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Abstract

The Distance Geometry Problem (DGP) consists in finding an embedding in a metric space

of a given weighted undirected graph such that for each edge in the graph, the corresponding

distance in the embedding belongs to a given distance interval. We discuss the relationship

between the existence of a graph embedding in a Euclidean space and the existence of a graph

embedding in a lattice.

Different approaches, including two integer programming models (IP) and a constraint

programming (CP) approach are presented to test feasibility of the DGP. The two IP models

are improved with the inclusion of valid inequalities and the CP approach is improved with

the use of an algorithm to perform a domain reduction.

The main motivation to this work is to derive new pruning devices within branch and prune

algorithms for instances occurring in real applications related to determination of molecular

conformations, which is a particular case of the DGP. A computational study based on a set

of small sized instances from molecular conformations is reported. This study compares the

running times of the different approaches to check feasibility.

Keywords: Distance Geometry Problem; Graph Embedding; Integer Programming; Constraint

Programming.

1 Introduction

The Distance Geometry Problem arises is many practical applications. One of the best known

ones is the protein structure calculation, which is a major problem in computational biology [4].

The Molecular Distance Geometry Problem (MDGP) arises in nuclear magnetic resonance (NMR)

spectroscopy analysis, which provides a set of inter-atomic distances for certain pairs of atoms

of a given protein [22]. The question is how to use this set of distances in order to calculate
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the spatial positions of the atoms forming the molecule [3]. A very recent review about distance

geometry problems and applications is given in [13].

A simple weighted undirected graph G = (V,E, d) can be associated to the MDGP, where

V represents the set of atoms, E models the set of atom pairs for which a Euclidean distance

is available, and the function d : E → R+ assigns distance values to each atom pair. The

MDGP can then be formally defined as the following: given a weighted simple undirected graph

G = (V,E, d), find a function x : V → R3 such that

||xu − xv|| = duv ∀{u, v} ∈ E. (1.1)

When G is a complete graph (all the distances are given), a unique three-dimensional structure

can be determined by a linear time algorithm [5]. Otherwise, MDGP is NP-hard [18].

The MDGP can be naturally formulated as a nonlinear global minimization problem, where

the objective function is given by

f(x1, . . . , xn) =
∑
{u,v}∈E

(||xu − xv||2 − d2
uv)

2.

Assuming that all the distances are correctly given, x1, . . . , xn ∈ R3 solve the problem if and only

if f(x1, . . . , xn) = 0.

For MDGP instances provided by NMR experiments, G is not complete and there may exist

errors in the given distances. Therefore, a more practical definition of the MDGP (denoted as

iMDGP in the next sections) is to replace conditions (1.1) by

dLuv ≤ ||xu − xv|| ≤ dUuv ∀{u, v} ∈ E, (1.2)

where dLuv and dUuv are, respectively, lower and upper bounds on the distance between atom u

and atom v.

Several algorithms have been proposed for the solution of the MDGP, most of them based on

a search in a continuous space [12]. By exploring some rigidity properties of the graph G, the

search space can be discretized and an efficient algorithm called Branch and Prune (B&P ) can

be used, particularly when the given distances are precise [9].

The main idea behind the discretization is that the intersection among three spheres in the

three-dimensional space can produce at most two points in the hypothesis their centers are not

aligned. Consider four atoms u1, u2, u3, and v. If the coordinates for u1, u2, u3 are known, as

well as the distances du1v, du2v, du3v, then three spheres centered at ui with radius dui,v, i = 1, 2, 3

can be defined and their intersection provides at most two possible positions for the atom v.

The definition of an ordering on the atoms of the protein satisfying such conditions suggests

a recursive search on a binary tree containing the potential coordinates for the atoms of the

molecule [10]. The binary tree of possible solutions is explored starting from its top, where the

first three atoms are positioned, and by placing one node per time. At each step, at most two

possible positions for the current node v are computed, and two new branches are added to the

tree. As a consequence, the size of the binary tree can get very large quite quickly, but the

presence of additional distances provided by NMR can help in verifying the feasibility of the

computed positions. As soon as a position is found to be infeasible, the corresponding branch

can be pruned and the search can be backtracked.
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When all the distances are exact, each node of the tree refers to one atomic position. However,

when one of such distances is represented by an interval, a curve in the three-dimensional space

is associated to the corresponding node in the tree [10]. In this case, it is possible to choose some

distances from the available interval that are associated to atomic positions on the curves. While

this strategy was proved to work well for relatively small-sized instances [10], it does not have

the same efficiency as the strategy applied to the case with exact distances [9].

In this paper we consider a lattice representation of the molecule. This lattice is a discretiza-

tion of R3. Lattice models have been used in the past for related protein problems, see [19]. In

order to handle with errors induced by the discretization we assume interval distances, although

we report computational results for the cases of exact and interval distances. Notice that the

knowledge of an exact distance duv is equivalent to considering dLuv = dUuv = duv in expres-

sion (1.2). Our goal is to construct and test discrete optimization models (integer programming

models [21]) to decide whether there is an embedding of a graph on a lattice satisfying a set of

interval distances.

Let V ′ represent a neighborhood of a node of the original graph G and let G′ = G[V ′] be

the subgraph of the original graph (corresponding to the entire molecule) induced by V ′. The

main idea is to locally use discrete optimization models in order to decide whether there is an

embedding of G′ = (V ′, E′, d′) in the lattice. These models can then be used within branch and

prune algorithms to solve the MDGP. While in the previous strategies, for exact distances [9]

and for interval distances [10], the pruning is done using only the known distances of a current

node to the previous fixed nodes, with our strategy we aim to prune the search tree by using all

relevant information on the current node. In particular, by using a neighborhood of a node, it is

possible to incorporate distance information on nodes that have not been explored yet, that is,

to incorporate the distances to nodes that will be explored in deeper stages of the search tree.

Doing so, it may be possible to identify infeasibility sooner and therefore prune the search tree

in early stages.

The paper has the following contributions. (i) Propose and compare integer programming

models, and one constraint programming model, to decide whether there is a feasible embedding

of graph G in a lattice. This study can be applied to any embedding problem and not only

for the MDGP. (ii) Provide several improvements on these models such as domain reduction

and inclusion of valid inequalities. (iii) Include a new pruning test based on implicit distance

information between atoms when the NMR provides no information that relates these atoms.

The paper is organized as follows. Definitions, notations to be used throughout the paper,

and relation between embedding problems, are given in Section 2. In Section 3, several integer

programming models are introduced and discussed. Section 4 presents a constraint programming

model and, in Section 5, several improvements on the models introduced are discussed. In Sec-

tion 6, we report the computational experiments conducted to compare the models. Additionally,

we show that implicit distances from NMR can be used to reduce the size of the search tree of

B&P algorithms for the MDGP. Finally, some conclusions and future directions of research are

presented in Section 7.
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2 Embedding problems and their relation

Consider an undirected graph G = (V,E) with node set V and edge set E. To each edge

e = {u, v} ∈ E associate a positive interval Ie = [dLuv, d
U
uv], 0 < dLuv ≤ dUuv, and denote by I(E)

the set of positive intervals I(E) = {Ie : e ∈ E}.
An embedding of G in a set R ⊆ R3, x : V → R, is called feasible if

∀ {u, v} ∈ E, dLuv ≤ ‖xu − xv‖ ≤ dUuv. (2.1)

The iMDGP can be reformulated as follows.

Problem 1 (iMDGP). Given a simple undirected graph G = (V,E) and a set I(E) of positive

intervals, is there a feasible embedding of G in R3?

The intervals (lower and upper bounds) are defined according to the NMR experiments. These

experiments give distance information (intervals) for atoms that are close enough. In general,

distances related to covalent bonds and covalent angles are considered fixed and defined by real

numbers [22]. The iMDGP has been considered before in [6, 10, 15].

A very closely related problem occurs when we ask whether there exists a feasible embedding of

G in a discrete set B ⊆ R3, which is a grid (lattice) limited by a box centered at the origin (0, 0, 0).

Let α > 0 be the distance between consecutive lines of the grid. For a given grid dimension ∆,

define K = d∆
α e as the number of lines in each positive/negative coordinate. Each side of the box

has length 2K ×α, and the set of points in the box, denoted by B, is defined by: B = L×L×L
where L = {αi : i ∈ Q} and Q = {−K,−(K − 1), . . . ,−2,−1, 0, 1, 2, . . . , (K − 1),K}.

Now, we seek an embedding of G in B defined by placing each node v ∈ V on the nearest

point n(xv) of the grid B when v is placed on xv ∈ R3, see Figure 1. This new problem can be

defined as follows.

Problem 2 (iMDGP-grid). Given a simple undirected graph G = (V,E) and a set I(E) of

positive intervals, is there a feasible embedding of G in B?

!
 

Figure 1: (a) A simple representation of a Molecule. (b) The Molecule representation embedded

in the grid.
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Next, we discuss some relations between the two problems. Clearly, even if there is a feasible

embedding of G = (V,E) in R3, it may be impossible to find a feasible embedding of G in B

considering the same set of intervals I(E). In order to ensure that any embedding of G in R3

corresponds to an embedding of G in B, we can measure the error induced by the discretization

when each v ∈ V placed in xv = (xv1, xv2, xv3) ∈ R3 is placed in the nearest point n(xv) in the

grid B given by,

n(xv) = arg min
y∈B
‖xv − y‖ = (α× round(xv1/α), α× round(xv2/α), α× round(xv3/α)).

As xvi − α× round(xvi/α) ≤ α
2 , i = 1, 2, 3, then

‖xv − n(xv)‖ =

√√√√ 3∑
i=1

(xvi − α× round(xvi/α))2 ≤
√

3(
α

2
)2 =

√
3

2
α.

So, given a feasible embedding x, the maximum distance error resulting from the placement of

u and v to the nearest positions, respectively, n(xu) and n(xv) in B, is given by |‖xu − xv‖ −
‖n(xu) − n(xv)‖| ≤

√
3α. As a consequence of the discussion above we can state the following

trivial result as a remark.

Remark 1. Consider a simple undirected graph G = (V,E) and a set I(E) of positive intervals.

If x is a feasible embedding of G in R3, then n(xv), v ∈ V , is a feasible embedding of G in B,

for the set Ī(E) where Īe = [d̄Luv, d̄
U
uv] is given by

d̄Luv = dLuv −
√

3α > 0, (2.2)

d̄Uuv = dUuv +
√

3α. (2.3)

Remark 1 implies that if there is no feasible embedding of G in B for the set Ī(E), then there

is no feasible embedding of G in R3 for the set I(E).

The size of the iMDGP-grid instances depend on the size of the grid, |B|, and on the number

of nodes of G, |V |. For a given ∆ (which defines the box size), as α increases, the number

of points of the grid decreases and the same happens to the size of the instances of iMDGP-

grid. However, as α increases the tolerance given for each interval (in order to ensure that no

feasible solution is lost when moving from iMDGP to iMDGP-grid), denoted by ε, also increases.

Hence, when increasing α, an instance of iMDGP for which there is no feasible embedding can

be converted into an instance of iMDGP-grid having a feasible embedding. Thus, when there

is no feasible embedding for an instance of iMDGP, the ideal choice of α is the largest α that

leads to an instance of the iMDGP-grid problem having no feasible embedding. Therefore, the

value of parameter α plays a key role in the feasibility check approaches discussed in this paper.

We assume α = ε√
3
, where ε is a tolerance satisfying 0 < ε < min

{u,v}∈E
{dLuv}. The last inequality

prevents the lower bounds to collapse to zero.

3 Integer linear programming models

In this section, we present two Integer Programming (IP) models to describe an embedding

of a graph G = (V,E) in a grid for a given set I(E) of interval distances.
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The objective of the first model is to minimize an error distance function that is the sum of

the interval distances violation. A feasible embedding corresponds to a feasible solution whose

objective function value is zero. The second model is a feasibility model that checks whether a

set of inequalities has feasible binary solutions. The first model always provides a solution (that

may or may not correspond to a feasible embedding, depending on whether the objective value

is zero or not), while the second model either provides one feasible solution corresponding to a

feasible embedding or shows that there is no feasible embedding.

3.1 A discrete model to find an embedding that minimizes an error function

For each {u, v} ∈ E, the following model minimizes the distance (weight) error when assigning

node u in the graph to position p in the grid and node v in the graph to position q in the grid.

We use binary variables wup indicating whether node u ∈ V is assigned to position p ∈ B, i.e.

wup = 1, or not, i.e. wup = 0. Let Dpq denote the Euclidean distance between positions p and q,

p, q ∈ B.

min
∑

p,q∈B, {u,v}∈E, Dpq<dLuv

(dLuv −Dpq)w
u
pw

v
q +

∑
p,q∈B, {u,v}∈E, Dpq>dUuv

(Dpq − dUuv)wupwvq (3.1)

subject to∑
p∈B

wup = 1, u ∈ V, (3.2)

∑
u∈V

wup ≤ 1, p ∈ B, (3.3)

wup ∈ {0, 1}, p ∈ B, u ∈ V. (3.4)

Constraints (3.2) establish that each node u ∈ V must be assigned to exactly one point in

the grid. Constraints (3.3) establish that at most one node of the graph is assigned to each

point p ∈ B. Constraints (3.4) impose binary restrictions to the variables, while the objective

function (3.1) minimizes the error associated with the embedding of G into B. Thus, an optimal

solution has an optimal value equal to zero if and only if this solution defines a feasible embedding

for the iMDGP-grid.

The quadratic objective function can be linearized by introducing two sets of new variables.

For each edge e = {u, v} ∈ E and each pair of grid points p, q ∈ B, we define a continuous

variable εe, as the mapping error of assigning u, v to positions p, q ∈ B, as follows:

εe = max{0, dLuv −Dpq, Dpq − dUuv}.

Also, for each pair of positions p, q ∈ B and each edge e = {u, v} ∈ E, let yuvpq be the binary

variable defined by:

yuvpq =

{
1, if nodes u and v are assigned, respectively, to positions p and q

0, otherwise.
The integer linear formulation is as follows:
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min
∑
e∈E

εe (3.5)

subject to (3.2), (3.3), (3.4),

yuvpq ≥ (wup + wvq − 1), p, q ∈ B, {u, v} ∈ E, (3.6)

yuvpq ≤ wup , p, q ∈ B, {u, v} ∈ E, (3.7)

yuvpq ≤ wvq , p, q ∈ B, {u, v} ∈ E, (3.8)

ε{u,v} ≥ (dLuv −Dpq)y
uv
pq , p, q ∈ B, {u, v} ∈ E : Dpq < dLuv, (3.9)

ε{u,v} ≥ (Dpq − dUuv)yuvpq , p, q ∈ B, {u, v} ∈ E : Dpq > dUuv, (3.10)

0 ≤ yuvpq ≤ 1, p, q ∈ B, {u, v} ∈ E, (3.11)

εe ≥ 0, e ∈ E. (3.12)

Constraints (3.6) - (3.8) and (3.11) define the yuvpq variables and correspond to the classical linear

reformulation of the quadratic term wupw
v
q , that is, yuvpq = 1 iff wupw

v
q = 1, which happens only if

wup = wvq = 1. Constraints (3.9), (3.10), and (3.12) model the εe variables. The objective function

(3.5) is to minimize the violated distances. Let us refer to this formulation as MEA (Minimizing

Error Assignment).

3.2 Discrete feasibility model

Deciding whether there exists a feasible embedding of G in B can be modeled as an assignment

problem using the variables wup defined above, while answering if there exists a feasible assignment

is equivalent to solving the following feasibility model:

∑
p∈B

wup = 1, u ∈ V, (3.13)

∑
u∈V

wup ≤ 1, p ∈ B, (3.14)

wup + wvq ≤ 1, p, q ∈ B, {u, v} ∈ E : Dpq 6∈ [dLuv, d
U
uv], (3.15)

wup ∈ {0, 1}, u ∈ V, p ∈ B. (3.16)

Constrains (3.13), (3.14), (3.16) are the same as (3.2), (3.3), (3.4). Constraints (3.15) ensure

that u and v cannot be simultaneously assigned, respectively, to p and q when the Euclidean

distance Dpq is not in the interval distance [dLuv, d
U
uv] related to edge e = {u, v}. These constraints

are weak and will be strengthened in Section 5.

Let us refer to this formulation as FM (Feasibility Model). Each feasible solution of FM is

equivalent to a valid embedding of G in B. This feasibility problem can be converted into the

following optimization problem:
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max
∑
u∈V

∑
p∈B

wup (3.17)

subject to
∑
p∈B

wup ≤ 1, u ∈ V, (3.18)

(3.14), (3.15), (3.16),

where the objective is to maximize the number of nodes in V that can be mapped onto positions

of B while satisfying the distance constraints. Constraints (3.13) are replaced by constraints

(3.18) imposing that each node is assigned to at most one position in B. Hence, FM has a

feasible solution iff the optimization problem has value equal to |V |.
The model given by (3.14), (3.15), (3.16), (3.17) and (3.18) can be seen as finding the maxi-

mum independent set on a conflict graph GC = (VC , EC) defined as follows: the set of nodes VC

is given by node-position pairs, VC = {(u, p) : u ∈ V, p ∈ B}; there is an edge between two nodes

(u, p), (v, q) if the two pairs are incompatible, which occurs when i) u = v; or ii) p = q; or iii)

Dpq 6∈ [dLuv, d
U
uv]. This model will be denoted by CG model.

Another approach to convert FM into an optimization model is to use the Farkas Lemma.

Instead of using its variant for integer problems, we will apply the classical Farkas Lemma [21]

to the linear relaxation of FM.

Associate dual variables αu, u ∈ V, with constraints (3.13), dual variables βp, p ∈ B, with

constraints (3.14), and dual variables γuvpq , {u, v} ∈ E, p, q ∈ B, p 6= q,Dpq 6∈ [dLuv, d
U
uv] with

constraints (3.15).

The dual problem is given as follows:

h(α, β, γ) = min
∑
u∈V

αu +
∑
p∈B

βp +
∑
{u,v}∈E

∑
p∈B

∑
q∈B

γuvpq (3.19)

s. t. αu + βp +
∑
v∈V

∑
q∈B

γuvpq ≥ 0, u ∈ V, p ∈ B, (3.20)

βp ≥ 0, p ∈ B, (3.21)

γuvpq ≥ 0, {u, v} ∈ E, p, q ∈ B, p 6= q,Dpq 6∈ [dLuv, d
U
uv]. (3.22)

We assume in the model that each variable γuvpq not defined is equal to zero.

The following theorem follows from the Farkas’ Lemma.

Proposition 1. Let X denote the set of solutions to the linear relaxation of the CG model. Then,

either X is nonempty or h(α, β, γ) < 0.

As a result of Proposition 1, if h(α, β, γ) < 0 (it suffices to find a dual solution for the

dual problem with negative value) then the linear relaxation of the CG model is infeasible and,

therefore, the integer problem is also infeasible. In that case no feasible embedding of G in B

exists. The model (3.19)-(3.22) will be denoted by LFM (Linear Feasibility Model). We can

easily see that the free variables αu can be bounded to be non-positive.

Observe that when h(α, β, γ) ≥ 0 nothing can be concluded regarding the feasibility of the

integer problem. Hence h(α, β, γ) < 0 is just a sufficient condition for infeasibility. On the other

hand, h(α, β, γ) < 0 can be checked in polynomial time.
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4 Constraint Programming

Constraint Programming (CP) is a technique that has proved to be competitive when com-

pared against (mixed) integer programming (MIP) for certain combinatorial problems (such as

scheduling problems) where the linear relaxations of the MIP models are weak; that is the case of

the models discussed in Section 3. We refer a reader not familiar with the CP technique to [14].

We consider a very simple CP model. For each node u ∈ V , let X(u) be a set variable with

domain Bu ⊆ B (an algorithm to compute such restricted domain Bu is described in the next

section). We consider additionally the following constraints for the domain reduction:

dLuv ≤ ||X(u)−X(v)|| ≤ dUuv, ∀(u, v) ∈ E. (4.1)

We used the Xpress-Kalis [20] solver in the implementation of the CP model. Constraints (4.1)

were encoded with the following GenericBinaryConstraint command to propagate the distance

constraint:

GenericBinaryConstraint(X(u),X(v),“Valid Distance Positions”),

where “Valid Distance Positions” is a binary function with inputs p, q ∈ B that returns 1 if the

distance between p and q lies in the interval [dLuv, d
U
uv], and 0 otherwise.

5 Improvements

All the models discussed in the previous sections can be improved in different directions.

Domain reduction: When some atoms are fixed, which is the case of many instances tested,

a preprocessing phase can be done in order to reduce the domain of each atom, that is: for each

node v ∈ V, the set of grid points that can be assigned to v is reduced by checking its known

distances to the fixed nodes. Let V F be the set of fixed nodes. For each u ∈ V F , let PosFix(u)

denote the fixed grid position of node u in the grid. Also, for a grid point p ∈ B, (px, py, pz)

represents the corresponding grid coordinates.

Algorithm 1 is used to set the initial domains of the non-fixed nodes by computing the

intersection of several spherical shells on the grid. Given a grid point p ∈ B and two distances

L and U , the function BallPoints defined in Algorithm 2 computes the spherical shell of grid

points defined by {q ∈ B : L ≤ ‖p− q‖ ≤ U}.
Algorithm 1 allows us to define a restricted domain for each node u ∈ V, denoted by Bu. Set

B can also be replaced by the restricted set B =
⋃
u∈V Bu. Using the restricted domains we set to

zero all the variables yuvpq and wup in the model MEA, and variables wup in the models FM and CG,

that do not belong to the corresponding domain. It also allows us to remove many constraints

in the model MEA and to reduce the domain of the CP variables.

Strengthening model FM: The linearization proposed in models FM is very weak. Following

the ideas from the Adam and Johnson linearization technique [1] for the quadratic assignment

problem (which can not be applied directly here) the following set of equations can be added.
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Algorithm 1 Domain reduction.

for all u ∈ V F , v ∈ V \ V F do

if {u, v} ∈ E then

if D(v) = ∅ then

D(v)← BallPoints(PosF ix(u), dLuv, d
U
uv)

else

D(v)← D(v) ∩BallPoints(PosF ix(u), dLuv, d
U
uv)

end if

end if

end for

Algorithm 2 Ball Points: Given a grid point p ∈ B and the distances L and U , computes all

the grid points q ∈ B such that L ≤ ‖p− q‖ ≤ U
function BallPoints( p, L,U)

X ← ∅
for i = 0 .. bU/αc do

for j = 0 ..
⌊√

U2/α2 − i2
⌋

do

for k =
⌈√

max {0, L2/α2 − i2 − j2}
⌉
. . .
⌊√

U2/α2 − i2 − j2
⌋

do

X ← X ∪
{

(px + iα, py + jα, pz + kα) , (px + iα, py + jα, pz − kα) ,

(px + iα, py − jα, pz + kα) , (px + iα, py − jα, pz + kα) ,

(px − iα, py + jα, pz + kα) , (px − iα, py + jα, pz − kα) ,

(px − iα, py − jα, pz + kα) , (px − iα, py − jα, pz − kα)

}
end for

end for

end for

return X

end function
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∑
q∈B

yuvpq = wup ,{u, v} ∈ E, p ∈ B (5.1)

∑
p∈B

yuvpq = wvq ,{u, v} ∈ E, q ∈ B (5.2)

Equations (5.1) state that if wup is one then yuvpq must be one for some q ∈ B. Similarly for

equations (5.2). These equations are not necessary to define the model but they improve the

lower bound.

Strengthening model CG: The model CG can be seen as finding a maximum cardinality

independent set in a given graph. As a consequence, all the polyhedral theory known for the

independent set problem [16] can be used here. In particular, since a non maximal clique in-

equality does not define a facet of the associated polytope, the defining inequalities of CG can be

strengthened: each inequality (3.15) can be replaced by a stronger clique inequality that includes

the nodes in a clique C of the conflict graph GC :∑
(u,p)∈C

wup ≤ 1. (5.3)

Finding maximal cliques in GC that allow us to derive inequalities of type (5.3) dominating

inequalities (3.15) can be done efficiently using a greedy algorithm. Consider an edge {u, v} ∈ E
and a pair p, q ∈ B, such that Dpq 6∈ [dLuv, d

U
uv]. The first inequality states that if Dpq > dUuv,

that is, if nodes u, v can not be placed in p, q, respectively (because the distance between p and

q is greater than the maximum distance between u and v), then the same holds for every pair of

points whose distance is greater than Dpq. Let π denote the vector q− p. The hyperplane defined

by point p and normal to π is given by (x−p) ·π = 0. Similarly, the hyperplane defined by point q

and normal to π is given by (x−q) ·π = 0. Each one of these hyperplanes defines two half-spaces.

Let Hu = {x ∈ B : (x− p) ·π ≤ 0} and Hv = {x ∈ B : (x− q) ·π ≥ 0}. It is easy to verify that

when Dpq > dUuv, every point in Hu has distance at least dUuv from every point from Hv. Hence,

if Dpq > dUuv, then the inequality ∑
p∈Hu

wup +
∑
q∈Hv

wvq ≤ 1

can be added.

Define S(`) = {x ∈ B : ‖x− `‖ ≤ dLuv}, ` ∈ B. If Dpq < dLuv, then the following inequalities

can be added: ∑
p∈S(q)

wup + wvq ≤ 1, q ∈ B, {u, v} ∈ E,Dpq 6∈ [dLuv, d
U
uv],

wup +
∑
q∈S(p)

wvq ≤ 1, p ∈ B, {u, v} ∈ E,Dpq 6∈ [dLuv, d
U
uv].

When Dpq < dLuv, another possible lifting can be obtained by taking x∗ = 1
2p + 1

2q. Then the

inequality ∑
p∈S(x∗)

wup +
∑

q∈S(x∗)

wvq ≤ 1

is valid for the set of feasible solutions.
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Optimization strategy: The last improvement is related to the approach used to solve the

models MEA and CG. Both are too large to be used as stated is Section 3, therefore a relaxation

of each model obtained with the elimination of the larger set of constraints can be considered.

The relaxation is solved and if the obtained solution violates one of the relaxed constraints, then

those violated constraints are added to the model and the model is re-optimized. For Model

MEA inequalities (3.6)-(3.10) are added dynamically as well as the variables that only appear in

the constraints that are introduced. For model CG inequalities (3.15) are added dynamically. In

both cases, the separation amounts to identifying pairs of nodes u, v ∈ V whose distance in the

current solution does not lie in the interval Ie, e = {u, v}, e ∈ E.

6 Computational experiments

In this section, we report some computational experiments to compare the IP models and

the CP model, testing the effectiveness of these models in checking embedding feasibility and the

improvements discussed in Section 5. We also show that the inclusion of a distance bound for

those pairs of nodes for which the distance is not known, can be effective in solving the MDGP

instances.

The computations were performed using the optimization software Xpress-Optimizer, Version

23.01.03 with Xpress Mosel Version 3.4.0 [20], on a computer with processor Intel Core 2, 2.2

GHz and with 2 GB RAM.

The domain reduction revealed to be crucial in reducing the size of the models considered.

Most of the reported instances could not be solved without this reduction, therefore all the tests

include the domain reduction as a pre-processing step.

First, we compare the IP models with and without dynamic inclusion of constraints and the

CP model. Then, using the approach with the best performance (that is, the IP approach based on

the CG model) we test the effectiveness of the strengthening of cuts discussed in Section 5. Finally,

we report the improvements in solving the MDGP with the inclusion of implicit inequalities.

Model comparison

We compared the Branch and Bound using the IP models MEA and CG discussed in Section 3,

with and without the improvements discussed in Section 5, against the CP model. The first set of

instances is generated as follows. First we generate a molecule following the procedure described

in [7]. Then we consider small sized instances with 5 or 6 nodes resulting from neighborhoods of

atoms of the molecule. Two atoms are considered neighbors if their distance is less than 5.5Å.

The position of the atoms is free. The size of the box is defined by taking ∆ = 20Å. Three

possible values for α, corresponding to different tolerance values (see Section 2) are considered:
2√
3
, 2.5√

3
, and 3√

3
.

Table 1 reports the results obtained. Column #atoms indicates the number of nodes. Col-

umn named α gives the value of α used in the discretization. Column #NGrid gives the number

|B| of the points in the grid after the domain reduction using the algorithm described in Sec-

tion 5. Columns C Time (fourth and sixth columns) indicate the running time in seconds using

the complete model, that is, using the corresponding model with all the model constraints, and

with no addition of valid inequalities. Columns S Time (fifth and seventh columns) give the

12



running time in seconds when all the improvements discussed in Section 5 are used, namely the

optimization strategy is followed for both models (the larger sets of constraints are relaxed and

these constraints are added dynamically); for model MEA we also include equations (5.1) and

(5.2); and for model CG the lifted inequalities are included at the root node. Finally, column

Time gives the running time in seconds using the CP model.

Table 1: Performance of the three models MEA, CG and CP.

MEA CG CP

#atoms α #NGrid C Time S Time C Time S Time Time

5 3√
3

82 0.05 0.26 0.03 0.02 0.09

5 3√
3

113 0.08 0.14 0.05 0.03 0.09

5 2.5√
3

205 0.31 0.29 0.05 0.02 0.08

5 2.5√
3

261 0.52 0.31 0.42 0.05 0.11

5 2√
3

524 2.12 0.53 4.03 0.09 0.03

5 2√
3

984 8.08 0.68 35.88 0.08 0.09

5 2√
3

1082 11.56 1.46 68.69 0.09 0.10

5 2√
3

1193 15.33 1.23 123.29 0.28 0.11

5 2√
3

1202 14.85 1.24 131.23 0.11 0.11

6 3√
3

89 0.30 1.03 0.08 0.05 0.09

6 2.5√
3

140 0.25 1.02 0.17 0.02 0.01

6 2√
3

186 1.15 0.36 0.30 0.09 0.09

6 2.5√
3

305 42.25 1.79 3.48 0.03 0.10

6 2.5√
3

353 4.21 3.14 5.20 0.08 0.09

6 2.5√
3

444 3.78 1.37 5.65 0.03 0.11

6 2.5√
3

504 3.42 2.42 5.90 0.03 0.11

6 2√
3

751 8.72 7.37 25.01 0.12 0.13

We can see that when the constraints are added dynamically, the Branch and Bound based

on the CG model is the strategy that had the best performance. However the CP model was

better in three instances.

Impact of using lifted inequalities

Considering only the best approach (the Branch and Bound method based on the CG model)

we tested the effectiveness of the use of the strengthened inequalities. For these tests we consid-

ered a new set of larger instances based on a set of benchmark instances1 extracted from Protein

Data Bank2.

As explained before the main purpose of this work is to provide feasibility tests that can be

embedded in Branch and Prune algorithms where the binary tree of possible solutions is explored

starting from its top, where the first three atoms are positioned, and by placing one node at a

1Available in www.antoniomucherino.it/en/mdjeep.php/tests1.tar.gz.
2www.resb.org/pdb
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time following an ordering on the atoms of the protein. For each possible position of the selected

node a new branch in the search tree is created. For each branch, a new instance is created

based on the selected node and its neighbors. Thus, for each molecule, identified in Table 2 in

column Name a set of instances of the iMDGP-grid is generated by considering neighborhoods

of atoms. Each of these instances represents a set of atoms that were already fixed by the Branch

and Prune (B&P ) algorithm [11] and a set of atoms that must be fixed in the next iterations of

this algorithm. From the initial assumptions, the distances between three consecutive nodes are

known. Hence, at least the selected node and the two previous ones (which are neighbors of the

selected one) are considered in the instance and have fixed positions.

The main idea is to test if this approach enables us to check feasibility of an embedding of

a set of atoms (which could be used within the B&P algorithm for the iMDGP). Although the

original data comes from exact distances, we considered ∆ = 20Å and α = 0.1; therefore the

exact distances were converted into interval distances by using (2.2) and (2.3).

The first five columns are related to information about the instances. Column #NInst

indicates the number of instances considered from the corresponding molecule identified in column

Name, column #atoms gives the average number of atoms considered, column #fixed indicates

the average number of fixed atoms, and column #NGrid gives the average number of the points

in the grid after the elimination procedure described in Section 5. Columns Time give the

average time, in seconds, and columns #Uns give the number of instances that couldn’t be

solved within the time limit of 1500 seconds of the corresponding model: CG is for the model CG

with constraints added dynamically as described in Optimization strategies, Section 5, and CG+SI

is for the same model with the addition at the root node of the lifted inequalities, described in

the same section. We can see that the average running time is lower when the strengthened

inequalities are added and the total number of unsolved instances drops from 23 to 9.

Table 2: Performance of the Branch & Bound algorithm based on the CG model with and without

the strengthened inequalities.

Instance CG CG+SI

Name #NInst #atoms #fixed #NGrid Time #Uns Time #Uns

1a70 18 9.2 4.4 28396 566 3 257 1

1bpm 43 9.0 4.2 23305 579 5 382 2

1fs3 46 9.4 4.5 22569 518 8 357 4

1jk2 29 9.4 4.6 26738 458 3 565 1

1m40 10 9.7 4.4 23570 614 3 438 1

1mbn 2 8.0 4.0 21086 55 0 76 0

1n4w 11 8.6 4.4 22271 259 1 180 0

All 159 9 4.4 23990.7 436 23 322 9

Among the 159 instances tested, 9 were proved to be infeasible. We ran the LFM for those

infeasible instances and in none of them the LFM was able to prove infeasibility. Although this

is a negative result, it also indicates that the linear relaxation of the CG model is weak, since for

those instances the IP model is infeasible but its linear relaxation is feasible.
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Use of implicit information from NMR

The main purpose of this work is to propose and compare feasibility checking models that can

be used to improve the performance of a solution approach to the MDGP (as the B&P algorithm

described in [9]). Additionally, in this section, we discuss a very simple improvement that uses

implicit information from the NMR spectroscopy. The NMR spectroscopy analysis provides only

few inter-atomic distances. The reason is that only short distances are detected (distances of less

than 5.5Å). Hence, we use the fact that for each (u, v) 6∈ E, u, v ∈ V, the distance duv ≥ 5.5.

To the best of our knowledge, such information has not been used before in the B&P algorithm

applied to protein structure calculation (see [8] for some related questions).

Based on a set of benchmark instances3 with exact distances extracted from the Protein Data

Bank4, we compared the performance of the B&P algorithm described in [9] in both cases: with

and without the implicit distance duv ≥ 5 (a tolerance of 0.5Å was considered). Table 3 reports

the computational results. The first three columns characterize the instances. The columns

Name, #atoms and #edges indicate the name of the instance, the number of nodes and the

number of edges, respectively. Columns 4-8 report information of the B&P algorithm when it is

run to find only one feasible embedding in R3, while the remaining columns refer to the case where

the B&P is run until all feasible embeddings are found. Columns 4-5 and 9-11 give information

for the pure B&P , as described in [9], while columns 6-8 and 12-15 give information for the B&P

where the implicit distances are tested at each tree node. Columns #Nodes indicate the number

of the tree nodes, columns Pruned indicate the number of pruned nodes, and %NR indicate the

percentage of the reduction of tree nodes by including the implicit distance constraints. Columns

#Sol give the number of feasible embeddings (solutions) found.

We can see that the use of the implicit distance allows for a reduction on the number of

nodes on average by 10% to obtain one solution and by 12% to obtain all feasible solutions.

Considering the implicit distances, we can also eliminate feasible solutions found by the B&P

algorithm in instances 1mbn, 1mqq, 3b34. Each solution that has been excluded corresponds to

a feasible embedding that satisfies all the distance constraints for all pair {u, v} ∈ E but does

not satisfy the new implicit distances. However, it should be clear that the excluded solutions

cannot correspond to the real conformation of the molecule.

7 Conclusions

We introduced different approaches for finding an embedding of a graph on a lattice that sat-

isfies a set of distance intervals. We tested two integer programming models and one constraint

programming model. We improved these models and showed that an integer programming model

based on a conflict graph, strengthened with clique inequalities and based on an efficient gener-

ation of the domain of each variable had the best performance. This model allowed us to solve

150 out of the 159 tested instances within the specified time limit. These results show that

this approach can be used to find a feasible embedding of small sized graphs in a lattice while

satisfying a set of interval distances associated to the edges of the graph.

As a future line of research, we aim to use the best approach within a Branch and Prune

3Available in www.antoniomucherino.it/en/mdjeep.php/tests1.tar.gz.
4www.resb.org/pdb
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(B&P ) algorithm for the iMDGP, in order to identify infeasible assignments in early stages of the

B&P search tree that, otherwise, could only be identified after a deep search. Since the running

times of the branch and bound (B&B) algorithm based on the CG model with strengthened

inequalities are still high, this approach can only be useful when it identifies infeasibility quickly

and allows to cut many search tree nodes. Currently, we are studying graph topologies where

the characteristics of the subgraph corresponding to a neighborhood of atoms in the molecule

are such that the B&B runs fast over instances that include nodes corresponding to atoms that

appear in early stages of the search tree and others that appear only in latter stages of the tree.

In this paper we have focused only in iMDGP instances. However, for general DGP, it would be

interesting to investigate the behaviour of the three modelling approaches on large size instances.

Also some of these approaches may be improved. For instance, it may be worthy of investigation

other linearization techniques such as t-linearization, see [17] for the MEA model.
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