500 x 105 x 23 
23 3000 x 170 x 25 

Vibrational measurements 

Vibration tests were carried out using the BING device developed by CIRAD 

(Brancheriau et al. 2007). The technique consisted of generating an impulse with a 

hammer in beam extremity and placing a microphone as a receiver on the other side. The 

beam was placed on two elastic supports to ensure free vibrations. These supports have 

been positioned at the theoretical node points at the first mode in bending. Three types of 

vibrational tests were done. An impact along the sample involved longitudinal vibrations 

representative of a compressive test (Fig. 1); bending or transversal vibrations were 

generated by edgewise and flatwise impacts (Fig. 1). The longitudinal vibration test 

represents industrial measurements of the dynamic MOE using the first Eigen frequency. 

The analog output signal was converted to a digital one with a sampling frequency of 39 

kHz, acquisition of 1678 ms, and 12 bits resolution. A discrete Fourier transformation 

converted the temporal response to a frequency spectrum. 

Method Based on Eigen Frequencies 
Global output parameters 

The relationship between Eigen frequencies and MOE or shear modulus depend 

on the vibration direction and the mechanical model applied. Several output parameters 

were computed from these different relationships and used later as predictive variables. 



Equations 1, 2 and 3 were demonstrated in Brancheriau and Bailleres (2002), who made a 

review and theoretical comparison of the different models.  

In longitudinal vibrations, the MOE is computed thanks to the first Eigen 

frequency only, following Eq. 1,   

𝑀𝑂𝐸𝐶 =  4𝜌𝐿²𝑓𝑚𝑜𝑑𝑒  1

        (1) 

where 𝑀𝑂𝐸  is the MOE in longitudinal vibrations (compression), 𝜌 is the density, L is the 

length, and 𝑓       is the frequency of the first
 
mode in longitudinal vibration. 

In transversal vibrations (edgewise and flatwise), four Eigen frequencies were 

chosen. In this case, two common theories were used to determine the MOE: Bernoulli 

(1748) and Timoshenko (1921). Bernoulli theory does not consider beam shearing. To 

compute the MOE according to Bernoulli theory, equation 2 was used, 

 𝑀𝑂𝐸𝐵𝑖 =
4𝜋²𝜌𝑆𝐿4𝑓2

𝑚𝑜𝑑𝑒  𝑖

𝐼𝑃𝑖
        (2) 

where 𝑀𝑂𝐸𝐵  is the MOE following Bernoulli theory for the i
th 

mode in transversal

vibrations; 𝜌 is the density;  L is the length; 𝑓 is the frequency of the i
th 
mode in

transversal vibration; 𝑆 is the cross section; 𝐼 is the second moment of area; 𝑃  is a scalar 

relative to the i
th 

mode (i
th  

solution of cos √𝑃
 
cosh √𝑃

 
= 1). Applying Timoshenko

bending theory, Bordonné (1989) and more recently Brancheriau and Bailleres (2002) 

gave the following solution of the equation of motion for a beam in transversal vibration, 

MOET

𝜌
−

MOET

𝐾G
𝑥𝑖 = 𝑦𝑖

          (3) 

where  is the MOE following Timoshenko theory, 𝜌 is the density, 𝐾 is the shear 

factor (𝐾 =  for a rectangular cross-section), G is the shear modulus, 𝑥  and 𝑦  are 

parameters that depend on the Eigen frequency (Brancheriau and Bailleres (2002) for 

detailed expression). Thanks to a linear regression between 𝑥  and 𝑦  parameters for the 

four selected Eigen frequencies, the MOE and shear modulus were found. The coefficient 

of determination of these regressions were also computed to be used as predictive 

variables (   
 ,   

  in Table 3).  

Fig. 1. Illustration of vibrational measurements 



As suggested by Roohania et al. (2015), a ratio between edgewise and flatwise 

vibrational MOE was computed for each mode. The inharmonicity factor, proposed by 

Aramaki et al. (2007), was computed. It represented the ratios between the second, third, 

and fourth Eigen frequencies divided by the first Eigen frequency. To take into account 

the viscoelastic behavior, the loss factor (tan δ) was determined for the first Eigen 

frequency (Brancheriau et al. 2010). The loss factor could have been calculated for each 

Eigen frequency, but the first was the only one that was considered because of its high 

energy and low computational uncertainty. Finally, it was possible to extract 27 variables, 

as presented in Table 3. This list of parameters organized the input data for the stepwise 

regression method. 

Table 3. List of Global Output Vibrational Variables

Parameters Reference 
Number of 
Parameters 

Density ρ 1 

Longitudinal vibrational MOE in compression MOE
C

1 

Transversal vibrational MOE (flatwise and edgewise) relative 
to i

th
 Eigen frequency based on Bernoulli theory

MOEBi
EW

,
MOEBi

FW 8 

Transversal vibrational MOE (flatwise and edgewise) based 
on Timoshenko theory 

MOET
EW

,
MOET

FW 2 

Shear moduli relative to edgewise vibration G
EW

1 

Frequency ratios between first Eigen frequencies and i
th

Eigen frequency, with 2<i<4 (flatwise and edgewise) 
Inhai

EW
,

Inhai
FW 6 

Ratio between flatwise and edgewise vibrational MOE relative 
to i

th
 Eigen frequency

Ratioi 4 

Coefficient of determination between Eigen frequencies 
(flatwise and edgewise) 

, 2 

loss factor (tan δ) DC, DEW 2 

Stepwise regression 

The stepwise regression (Ing and Lai 2011) aimed to fit a model based on the 

vibrational parameters of Table 3 to predict the static MOE and MOR. The stepwise 

regression was conducted with R software (Venables and Smith 2017) with the Akaike 

information criterion method described by Venables and Ripley (2002). 

Method Based on the Full Vibrational Spectrum 
This analysis considers standardizing amplitudes of the whole spectrum for each 

vibration test as predictive variables. Thus, the spectrum was standardized in its 

frequencies and amplitudes. Note that the present method only used the edgewise 

vibrational measurements for reasons that are discussed later.  

Standardization of spectrum frequencies 

The determination of the fundamental frequency f0 allowed standardized 

frequencies by computing the ratio of each frequency f to the fundamental frequency. The 

standardization made the analysis independent from the board’s dimensions. Thus, each 

board had its own frequency scale (f/f0). By using a linear interpolation, only one 

frequency scale was constituted for all measured spectra. 

Standardization of spectrum amplitudes 

Explicative variables were composed of amplitudes which were standardized to 

remove impact influence. The signal energy was defined as follows (Eq. 4), 



(4) 

where S(f) is the magnitude of the Fourier transform at the frequency f. In a linear system, 

the responses of the system under two different impacts were as follows, 

(5) 

where 𝑆 is the Fourier transform of the output signal, 𝐸 is the Fourier transform of the 

input signal (impact), and   is the impulse response of the linear system. Assuming there 

is a linear relationship between 𝐸1 and 𝐸2 (α a constant): 𝐸 =    𝐸 , the output spectrum 

is then equal to: 𝑆 =    𝑆   and the signal energy:        =  
          . To remove 

the influence of impact, an appropriate standardization is to divide each spectrum 

amplitude by the square root of the energy: 

(6) 

Because this expression is non-dimensional, the MOE calculated from the first Eigen 

frequency extracted from edgewise tests was included in the final amplitude 

standardization The explicative and explained (MOE and MOR) 

variables were, in turn, in the same unit. 

Partial least squares 

The partial least squares (PLS) were applied on treated spectral signals to predict 

MOE and MOR. The PLS was based on multiple linear regressions (MLR) represented 

by Eq. 7. MLR looks at a linear relationship between explicative variables (elements of 

the spectrum) to explain a single dependent goal variable (MOE or MOR) according to 

Eq. 7, which is an example for MOR, 

(7) 

where      is the i
th

 observation of goal variable, n is the number of observations, m is

the number of explicative variables, 𝑥    is the j
th

 standardized amplitude of spectrum in

the i
th

 observation, is the j
th

 element of regression coefficient and    is the i
th

 residual

element. 

The goal was to avoid the collinearities between the variables by compressing the 

information and maximizing the explained variance of the dependent variable (MOE or 

MOR). Equation 7 was then converted to Eq. 8. The details of this method are available 

in Naes et al. (2002). Equation 8 is an example of two latent variables that are selected in 

the case of MOR. 

(8) 

Energy =   𝑆(𝑓) ²

𝑓

 

𝑆1 =  𝐸1 .   and 𝑆2 =  𝐸2 .  

𝑆2

 Energy2

=  
𝑆1

 Energy1

(
𝑆

 Energy
MOEB1

EW ).
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where      is the i
th

 observation of goal variable, 𝑡    is the j
th

 element of the i
th

 latent

variable which is a linear combination of initial explicative variables, 𝛽  is the j
th

 new

coefficient element of regression and 𝜖  is the i
th

 residual element.

The number of latent variables was selected in order to minimize the error 

between the predicted and actual values of the goal variable (cross validation with 10 

random segments). The population was separated into ten random folds. Calibrations and 

validations were done ten times with different samples. Calibration was completed with 9 

folds, while validation was completed with the last one. The principle is detailed in the 

publication of Næs et al. (2002). After cross validation, the root mean square error of 

cross validation (RMSECV) was calculated (Eq. 9). The selected number of latent 

variables correspond to the lowest RMSECV. The associated coefficient of determination 

of cross validation (   
 ) was also determined. 

(9) 

where    ̂    is the i
th

 estimate value of at the j
th

 fold of cross validation (note

that the same equation was used for MOE), and Nj is the number of samples used in 

validation (j
th

 fold).

The final model was computed using all the observations. The root mean square 

error of calibration (RMSEC) was defined on the total number of observations (n) as 

follows, 

(10) 

where k is the number of latent variables and n is the total number of observations. The 

computation was performed with R software with the PLS package (Mevik and Wehrens 

2007). 

RESULTS AND DISCUSSION 

Comparison of Destructives and Nondestructive Tests
Table 4 shows the descriptive statistics of density, MOE, and MOR. Destructive 

tests showed a large representation of high MOR values (MOR > 30 MPa), which 

constitutes 88% of the total number of boards. However, boards with a low MOR were 

not negligible. Indeed, 12% of boards were under 30 MPa. 

Table 4. Statistics of Density, MOE, and MOR Obtained by Destructive Tests

Basic statistics Min 1
st
 quartile Mean Std. deviation Median 3

rd
quartile Max COV (%) 

Density (kg.m
-3

) 582 682 711 56 712 744 857 7.9 

MOE (MPa) 5385 8780 10301 2159 10114 12000 16054 20 

MOR (MPa) 13 38 56 22 55 75 109 39 

Despite the large range between the maximum and minimum values of density 

(275 kg.m-3), its dispersion, which is represented by the coefficient of variation (COV), 

was low (COV = 7.9%) with a mean value of 711 kg.m-3. Close values were observed in 

the PhD of Viguier (2015) where the mean of density equals to 725 kg.m
-3

 and the COV

RMSECV =
 

 (𝑀𝑂𝑅̂ 𝑖,𝑗 −𝑀𝑂𝑅 𝑖,𝑗 )²𝑖

𝑁𝑗

10
𝑗=1

10

𝑅𝑀𝑆𝐸𝐶 =  
(𝑀𝑂𝑅̂𝑖 − 𝑀𝑂𝑅𝑖)

2

𝑛 − 𝑘 − 1

𝑛

𝑖=1



= 9.3%. 

The dispersion of MOE was more pronounced than the density with a COV = 

20%, a range of 10669 MPa, and a mean value of 10301 MPa. The values observed in the 

PhD of Viguier (2015) where the mean of MOE equals to 10140 MPa and the COV = 

24.8% are close to those obtained in this study. 

 The same observation was made for MOR with a large dispersion (COV = 39%), 

a range of 96 MPa and a mean value of 56 MPa. The mean value of MOR observed in the 

PhD of Viguier (2016) were equals to 40.7 MPa and the COV% = 37.8% which are lower 

comparing to this study.  

Coefficients of determination values (with interval of confidence p < 0.05) and 

their degree of significance between density, MOE, and MOR are shown in Fig. 2. The 

correlation between static MOE and density was low (R² = 0.09) with a large interval of 

confidence. Thus, predicting MOE from the density appears to be inappropriate. A 

similar observation was made between the density and static MOR (R² = 0.01). However, 

the r-squared value between the static MOE and static MOR was equal to 0.40. As a 

result, it was interesting to determine the MOE to predict the MOR by using non-

destructive techniques.  

Fig. 2. Scatterplots of density, static MOE, static MOR, and vibrational MOE. R-squared values 
are in the upper right panel, with the significance in upper case (*** for p-value <0.001, nothing for 
0.1 < p-value < 1). The confidence intervals at the 0.05 level are shown in brackets. 

Typically, grading machines based on vibration measurements use the dynamic 

MOE obtained from the first Eigen frequency in longitudinal vibration to determine MOE 

and MOR. In the current study, MOE and MOR were predicted from the dynamic MOE 

calculated by using transversal (edgewise vibrational MOE) and longitudinal 

(longitudinal vibrational MOE) vibration tests. A cross-validation was performed to 

estimate the prediction error of the statistical modeling. The models were stable in both 

cases of longitudinal and edgewise-transversal vibrations. Indeed, the RMSECV was 



close to the RMSEC. In the longitudinal vibration model, the prediction of MOE leads to 

a RMSEC of 1100 MPa and a RMSECV of 1035 MPa and the prediction of MOR leads 

to RMSEC of 19.1 MPa and a RMSECV of 19.2 MPa. The same behavior is observed in 

edgewise transversal vibrations model where the prediction of MOE leads to a RMSEC 

of 896 MPa and a RMSECV of 835 MPa and the prediction of MOR leads to RMSEC of 

18.7 MPa and a RMSECV of 18.9 MPa. For both MOE and MOR prediction, the errors 

were higher for the longitudinal vibration than for the edgewise-transversal vibration.  

Either in the longitudinal or transversal vibration, the vibrational method was a 

good way to predict the MOE for oak species (   
  > 0.75). In contrast, the MOR was not 

estimated accurately by the vibration tests (   
  < 0.27). Thus, it is interesting to show 

how far spectrum analyses improve the prediction of MOE and MOR, first by using 

parameters based on Eigen frequencies, then the full spectrum. 

Method based on Eigen Frequencies 
This analysis used a stepwise regression method. The goal consisted of finding the 

best global output parameters that explain the variance of observations, i.e., MOE and 

MOR. Each model contained significant parameters with p-values that were under 0.001. 

Stepwise regression for MOE 

The selected regression parameters to predict MOE were      
   and Ratio 2 

which is the ratio      
  /     

  . The determination coefficient of the regression was 

 = 0.86 (F-statistic = 496, p-value < 2.2 × 10
-16

) with a residual error of RMSEC = 812

MPa. The result of the cross-validation procedure was RMSECV = 817 MPa (   
  = 

0.86). This model was found to be stable because the RMSECV was very close to the 

RMSEC. Figure 3a shows the predicted values according to static MOE values.  

The first selected parameter was the edgewise dynamic modulus, which 

corresponded to the elastic property measured in the same configuration than the static 

test (edgewise flexural loading). The second selected parameter was the second ratio 

between edgewise and flatwise dynamic moduli. This ratio was affected by the presence 

and positions of natural defects in the boards (Roohania et al. 2015). Due to the 

collinearity of the explicative variables, the first ratio ( / ) or the 

coefficient of determination between Eigen frequencies ( ) could be used too (in 

addition to  parameter). By doing so, for the first ratio the model results were 

= 0.86, RMSEC = 825 MPa, RMSECV = 830 MPa; and for  the model results 

were  = 0.85, RMSEC = 831 MPa, RMSECV = 833 MPa. 

Fig. 3. (a) Static MOE vs. predicted MOE. (b) Experimental MOR vs. predicted MOR. In both 
panels, the solid line is the first bisector. 

Stepwise regression for MOR 



The selected parameters to predict MOR were     
   and    

 . The regression 

coefficient was equal to   
  = 0.35 (F-statistic = 42.8, p-value = 1.23 × 10

-15
), and the

residual error was RMSEC = 18.0 MPa. The associated cross-validation gave a 

RMSECV value of 18.1 MPa (   
 = 0.32). This model was stable because the RMSECV 

was close to the RMSEC. Figure 3b shows the regression scatterplot for the MOR values.  

As well as the static MOE model, the first parameter selected was an edgewise 

elastic property (    
  ). The second parameter was the coefficient of determination 

associated with the Bordonné’s solution of the Timoshenko equation (Brancheriau et al. 

2002). This coefficient was affected by the values of the Eigen frequencies. If the 

material was perfectly homogeneous,    
  would be equal to one. Otherwise, the 

presence and position of natural defects shifted the Eigen frequencies, lowering the  
value (Roohnia and Brancheriau 2015). The dynamic MOE corresponding to the first and 

second Eigen frequencies were correlated ( , R-squared value of 

0.95). Thus, replacing  with     
   in the multiple regression with  lead to 

similar results:  = 0.34, RMSEC = 18.1 MPa, and RMSECV value of 18.2 MPa. 

Method Based on the Full Vibrational Spectrum 
Because multiple linear regressions showed that edgewise transversal vibration 

parameters were mainly selected to predict MOE and MOR, only the edgewise 

transversal vibrations were used in this section. The number of predictive variables 

(standardized frequencies) was reduced according to the bilateral R² threshold between 

the considered frequency and the dependent variable (MOE or MOR) in order to ensure 

stability to the model. We kept the frequencies associated with a bilateral R² greater than 

0.025 (several R² thresholds were tested). 

PLS regression for MOE 

In regards to the bilateral R² criterion on the frequency selection, 597 frequencies 

were chosen for the MOE prediction (Fig. 4a). Figure 4a shows that the relevant 

frequencies kept for MOE prediction were below 10 f/f0. This corresponded to a 

maximum frequency range of 1250 Hz because the first Eigen frequency was 125 Hz 

maximum (average of 91 Hz). The bilateral R² value did not exceed 0.40. The selected 

frequencies were not only focused on the harmonic frequencies of the flexural vibrations 

but considers the whole spectrum. At low frequencies the vibration energy was at a 

maximum, but the wavelengths were large. Consequently it had little sensibility to 

punctual defects (high standardized frequencies were more sensible to punctual defects). 

However, the presence of natural defects might cause mode conversions from flexural to 

torsional and compressional vibrations, even in low frequencies.  



Fig. 4. (a) Bilateral coefficient of determination between standardized frequencies and MOE. The 
hollow circles are the selected frequencies (R² ≥ 0.025). (b) Relationship between static and 
predicted MOE. Partial least squares regression on the full vibrational spectrum. The solid line is 
the first bisector. 

Four latent variables were needed to minimize the root mean square error of cross 

validation (RMSECV = 1458 MPa,    
  = 0.54). The partial least squares regression was 

significant with a   
  value of 0.71 (F-statistic = 97.8, p-value < 2 × 10

-16
) and a RMSEC

= 1175 MPa. However, the difference between the RMSECV and RMSEC highlighted 

the instability of the model (ratio of 1.24). The realistic error and determination 

coefficient of this model were those obtained by cross-validation. Figure 4b shows the 

reference MOE values according to predicted values of the partial least squares model. 

PLS regression for MOR 

The process of variable selection by bilateral R² was conducted to 290 selected 

frequencies (Fig. 5a). The selected frequencies were not all identical to those associated 

to the MOE. However, they remain 5 times lower than the first Eigen frequency, thus 

mostly below 625 Hz. For this model, thirteen observations were considered as outliers 

and were removed. The outlier detection was based on the distance of each observation to 

the centroid of the population computed in the basis defined by the selected scores 

(Euclidian distance applied in an orthogonal basis, which was equal to the Mahalonobis 

distance in this case).  

To predict MOR, two latent variables minimized the error of cross-validation with 

a RMSECV value of 17.6 MPa (R²CV = 0.33). The partial least squares regression was 

significant with a   
  value of 0.44 (F-statistic = 58.1, p-value < 2 × 10

-16
) and a RMSEC

value of 16.25 MPa. RMSECV was found to be close to RMSEC with a ratio of 1.08. 

Figure 5b shows the reference MOR values according to the predicted values of the 

partial least squares model.  

MOE and MOR predictive variables were obtained by multiplying the amplitudes 

of the frequency spectrum by the dynamic modulus. From a statistical point of view, 

there was only an interaction between the variables of amplitude and the dynamic 

modulus. The dynamic modulus was linked to the Eigen frequency, the density, and the 

dimensions. The amplitude of the vibrations depended on the internal viscosity of the 

material, the presence of natural defects, the wood stiffness, the positions of the supports, 

and the sensor. The interaction between these variables provided complementary 

information on the mechanical behavior of the wooden beams. 

Fig. 5. (a) Bilateral coefficient of determination between standardized frequencies and MOR. The 
hollow circles are the selected frequencies (R² ≥ 0.025). (b) Relationship between static and 



predicted MOR. Partial least squares regression on the full vibrational spectrum. The solid line is 
the first bisector. 

Table 6. Summary of Prediction Methods 

MOE MOR 

Model RMSECV (MPa) RMSECV (MPa) 

Static MOE 17.2 0.39 

MOEB1
EW

835 0.85 18.9 0.26 

MOE
C

1035 0.75 19.2 0.23 

Stepwise regression based on Eigen 
frequencies 

817 0.86 18.1 0.32 

PLS based on the full vibrational 
spectrum 

1458 0.54 17.6 0.33 

Comparison of Models 
Table 6 shows the results of MOE and MOR predictions for the different models 

in cross-validation. Concerning the MOE predictions, the stepwise regression method 

based on Eigen frequencies presented the lowest RMSECV, which equals 817 MPa. The 

associated    
  equals to 0.86, which demonstrates that this method explains a large part 

of the variance of MOE. However, a model based only on the first Eigen frequency in 

edgewise transversal vibration (MOEB1
EW) presented similar values. This result was 

expected because MOEB1
EW was the main variable used in the stepwise regression model. 

The model based on the first Eigen frequency in the longitudinal vibration (MOE
C
)

presents a higher RMSECV value of 1035 MPa. The reason why the models based on 

MOEB1
EW were the most efficient must be because the static MOE was measured in a 

bending test like MOEB1
EW. It is interesting to notice that the longitudinal vibration is the 

more common method used in industry for practical reasons. Finally, the PLS method 

based on the full vibrational spectrum did not improve the prediction of MOE regarding 

RMSECV and    
  (1458 MPa, 0.54, respectively).  

For the MOR prediction, the PLS method based on the full vibrational spectrum 

conducted to the lowest RMSECV value of 17.6 MPa, which was similar to the one 

obtained when the static MOE was used as a predictive criterion. The corresponding  
value of 0.33 was greater than those of the others models. Indeed, with the stepwise 

regression method based on Eigen frequencies,    
  equals 0.32 (RMSECV of 18.1 

MPa). Using the first Eigen frequency in transversal vibration (MOEB1
EW

),    
  equals

0.26 (RMSECV of 18.9 MPa). The first Eigen frequency in longitudinal vibration 

(MOEC) leads to    
  of 0.23 (RMSECV of 19.2 MPa). As a result, the PLS method 

based on the full vibrational spectrum was better suited for MOR prediction. Indeed, the 

full spectrum contains the local information about wood defect (magnitudes taken by the 

frequency spectrum) which allows a better determination of MOR. But, the MOE is 

mainly dependent on the Eigen frequencies values, and this information was lost when 

the frequency scale was standardized this is why the stepwise regression method based on 

Eigen frequencies or the first edgewise transversal vibration (MOEB1EW) were better 

for the MOE prediction.  

Because Since the PLS method was based on the full vibrational spectrum in 

edgewise transversal vibration, it is possible to build a single grading machine that can 

predict MOR and MOE with the best    
  values in a single measure. The obtained errors 

would be significantly lower than the current grading machine based on longitudinal 

vibration. For MOE prediction the    
  would increase from 0.75 to 0.86; and for MOR 



prediction the    
  would increase from 0.22 to 0.33. However, the PLS model is quite 

unstable due to the model sensibility to noise in the signals. To overcome this problem, 

specific filtering procedures and/or a signals average with multiple acquisitions can be 

tested. A larger experimental sample can also increase the robustness of the model.  

CONCLUSIONS 

1. By using transversal vibrations and statistical methods, it is possible to significantly

improve MOE and MOR prediction with respect to the usual model based on

longitudinal vibrations.

2. The stepwise regression method based on Eigen frequencies allowed an improvement

of the MOE prediction by choosing specific global vibrational parameters. The main

parameter is the dynamic MOE calculated from the first resonance frequency in the

edgewise bending configuration. Concerning the MOR estimation, this method had a

better efficiency than the usual models based only on the dynamic MOEs (bending or

compression).

3. The PLS method based on the full vibrational spectrum did not improve the MOE

prediction. However, the prediction of the MOR was very efficient and led to the

lowest prediction error.

4. A combination of the two proposed statistical methods is possible in order to obtain

the best prediction of MOE and MOR from a single edgewise vibrational

measurement.
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