
HAL Id: hal-02179717
https://hal.science/hal-02179717v1

Submitted on 11 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using differential execution analysis to identify thread
interference

Mohamed Saïd Mosli Bouksiaa, François Trahay, Alexis Lescouet, Gauthier
Voron, Rémi Dulong, Amina Guermouche, Elisabeth Brunet, Gaël Thomas

To cite this version:
Mohamed Saïd Mosli Bouksiaa, François Trahay, Alexis Lescouet, Gauthier Voron, Rémi Dulong, et
al.. Using differential execution analysis to identify thread interference. IEEE Transactions on Parallel
and Distributed Systems, 2019, 30 (12), pp.2866-2878. �10.1109/TPDS.2019.2927481�. �hal-02179717�

https://hal.science/hal-02179717v1
https://hal.archives-ouvertes.fr

1

Using differential execution analysis to identify
thread interference

Mohamed Said Mosli Bouksiaa∗, François Trahay∗, Alexis Lescouet∗, Gauthier Voron∗†, Rémi Dulong∗,
Amina Guermouche∗, Élisabeth Brunet∗ and Gaël Thomas∗

∗Telecom SudParis, †LIP6/UPMC

Abstract—Understanding the performance of a multi-threaded application is difficult. The threads interfere when they access the same
shared resource, which slows down their execution. Unfortunately, current profiling tools report the hardware components or the
synchronization primitives that saturate, but they cannot tell if the saturation is the cause of a performance bottleneck. In this paper, we
propose a holistic metric able to pinpoint the blocks of code that suffer interference the most, regardless of the interference cause. Our
metric uses performance variation as a universal indicator of interference problems. With an evaluation of 27 applications we show that
our metric can identify interference problems caused by 6 different kinds of interference in 9 applications. We are able to easily remove
7 of the bottlenecks, which leads to a performance improvement of up to 9 times.

Index Terms—performance analysis, multithreading, bottleneck detection.

F

1 INTRODUCTION

Analyzing the performance of a multi-threaded applica-
tion is important to identify which blocks of code hamper
the parallelism. However, performing this analysis is diffi-
cult because almost any hardware component and any block
of code can become a bottleneck: a falsely shared cache line
that prevents an efficient use of the cache of the processor,
a critical section that reduces the parallelism, a saturated
hard drive, an inefficient memory placement on a NUMA
architecture that saturates an interconnect link, a barrier that
does not scale with the number of cores etc.

Today, we use profiling tools to identify these bottle-
necks. These tools indicate if a hardware component sat-
urates or if a synchronization hampers the progress of
a thread. These tools give raw metrics, but they do not
indicate if optimizing a block of code can lead to better
performance. Typically, these profiling tools report metrics
to know if a memory controller [1], [2], [3], [4], [5], a cache
[6], [7], [8], [9], [10], [11], a lock [12], [13], [14], [15] or
the network stack [16], [17] is inefficiently used. However,
these metrics indicate a saturation, but a saturation does
not necessarily lead to a large slowdown, either because
the access to the saturated component remains efficient or
simply because the slowdown caused by the saturation has
only a marginal impact on the overall performance.

Instead of just reporting raw metrics, some research
works use “differential execution” to identify the possible
causes of a performance bottleneck [18], [19], [20]. The
intuition behind differential execution is relatively simple.
If the execution time of a function (or of a request) executed
many times becomes particularly slow, we just have to
compare the configuration or the code executed in the slow
and fast cases in order to identify the cause of the slow-
down. Differential execution is an important technique to
identify the causes of an abnormal execution time. However,
differential execution was not designed to identify if an
execution time is abnormal. In their works, the authors
use the average execution time as a reference to identify

an abnormal execution time, and suppose thus that the
average execution time is good. This is, however, often
not necessarily the case when a hardware component or a
synchronization primitive saturates. Indeed, as presented in
Section 4.4, in case of saturation, almost all the executions of
a function are abnormally long, which hides the problem.

In this work, we propose to reuse the ideas behind
differential execution, but we propose to use differential
execution to identify the blocks of code that hamper the par-
allelism. For that purpose, instead of focusing on the average
execution time, which can hide performance bottleneck, we
propose to focus on the fastest one. Our intuition is that the
fastest execution of a block of code gives a theoretical better
execution. Any longer execution is probably caused by the
interference from another thread when it accesses the same
hardware resource or the same synchronization primitive.
By using this theoretical lower bound, we can compute the
theoretical time that a block of code would have taken if
all the executions had been as fast as the best one. Based
on this idea, we define, for a given block of code, its SCI
(Slowdown Caused by Interference) score, which gives the
theoretical slowdown caused by interference. The SCI score
comes thus as a complement to the existing techniques.
While differential executions and classical profiling tools can
identify why a block of code suffers interference, the SCI
score identifies which blocks of code suffer interference, if
the interference leads to a large slowdown, and thus if opti-
mizing the blocks of code would lead to better performance.

In order to evaluate the usability of the SCI score, we
developed a profiling toolchain, called ISPOT (Interference
Spotter), that computes the SCI scores of a set of functions
provided by the user. We use ISPOT on 27 applications from
6 benchmarks to evaluate if the SCI score can actually
identify parallelism bottlenecks. We found that the SCI
score is able to identify bottlenecks caused by false sharing,
contended locks, saturated networks, saturated hard drives,
imbalanced workloads and inefficient NUMA placements,

2

with few and easily identifiable false positives. In detail, we
found that:

• ISPOT detects interference in 14 time consuming
functions from 10 of the evaluated applications.

• Among the 14 functions, 2 (13%) are false positives
that appear when the variation of a function is
caused by a varying workload. We show that these
false positives are easy to manually identify and to
discard.

• The remaining 12 functions pinpoint actual interfer-
ence problems caused by false sharing, lock con-
tention, imbalanced load, NUMA memory place-
ment, network stack and disk I/O. 7 interference bot-
tlenecks were previously identified in other works,
while 5 are new.

• Based on this analysis, we can correct 8 functions by
modifying at most only 25 lines of code, which leads
to a performance improvement of up to 9 times.

The paper is organized as follows. Section 2 presents
the SCI metric, while Section 3 presents ISPOT. We then
evaluate ISPOT with micro-benchmarks in Section 4 and
with complete applications in Section 5. Finally, Section 6
presents the related work and Section 7 concludes the paper.

2 THE SCI METRIC

The SCI metric aims at identifying the effect of interference
on a multi-threaded application. This metric identifies (i)
where the code suffers from interference and (ii) how much
the interference impacts the performance.

In order to define the SCI metric, we start with a
simple observation: interference slows the execution down.
However, capturing the slowdown caused by interference is
difficult because we cannot easily know the execution time
of a code in absence of interference. We could try to run
a thread in isolation, but it is not always possible because
threads often synchronize and interact. We could also vary
the number of threads or even the workload, as proposed
by OSProf or statistical debugging tools [18], [21], [22]. This
solution is not satisfying because changing the setting often
drastically changes the executed code. For example, with
OpenMP, varying the number of threads of a parallel loop
changes the number of iterations executed by each thread,
which makes the comparison between the runs difficult.

In order to compute the slowdown caused by inter-
ference, we rely on statistics: when we execute often a
block of code, it will sometimes execute almost without
interference. We thus consider that the fastest execution is
almost interference-free, and that any slower execution is
caused by interference. This interference can be caused by
a contention on a resource shared with another thread or
process, or by another problem (eg. kernel scheduling). We
can then compute, for any block of code, the slowdown of a
thread caused by interference. We define this metric as the
SCI score (Slowdown Caused by Interference) of a block of
code. Formally, the SCI of a block of code is the sum of all
(dj −di) (where di is the duration of the fastest execution of
this block, dj is the jth execution occurrence of the block of
code) divided by the thread duration.

82 38 22 48 103
564

22 22 22 22 22 183 (32.5%)
381 (67.5%)

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

Fig. 1: Illustration of the SCI metric: based on the original
execution trace (on the top), an ideal improvement without
interference is estimated at 32.5% (on the bottom)

Post-mortem analysis In-vitro profiling
Original
binary

3. SCI Score
computation

ispot

Original
source

Execution
trace

List of
functions

1.a. Automatic instrum.

4. Feedback loop

SCI
scores

2. Trace generation 1.b Manual
instrum.

Instrumented
binary

Fig. 2: Overview of ISPOT.

Figure 1 illustrates the principle. Each box gives the time
taken by the execution of the blocks of code of an applica-
tion, and the gray boxes gives the execution of a unique
block of code. If we assume that the execution with the
minimum duration (here, 22) is only slightly slowed down
by interference, the SCI score approximates the performance
improvement (represented at the bottom) that would have
been obtained if each occurrence of the block of code repre-
sented in gray had been executed without interference.

2.1 Validity

In order to define the SCI metric, we consider that perfor-
mance variation mostly comes from interference. In practice,
this is not the case because of low-level hardware mech-
anisms. Typically, we ignore the warm-ups of the caches,
of the branch predictors or of the cache-line prefetchers.
However, this performance variation often affects only the
first occurrences. As we record thousands to millions of
occurrences, these first occurrences only marginally modify
the SCI score. Moreover, we consider that the fastest execu-
tion of a block of code is almost interference-free. In practice,
we cannot prove that this fastest execution does not suffer
from interference. However, since we record thousands to
millions of occurrences, the probability of executing a block
of code almost without interference should be large. We con-
firm this hypothesis in Section 4 by experimentally showing
that the fastest execution of a block of code takes always
almost the same time when we increase the contention
in four different micro-benchmarks, even in very highly
contended cases.

3 DESIGN AND IMPLEMENTATION OF ISPOT

ISPOT (Interference Spotter) automatically computes the SCI
scores of blocks of code by running the application in-vitro
(see Figure 2). During this in-vitro run, ISPOT records a
timestamp when a thread enters or leaves a block of code.

3

Based on these timestamps, ISPOT performs a post-mortem
analysis to compute the times taken by each execution of a
block of code, which are then used to compute the SCI score.

As illustrated in Figure 2, we have chosen to consider
two use cases. In the first case (1.a. Automatic instrumenta-
tion), the user gives the binary and a set of function names
to ISPOT, which automatically instruments the functions of
the set.1 In the second case (1.b. Manual instrumentation),
the user manually instruments the source code because the
user wants to analyze a block of code that is finer than a
function. In this case, the user manually inserts two lines
of code in the source file to profile a block of code: one
at the beginning of the block, the other at the end. After
the instrumentation, ISPOT runs the application, records the
timestamps and computes the SCI score. We explain these
steps in detail in the remainder of the section.

3.1 Automatic instrumentation of the application
When the user provides a list of functions, ISPOT automat-
ically instruments the application (step 1.a of Figure 2). For
that purpose, ISPOT relies on the EZTRACE tracing frame-
work [23]. In detail, ISPOT extracts the function prototypes
from the debugging symbols (Dwarf tables), and then uses
EZTRACE to instrument the binary of the application.

EZTRACE can use two different methods for instrument-
ing a function. If the function is located in a shared library,
EZTRACE uses LD_PRELOAD to intercept the calls to the
function. If the function is located in the binary, EZTRACE
patches the binary when the application is loaded in mem-
ory by the ELF loader [24]. In both cases, EZTRACE replaces
a call to the original function by a wrapper provided by
ISPOT. The wrapper first records an event (marking the
beginning of the function), then calls the original function,
and finally records another event (marking the end of the
function).

3.2 Trace generation
As presented in Figure 2 (2. Trace generation), ISPOT runs
the instrumented version of the application and records the
events used to compute the SCI scores in an execution trace.
An event consists of a timestamp (the CPU cycle counter),
the function name, a marker to know if the thread enters or
leaves the function, and the function arguments.2 We detail
how ISPOT records events in the remainder of this section.

3.2.1 Recording the events
ISPOT often records millions of events. For instance, the
DC application generates a 17 GiB trace that contains 364
millions events. Since recording this trace in a file can
drastically changes the timing behavior of the application,
ISPOT batches the I/Os. To avoid thread synchronizations,
each thread stores its events in its own pre-allocated buffer.
When a buffer is full, ISPOT flushes the buffer to disk and
reinitializes the buffer. We ensure that the buffers are rarely
flushed during the run by using large buffers. On our small
machine (Xeon4, see Section 4), we pre-allocate 1 GiB for the

1. The function name is the mangled name for C++ applications.
2. In case of a manual instrumentation, the user can replace the

function arguments by custom arguments.

buffers (1/8 of the memory), while on our large machine
(Opteron48, see Section 4), we pre-allocate 32 GiB (also 1/8
of the memory).

3.2.2 Recording the call stacks
In addition to the recorded events, ISPOT records call
stacks to simplify the analysis. For example, with the
pthread_mutex_lock function, the developer wants to
know which critical section is protected by the lock acquisi-
tion in order to optimize the code. Systematically recording
the call stack when a thread executes an instrumented
function would lead to a large slowdown. For this reason,
ISPOT records a call stack every N invocations, beginning
with the first invocation.

In the 27 applications tested in our experiments, all the
instrumented functions have few call sites, and each call
site only has to be captured once in order to help the user to
identify the source of a problem. In all our experiments, we
configured thus N to 10 000 because (i) this period is large
enough to prevent a slowdown caused by stack recording
and (ii) this period is small enough to allow ISPOT to capture
all the call sites of an instrumented function.

3.2.3 Mitigating the instrumentation overhead
As a result of our optimizations, the instrumentation over-
head of a function is most of the time reduced to a function
call (from the wrapper to the original function), two accesses
to the timestamp counter, the copy of few bytes in the
buffer, and, only when EZTRACE modifies a binary, two
jmp instructions. On the machines used for the evaluation
(see Section 4), we have measured that the overhead of
an instrumented function always remains below 100 ns,
while recording two timestamps already takes 80 ns on our
machines.

However, even if the overhead to record a single times-
tamp is low, this overhead can become large if the instru-
mented function is short and called often. In our experi-
ments, we have observed a worst case of 30%, which can
change the timing behavior of the application and make
the SCI score inaccurate. When the overhead becomes too
large, the user can use a sampling mode: ISPOT only records
a timestamp every N function invocations, where N is
specified by the user. This mode trades the overhead for
a lower accuracy because the sampling mode reduces the
probability of capturing an interference-free execution of a
function.

3.3 SCI score computation
To compute the SCI scores from an execution trace, ISPOT
first identifies the repetitive sequences of events in the trace
[25]. ISPOT identifies the repetitive sequences with more
than two events in order to handle nested calls: typically
when a function f calls a function g, a call to f is repre-
sented by the f_start g_start g_end f_end sequence
of events in the trace. In order to illustrate the algorithm, the
following example shows a group of events that appear in
this order in the trace of one thread:

a b c b d a b e a b c

The algorithm aims at identifying that the sequence of
events a b (in bold) is a repetitive sequence that appears

4

3 times, and that the sequence a b c (underlined) is a
repetitive sequence that appears twice. To summarize, the
algorithm starts with the first pair of events (a b in our
case). It tries to find this sequence in the trace. If it finds
another occurrence, the algorithm identifies a repetitive
sequence a b and replaces all its occurrences in the trace
by a meta-event that contains a and b. In our example,
the algorithm continues with the new pair (meta a b)
c. It applies the same algorithm, and thus replaces all the
occurrences of (meta a b) c by a new meta-event. The
algorithm continues with the pair (meta a b c) b. As
it does not find any occurrence of this pair, the algorithm
continues with b d, d (meta a b), (meta a b) e and
e (meta a b c) before terminating.

ISPOT then computes the SCI score of all the repetitive
sequences of events and reports the name of the event (i.e.
the function name), the SCI score, the number of occurrences
of the sequence, and the recorded call stacks.

3.4 False positives

ISPOT assumes that, for a given block of code, its execution
time is slower than another one because the longest execu-
tion is slowed down by interference. While this assumption
holds in many cases, it may also lead to false positives. Some
executions take more time because of the workload: because
of the function arguments or because of the global state
(global variables, operating system state). This is typically
the case of a function that searches an element in a linked
list.

In order to prevent false positives and thus to accu-
rately identify the repetitive sequences of events, ISPOT
should ideally automatically identify which arguments or
which global variables change the workload of a block of
code. However, identifying these arguments and variables
in general is difficult. First, static analysis does not help
because static analysis cannot identify the actual control
flow taken during the execution. Typically, a static analysis
will report that an error handling code never executed
can lead to different execution times. With static analysis,
for the functions with an error handling code (which are
numerous), the arguments of the functions have thus to
exactly matches in order to consider that they lead to the
same repetitive sequence of events. This behavior drastically
decreases the number of samples per repetitive sequences
of events, which in turn drastically reduces the probability
to capture an almost interference-free execution. Moreover,
automatically identifying false positives is also difficult be-
cause we have observed that a varying workload can lead
to approximately the same execution time and should be
ignored in order to compute an accurate SCI score. This
is the case in the DC application, where a function writes
small buffers to a disk (see Section 5.5.6). The function takes
approximately the same time, even when the buffer size
changes, because the function spends most of its time in
the system call

Because automatically identifying the false positives in
general is difficult, we consider in this work that reporting
false positive remains the best strategy. In our experiment,
we show that, among the functions with a high SCI score,
ISPOT only reports 13% of false positive. If ISPOT reports a

f o r (i =0 ; i <NITER ; i ++) {
compute (delay) ;
lock (& l) ;
value ++;
unlock(& l) ;

}

Listing 1: Code of the lock contention micro-benchmark

s t r u c t { i n t x ; i n t y ; } data ;

f o r (i =0 ; i <NITER ; i ++) {
i f (t i d == 0) {

data . x ++;
} e l s e {

data . y++;
compute (delay) ;

}
}

Listing 2: Code of the false sharing micro-benchmark

fd [t i d]=open (f i l e [t i d] , O_RDONLY|O_DIRECT) ;
f o r (i =0 ; i <NITER ; i ++) {

compute (delay) ;
read (fd [t i d] , buffer , b l o c k _ s i z e)) ;

}

Listing 3: Code of the I/O contention micro-benchmark

false positive, the developer can specify which parameters
matter before restarting the computation of the SCI scores (4.
feedback loop in Figure 2). Moreover, ISPOT uses a default
list of well-known parameter-dependent functions, such as
pthread_mutex_lock, for which it is obvious that the
workload will vary a lot with the arguments.

4 MICRO-BENCHMARK EVALUATIONS

In this section, we study the SCI scores of several sim-
ple micro-benchmarks that implement known interference
problems. This study has the goal of (i) verifying that the
SCI score is actually correlated to an interference problem,
(ii) verifying that, even when the interference problem is
very frequent, ISPOT is able to capture almost interference-
free executions, (iii) showing that, when the interference
problem is frequent, most of the execution times are large
and thus that a comparison to the average execution time is
not a good indicator of a contention problem, (iv) analyzing
how the sampling mode of ISPOT impacts its accuracy.

For our evaluations, we use two machines: (i) Xeon4 has
4 cores, 8 GiB of memory, 1 Intel Xeon E5-2603 socket, 1
NUMA node. Linux version: 4.4.0-1, gcc version 5.3.1, glibc
version: 2.22-4, and (ii) Opteron48 has 48 cores, 256 GiB
of memory, 4 AMD Opteron 6172 Dodeca-core sockets, 8
NUMA nodes. Linux version: 4.9.0, gcc version: 4.9.2, glibc
version: 2.21.

4.1 Summary of the micro-benchmarks

We consider four different micro-benchmarks. The first and
the second micro-benchmarks exhibit a problem that occurs

5

Benchmark X ρ # samples
POSIX lock contention lock acq. time 0.99 18

spinlock contention lock acq. time 0.95 16
false sharing time to access x 0.95 12
io contention read time 0.99 11

TABLE 1: Correlation coefficient for the micro-benchmarks.

when multiple threads try to acquire the same lock at the
same time. In case of contention, the cache line that holds
the lock variable continuously bounces between the cores,
which saturates the buses between the cores (e.g., the inter-
connect on Opteron48). This saturation drastically increases
the time to acquire a lock and leads to a performance
collapse [26]. Listing 1 reports the code used to evaluate
lock contention. We use a POSIX lock in the first micro-
benchmark and a spinlock in the second. At each iteration,
a thread simulates a computation for delay µs, acquires
a lock, increments a shared variable, and then releases the
lock. We execute this micro-benchmark on Opteron48 with
47 threads (in order to let an idle core so that the OS can
schedule other ready processes), and we vary delay to
simulate different levels of lock contention.

The third micro-benchmark suffers from false sharing.
False sharing appears when multiple threads access differ-
ent variables that happen to be located on the same cache
line [27], [28]. Each thread, by updating its own variable,
invalidates the cache line for the other threads, which leads
to cache misses and performance degradation. This prob-
lem is hard to detect because source code analysis does
not show any explicit relationship between the variables
located on the same cache line. Listing 2 reports the code
used to evaluate false sharing. The first thread (tid = 0)
continuously updates its variable x. The other thread (tid
= 1) updates its independent y variable and then simulates
a computation by executing delay iterations of an empty
loop. As x and y are located on the same cache line,
the access of the second thread invalidates the cache line
for the first thread. We execute this benchmark on Xeon4
with 2 threads and we vary the delay to simulate different
probabilities of false sharing.

In the fourth micro-benchmark, many threads perform
I/O operations simultaneously. Since the disk may saturate,
we have a typical case of interference, which may lead to a
large overhead. Listing 3 reports the code used to evaluate
I/O contention. Each thread opens its own file and reads it
sequentially with a delay between read operations. In order
to bypass the I/O cache of the operating system, each thread
opens its file with the O_DIRECT flag, which ensures that
every call to read actually triggers a physical I/O. We run
the micro-benchmark on Opteron48 with 47 threads, and
each thread reads blocks of 512 bytes, while varying delay
from 0 to 4 ms in order to evaluate different levels of I/O
contention.

4.2 Correlation between the SCI score and an interfer-
ence

Figures 3, 4, 5 and 6 report the evaluation of the micro-
benchmarks. In each figure, (a) gives the average perfor-
mance when we vary delay, and (b) gives the SCI score
when we vary delay. For the two lock micro-benchmarks,

 0

 4

 8

 12

 16

 1 10 100

Ac
qu

is.
 tim

e (
µs

)

delay (µs)

(a) Acquisition time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

SC
I s

co
re

delay (µs)

(b) SCI score

Fig. 3: Lock contention micro-benchmark (POSIX lock)

 0
 5

 10
 15
 20
 25
 30

 0.001 0.01 0.1 1 10

Ac
qu

is.
 tim

e (
µs

)

delay (µs)

(a) Acquisition time

 0.2

 0.4

 0.6

 0.8

 0.001 0.01 0.1 1 10 100

SC
I

sc
or

e

delay (µs)

(b) SCI score

Fig. 4: Lock contention micro-benchmark (spinlock)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100

Lo
op

 tim
e (

ns
)

delay (# iterations)

(a) Read time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

SC
I
Sc

or
e

delay (# iterations)

(b) SCI score

Fig. 5: False-sharing micro-benchmark

 0

 400

 800

 1200

 1600

 2000

 0 1 2 3 4

rea
d t

im
e (

µs
)

delay (ms)

(a) Read time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

SC
I

Sc
or

e

delay (ms)

(b) SCI score

Fig. 6: I/O contention micro-benchmark

(a) reports the completion time to acquire a lock. For the
false sharing micro-benchmark, (a) reports the completion
time to read the variable. Finally, for the I/O contention
micro-benchmark, (a) reports the completion time of a read
operation.

As expected, for all the micro-benchmarks, by observing
the (a) figures, we can see that when the delay increases,
the completion time decreases since the probability of in-
terference decreases. Moreover, we can observe in the (b)
figures that the SCI score seems to behave exactly as the
completion time: when the delay increases, the SCI scores
also decreases.

In order to confirm this observation, we compute the
Pearson product-moment correlation coefficient between
the completion time and the SCI score for each micro-
benchmark. The correlation coefficient ρ(X,Y) of two ran-
dom variables X and Y is a number between -1 and 1. A
value close to -1 or 1 indicates that a linear relation exists
between the two variables. Table 1 reports the correlation co-
efficient between the completion time and the SCI score for
each micro-benchmark, along with the number of samples
(points on the x-axis) for each variable. We can observe that
the coefficient is high in all the experiments (above 0.95),
which confirms the linear relation between the completion
time and the SCI score in the micro-benchmarks. From this

6

 0.1

 1

 10

 100

 1000

 10000

 0 40000 80000

Ac
qu

is.
 tim

e (
µs

)

Occurence

high contention
low contention

Fig. 7: POSIX lock acquisition times ordered by execution
time (delay=100µs for the low contention and 0µs for the
high one).

strong correlation, we can conclude that the SCI score cap-
tures the performance degradation caused by interference
in the micro-benchmarks.

4.3 Impact of the contention on the fastest execution
As presented in the introduction, we suppose that, when we
execute often a block of code, the probability to capture an
almost interference-free execution is large. In order to vali-
date this hypothesis, Figure 7 reports the execution times of
the critical sections of the POSIX lock micro-benchmark or-
dered by the execution time. We can observe that the fastest
occurrences (on the left on the figure) takes approximately
the same time whatever the contention. We do not report
the same figures for the other micro-benchmarks because of
a lack of space, but they also show that the fastest executions
take approximately the same time whatever the contention.
These results confirm our hypothesis: the probability to
capture an almost interference-free execution is large when
we execute often a block of code, even when the contention
is high.

4.4 Impact of the contention on the distribution
Differential execution analysis consists in comparing the du-
ration of a piece of code to a reference execution. In several
research works [18], [19], [20], the reference execution is
either manually pinpointed by a human, or automatically
selected using the average duration of the piece of code. As
shown in Figure 7 (which reports the execution times in the
POSIX lock micro-benchmark, see Section 4.3), most of the
executions are slowed down by interference in case of high
contention. This result confirms that considering that all the
executions slower than the fastest one as abnormal gives a
better indication of a contention problem than only consid-
ering the executions slower than the average execution time.

4.5 Evaluation of the sampling period
As described in Section 3.2.3, the overhead of ISPOT can be
mitigated using a sampling mode that consists in recording
a timestamp every N function calls. In order to evaluate
the sensitivity of the SCI score when the sampling mode
is activated, we run the POSIX micro benchmark while
varying the sampling period. We set delay to 1 µs (high
contention) and run the experiment 10 times on Opteron48.
Figure 8 reports the SCI score and the minimum duration
detected as the sampling period changes. The SCI score
error bars show the minimum, average, and maximum SCI
scores observed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000
 0

 20

 40

 60

 80

 100

 120

 140

 160

SC
I s

co
re

Mi
n d

ur
ati

on
 (n

s)

Sampling period (one sample every #n invocation)

SCI score
Min duration

Fig. 8: Evolution of the SCI score as the sampling period
changes

The results show that when the sampling period is low,
the SCI score remains stable from one run to another. When
ISPOT records timestamp less often, the SCI score may vary
from one run to another, but still indicates an interference
problem: for instance, when recording a timestamp every
512 function invocations, the SCI score varies from 0.63 to
0.87. When the sampling period becomes high, the SCI score
varies considerably because of the small number of samples.

The figure also shows that the minimum duration (see
the dotted line) captured by ISPOT slightly increases as the
sampling period decreases. This validates once again the
hypothesis formulated in Section 2: when the number of
occurrences of a repetitive sequence is large, the probability
of capturing an almost interference-free occurrence is large.

5 APPLICATIONS EVALUATION

In this section, we evaluate ISPOT with real applications.
This evaluation has first the goal of verifying that ISPOT
can actually identify the effects of interference in real ap-
plications. For that purpose, we use ISPOT to evaluate a
panel of 27 applications. This evaluation also has the goal of
showing that, by cross-checking the interference bottlenecks
identified by ISPOT with the reports of other profiling tools,
we can often easily optimize the applications.

After a presentation of the applications, this section de-
scribes how we generate the list of functions instrumented
by ISPOT. The section then presents an analysis of the pos-
sible false negatives when we instrument these functions, a
systematic analysis of the functions with a high SCI score
and an analysis of the false positives reported by ISPOT.

5.1 Evaluated applications

We evaluate 27 applications summarized in Table 2. We have
selected these applications because they are widely used
to evaluate the parallelism and because some of them are
already known to suffer from interference [26], [28], [29],
[30], [31].

Phoenix-2 [32] is a MapReduce for shared-memory sys-
tems written in C. It comes with small sample applications
with data sets ranging from 59 to 512 MiB. The Splash2
benchmark [33] contains small multi-threaded C applica-
tions, ranging from a ray tracer to a large-scale ocean move-
ment computation. The Parsec 2.1 benchmark [34] contains
moderate to large multi-threaded C++ applications from
various fields such as financial analysis or data-mining.

7

Pheonix-2 Splash2 Parsec NPB (C) Memcached LevelDB Total
Hardware setting Xeon4 Opteron48 Opteron48 Opteron48 2*Xeon4 Xeon4
threads 4 48 48 48 1*4 + 4*1 4
applications 7 7 4 7 1 1 27
manually instrumented 7 0 0 0 1 0 8
applications with a high score 2 2 1 3 1 1 10
functions with a high score 2 3 1 6 2*1/2 1 14
false positives 1 0 0 1 0 0 2
applications with true defects 1 2 1 3 1 1 9
functions with true defects 1 3 1 5 1 1 12
Discussed in Section 5.5.2 5.5.1, 5.5.1, 5.5.2 5.5.4 5.5.4, 5.5.5, 5.5.6 5.5.3 5.5.4
functions never reported 0 1 0 4 0 0 5
corrected functions 1 3 0 5 1 0 8

TABLE 2: Summary of the evaluated applications

NPB (NAS Parallel Benchmark 3.3 [35]) contains moderate
to large Fortran and C applications, ranging from linear
algebra to a data mining application, which writes 2.5 GiB of
data in the file system [36]. We use the OpenMP implemen-
tation of NPB with the large class C dataset. Memcached
1.4.36 [37] is an in-memory cache widely used for web
servers. We evaluate memcached with the memaslap client
[38], which generates 70% of set and 30% of get during
30s. We run memcached with 4 threads in multi-threaded
mode on a Xeon4 machine and 4 mono-threaded instances
of memaslap on another Xeon4 machine. LevelDB 1.20 [39]
is a fast key-value store library, shipped with the db_bench
benchmark. In our setting, each of the four threads inserts
one million random values in the database. In all our exper-
iments and for each configuration, we run the application at
least 5 times and we did not observe significant variations.

5.2 Identification of the hottest functions

As presented in Section 3, ISPOT automatically computes the
SCI scores of a list of functions provided by the developer.
In our experiments, we analyze the most time consuming
functions as reported by Linux perf. We have chosen
to analyze the functions that take more than 1% of the
total execution time, because we consider that improving
the performance by removing interference from a colder
function is unlikely. Table 3 reports, for each application,
the functions that take more than 1% of the total execution
time. In total, we analyze 70 functions from 27 applications
with ISPOT.

5.3 Analysis of the potentially false negatives

As presented in Section 3, if a function is called few times,
the probability of capturing an interference-free execution
becomes low. In this case, the SCI score is low because ISPOT
cannot identify a potential interference bottleneck. Among
the 70 analyzed functions, 6 are in this case. They all come
from the Phoenix-2 benchmark (the 6 first functions in Ta-
ble 3). These functions are called once. The SCI score is thus
systematically equal to 0, which may hide an interference
bottleneck.

For these 6 potentially false negatives, the instrumented
functions contain a large loop executed many times. We
have manually instrumented these functions in order to
record a timestamp every ten iterations of the loop, because
recording more timestamps leads to a larger slowdown.

Ba
rn

es
FM

M
Oc

ea
n

co
nt

.
Oc

ea
n

no
n-

co
nt

.
Ra

di
os

ity
Ra

yt
ra

ce
ca

rs
W

ate
rN

sq
ua

re

H
ist

og
ra

m
Km

ea
ns

Li
ne

ar
re

gr
es

sio
n

M
atr

ix
m

ul
tip

ly Pc
a

St
rin

g
m

atc
h

W
or

d
co

un
t

BT CG DC EP LU SP UA

flu
id

an
im

ate
fa

ce
sim

sw
ap

tio
ns

str
ea

m
clu

ste
r

Le
ve

lD
B

M
em

ca
ch

ed

0

0.2

0.4

0.6

0.8

0.
11 0.
16

1
·1

0−
2

0.
11

0.
87

0.
82

0.
13

0.
11

8.
7
·1

0−
2

0.
37

4
·1

0−
3

3
·1

0−
2

0.
13

0.
48

8
·1

0−
2

8
·1

0−
2

0.
83

5
·1

0−
2

0.
25

0.
1

0.
41

4
·1

0−
2

3
·1

0−
2

0.
11

0.
99

0.
66

0.
93

Fig. 9: Highest SCI scores

5.4 Instrumentation overhead

The last column of Table 3 reports the overhead caused
by instrumentation without activating the sampling mode
of ISPOT (manual instrumentation for the 6 potentially
false negatives and automatic instrumentation instead). This
overhead is computed by comparing the application exe-
cution time with and without instrumentation. Since the
computation of the SCI score is performed offline, it is
excluded from the overhead computation.

Our evaluation shows that the overhead remains below
10% for 22 applications. For 5 applications, however, we
observe an overhead above 10% with a maximum of 31%.
As a comparison, the mean overhead reported in the Coz
paper is 17%, and the maximum measured overhead is 65%
[40]. The mean overhead of ISPOT is equal to 8% and its
maximum to 31%. We consider thus that the overhead of
ISPOT remains reasonable for an in-vitro profiling, and that
this overhead should not drastically change the behavior
of the applications. Moreover, the developer can always
trade this overhead for a reduced accuracy by activating
the sampling mode of ISPOT (see Section 3.2.3).

5.5 Analysis of the SCI scores

Figure 9 reports the highest SCI scores identified by ISPOT.
For the analysis, we focus on applications with an SCI
score greater than 0.2. With this threshold, a thread loses
more than 20% of its time because of interference. Thus, we
consider that it becomes interesting to understand why. We
identify 14 functions from 9 applications with a SCI score
higher than 20%. The remainder of the section presents

8

Application Function % of time Instrum.
overhead

Ph
oe

ni
x-

2

histogram calc_hist 94% 6.42%

kmeans find_clusters 79% 10.53%calc_means 21%
linear_regression linear_regression_pthread 99% 8.7%
matrix_multiply matrixmult_map 99% 0.12%

pca calc_cov 99% 1.23%
string_match string_match_map 88% 2.94%

word_count
__strcmp_sse2_unaligned 44%

28.99%wordcount_reduce 27%
__memmove_ssse3_back 22%

Sp
la

sh
-2

Barnes
hackcofm 65%

23.18%walksub 12%
subdivp 12%

FMM
VListInteraction 33%

8.47%DownwardPass 32%
UpwardPass 24%

Ocean cont.

pthread_barrier_wait 23%

5.96%
relax 14%

slave2 12%
__lll_lock_wait 12%

__lll_unlock_wake 11%

Ocean non cont.

slave2 21%

7.39%laplacalc 16%
relax 12%

pthread_barrier_wait 11%

Radiosity
__lll_unlock_wake 37%

27.58%__lll_lock_wait 24%
_process_task_wait_loop 21%

Raytrace car __lll_unlock_wake 52% 9.05%__lll_lock_wait 31%

Water-nsquared
_int_malloc 40%

5.08%INTERF 17%
CSHIFT 16%

Pa
rs

ec
-2

.1

swaptions HJM_SimPath_Forward... 33% 1%

fluidanimate ComputeForcesMT 48% 5.8%ComputeDensitiesMT 32%

facesim Add_Force_Differential 29% 6.5%Update_Position_Based... 17%

streamcluster T.203 44% 5%parsec_barrier_wait 41%

N
PB

3.
3

BT

compute_rhs_ 30%

5%x_solve_ 10%
y_solve_ 13%
z_solve_ 13%

CG conj_grad_ 73% 2%

DC

KeyComp 26%

5.74%MultiWayMerge 24%
__memcpy_sse2 19%

__write_nocancel 13%

EP __ieee754_log_sse2 48% 1%vranlc_ 22%

LU

sync_left_ 35%

0.05%

rhs_ 22%
sync_right_ 14%

jacu_ 6%
buts_ 6%
ssor_ 5%
jacld_ 5%
blts_ 5%

SP

compute_rhs_ 36%

3%z_solve_ 17%
x_solve_ 16%
y_solve_ 15%

UA gomp_team_barrier_wait_end 24.01% 30.86%gomp_barrier_wait_end 23.58%

LevelDB
__GI___libc_write 21%

6.9%pthread_cond_signal 10%
pthread_cond_wait 9%

Memcached sendmsg 36% 0%epoll_wait 24%

TABLE 3: Time consuming functions reported by Linux
perf

pthread_mutex_lock (&(gm−>r i d l o c k)) ;
ray−>id = gm−>r i d ++;
pthread_mutex_unlock (&(gm−>r i d l o c k)) ;

Listing 4: code of the hottest function in Raytrace

an exhaustive analysis of these functions. The section also
presents optimizations that solve the bottlenecks in eight of
the functions (use of another lock algorithm in Section 5.5.1,
false sharing mitigation techniques in Section 5.5.2, better
deployments in Sections 5.5.3 and Section 5.5.5).

5.5.1 Lock contention

ISPOT reports high SCI scores for the lock acquisition func-
tion in two applications: Raytrace (SCI of 0.82) and Radiosity
(SCI of 0.87). Thanks to the call stacks reported by ISPOT, we
can easily identify where is the interference bottleneck in the
code.

Listing 4 presents the code associated with the lock
acquisition in Raytrace. The high SCI score is due to the high
contention on this lock. Lozi et al. [26], [29] also identify this
saturation, and we have therefore reused their algorithm
(the RCL lock). We confirm their result: using an RCL lock
divides by 4 the completion time of Raytrace and by 5.37
the completion time of Radiosity. This experiment confirms
that the SCI metric is able to identify contended locks. With
the modified applications, we observe a high score of 0.25 in
Raytrace and a low score of 0.11 in Radiosity. False sharing
causes the high score of Raytrace and we discuss this case
in the next section.

5.5.2 False sharing

ISPOT identifies two functions that suffer from false sharing,
one from Raytrace that was never reported (SCI of 0.25), the
other from Linear_regression that was previously reported
by Liu et al. [28] (SCI of 0.37).

The high SCI score in Raytrace appears after correcting
the lock contention (see Section 5.5.1), and in the same
function (see Listing 4). In order to understand the cause of
the interference, we use oprofile to compute the number
of cache misses per function. We observe a high number
of cache misses in the code reported in Listing 4. As false
sharing often causes an unexpectedly high number of cache
misses, we have simply added padding around gm->rid.
Thanks to this modification, we improve the performance
of Raytrace by 15%, which, with the lock optimization (see
Section 5.5.1), leads to a completion time divided by 4.81.

In Linear_regression, measuring the cache misses with
oprofile highlights a large loop that accumulates its result
in a structure falsely shared with the other threads. In order
to solve the problem, we accumulate the results in local
variables and only propagate the result in the falsely-shared
structure at the end of the loop. We improve the perfor-
mance of Linear_regression and divide the completion time
by 8.87.

Thanks to these optimizations, we have eliminated the
high SCI scores in both applications.

9

Network SCI score Transaction/s Network rateconfiguration client server
100 Mib 0.93 < 0.1 36k 11 M/s

1 Gib 0.82 < 0.1 193k 61 M/s
Local loop 0.62 < 0.1 2 037k 632 M/s

TABLE 4: Correlation between the network saturation and
the SCI score in memcached.

5.5.3 Network contention

When ISPOT automatically instruments the time consuming
functions of memcached, ISPOT reports very low SCI scores.
This result shows that, in our experiment, memcached does
not seem to suffer from interference. However, by only
instrumenting the server, we cannot identify an interfer-
ence bottleneck on the network between the client and the
server. For this reason, we have manually instrumented
memcached (the server) and memaslap (the client) in order
to compute the completion time of a request from both the
client and the server sides. Table 4 presents the result for
different network configurations: a network at 100 Mib, a
network at 1 Gib and a local network loop when we co-
localize the client and the server on a 32-core Intel Xeon
E5-1607. The low SCI score of the server with each config-
uration confirms that the server does not suffer from inter-
ference. Moreover, the SCI scores at the client side decrease
when the network bandwidth increases. These results show
that the network suffers from interference, and that the SCI
score accurately identifies the contention. We can also see
that the SCI score remains high when we co-localize the
server and the client on the same machine, which shows
that the network remains a bottleneck even in this case.

5.5.4 Parallelism

We have identified a problem of parallelism in LevelDB also
identified by the developers of RocksDB [41]. The function
pthread_cond_wait has a high SCI score of 0.66. After
an analysis of the code, we found that the application
inserts new keys in mutual exclusion during a compaction
by using this variable condition function. As performing a
write is slow, the writes in mutual exclusion hamper the
parallelism. The SCI score is high because in some rare
cases, the monitor is free, while often, a thread has to
wait for the other threads before entering the monitor. We
cannot fix this issue without deeply redesigning LevelDB,
but the developers of RocksDB state that, by compacting
the memtables in parallel, they are able to multiply by up
to 10 the performance during compaction. We also confirm
our observation by measuring the scalability of LevelDB: the
duration of operations quickly increases when the number
of threads increases (2.4 µs/op with 1 thread, 8.8 µs/op with
2 threads, 20.1 µs/op with 4 threads and 47.8 µs/op with
8 threads). This result confirms that LevelDB is unable to
scale when the application executes many insert operations
concurrently.

In streamcluster, the parsec_barrier_wait function
has a high SCI score of 0.99 (already reported in [30],
[31]). The execution trace shows that the 48 threads of
the application synchronize repeatedly with this barrier
function. Therefore, the threads of the application spend
most of their time waiting for the other threads. The SCI

score is high because in some rare cases a thread traverses
the barrier quickly. Correcting this interference bottleneck
would require a large code rewriting.

UA suffers from a similar problem: UA repeatedly ex-
ecutes parallel loops and synchronizes with an OpenMP
barrier, which has a high SCI score (0.41). Similarly, correct-
ing this interference bottleneck would require a large code
rewriting.

5.5.5 NUMA memory placement
We have identified an interference bottleneck caused by
NUMA memory placement in the LU application. A NUMA
architecture connects a set of NUMA nodes by a network
called the interconnect. Each NUMA node contains a set
of cores and a memory controller. On a NUMA architec-
ture, when many cores access memory located on different
NUMA nodes, the interconnect or some memory controllers
can saturate.

For LU, ISPOT generates a trace with 30.8 million events
(1.3 GiB). ISPOT reports 3 functions with a high SCI score:
sync_left (SCI of 0.25), rhs (SCI of 0.24), and buts (SCI
of 0.20). In order to understand why these functions suffer
from interference, we compute the number of memory ac-
cesses generated on each NUMA node. We identify a large
memory imbalance on a single node: the master thread loads
a large matrix, which is pinned on a single memory node,
and, during the run, the slave threads access this matrix.
As a result, the NUMA node of the matrix saturates, which
explain the high SCI scores. We eliminate the imbalance by
using an interleaved allocation policy, which spreads the
memory on all the NUMA nodes. This NUMA policy elim-
inates both the high SCI scores and the memory imbalance.
The completion time thus drops from 101s to 64s.

5.5.6 I/O contention
We have observed a problem of interference caused by I/O
contention in the DC application that was not reported. By
instrumenting the four hot functions in DC, ISPOT generates
a trace with 364.7 million events (17 GiB). ISPOT reports two
functions with a high SCI score: MultiWayMerge (SCI of
0.83) and _write_nocancel (0.33). MultiWayMerge is a
false positive discussed in Section 5.6.

For _write_nocancel, each thread of the application
calls this function 3.8 million times with a data size that
varies between 1 and 24 bytes. This write function from
the standard C library is obviously parameter-dependent,
as its workload is proportional to the data size. However,
we have observed that, in DC, the size of the data only
marginally impacts the completion time of this function.
Therefore, we have decided to consider this function as
parameter-independent. Furthermore, the completion time
of _write_no_cancel has a large variation caused by a
phenomenon that is not related to the size of the written
buffer. This suggests that the main problem in this applica-
tion is a contention on the I/O stack.

Solving the problem requires a deep rewriting of the
code. However, to verify that the I/O stack is the bottleneck,
we use a RAMFS partition to store the output file of the
application. The resulting performance is improved by 68%
because the RAM has a better throughput. This result alone
does not highlight the interference problem on the I/O

10

stack. However, we confirm that the high SCI score is caused
by interference on the disk I/O stack, because the maximum
SCI score that we found by using a RAMFS drops from
0.83 to 0.17. We also confirm that the I/O stack saturates
by measuring the I/O rate. iostat reports an I/O rate of
178 MiB/s for DC, which is slightly above the maximum I/O
rate reported by hdparm (162 MiB/s for a sequential read).

5.6 Analysis of the false positives

Overall, we found 2 false positives caused by parameter-
dependent functions. We present in detail an analysis of
these functions, and show that identifying these functions
as false positive is relatively easy.

5.6.1 Word_count
In word_count, ISPOT isolates a single function with a
high score (wordcount_reduce with a score of 0.48). An
analysis of the code shows that this high score is a false pos-
itive. We can quickly understand that the time variation is
inherent to the algorithm rather than related to interference
between threads. The algorithm first searches for a word
in a sorted array of words. If the word is not found, it
is inserted inside the array, which leads to many memory
copies. The completion time of this function varies a lot:
very fast occurrences of the function correspond to words
that are quickly found (36 cycles), while long occurrences
happen when the word is not found and when a large
portion of the array moves (17 000 cycles on average).

5.6.2 DC
The MultiWayMerge function of DC has a high score (0.83)
and is a false positive. By analyzing the source code of this
large function, we found that the variation of its execution
time is due to the merge algorithm that it implements,
whose complexity depends on the input data. This high
score is thus a false positive, and was relatively easy to
identify in 2 hours, while we were discovering the code.
We suppose that the developers of the application would
have also quickly discarded this function.

5.7 Comparison with COZ

In order to assess the usability of the SCI score for spotting
interference problems in applications, we compare ISPOT
with COZ [40], a state of the art causal profiler, when
running the LevelDB application.

To analyze the application with COZ, we manually insert
COZ instructions at the application progress point. COZ then
automatically samples the executed code and slows down
the other parts of the code in order to estimate a relative
speedup that the developer can expect when the not-slowed
down part is optimized. As a result, COZ outputs a list
of functions along with an estimation of their impact on
performance. COZ selects 8 subfunctions from LevelDB,
and estimates how they impact the overall performance. 3
of the functions are expected to impact the performance:
InternalKeyComparator::Compare that compares two
keys, VersionSet::SetLastSequence that affects a 64
bits value, and EncodeVarint32 that encodes a 32-bit int
into a variable length int. These 3 functions consist of few

lines and an analysis with profiling tools shows no easy
optimization: these functions do not seem to saturate a
hardware component or a synchronization primitive. We
have also inlined these functions and have not observed any
improvement. As a result, while optimizing these functions
can probably lead to an improvement, we were unable to
exploit the information reported by COZ to optimize the
code.

Using our approach, ISPOT automatically instruments
the most time consuming functions and compute their SCI
scores. The resulting scores show that DBImpl::Write,
which is not reported by COZ, suffers from interference. As
explained in Section 5.5.4, this function inserts new keys in
mutual exclusion, which hampers the parallelism.

To conclude, we observe that COZ and ISPOT are com-
plementary. COZ identifies the functions that, when opti-
mized, should lead to better performance. However, these
functions do not necessarily suffer from a bottleneck, which
makes them difficult to optimize. ISPOT reports a different
set of functions: the functions that suffer from interference
and degrade performances. Optimizing these functions can
substantially improve the application run time.

5.8 Comparison with Perfume

In this Section, we compare ISPOT with Perfume [42],
another state of the art analysis tool, when running the
LevelDB application. Perfume uses inference models over
an application logs in order to generate a finite state machine
model that describes the application behavior. We reuse the
trace generated by ISPOT that is presented in Section 5.7.
This trace consists of 1.9 million events, each corresponding
to one of the threads entering or leaving one of the most
time consuming functions of the application. Perfume gives
a graph that depicts the possible succession of events in the
trace. The graph also gives the minimum and maximum
duration between the events.

First, we evaluate the performance of Perfume and
ISPOT. Perfume fails to analyze the provided trace in a
reasonable time. We thus provide Perfume with a subset of
the trace corresponding to the first 10 000 events generated
by one the threads. Perfume analyzes this smaller trace in
5 536 seconds. In comparison, ISPOT analyzes the 1.9 million
events traces in 21.2 seconds.

Then, we evaluate the pertinence of the information pro-
vided by Perfume and ISPOT. Perfume generates the graph
reported in Figure 10. Each node of the graph corresponds
to an event in the trace, the edges are the possible event
transitions, and the labels on the edges are the measured
minimum/maximum transition durations. While this graph
shows the global behavior of the application, it does not
reveal large variations in the transition durations that could
help identify a performance issue. In comparison, ISPOT
gives a list of functions sorted by their SCI score. The
highest SCI score leads to the interference issue presented
in Sections 5.7 and 5.5.4.

We conclude that Perfume and ISPOT are complemen-
tary. Perfume helps understanding the general behavior of
an application, while ISPOT aims at detecting the functions
that suffer from interference.

11

Fig. 10: Graph generated with Perfume

5.9 Assessments

Our experiments show that the SCI score accurately assesses
how much interference impacts performance, regardless of
the causes (lock, parallelism, false sharing, NUMA place-
ment, disk and network). Moreover, our experiment shows
that we can remove some of the interference bottlenecks
by modifying few lines of code. Finally, we found 2 false
positives and we show that they were relatively easy to
identify.

6 RELATED WORK

In this Section, we review existing works that aim at de-
tecting interactions between threads and their impact on
application performance. Many projects focus on detecting
one type of contention. Collecting hardware counters has
been extensively used for detecting cache contention [2], [4],
[43], [44], [45], [46], NUMA effects [47], or false sharing [48].
Several works simulate the memory subsystem to detect
cache issues [6], or to detect false-sharing [28], [49]. False-
sharing can also be detected by tracking the memory access
of an application [7], [8], [9], [10], [50]. Hardware sampling
has been used for analyzing the cache contention [51], [52],
NUMA effects [5], [53], [54], or detecting false sharing [11].
Analyzing the message rate can help detecting network con-
tention [16], [17]. Several works show that lock contention
can be detected by measuring the time spent waiting for
locks [12], [13], [14], [15], [55]. Overall, these projects define
metrics that identify a saturation, but they can not tell if
the saturation is the cause of a performance bottleneck. As
shown in Section 5, ISPOT comes as a complement to know if
removing the saturation should lead to better performance.

Several studies target the optimization of multi-threaded
applications in general. In their work, Curtsinger et al.
present COZ, a causal profiler [40]. COZ identifies the code
that should be optimized by slowing down the other parts.
As a result, COZ estimates the relative speedup that the
developer can expect when the not-slowed down part is
optimized. As shown in our evaluation, this work is com-
plementary to ours: COZ identifies the functions that should
be optimized while ISPOT identifies the functions that suffer
from interference.

Several tools aim at identifying the root cause of a
performance defect by using differential execution [18], [21].
Joukob et al. [21] compare the profiles of a function between
several runs of the application with different settings (e.g.,
one process versus many concurrent processes). The func-
tion profiles that differ significantly from one run to another
are then reported to the developer for further investigation.
Song et al. [18] compare good and bad workloads provided
by the user in order to identify the root cause, in the code,
that leads to different completion times. Stitch [19] is a tool
used to automatically identify interactions between large
components in a distributed system. This tool is used to
identify which component is the root cause of a previously
identified performance bottleneck. Recently, Huang et al.
[20] propose to use differential execution and performance
variation as an indicator to pinpoint the exceptionally slow
executions of a responsiveness-oriented application. Based
on this analysis, they show that they can drastically im-
prove the worst runs. Overall, these works help to find
the root cause of a performance defect already identified
by the user. ISPOT is complementary and focuses instead
on automatically identifying these performance defects for
the user when they are caused by interference. Moreover,
these works mainly focus on abnormally long executions
by comparing the execution times to the average execution
time. We show in Section 4.4 that, in case of contention, we
should instead focus on the fastest execution time and con-
sider that any longest execution, even average, potentially
highlights an interference problem.

As already presented in Section 5.8, Perfume [42] ana-
lyzes application logs and uses inference models to build
a state machine model that summarizes the application
behavior. We show in Section 5.8 that our approach is com-
plementary and has the goal of automatically identifying
the interference problems.

A complementary approach to analyze thread interfer-
ence is proposed by Eyerman et. al [56]. In their work,
they use hardware counters to measure which interference
impacts performance the most. They measure why and how
much interference hampers the scalability of a whole appli-
cation, but they do not identify where, in the application,
the code suffers from interference. In our work, we identify
where interference leads to a large slowdown in the code.

7 CONCLUSION

Analyzing the performance of a multi-threaded application
is difficult because of the complex interactions between
the threads and between the threads and the hardware. In
this paper, we propose the SCI score that use differential
execution to automatically identify thread interference. Our
experiment shows that the SCI score highlights interfer-
ence, regardless of the interference causes. Thanks to the
SCI score, ISPOT successfully detects interference with few
and easy to discard false positives. Our experiments also
show that, by cross-checking the reports of ISPOT with the
reports of classical profiling tools, we can fully understand
interference: we can identify the blocks of code that suffers
from interference with ISPOT, we can explain why a block
of code suffers from interference with complementary tools,

12

and we can measure how much interference degrades the
performance of a block of code with ISPOT.

REFERENCES

[1] “Intel R© vtuneTM amplifier 2017,” https://software.intel.com/en-
us/intel-vtune-amplifier-xe.

[2] J. Dongarra, K. London, S. Moore, P. Mucci, D. Terpstra, H. You,
and M. Zhou, “Experiences and lessons learned with a portable in-
terface to hardware performance counters,” in Proceedings of the In-
ternational Parallel and Distributed Processing Symposium, IPDPS’03,
2003, pp. 289.2–.

[3] “Oprofile. a system profiler for linux.” [Online]. Available:
http://oprofile.sourceforge.net

[4] S. Eranian, “Perfmon2: a flexible performance monitoring interface
for linux,” in Proceedings of the 2006 Ottawa Linux Symposium, 2006,
pp. 269–288.

[5] R. Lachaize, B. Lepers, and V. Quéma, “Memprof: A memory
profiler for numa multicore systems,” in Proceedings of the Usenix
Annual Technical Conference, USENIX ATC’12, 2012.

[6] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob, “Cmp$im: A pin-
based on-the-fly multi-core cache simulator,” in Proceedings of the
Fourth Annual Workshop on Modeling, Benchmarking and Simulation
(MoBS), co-located with ISCA, 2008, pp. 28–36.

[7] S. M. Günther and J. Weidendorfer, “Assessing cache false sharing
effects by dynamic binary instrumentation,” in Proceedings of the
Workshop on Binary Instrumentation and Applications, 2009, pp. 26–
33.

[8] Q. Zhao, D. Koh, S. Raza, D. Bruening, W.-F. Wong, and S. Ama-
rasinghe, “Dynamic cache contention detection in multi-threaded
applications,” in Proceedings of the international conference on Virtual
Execution Environments, VEE’11, 2011, pp. 27–38.

[9] M. Hobbel, T. Rauber, and C. Scholtes, “Trace-based automatic
padding for locality improvement with correlative data visual-
ization interface,” in Proceedings of the International Conference on
Parallel Architectures and Compilation, PACT’07, 2007.

[10] T. Liu, C. Tian, Z. Hu, and E. D. Berger, “PREDATOR: Predictive
false sharing detection,” in Proceedings of the symposium on Princi-
ples and Practices of Parallel Programming, PPoPP’14, 2014, pp. 3–14.

[11] T. Liu and X. Liu, “Cheetah: detecting false sharing efficiently and
effectively,” in Proceedings of the international symposium on Code
Generation and Optimization, CGO’16, 2016, pp. 1–11.

[12] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield, “Analyz-
ing lock contention in multithreaded applications,” in Proceedings
of the symposium on Principles and Practices of Parallel Programming,
PPoPP’10, 2010, pp. 269–280.

[13] X. Yu, S. Han, D. Zhang, and T. Xie, “Comprehending performance
from real-world execution traces: A device-driver case,” in Pro-
ceedings of the conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’14, 2014, pp. 193–206.

[14] F. David, G. Thomas, J. Lawall, and G. Muller, “Continuously
measuring critical section pressure with the free-lunch profiler,” in
Proceedings of the conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA’14, 2014, pp. 291–307.

[15] E. Altman, M. Arnold, S. Fink, and N. Mitchell, “Performance
analysis of idle programs,” in Proceedings of the conference on
Object Oriented Programming Systems Languages and Applications,
OOPSLA’10, 2010, pp. 739–753.

[16] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: performance degradation due to nearby jobs,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, 2013, pp. 1–12.

[17] M. Casas and G. Bronevetsky, “Active measurement of the impact
of network switch utilization on application performance,” in
Proceedings of the International Parallel and Distributed Processing
Symposium, IPDPS’14, 2014, pp. 165–174.

[18] L. Song and S. Lu, “Statistical debugging for real-world perfor-
mance problems,” in Proceedings of the conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA’14, 2014,
pp. 561–578.

[19] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm, “Non-
intrusive performance profiling for entire software stacks based on
the flow reconstruction principle,” in Proceedings of the conference
on Operating Systems Design and Implementation, OSDI’16, 2016, pp.
603–618.

[20] J. Huang, B. Mozafari, and T. F. Wenisch, “Statistical analysis of
latency through semantic profiling,” in Proceedings of the EuroSys
European Conference on Computer Systems, EuroSys’17, 2017, pp. 64–
79.

[21] N. Joukov, A. Traeger, R. Iyer, C. P. Wright, and E. Zadok, “Op-
erating system profiling via latency analysis,” in Proceedings of the
conference on Operating Systems Design and Implementation, OSDI’06,
2006, pp. 89–102.

[22] C. Coarfa, J. Mellor-Crummey, N. Froyd, and Y. Dotsenko, “Scal-
ability analysis of spmd codes using expectations,” in Proceedings
of the International conference on Supercomputing, ICS’07, 2007, pp.
13–22.

[23] F. Trahay, Y. Ishikawa, F. Rue, R. Namyst, M. Faverge, and J. Don-
garra, “Eztrace: a generic framework for performance analysis,” in
Proceedings of the International Symposium on Cluster, Cloud and Grid
Computing, CCGRID’11, 2011, pp. 618–619.

[24] C. Aulagnon, D. Martin-Guillerez, F. Rue, and F. Trahay, “Runtime
function instrumentation with EZTrace,” in Proceedings of PROPER
2012 - Workshop on Productivity and Performance, 2012.

[25] F. Trahay, E. Brunet, M. Mosli Bouksiaa, and L. Jianwei, “Selecting
points of interest in traces using patterns of events,” in Proceedings
of the International Conference on Parallel, Distributed, and Network-
Based Processing, PDP’15, 2015, pp. 70–77.

[26] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Remote
core locking: migrating critical-section execution to improve the
performance of multithreaded applications,” in Proceedings of the
Usenix Annual Technical Conference, USENIX ATC’12, 2012, pp. 65–
76.

[27] M. Scott and W. Bolosky, “False sharing and its effect on shared
memory performance,” in Proceedings of the USENIX Symposium
on Experiences with Distributed and Multiprocessor Systems (SEDMS),
1993, p. 57.

[28] T. Liu and E. D. Berger, “SHERIFF: Precise detection and automatic
mitigation of false sharing,” in Proceedings of the conference on
Object Oriented Programming Systems Languages and Applications,
OOPSLA’11, 2011, pp. 3–18.

[29] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller, “Fast and
portable locking for multicore architectures,” ACM Transactions on
Computer Systems (TOCS), vol. 33, no. 4, pp. 13:1–13:62, 2016.

[30] G. Southern and J. Renau, “Analysis of PARSEC workload scala-
bility,” in Proceedings of the International Symposium on Performance
Analysis of Systems and Software, ISPASS’16, 2016, pp. 133–142.

[31] M. Roth, M. J. Best, C. Mustard, and A. Fedorova, “Deconstructing
the overhead in parallel applications,” in Proceedings of the Inter-
national Symposium on Workload Characterization, IISWC’12. IEEE,
2012, pp. 59–68.

[32] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and
C. Kozyrakis, “Evaluating mapreduce for multi-core and multi-
processor systems,” in Proceedings of the symposium on High Perfor-
mance Computer Architecture, HPCA’07, 2007, pp. 13–24.

[33] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 programs: Characterization and methodological
considerations,” in Proceedings of the International Symposium on
Computer Architecture, ISCA’95, 1995, pp. 24–36.

[34] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implications,” in
Proceedings of the International Conference on Parallel Architectures
and Compilation, PACT’06, 2008, pp. 72–81.

[35] D. H. Bailey, “Nas parallel benchmarks,” in Encyclopedia of Parallel
Computing. Springer, 2011, pp. 1254–1259.

[36] M. A. Frumkin and L. V. Shabanov, “Benchmarking memory
performance with the data cube operator,” NASA, Tech. Rep.,
2004.

[37] B. Fitzpatrick, “Distributed caching with memcached,” Linux jour-
nal, vol. 2004, no. 124, p. 5, 2004.

[38] M. Zhuang and B. Aker, “memaslap: Load testing and benchmark-
ing a server.”

[39] S. Ghemawat and J. Dean, “LevelDB,” URL: http://leveldb.org, 2011.
[40] C. Curtsinger and E. D. Berger, “Coz: Finding code that counts

with causal profiling,” in Proceedings of the Symposium on Operating
Systems Principles, SOSP’15, 2015, pp. 184–197.

[41] “Facebook rocksdb,” https://github.com/facebook/rocksdb/wiki/RocksDB-
Basics.

[42] T. Ohmann, K. Thai, I. Beschastnikh, and Y. Brun, “Mining precise
performance-aware behavioral models from existing instrumen-
tation,” in Proceedings of the International Conference on Software
Engineering, ICSE’14, 2014, pp. 484–487.

13

[43] B. Teabe, A. Tchana, and D. Hagimont, “Application-specific
quantum for multi-core platform scheduler,” in Proceedings of the
EuroSys European Conference on Computer Systems, EuroSys’16, 2016,
pp. 3:1–3:14.

[44] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “Contention
aware execution: Online contention detection and response,” in
Proceedings of the international symposium on Code Generation and
Optimization, CGO’10, 2010, pp. 257–265.

[45] I.-H. Chung, G. Cong, D. Klepacki, S. Sbaraglia, S. Seelam, and
H.-F. Wen, “A framework for automated performance bottleneck
detection,” in Proceedings of the International Parallel and Distributed
Processing Symposium, IPDPS’08, 2008, pp. 1–7.

[46] C. Xu, X. Chen, R. Dick, and Z. M. Mao, “Cache contention and
application performance prediction for multi-core systems,” in
Proceedings of the International Symposium on Performance Analysis
of Systems and Software, ISPASS’10, 2010, pp. 76–86.

[47] M. Liu and T. Li, “Optimizing virtual machine consolidation
performance on numa server architecture for cloud workloads,” in
Proceedings of the International Symposium on Computer Architecture,
ISCA’14, 2014, pp. 325–336.

[48] S. Jayasena, S. Amarasinghe, A. Abeyweera, G. Amarasinghe,
H. De Silva, S. Rathnayake, X. Meng, and Y. Liu, “Detection of false
sharing using machine learning,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, 2013, pp. 1–9.

[49] J. Tao and W. Karl, “Cachein: a toolset for comprehensive cache
inspection,” in Proceedings of the International Conference on Compu-
tational Science, ICCS’05, 2005, pp. 174–181.

[50] M. Nanavati, M. Spear, N. Taylor, S. Rajagopalan, D. T. Meyer,
W. Aiello, and A. Warfield, “Whose cache line is it anyway?:
Operating system support for live detection and repair of false
sharing,” in Proceedings of the EuroSys European Conference on
Computer Systems, EuroSys’13, 2013, pp. 141–154.

[51] X. Liu and B. Wu, “Scaanalyzer: A tool to identify memory
scalability bottlenecks in parallel programs,” in Proceedings of the
Conference for High Performance Computing, Networking, Storage and
Analysis, SC’15, 2015, p. 47.

[52] A. Pesterev, N. Zeldovich, and R. T. Morris, “Locating cache
performance bottlenecks using data profiling,” in Proceedings of
the EuroSys European Conference on Computer Systems, EuroSys’10,
2010, pp. 335–348.

[53] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic management: A holistic approach
to memory placement on numa systems,” in Proceedings of the
conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’13, 2013, pp. 381–394.

[54] F. Trahay, M. Selva, L. Morel, and K. Marquet, “NumaMMA:
Numa MeMory Analyzer,” in Proceedings of the International Con-
ference on Parallel Processing, ICPP’18, 2018.

[55] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout, “Crit-
icality stacks: Identifying critical threads in parallel programs
using synchronization behavior,” in Proceedings of the International
Symposium on Computer Architecture, ISCA’13, 2013, pp. 511–522.

[56] S. Eyerman, K. Du Bois, and L. Eeckhout, “Speedup stacks:
Identifying scaling bottlenecks in multi-threaded applications,” in
Proceedings of the International Symposium on Performance Analysis of
Systems and Software, ISPASS’12, 2012, pp. 145–155.

Mohamed Said Mosli Bouksiaa is a PhD stu-
dent at Télécom SudParis since 2014. His re-
search focuses on automatic performance anal-
ysis for high performance computing applica-
tions.

François Trahay is an associate professor at
Télécom SudParis since 2011. He is a mem-
ber of the distributed systems research group of
the computer science department. He received
his Ph.D. degree in computer science from the
University of Bordeaux in 2009. He has been
working on runtime systems and performance
analysis for high performance computing since
2006.

Alexis Lescouet is a PhD student at Télécom
SudParis since 2017. His research focus on sys-
tem virtualization for NUMA machines.

Gauthier Voron is a PhD student at UPMC
Sorbonne Université since 2014. His research
aims at understanding and improving the per-
formance and the design of distributed or con-
current systems. Especially, his interests include
blockchains, NUMA architectures and system
virtualization.

Rémi Dulong is a PhD student from Télécom
SudParis and the University of Neuchâtel since
2018. His research focuses on the performance
of NVMRAM for large applications running on
NUMA systems.

Amina Guermouche is an associate professor
at Télécom SudParis since 2016. She received
her Ph.D. degree in computer science from the
Paris-Sud university under the supervision of
Franck Cappello at LRI. Her research interest
focus on energy minimization and fault tolerance
on large scale platforms.

Élisabeth Brunet is an associate professor at
Télécom SudParis in the distributed systems re-
search group since 2010. She defended her PhD
thesis in 2018 within the INRIA Runtime team of
LaBRI under the direction of Raymond Namyst.
Her research interests are in high performance
computing in the cluster architecture landscape.

Gaël Thomas is a full professor in the computer
science department of Télécom SudParis where
he leads the distributed systems research group.
He his interested by virtualization, operating sys-
tems, concurrency and language runtimes, with
a focus on performance and safety. Before join-
ing Telecom SudParis in 2014, he was associate
professor from 2006 to 2010 at UPMC Sorbonne
Université in the LIP6 laboratory.

