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A Simple Machine Learning Technique for Model Predictive Control

Didier Georges1

Abstract— This paper is devoted to a simple approach for the
offline computation of closed-loop optimal control for dynamical
systems with imposed terminal state arising in Model Predictive
Control Scheme (MPC). The here-proposed approach simply
relies on some integrations of the characteristic equations
associated to the optimal control problem, together with the
classical supervised learning of a one-hidden-layer neuron
network, to get a closed-loop MPC completely computed offline.
Some examples are provided in the paper, which demonstrate
the ability of this approach to tackle some quite large prob-
lems, with state dimensions reaching 50, without encountering
limitations due to the so-called curse of dimensionality.

I. INTRODUCTION

The computation of nonlinear model predictive control in
closed-loop form still remains a challenge due to the so-
called curse of dimensionality of the associated optimal con-
trol problem. An alternative solution is to solve the associated
optimal control problem online. However the computational
cost may be incompatible with real-time for fast systems.
Except for linear-quadratic optimal control problems, the
computation of closed-loop solutions remains largely chal-
lenging when the state dimension is typically greater than
5. Several attempts have been made to compute the offline
closed-loop solution to nonlinear optimal control problems
by using a polynomial approximation of the solution of the
associated Hamilton-Jacobi-Bellman equation [?] or some
more general functional approximations of the optimal con-
trol thanks to some Galerkin approaches [?], [?]. Several
approaches based on reinforcement learning and adaptive
dynamic programming have been proposed [?]. However
these latter approaches remain computionally expensive for
medium or large scale nonlinear systems. In practice, all the
above-mentionned approaches fail to offer practical solutions
to problems whose state dimension is greater than 3 or 4,
and are not appropriate to include terminal constraints. Other
approaches can be derived by using model reduction to deal
with the optimal control of a ”small” system (see [?] for a
recent paper in the linear case). However the extension of
such an approach is to be made for the closed-loop optimal
control of nonlinear systems. In this paper, the combination
of a supervised learning technique with the integration of the
characteristics of the associated Hamilton-Jacobi equation of
the optimal control problem associated to a MPC scheme
with a terminal state constraints and possibly some input
bounds is proposed and experimented on several case studies.

The paper is organized as follows. In section 2, some
background is provided on nonlinear MPC and the necessary
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conditions for optimality of the associated optimal control
problem. Section 3 describes the control design methodology
proposed in this paper. In section 4, four illustrative examples
demonstrate the effectiveness and easiness of the approach.
Some conclusions and perspectives are given in section 5.

II. SOME BACKGROUND ON MODEL PREDICTIVE
CONTROL OF NONLINEAR SYSTEMS

We consider a class of nonlinear systems defined by

ẋ(t) = F (x(t)) +G(x(t))u(t) (1)

where x(t) ∈ Rn and u(t) ∈ Rm, with F (0) = 0 (0 is an
equilibrium state of the system). F and G are also assumed
to be at least continously differentiable.

In this paper we consider the continuous-time model
predictive control of such systems around the origin with
terminal state constraint, which consist in

1) Solving at time instant t, knowing the current state
x(t), an open-loop optimal control problem with finite
control horizon t+ T defined by:

min
u

∫ t+T

t

L(x(τ), u(τ))dτ (2)

subject to ẋ(τ) = F (x(τ))+G(x(τ))u(τ), τ ∈ [t, t+
T ], with x(t) known, x(t+ T ) = 0, and where

L(x, u) = l(x) +
1

2
uTR(x)u− g(x)Tu (3)

l(x) ≥ 0,∀x 6= 0, l(0) = 0, (4)
R(x) = RT (x) > 0,∀x, (5)

where R(x) is a m ×m matrix, and g(x) is a vector
of Rm.

2) Applying optimal control solution u∗(t) obtained at
time t. At time t + ε, the system reaches a new state

x(t+ε) = x(t)+

∫ t+ε

t

(F (x(τ))+G(x(τ))u∗(τ)dτ) ≈
x(t) + ε(F (x(t) +G(x(t)u∗(t)).

3) Repeating the above sequence with t+ ε→ t.
Under mainly system controllability and zero-state

observability of (L(x, 0), F (x)) assumptions, it can
be shown that optimal cost function V (t, x(t)) =

min
u

∫ t+T

t

L(x(τ), u(τ))dτ with x(t + T ) = 0 is a

Lyapunov function of the closed-loop system [?] under
control law u∗(t, x(t)), optimal control solution of (??)
at time t. Therefore, this model predictive control scheme
described above ensures asymptotic stability around the
origin.



In what follows, we will consider a nonsingular optimal
control problem defined from 0 to T , since both F and G
do not explicitely depend on t (time-invariant systems).

If H(x, p) = L(x, u)+pT (F (x)+G(x)u) defines the so-
called Hamiltonian associated to the problem, Pontryagin’s
principle [?] for optimality provides the following necessary
conditions for optimality

∇uH = 0

⇔ u∗(t) = g(x(t))−R−1(x(t))GT (x(t))p(t), (6)
∇pH = 0⇔ ẋ = F (x) +G(x)u∗, (7)

x(0) known, x(T ) = 0, (8)
∇xH = 0⇔ ṗ = −∇xL(x, u∗)

− ∂

∂x
[F (x) +G(x)u∗]T p. (9)

where p(t) is the adjoint state of the system.
This defines a two-point boundary value problem (TP-

BVP) which can be solved, for instance by using a shoot-
ing method which consists in finding p(0, x(0)) such that
x(T ) = 0, in order to get u∗(0) thanks to (??). A basic
shooting method can be defined as the solution of the
following nonlinear least-square problem:

min
p(0))

1

2
‖x(T )‖2 (10)

s.t.

ẋ = F (x) +G(x)g(x)−G(x)R−1(x)GT (x)p,

x(0) known (11)
ṗ = −∇xL(x, g(x)−R−1(x)GT (x)p)

− ∂

∂x
[F (x) +G(x)g(x)−G(x)R−1(x)GT (x)p]T p.

(12)

Since p(0) is obtained, optimal control at time t = 0
u∗(0, x(0)) can be easily derived from (??).

Multi-shooting methods ([?]) are recommended for the
computation of TPBVPs with large horizon T to avoid ill-
conditioning.

In practice, the solution of TPBVP (??)-(??) can be
very time consuming, especially for large systems, and the
approach is then not appropriate for fast systems, since the
TPBVP has to solved at each time instant of control.

Rather than trying to solve TPBVP (??)-(??) at every
time instant of control, we will consider an approach which
will generate offline a closed-loop solution of the model
predictive control defined above. This approach relies on a
sequence of simple integrations of differential equations
(??) and (??) performed backward in time and starting
always from x(T ) = 0. It can be noticed that equations
(??) and (??) are nothing else that the equations of the
characteristics of Hamilton-Jacobi-Bellman equation

∂V

∂t
(t, x) + min

u(.)
H(x,

∂V

∂x
) = 0, (13)

associated to optimal problem (??), where p(t) = ∂V
∂x .

Constrained input case: According to Pontryagin prin-
ciple, if u is constrained to belong to a compact set U (for

instance a hypercube of Rm), necessary condition (??) has
to be replaced by

u∗ = Argmin
u∈U

H

⇔ u∗ = ProjU (g(x)−R−1(x)GT (x))p) (14)

where ProjU denotes the projection operator onto U .
The approach remains unchanged by replacing (??) by

(??) in characteristic equations (??) and (??), that however
become discountinuous, what potentially makes integration
much more tricky.

III. CLOSED-LOOP SOLUTION TO THE MODEL
PREDICTIVE CONTROL PROBLEM

The offline derivation of a closed-loop solution of the
model predictive control scheme relies on two ingredients:

1) The definition of a one-hidden-layer neural network,
with N neurons in the hidden layer with n input
neurons and m output neurons, used to approximate
u∗(x), which represents the model predictive control
given by (??) at time t = 0, as a function of any initial
state x(0) = x in a domain large enough:

u∗(x) ≈
N∑
i=1

wiσ(αTi x+ bi) = Φθ(x), (15)

where σ(x) =
1

1 + e−x
or tanh represents the neuron

activation function, and wi ∈ Rm, αi ∈ Rn, bi ∈ R,
and θ = (wi, αi, βi)i=1,...,N .
It has been shown in [?] that such networks can be
used as multi-dimensional approximants. In this paper,
best results have been obtained with tanh activation
function. The use of multi-layer networks seems not to
provide significant improvements in the present case
according to preliminary experiments. However this
point should be more deeply investigated.

2) The use of low-discrepancy sequences such as the
ones proposed by Halton, Sobol, Faure (see [?] for
instance) to generate learning sequences.
Such sequences have been proposed to solve the
problem of optimally choosing M samples xi in a
hypercube C = [0, 1]n to ”minimize holes” in the
sense of the best possible approximation of integrals:

| 1

M

M∑
i=1

f(xi)−
∫
C

f(x)dx| ≤W (f)
log(M)n

M
(16)

W (f) is the variation of f in the sense of Hardy &
Krause.
This approach usually provides better approximation
results than other approaches based on random se-
quences for n ≤ 20.
Low-discrepancy sequences could be used to generate
initial state sequences by ”filling” a hypercube of
Rn and then compute the corresponding sequence of
TPBVPs (??)-(??). Even though this approach cer-
tainly can provide an effective way to get closed-loop



approximation to the nonlinear optimal solution thanks
to supervised learning, it appears to be very computa-
tionally expensive for medium/large-scale systems.
In order to overcome this drawback, a low-discrepancy
sequence of M samples {pi(T )}i=1,M , each of them
belonging to a domain Vd of Rn, is generated.

Then a standard backward-in-time numerical integra-
tion of characteristic equations (??) and (??) is per-
formed starting from t = T with each of the M samples
{pi(T )}i=1,M and x(T ) = 0 to initial time t = 0 in order to
get a sequence of M samples xi(0, pi(T )), representing the
initial state of the optimal trajectory satisfying x(T ) = 0, to-
gether with the set of M samples of control u∗i (x

i(0, pi(T )))
obtained by using control equation (??) or (??).

A classical supervised learning technique is finally used
to tune parameters θ of the neural network, as solution of the
following nonlinear regression problem, using the M pairs
of samples (xi(0, pi(T )), u∗i (x

i(0, pi(T ))), i = 1, ...,M
generated above:

min
θ

1

2

M∑
i=1

‖Φθ(xi(0, pi(T ))− u∗i (xi(0, pi(T ))‖2. (17)

Many approaches can be used to solve this problem (stochas-
tic gradient, quasi-Newton ...) (see [?] for instance). In this
paper, the Levenberg-Marquardt algorithm [?] implemented
in MATLAB neural network toolbox has been used. Ac-
cording to my experience, this approach appears to be more
efficient that the stochastic gradient approach for this class
of problems. Due to nonconvexity, several learning trials are
needed to retain the best solution in the least-square sense.

Remarks.
• Adjoint state domain Vd should be adequately chosen to

ensure a well defined domain V of the xi(0, pi(T ))’s
including the origin (for instance a hypercube of the

form V =

n∏
i=1

[ai, bi]). For that purpose, the computation

of a finite number of TPBVPs (??)-(??) with initial state
x(0) defined in V , can be helpful to infer Vd as an

hypercube in Rn of the form Vd =

n∏
i=1

[adi , b
d
i ].

• Control horizon T should be chosen not too large
to avoid ill-conditioning and/or discontinuities which
occur with nonlinear problems when the trajectories
of characteristic equations (??) or (??) intersect then
generating shocks and leading to integration failures and
singularities.

IV. SOME ILLUSTRATIVE EXAMPLES

A. Constrained nonlinear model predictive control of a boost
converter

In this section, the model predictive control of a boost
converter is considered.

DC-to-DC boost converters are a class of power electron-
ics devices used to elevate input voltage ([?]). This system
exhibits non minimum phase behavior, which renders it quite
difficult to control.

The average model of a boost converter is given by

di

dt
= −(1− u)v/L+ E/L

dv

dt
= (1− u)i/C − v/(RC) (18)

where E is the input voltage, i is the inductance current, v
is the output voltage, and u is the duty cycle of the converter
acting as control input. The duty cycle is constrained to
belong to interval [0, 1].

In order to avoid ill-conditioning, a classical normalization
procedure is performed using following changes of variables:(

z1
z2

)
=

(
1
E

√
L/C 0
0 1

E

)(
i
v

)
, τ =

t√
LC

(19)

The normalized average model is then given by
dz1
dτ = −(1− u)z2 + 1

dz2
dτ = (1− u)z1 −

1

(R+ ∆R)
√
C/L

z2,
(20)

Here we consider the nonlinear MPC around the equilib-
rium defined by (ze1, z

e
2, ue) of the boost converter described

by Table ??.
The optimal control problem associated to the MPC

scheme is defined by

min
u∈[0,1]

1

2

∫ 2

0

(‖z − ze‖2 + (u− ue)2)dt (21)

where z = (z1, z2)T , and ze = (ze1, z
e
2)T , subject to average

model dynamics (??).

TABLE I
BOOST CONVERTER PARAMETERS

L C R E ie ve ue
15mH 50µF R = 50Ω 12V 2.165A 2.5V 0.6

Fig. ?? shows the closed-loop dynamics of the boost
converter under the constrained MPC. Fig. ?? shows the
constrained closed-loop control input. Clearly, the bounds
of the duty cycle are satisfied. The number of neurons in the
hidden layer is equal to 40. The number of Sobol sequence
samples of final time adjoint state p(T ) ∈ [−0.4, 0.4]2 is
equal to 2000. Although the characteristics equations are
unsmooth due to the input constraints, MATLAB function
ode45 was successfully used for the numerical integration.
The retained solution was the best among 10 learning trials.

B. A small-scale linear MPC problem

The goal here is to compare the approximate solution
of the following MPC with an controllable and unstable
linear MPC system (with 3 unstable eigenvalues) with control
horizon T = 4:

min
u

1

2

∫ t+4

t

(‖x‖2 + ‖u‖2)dτ (22)

subject to

ẋ = Ax+Bu, x ∈ R6, u ∈ R2, x(t+ 4) = 0, (23)
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Fig. 1. Constrained MPC of the boost converter.
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Fig. 2. Constrained MPC duty cycle as a function of the two states.

where coefficients of both A and B were randomly generated
by using a uniform distribution on [−1, 1], with the reference
solution derived from the explicit solution obtained from the
Hamiltonian system given by(

ẋ
ṗ

)
= H

(
x
p

)
=

(
A −BBT p
−I6 −AT

)(
x
p

)
, (24)

x(t) known, x(t+ T ) = 0.

The closed-loop control is explicitly given by

u(t, x(t)) = −BT p(t) (25)
p(t) = −E2(t+ T )−1E1(t+ T )x(t) (26)

where E1 and E2 are given by

E(t) =

(
E1(t) E2(t)
E3(t) E4(t)

)
= exp(Ht). (27)

Supervised learning was performed from a Sobol sequence of
3000 samples pi(t + T ) defined in hypercube [−0.5, 0.5]6.
The hidden layer of the neural network used 25 neurons.
Fig ?? shows the closed-loop dynamics with the best ap-
proximate control in terms of least-square cost function value
obtained after solving 10 learning problems (??) for different
initializations of network parameter θ.

Figs. ?? and ?? show very similar behaviors. Relative error
between Hamiltonian solution u and approximate solution ua∫ t+T

t
‖u(τ)−ua(τ)‖2dtτ∫ t+T

t
‖u(τ)‖2dtτ is equal to 7.6e−2.
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Fig. 3. Approximate MPC solution.
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Fig. 4. Explicit linear MPC solution.

C. A medium-scale nonlinear MPC problem

In this section, the ability of the approach to deal with a
medium-scale MPC problem is investigated.



Again a randomly generated controllable and unstable
linear system of dimension 50 with 20 control inputs, and
22 unstable eigenvalues is tested, where coefficients of both
A and B were randomly generated by using a uniform
distribution on [−1, 1].

Here the MPC problem is defined by the following convex
but nonlinear optimal problem with control horizon T = 0.25
defined as what follows:

min
u

1

2

∫ t+0.25

t

(log(1 +
1

2
‖x(τ)‖2) + ‖u(τ)‖2)dτ. (28)

Supervised learning was performed from a Sobol sequence
of only 1000 samples pi(t + T ) defined in hypercube
[−0.15, 0.15]50. The hidden layer of the neural network
used 25 neurons. Pairs (xi(t), ui(t)) were obtained from the
backwards-in-time integration of characteristic equations

ẋ = Ax−BBT p, (29)

ṗ = − x

1 + 1
2‖x‖2

−AT p, (30)

x(t+ T ) = 0, pi(t+ T ), i = 1, ...., 1000. (31)

Fig. ?? shows the closed-loop dynamics with the best
approximate control in terms of least-square cost function
value obtained after solving 10 learning problems (??) for
different initializations of network parameter θ. Fig. ??
demonstrates the effectiveness of the proposed approach to
deal with medium-scale MPC problems at least when the
dynamics is linear and the cost function is convex and
nonlinear.
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Fig. 5. MPC of a medium-scale linear system with a nonlinear convex
cost function.

D. MPC of a nonlinear unstable exothermic process

In this section, the approximate solution of a MPC applied
to an unstable 1D diffusion-reaction exothermic process (see
[?]) is studied.

The process defined in a rod is fed with species A and an
exothermic catalytic reaction of the form A→ B occurs on
the rod. The temperature profile is controlled with an actuator
situated in the middle of the rod.

The exothermic distributed dynamics is modeled on Do-
main [0, π] by the following nonlinear PDE

∂z

∂t
(x, t) =

∂2z

∂x2
(x, t) + βT e

− γ

1 + z(x, t) − βT e−γ

+βU (b(x)u(t)− z(x, t)) (32)

where z(x, t) denotes the dimensionless temperature, with
Dirichlet boundary conditions z(0, t) = 0 and z(π, t) = 0.

The same coefficients as the ones in [?] have been used:
Dimensionless heat of reaction βT = 50 (implying unstabil-
ity), heat transfert coefficient βU = 2, and activation energy
γ = 4. Input operator b(x) is taken to be nonzero and equal
to 1 in finite spatial interval [0.5π − ε, 0.5π + ε].

A classical method of lines consisting in the approximation
of the Laplacian operator by finite differences has been used
to get a finite-dimensional ODE model of the PDE defined
on a spatial grid of [0, π]:

∂2zi
∂x2

≈ zi+1 − 2zi + zi−1
dx2

(33)

where dx is the spatial step and zi denotes z(x = idx).
The MPC problem (with T = 0.27) is defined by

min
u

1

2

∫ t+0.27

t

(‖Z(τ)‖2 + 5‖u(τ)‖2)dτ (34)

subject to

Ż = F (Z, u), Z(t) ∈ R7, (35)

where F is the vector field defined by the method of lines
on R7 (the temperatures evaluated at 7 spatial samples inside
of the domain are used as state variables of the process
dynamics), and 0 is the reference dimensionless temperature
to be controlled.

Supervised learning was performed from a Sobol sequence
of 2000 samples pi(t+T ) defined in hypercube [−0.1, 0.1]7.
The hidden layer of the neural network used 40 neurons.
Fig ?? shows the initial state distribution resulting from the
integration of the characteristics.

Fig. ?? shows the closed-loop dynamics with the best
approximate control in terms of least-square cost function
value obtained after solving 10 learning problems (??) for
different initializations of network parameter θ. The ap-
proximate closed-loop MPC is applied to an approximate
dynamical model of dimension 20. Fig. ?? shows the related
temperature profile in both time and space with z0(x) =
0.4 sin(πx). These results demonstrate the effectiveness of
the proposed approach with a limited number of 7 measure-
ments corresponding to the 7 state components of reduced
model (??).
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Fig. 6. Closed-loop response of the exothermic process.
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V. CONCLUSIONS AND PERSPECTIVES

Some preliminary results on the application of a neural-
network-based machine learning method using a simple
backward-in-time integration of the characteristic equations
associated to the optimal control problem of a MPC scheme
with a terminal state constraint have been provided. This
approach can be easily extended to the case of discrete-
time nonlinear MPC, thanks to the discrete-time optimality
principle. The here-proposed approach seems to be able
to cope with some quite large dynamical systems (state
dimension up to 50). Since the method intrinsically solves
an optimal control problem with a final state constraint, it
can be used to solve other regular optimal control problems
(with a final time cost for instance). A potential limitation

-0.2
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22

Time
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11
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0.2

00
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Fig. 8. Temperature profile in closed-loop (the boundary conditions (= 0)
are note displayed).

to this approach is ill-conditioning and loss of continuities
of the characteristic equations when the value of the control
horizon is too large. Small control horizons potentially can
lead to large optimal controls which could be sometimes
incompatible with physical constraints. This limitation can be
partially circumvented by introducing control bounds, using
a solver suitable for discountinuous ODEs. Further studies
are still needed to evaluate medium-scale nonlinear problems
and investigate optimal state estimation.
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