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Progressive Wasserstein Barycenters of Persistence Diagrams
Jules Vidal, Joseph Budin, and Julien Tierny

Fig. 1. The Persistence diagrams of three members (a-c) of the Isabel ensemble (wind velocity) concisely and visually encode the
number, data range and salience of the features of interest found in the data (eyewall and region of high speed wind, blue and red in
(a)). In these diagrams, features with a persistence smaller than 10% of the function range or on the boundary are shown in transparent
white. The pointwise mean for these three members (d) exhibits three salient interior features (due to distinct eyewall locations, blue,
green and red), although the diagrams of the input members only report two salient interior features at most, located at drastically
different data ranges (the red feature is further down the diagonal in (a) and (b)). The Wasserstein barycenter of these three diagrams
(e) provides a more representative view of the features found in this ensemble, as it reports a feature number, range and salience that
better matches the input diagrams (a-c). Our work introduces a progressive approximation algorithm for such barycenters, with fast
practical convergence. Our framework supports computation time constraints (e) which enables the approximation of Wasserstein
barycenters within interactive times. We present an application to the clustering of ensemble members based on their persistence
diagrams ((f), lifting: α = 0.2), which enables the visual exploration of the main trends of features of interest found in the ensemble.

Abstract— This paper presents an efficient algorithm for the progressive approximation of Wasserstein barycenters of persistence
diagrams, with applications to the visual analysis of ensemble data. Given a set of scalar fields, our approach enables the computation
of a persistence diagram which is representative of the set, and which visually conveys the number, data ranges and saliences of the
main features of interest found in the set. Such representative diagrams are obtained by computing explicitly the discrete Wasserstein
barycenter of the set of persistence diagrams, a notoriously computationally intensive task. In particular, we revisit efficient algorithms
for Wasserstein distance approximation [12,51] to extend previous work on barycenter estimation [94]. We present a new fast algorithm,
which progressively approximates the barycenter by iteratively increasing the computation accuracy as well as the number of persistent
features in the output diagram. Such a progressivity drastically improves convergence in practice and allows to design an interruptible
algorithm, capable of respecting computation time constraints. This enables the approximation of Wasserstein barycenters within
interactive times. We present an application to ensemble clustering where we revisit the k-means algorithm to exploit our barycenters
and compute, within execution time constraints, meaningful clusters of ensemble data along with their barycenter diagram. Extensive
experiments on synthetic and real-life data sets report that our algorithm converges to barycenters that are qualitatively meaningful with
regard to the applications, and quantitatively comparable to previous techniques, while offering an order of magnitude speedup when
run until convergence (without time constraint). Our algorithm can be trivially parallelized to provide additional speedups in practice on
standard workstations. We provide a lightweight C++ implementation of our approach that can be used to reproduce our results.
Index Terms—Topological data analysis, scalar data, ensemble data

1 INTRODUCTION

In many fields of science and engineering, measurements and simula-
tions are core tools for the understanding of complex physical systems.
However, given the geometrical complexity of the resulting data, in-
teractive exploration and analysis can be challenging for users. This
motivates the design of expressive data abstractions, capable of con-
cisely capturing the main features of interest in the data, and of visually
conveying that information to the user, quickly and effectively.
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In that regard, Topological Data Analysis (TDA) [27] has demon-
strated over the last two decades its utility to support interactive visual-
ization tasks [45]. In the applications, it robustly and efficiently captures
in a generic way the features of interest in scalar data. Examples of
successful applications include turbulent combustion [18, 39, 54], mate-
rial sciences [33, 42, 44, 80], nuclear energy [60], fluid dynamics [50],
medical imaging [3], chemistry [14, 36] or astrophysics [85, 88] to
name a few. An appealing aspect of TDA is the ease it offers for the
translation of domain-specific descriptions of features of interest into
topological terms. Moreover, to distinguish noise from features, con-
cepts from Persistent Homology [27, 29] provide importance measures,
which are both theoretically well established and meaningful in the ap-
plications. Among the existing abstractions, such as contour trees [19],
Reeb graphs [16, 66, 93], or Morse-Smale complexes [25, 40, 41, 43],
the persistence diagram [29] has been extensively studied. In particular,



its conciseness, stability [22] and expressiveness make it an appealing
candidate for data summarization tasks. For instance, its applicability
as a concise data descriptor has been well studied in machine learn-
ing [20, 78, 79]. In visualization, it provides visual hints about the
number, data range and salience of the features of interest (Fig. 2),
which helps users visually apprehend the complexity of their data.

In practice, modern numerical simulations are subject to a variety of
input parameters, related to the initial conditions of the system under
study, as well as the configuration of its environment. Given recent
advances in hardware computational power, engineers and scientists
can now densily sample the space of these input parameters, in order to
better quantify the sensitivity of the system. For scalar variables, this
means that the data which is considered for visualization and analysis
is no longer a single field, but a collection, called “ensemble”, of
scalar fields representing the same phenomenon, under distinct input
conditions and parameters. In this context, extracting the global trends
in terms of features of interest in the ensemble is a major challenge.

Although it is possible to compute a persistence diagram for each
member of an ensemble, in particular in-situ [7, 8], this process only
shifts the problem from the analysis of an ensemble of scalar fields to
an ensemble of persistence diagrams. Then, given such an ensemble of
diagrams, the question of estimating a diagram which is representative
of the set naturally arises, as such a representative diagram could
visually convey to the users the global trends in the ensemble in terms
of features of interest. For this, naive strategies could be considered,
such as estimating the persistence diagram of the mean of the ensemble
of scalar fields. However, given the additive nature of the pointwise
mean, this yields a persistence diagram with an incorrect number of
features (Fig. 3), which is thus not representative of any of the diagrams
of the input scalar fields. To address this issue, a promising alternative
consists in considering the barycenter of a set of diagrams, given a
distance metric between them, such as the so-called Wasserstein metric
[27], hence the term Wasserstein barycenter. For this, an algorithm
has been proposed by Turner et al. [94]. However, it is based on an
iterative procedure, for which each iteration relies itself on a demanding
optimization problem (optimal assignment in a weighted bipartite graph
[64]), which makes it impractical for real-life datasets.

This paper addresses this problem by introducing a fast algorithm
for the approximation of discrete Wasserstein barycenters of ensembles
of persistence diagrams. We designed our approach by revisiting the
core routines involved in this optimization problem with appropriate
heuristics, motivated by practical observations. A unique aspect of our
approach is its progressive nature: the computation accuracy and the
number of features in the output diagram are progressively increased
along the optimization. This specificity has two main practical advan-
tages. First, this progressivity drastically accelerates convergence in
practice. Second, it enables to formulate an interruptible algorithm,
capable of producing meaningful barycenters while respecting compu-
tation time constraints. This latter advance is particularly useful, both
in an interactive exploration setting (where users need rapid feedback)
and in an in-situ context (where computation ressources need to be care-
fully allocated). Extensive experiments on synthetic and real-life data
report that our algorithm converges to barycenters that are qualitatively
meaningful for the applications, while offering an order of magnitude
speedup over the fastest combinations of existing techniques. Our al-
gorithm is easily parallelizable, which provides additional speedups
on commodity workstations. We illustrate the utility of our approach
by introducing a clustering algorithm adapted from k-means which
exploits our progressive Wasserstein barycenters. This application en-
ables a meaningful clustering of the members based on their features of
interest, within computation time constraints, and provides informative
summarizations of the global trends of features found in the ensemble.

1.1 Related work
The literature related to our work can be classified into three main
categories, reviewed in the following: (i) uncertainty visualization, (ii)
ensemble visualization, and (iii) persistence diagram processing.
Uncertainty visualization: The analysis and visualization of uncer-
tainty in data is a notoriously challenging problem in the visualization

Fig. 2. Critical points (spheres, light brown: minima, light green: maxima,
other: saddles) and persistence diagrams of a clean (a) and noisy (b) 2D
scalar field. From left to right : 2D data, 3D terrain visualization, persis-
tence diagram. In both cases, the two main hills are clearly represented
by salient persistence pairs in the diagrams. In the noisy diagram (b),
small pairs near the diagonal correspond to noisy features in the data.

Fig. 3. Synthetic ensemble of a pattern with 2 gaussians and additive
noise (a). The persistence diagram of the pointwise mean (b) contains 8
highly persistent features although each of the input ensemble members
contain only 2 features. The Wasserstein barycenter (c) provides a
diagram which is representative of the set, with a feature number, range
and salience which better describes the input ensemble (2 large features).

community [1, 17, 48, 59, 65, 77]. In this context, the data variability is
explicitly modeled by an estimator of the probability density function
(PDF) of a pointwise random variable. Several representations have
been proposed to visualize the related data uncertainty, either focusing
on the entropy of the random variables [75], on their correlation [70], or
gradient variation [68]. When geometrical constructions are extracted
from uncertain data, their positional uncertainty has to be assessed. For
instance, several approaches have been presented for level sets, under
various interpolation schemes and PDF models [4–6, 69, 71–74, 83].
Other approaches addressed critical point positional uncertainty, either
for Gaussian [55, 57, 58, 67] or uniform distributions [15, 38, 89]. In
general, visualization methods for uncertain data are specifically de-
signed for a given distribution model of the pointwise random variables
(Gaussian, uniform, etc.). This challenges their usage with ensemble
data, where PDF estimated from empirical observations can follow an
arbitrary, unknown model. Moreover, most of the above techniques
do not consider multi-modal PDF models, which is a necessity when
several distinct trends occur in the ensemble.
Ensemble visualization: Another category of approaches has been
studied to specifically visualize the main trends in ensemble data. In
this context, the data variability is directly encoded by a series of global
empirical observations (i.e. the members of the ensemble). Existing
visualization techniques typically construct geometrical objects, such
as level sets or streamlines, for each member of the ensemble. Then,
given this ensemble of geometrical objects, the question of estimating
an object which is representative of the ensemble naturally arises. For
this, several methods have been proposed, such as spaghetti plots [26]
in the case of level-set variability in weather data ensemble [76, 82], or
box-plots for the variability of contours [95] and curves in general [61].
For the specific purpose of trend variability analysis, Hummel et al. [47]
developed a Lagrangian framework for classification in flow ensembles.
Related to our work, clustering techniques have been used to analyze
the main trends in ensembles of streamlines [34] and isocontours [35].
However, only few techniques have focused on applying this strategy
to topological objects. Overlap-based heuristics have been investigated
to estimate a representative contour tree from an ensemble [52, 96].
Favelier et al. [32] introduced an approach to analyze critical point
variability in ensembles. It relies on the spectral clustering of the
ensemble members according to their persistence map, a scalar field
defined on the input geometry which characterizes the spatial layout of
persistent critical points. However, the clustering stage of this approach



takes as an input a distance matrix between the persistence maps of
all the members of the ensemble, which requires to mantain them
all in memory, which is not conceivable for large-scale ensembles
counting a high number of members. Moreover, the clustering itself is
performed on the spectral embedding of the persistence maps, where
distances are loose approximations of the intrinsic metric between these
objects. In contrast, the clustering application described in this paper
directly operates on the persistence diagrams of the ensemble members,
whose memory footprint is orders of magnitude smaller than the actual
ensemble data. This makes our approach more practical, in particular in
the perspective of an in-situ computation [8] of the persistence diagrams.
Also, it is built on top of our progressive algorithm for Wasserstein
barycenters, which focuses on the Wasserstein metric between diagrams.
Optionally, our work can also integrate the spatial layout of critical
points by considering a geometrically lifted version of this metric [86].
Persistence diagram processing: To define the barycenter of a set of
persistence diagrams, a metric (i) first needs to be introduced to measure
distances between them. Then, barycenters (ii) can be formally defined
as minimizers of the sum of distances to the set of diagrams.

(i) The estimation of distances between topological abstractions has
been a long-studied problem, in particular for similarity estimation
tasks. Several heuristical approaches have been documented for the
fast estimation of structural similarity [46, 81, 90, 91]. More formal
approaches have studied various metrics between topological abstrac-
tions, such as Reeb graphs [9, 10] or merge trees [11]. For persistence
diagrams, the Bottleneck [22] and Wasserstein distances [27, 49, 62],
have been widely studied, for instance in machine learning [23] and
adapted for kernel based methods [20, 78, 79]. The numerical compu-
tation of the Wasserstein distance between two persistence diagrams
requires to solve an optimal assignment problem between them. The
typical methods for this are the exact Munkres algorithm [64], or an
auction-based approach [12] that provides an approximate result with
improved time performance. Kerber et al. [51] specialized the auction
algorithm to the case of persistence diagrams and showed how to sig-
nificantly improve performances by leveraging adequate data structures
for proximity queries. Soler et al. [86] introduced a fast extension of the
Munkres approach, also taking advantage of the structure of persistence
diagrams, in order to solve the assignment problem in an exact and
efficient way, using a reduced, sparse and unbalanced cost matrix.

(ii) Recent advances in optimal transport [23] enabled the practi-
cal resolution of transportation problems between continuous quanti-
ties [24, 87]. These methods have been successfully applied to persis-
tence diagrams [53]. However, this application requires to represent
the input diagrams as heat maps of fixed resolution [2]. Such a rasteri-
zation can be interpreted as a pre-normalization of the diagrams, which
can be problematic for applications where the considered diagrams
have different persistence scales, as typically found with time-varying
phenomena for instance. Moreover, this approach does not explicitly
produce a persistence diagram as an output, but a heat map of the
population of persistence pairs in the barycenter. This challenges its
usage for visualization applications, as the features of interest in the
barycenter cannot be directly inferred from the barycenter heat map.
In contrast, our approach produces explicitly a persistence diagram
as an output, from which the geometry of the features (their number,
data ranges and salience) can be directly visually inspected. Moreover,
such an explicit representation also enables the efficient geometrical
lifting of the Wasserstein metric [86], which is relevant for scientific
visualization applications but which would require to regularly sample
a five dimensional space with heat map based approaches. Turner et
al. [94] introduced an algorithm for the computation of a Fréchet mean
of a set of persistence diagrams with regard to the Wasserstein metric.
This approach provides explicit barycenters, which makes it appealing
for the applications. However, its very high computational cost makes it
impractical for real-life data sets. In particular, it is based on an iterative
procedure, for which each iteration relies itself on N optimal assign-
ment problems [64] between persistence diagrams (for the Wasserstein
distances), where N is the number of members in the ensemble. A naive
approach to address this computational bottleneck would be to combine
this method with the efficient algorithms for Wasserstein distances

mentioned previously [51, 86]. However, as shown in Sec. 5, such an
approach is still computationally expensive and it can require up to
hours of computation on certain data sets. In contrast, our algorithm
converges in multi-threaded mode in a couple of minutes at most, and
its progressive nature additionally allows for its interruption within
interactive times, while still providing qualitatively meaningful results.

1.2 Contributions
This paper makes the following new contributions:

1. A progressive algorithm for Wasserstein barycenters of persistence
diagrams: We revisit efficient algorithms for Wasserstein distance ap-
proximation [12, 51] in order to extend previous work on barycenter
estimation [94]. In particular, we introduce a new approach based on
a progressive approximation strategy, which iteratively refines both
computation accuracy and output details. The persistence pairs of the
input diagrams are progressively considered in decreasing order of
persistence. This focuses the computation towards the most salient
features of the ensemble, while considering noisy persistent pairs last.
The returned barycenters are explicit and provide insightful visual
hints about the features present in the ensemble. Our progressive
strategy drastically accelerates convergence in practice, resulting
in an order of magnitude speedup over the fastest combinations of
existing techniques. The algorithm is trivially parallelizable, which
provides additional speedups in practice on standard workstations.
We present an interruptible extension of our algorithm to support
computation time constraints. This enables to produce barycenters
accounting for the main features of the data within interactive times.

2. An interruptible algorithm for the clustering of persistence diagrams:
We extend the above methods to revisit the k-means algorithm and in-
troduce an interruptible clustering of persistence diagrams, which is
used for the visual analysis of the global feature trends in ensembles.

3. Implementation: We provide a lightweight C++ implementation of
our algorithms that can be used for reproduction purposes.

2 PRELIMINARIES

This section presents the theoretical background of our approach. It
contains definitions adapted from the Topology ToolKit [92]. It also
provides, for self completeness, concise descriptions of the key algo-
rithms [51,94] that our work extends. We refer the reader to Edelsbrun-
ner and Harer [27] for an introduction to computational topology.

2.1 Persistence diagrams
The input data is an ensemble of N piecewise linear (PL) scalar fields
f : M → R defined on a PL d-manifold M , with d ≤ 3 in our appli-
cations. We note f−1

−∞(w) = {p ∈M | f (p)< w} the sub-level set of
f , namely the pre-image of (−∞,w) by f . When continuously increas-
ing w, the topology of f−1

−∞(w) can only change at specific locations,
called the critical points of f . In practice, f is enforced to be injective
on the vertices of M [30], which are in finite number. This guaran-
tees that the critical points of f are isolated and also in finite number.
Moreover, they are also enforced to be non-degenerate, which can be
easily achieved with local re-meshing [28]. Critical points are classified
according to their index I : 0 for minima, 1 for 1-saddles, d−1 for
(d−1)-saddles, and d for maxima. Each topological feature of f−1

−∞(w)
(i.e. connected component, independent cycle, void) can be associated
with a unique pair of critical points (c,c′), corresponding to its birth
and death. Specifically, the Elder rule [27] states that critical points can
be arranged according to this observation in a set of pairs, such that
each critical point appears in only one pair (c,c′) such that f (c)< f (c′)
and I c = I c′−1. Intuitively, this rule implies that if two topological
features of f−1

−∞(w) (e.g. two connected components) meet at a critical
point c′, the youngest feature (i.e. created last) dies, favoring the oldest
one (i.e. created first). Critical point pairs can be visually represented
by the persistence diagram, noted D( f ), which embeds each pair to a
single point in the 2D plane at coordinates

(
f (c), f (c′)

)
, which respec-

tively correspond to the birth and death of the associated topological
feature. The persistence of a pair, noted P(c,c′), is then given by
its height f (c′)− f (c). It describes the lifetime in the range of the



Fig. 4. Illustration of the Auction algorithm [12] on a 2D example for the optimal assignment of 2 point sets (light and dark green). Boxes and columns
represent auction rounds and auction iterations respectively. Each matrix reports the value va→b currently estimated by the bidder a for the purchase
of the object b. Assignments are shown with black arrows. After the first round (left box), a sub-optimal assignment is achieved, which becomes
optimum at the second round (right box). Note that bidders can steal objects from each other within one auction round (iteration 3, second round).

corresponding topological feature. The construction of the persistence
diagram is often restricted to a specific type of pairs, such as (0,1)
pairs or

(
(d−1),d

)
pairs, respectively capturing features represented

by minima or maxima. In the following, we will consider that each
persistence diagram is only composed of pairs of a fixed critical type(
(I −1),I ), which will be systematically detailed in the experiments.

Note that in practice, each critical point in the diagram additionally
stores its 3D coordinates in M to allow geometrical lifting (Sec. 2.2).

In practice, critical point pairs often directly correspond to features
of interest in the applications and their persistence has been shown to
be a reliable importance measure to discriminate noise from important
features. In the diagram, the pairs located in the vicinity of the diagonal
represent low amplitude noise while salient features will be associated
with persistent pairs, standing out far away from the diagonal. For
instance, in Fig. 2, the two hills are captured by two large pairs, while
noise is encoded with smaller pairs near the diagonal. Thus, the per-
sistence diagram has been shown in practice to be a useful, concise
visual representation of the population of features of interest in the data,
for which the number, range values and salience can be directly and
visually read. In addition to its stability properties [22], these observa-
tions motivate its usage for data summerization, where it significantly
help users distinguish salient features from noise. In the following,
we review distances between persistence diagrams [22, 27] (Sec. 2.2),
efficient algorithms for their approximation [12, 51] (Sec. 2.3), as well
as the reference approach for barycenter estimation [94] (Sec. 2.4).

2.2 Distances between Persistence diagrams
To compute the barycenter of a set of persistence diagrams, a necessary
ingredient is the notion of distance between them. Given two diagrams
D( f ) and D(g), a pointwise distance, noted dq, inspired from the Lp

norm, can be introduced in the 2D birth/death space between two points
a = (xa,ya) ∈D( f ) and b = (xb,yb) ∈D(g), with q > 0, as follows :

dq(a,b) = (|xb− xa|q + |yb− ya|q)1/q = ‖a−b‖q (1)

By convention, dq(a,b) is set to zero if both a and b exactly lie on the
diagonal (xa = ya and xb = yb). The q-Wasserstein distance [49, 62],
noted Wq, between D( f ) and D(g) can then be introduced as:

Wq
(
D( f ),D(g)

)
= min

φ∈Φ

(
∑

a∈D( f )
dq
(
a,φ(a)

)q

)1/q

(2)

where Φ is the set of all possible assignments φ mapping each point a∈
D( f ) to a point b∈D(g), or to its projection onto the diagonal, ∆(a) =
( xa+ya

2 , xa+ya
2 ), which denotes the removal of the corresponding feature

from the assignment, with a cost dq
(
a,∆(a)

)q (see additional materials
for an illustration). The Wasserstein distance can be computed by
solving an optimal assignment problem, for which existing algorithms
[63, 64] however often require a balanced setting. To address this, the
input diagrams D( f ) and D(g) are typically augmented into D ′( f )
and D ′(g), which are obtained by injecting the diagonal projections of
all the points of one diagram into the other:

D ′( f ) = D( f )∪{∆(b) | b ∈D(g)} (3)
D ′(g) = D(g)∪{∆(a) | a ∈D( f )} (4)

In this way, the Wasserstein distance is guaranteed to be preserved by
construction, Wq

(
D( f ),D(g)

)
=Wq

(
D ′( f ),D ′(g)

)
, while making the

assignment problem balanced (|D ′( f )| = |D ′(g)|) and thus solvable
with traditional assignment algorithms. When q→ ∞, Wq becomes
a worst case assignment distance called the Bottleneck distance [22],
which is often interpreted in practice as less informative, however, than
the Wasserstein distance. In the following, we will focus on q = 2.

In the applications, it can often be useful to geometrically lift the
Wasserstein metric, by also taking into account the geometrical layout
of critical points [86]. Let (c,c′) be the critical point pair corresponding
the point a ∈ D( f ). Let pλ

a ∈ Rd be their linear combination with
coefficient λ ∈ [0,1] in M : pλ

a = λc′+(1−λ )c. Our experiments
(Sec. 5) only deal with extrema, and we set λ to 0 for minima and
1 for maxima (to only consider the extremum’s location). Then, the
geometrically lifted pointwise distance d̂2(a,b) can be given as:

d̂2(a,b) =
√

(1−α)d2(a,b)2 +α||pλ
a − pλ

b ||
2
2 (5)

The parameter α ∈ [0,1] quantifies the importance given to the geom-
etry of critical points and it must be tuned on a per application basis.

2.3 Efficient distance computation by Auction
This section briefly describes a fast approximation of Wasserstein dis-
tances by the auction algorithm [12,51], which is central to our method.

The assignment problem involved in Eq. 2 can be modeled in the
form of a weighted bipartite graph, where the points a ∈ D ′( f ) are
represented as nodes, connected by edges to nodes representing the
points of b ∈D ′(g), with an edge weight given by d2(a,b)2 (Eq. 1). To
efficiently estimate the optimal assignment, Bertsekas introduced the
auction algorithm [12] (Fig. 4), which replicates the behavior of a real-
life auction: the points of D ′( f ) are acting as bidders that iteratively
make offers for the purchase of the points of D ′(g), known as the
objects. Each bidder a ∈ D ′( f ) makes a benefit βa→b = −d2(a,b)2

for the purchase of an object b ∈ D ′(g), which is itself labeled with
a price pb ≥ 0, initially set to 0. During the iterations of the auction,
each bidder a tries to purchase the object b of highest value va→b =
βa→b− pb. The bidder a is then said to be assigned to the object b. If
b was previously assigned, its previous owner becomes unassigned. At
this stage, the price of b is increased by δa +ε , where δa is the absolute
difference between the two highest values va→b that the bidder a found
among the objects b, and where ε > 0 is a constant. This bidding
procedure is repeated iteratively among the bidders, until all bidders are
assigned (which is guaranteed to occur by construction, thanks to the ε

constant). At this point, it is said that an auction round has completed:
a bijective, possibly sub-optimal, assignement φ exists between D ′( f )
and D ′(g). The overall algorithm will repeat auction rounds, which
progressively increases prices under the effect of competing bidders.

The constant ε plays a central role in the auction algorithm. Let

Ŵ2
(
D ′( f ),D ′(g)

)
=
√

∑a∈D ′( f ) d2
(
a,φ(a)

)2 be the approximation of
the Wasserstein distance W2

(
D( f ),D(g)

)
, obtained with the assign-

ment φ returned by the algorithm. Large values of ε will drastically
accelerate convergence (as they imply fewer iterations for the construc-
tion of a bijective assignment φ within one auction round, Fig. 4), while



low values will improve the accuracy of Ŵ2. This observation is a key
insight at the basis of our approach. Bertsekas suggests a strategy called
ε-scaling, which decreases ε after each auction round. In particular, if:

Ŵ2
(
D ′( f ),D ′(g)

)2 ≤ (1+ γ)2
(

Ŵ2
(
D ′( f ),D ′(g)

)2− ε|D ′( f )|
)

(6)

then it can be shown that [13, 51]:

W2
(
D( f ),D(g)

)
≤ Ŵ2

(
D ′( f ),D ′(g)

)
≤ (1+ γ)W2

(
D( f ),D(g)

)
(7)

This result is particularly important, as it enables to estimate the optimal
assignment, and thus the Wasserstein distance, with an on-demand
accuracy (controlled by the parameter γ) by using Eq. 6 as a stopping
condition for the overall auction algorithm. For persistence diagrams,
Kerber et al. showed how the computation could be accelerated by using
space partitioning data structures such as kd-trees [51]. In practice, ε

is initially set to be equal to 1/4 of the largest edge weight d2(a,b)2,
and is divided by 5 after each auction round, as recommended by
Bertsekas [12]. γ is set to 0.01 as suggested by Kerber et al. [51].

2.4 Wasserstein barycenters of Persistence diagrams
Let D be the space of persistence diagrams. The discrete Wasserstein
barycenter of a set F = {D( f1),D( f2), . . . ,D( fN)} of persistence
diagrams can be introduced as the Fréchet mean of the set, under the
metric W2. It is the diagram D∗ that minimizes its distance to all the
diagrams of the set (i.e. minimizer of the so-called Fréchet energy):

D∗ = argmin
D∈D

∑
D( fi)∈F

W2
(
D ,D( fi)

)2 (8)

The computation of Wasserstein barycenters involves a computa-
tionally demanding optimization problem, for which the existence of
at least one locally optimum solution has been shown by Turner et
al. [94], who also introduced the first algorithm for its computation.
This algorithm (Alg. 1) consists in iterating a procedure that we call
Relaxation (line 3 to 8), which resembles a Lloyd relaxation [56], and
which is composed itself of two sub-routines: (i) Assignment (line 5)
and (ii) Update (line 7). Given an initial barycenter candidate D ran-
domly chosen among the set F , the first step ((i) Assignment) consists
in computing an optimal assignment φi : D →D( fi) between D and
each diagram D( fi) of the set F , with regard to Eq. 2. The second step
((ii) Update) consists in updating the candidate D to a position in D
which minimizes the sum of its squared distances to the diagrams of F
under the current set of assignments {φ1,φ2, . . . ,φN}. In practice, this
last step is achieved by replacing each point a ∈D by the arithmetic
mean (in the birth/death space) of all its assignments φi(a). The overall
algorithm continues to iterate the Relaxation procedure until the set of
optimal assignments φi remains identical for two consecutive iterations.

The reference algorithm for Wasserstein barycenters (Alg. 1) reveals
impractical for real-life data sets. Its main computational bottleneck is
the Assignment step, which involves the computation of N Wasserstein
distances (Eq. 2). However, as detailed in the result section (Sec. 5),
even when combined with efficient algorithms for the Wasserstein
distance exact computation [86] or even approximation [51] (Sec. 2.3),
this overall method can still lead to hours of computation in practice.

Thus, a drastically different approach is needed to improve computa-
tion efficiency, especially for applications such as ensemble clustering,
which require multiple barycenter estimations per iteration.

Algorithm 1 Reference algorithm for Wasserstein Barycenters [94].
Input : Set of diagrams F = {D( f1),D( f2), . . . ,D( fN)}
Output : Wasserstein barycenter D∗

1: D∗←D( fi) // with i randomly chosen in [1,N]

2: while {φ1,φ2, . . . ,φN} change do
3: // Relaxation start
4: for i ∈ [1,N] do
5: φi← Assignment

(
D( fi),D∗

)
// optimizing Eq. 2

6: end for
7: D∗←U pdate(φ1, . . . ,φn) // arithmetic means in birth/death space
8: // Relaxation end
9: end while

10: return D∗

3 PROGRESSIVE BARYCENTERS

This section presents our novel progressive framework for the approxi-
mation of Wasserstein barycenters of a set of Persistence diagrams.

3.1 Overview
The key insights of our approach are twofolds. First, in the reference
algorithm (Alg. 1), from one Relaxation iteration to the next (lines 3
to 8), the estimated barycenter is likely to vary only slightly. Thus,
the assignments involved in the Wasserstein distance estimations can
be re-used as initial conditions along the iterations of the barycenter
Relaxation (Sec. 3.2). Second, in the initial Relaxation iterations, the
estimated barycenter can be arbitrarily far from the final, optimized
barycenter. Thus, for these early iterations, it can be beneficial to
relax the level of accuracy of the Assignment step, and to progressively
increase it as the barycenter converges to a solution. Progressivity can
be injected at two levels: by controlling the accuracy of the distance
estimation itself (Sec. 3.3) and the resolution of the input diagrams
(Sec. 3.4). Our framework is easily parallelizable (Sec. 3.5) and the
progressivity allows to design an interruptible algorithm, capable of
respecting running time constraints (Sec. 3.6).

3.2 Auctions with Price Memorization
The Assignment step of the Wasserstein barycenter computation (line 5,
Alg. 1) can be resolved in principle with any of the existing techniques
for Wasserstein distance estimation [51, 63, 64, 86]. Among them, the
Auction based approach [12, 51] (Sec. 2.3) is particularly relevant as it
can compute very efficiently approximations with on-demand accuracy.

In the following, we consider that each distance computation in-
volves augmented diagrams . Each input diagram D( fi) ∈F is then
considered as a set of bidders while the output barycenter D∗ contains
the objects to purchase. Each input diagram D( fi) maintains its own
list of prices pi

b for the purchase of the objects b ∈D∗ by the bidders
a ∈ D( fi). The search by a bidder for the two most valuable objects
to purchase is accelerated with space partitioning data structures, by
using a kd-tree and a lazy heap respectively for the off- and on-diagonal
points [51] (these structures are re-computed for each Relaxation).
Thus, the output barycenter D∗ maintains only one kd-tree and one lazy
heap for this purpose. Since Wasserstein distances are only approxi-
mated in this strategy, we suggest to relax the overall stopping condition
(Alg. 1) and stop the iterations after two successive increases in Fréchet
energy (Eq. 8), as commonly done in gradient descent optimizations. In
the rest of the paper, we call the above strategy the Auction barycenter
algorithm [94]+[51], as it just combines the algorithms by Turner et
al. [94] and Kerber et al. [51].

However, this usage of the auction algorithm results in a complete
reboot of the entire sequence of auction rounds upon each Relaxation,
while in practice, for the barycenter problem, the output assignments φi
may be very similar from one Relaxation iteration to the next and thus
could be re-used as initial solutions. For this, we introduce a mechanism
that we call Price Memorization, which consists in initializing the
prices pi

b for each bidder a∈D( fi) to the prices obtained at the previous
Relaxation iteration (instead of 0). This has the positive effect of
encouraging bidders to bid in priority on objects which were previously
assigned to them, hence effectively re-using the previous assignments as
an initial solution. This memorization makes most of the early auction
rounds become unnecessary in practice, which enables to drastically
reduce their number, as detailed in the following.

3.3 Accuracy-driven progressivity
The reference algorithm for Wasserstein barycenter computation
(Alg. 1) can also be interpreted as a variant of gradient descent [94]. For
such methods, it is often observed that approximations of the gradient,
instead of exact computations, can be sufficient in practice to reach
convergence. This observation is at the basis of our progressive strategy.
Indeed, in the early Relaxation iterations, the barycenter can be arbi-
trarily far from the converged result and achieving a high accuracy in
the Assignment step (line 5) for these iterations is often a waste of com-
putation time. Therefore we introduce a mechanism that progressively



Fig. 5. Visual comparison between the converged Wasserstein barycenters obtained with the Auction barycenter algorithm [94]+[51](top) and our
approach (bottom) for one cluster (Sec. 5.3) of each ensemble data set. Differences are barely noticeable, and only for small persistence pairs.

Table 1. Comparison of running times (in seconds, 1 thread) for the
estimation of Wasserstein barycenters of Persistence diagrams. N and
#D( fi) respectively stand for the number of members in the ensemble
and the average size of the input persistence diagrams.

Data set N #D( fi)
Sinkhorn

[53]
Munkres
[94]+[86]

Auction
[94]+[51] Ours Speedup

Gaussians (Fig. 8) 100 2,078 7,499.33 > 24H 8,975.60 785.53 11.4
Vortex Street (Fig. 9) 45 14 54.21 0.14 0.47 0.23 0.6
Starting Vortex (Fig. 10) 12 36 40.98 0.06 0.67 0.28 0.2
Isabel (3D) (Fig. 1) 12 1,337 1,070.57 > 24H 377.42 82.95 4.5
Sea Surface Height (Fig. 11) 48 1,379 4,565.37 > 24H 949.08 75.90 12.5

increases the accuracy of the Assignment step along the Relaxation
iterations, in order to obtain more accuracy near convergence.

To achieve this, inspired by the internals of the auction algorithm,
we apply a global ε-scaling , where we progressively decrease the
value of ε , but only at the end of each Relaxation. Combined with
Price Memorization , this strategy enables us to perform only one
auction round per Assignment step. As large ε values accelerate auction
convergence at the price of accuracy, this strategy effectively speeds
up the early Relaxation iterations and leads to more and more accurate
auctions, and thus assignments, along the Relaxation iterations.

In practice, we divide ε by 5 after each Relaxation, as suggested by
Bertsekas [12] in the case of the regular auction algorithm (Sec. 2.3).
Moreover, to guarantee precise final barycenters (obtained for small
ε values), we modify the overall stopping condition to prevent the
algorithm from stopping if ε is larger than 10−5 of its initial value.

3.4 Persistence-driven progressivity
In practice, the persistence diagrams of real-life data sets often contain
a very large number of critical point pairs of low persistence. These
numerous small pairs correspond to noise and are often meaningless for
the applications. However, although they individually have only little
impact on Wasserstein distances (Eq. 2), their overall contributions may
be non-negligible. To account for this, we introduce in this section a
persistence-driven progressive mechanism, which progressively inserts
in the input diagrams critical point pairs of decreasing persistence. This
focuses the early Relaxation iterations on the most salient features
of the data, while considering the noisy ones last. In practice, this
encourages the optimization to explore more relevant local minima of
the Fréchet energy (Eq. 8) that favor persistent features.

Given an input diagram D( fi), let Dρ ( fi) be the subset of its points
with persistence higher than ρ: Dρ ( fi) = {a ∈ D( fi) | ya− xa > ρ}.
To account for persistence-driven progressivity, we run our barycenter
algorithm (with Price Memorization, Sec. 3.2, and accuracy-driven
progressivity, Sec. 3.3) by initially considering as an input the diagrams
Dρ ( fi). After each Relaxation iteration (Alg. 2, line 10), we decrease ρ

such that |Dρ ( fi)| does not increase by more than 10% (to progress at
uniform speed) and such that ρ does not get smaller than

√
τε (we set

τ = 4 to replicate locally Bertsekas’s suggestion for ε setting, Sec. 2.3).
Initially, ρ is set to half of the maximum persistence found in the input
diagrams. Along the Relaxation iterations, the input diagrams Dρ ( fi)
are progressively populated, which yields the introduction of new points
in the barycenter D∗, which we initialize at locations selected uniformly
among the newly introduced points of the N inputs. This strategy
enables to distribute among the inputs the initialization of the new
barycenter points. The corresponding prices are initialized with the
minimum price pi

b found for the objects b∈D∗ at the previous iteration.

3.5 Parallelism
Our progressive framework can be trivially parallelized as the most
computationally demanding task, the Assignment step (Alg. 2), is in-
dependent for each input diagram D( fi). The space partitioning data
structures used for proximity queries to D∗ are accessed independently
by each bidder diagram. Thus, we parallelize our approach by running
the Assignment step in nt independent threads.

3.6 Computation time constraints
Our persistence-driven progressivity (Sec. 3.4) focuses the early itera-
tions of the optimization on the most salient features, while considering
the noisy ones last. However, as discussed before, low persistence pairs
in the input diagrams are often considered as meaningless in the appli-
cations. This means that our progressive framework can in principle be
interrupted before convergence and still provide a meaningful result.

Let tmax be a user defined time constraint. We first progressively in-
troduce points in the input diagrams Dρ ( fi) and perform the Relaxation
iterations for the first 10% of the time constraint tmax, as described in
Sec. 3.4. At this point, the optimized barycenter D∗ contains only a
fraction of the points it would have contained if computed until con-
vergence. To guarantee a precise output barycenter, we found that
continuing the Relaxation iterations for the remaining 90% of the time,
without introducing new persistence pairs, provided the best results.
In practice, in most of our experiments, we observed that this second
optimization part fully converged even before reaching 90% of the com-
putation time constraint. Alg. 2 summarizes our overall approach for
Wasserstein barycenters of persistence diagrams, with price memoriza-
tion, progressivity, parallelism and time constraints. Several iterations
of our algorithm are illustrated on a toy example in additional material.

4 APPLICATION TO ENSEMBLE TOPOLOGICAL CLUSTERING

This section presents an application of our progressive framework for
Wasserstein barycenters of persistence diagrams to the clustering of
the members of ensemble data sets. Since it focuses on persistence
diagrams, this strategy enables to group together ensemble members
that have the same topological profile, hence effectively highlighting
the main trends found in the ensemble in terms of features of interest.

Algorithm 2 Our overall algorithm for Progressive Wasserstein Barycenters.
Input : Set of diagrams F = {D( f1),D( f2), . . . ,D( fN)}, time constraint tmax

Output : Wasserstein barycenter D∗ρ
1: D∗ρ ←Dρ ( fi) // with i randomly chosen in [1,N]

2: while the Fréchet energy decreases do
3: // Relaxation start
4: for i ∈ [1,N] do
5: // In parallel // Sec. 3.5
6: φi← Assignment

(
Dρ ( fi),D∗ρ

)
// Sec. 3.2

7: end for
8: D∗ρ ←U pdate(φ1, . . . ,φn) // arithmetic means in birth/death space
9: E psilonScaling() // Sec. 3.3

10: if t < 0.1× tmax then PersistenceScaling() // Sec. 3.4
11: else if t >= tmax then return D∗ρ // Sec. 3.6
12: // Relaxation end
13: end while
14: return D∗ρ



Table 2. Running times (in seconds) of our approach (run until con-
vergence) with 1 and 8 threads. N and #D( fi) stand for the number of
members in the ensemble and the average size of the diagrams.

Data set N #D( fi) 1 thread 8 threads Speedup
Gaussians (Fig. 8) 100 2,078 785.53 117.91 6.6
Vortex Street (Fig. 9) 45 14 0.23 0.10 2.3
Starting Vortex (Fig. 10) 12 36 0.28 0.19 1.5
Isabel (3D) (Fig. 1) 12 1,337 82.95 31.75 2.6
Sea Surface Height (Fig. 11) 48 1,379 75.90 19.40 3.9

Table 3. Comparison of Fréchet energy (Eq. 8) at convergence between
the Auction barycenter method [94]+[51] and our approach.

Data set N #D( fi)
Auction
[94]+[51] Ours Ratio

Gaussians (Fig. 8) 100 2,078 39.4 39.0 0.99
Vortex Street (Fig. 9) 12 36 415.1 412.5 0.99
Starting Vortex (Fig. 10) 45 14 112,787.0 112,642.0 1.00
Isabel (3D) (Fig. 1) 12 1,337 2,395.6 2,337.1 0.98
Sea Surface Height (Fig. 11) 48 1,379 7.2 7.1 0.99

The k-means is a popular algorithm for the clustering of the elements
of a set, if distances and barycenters can be estimated on this set. The
latter is efficiently computable for persistence diagrams thanks to our
novel progressive framework and we detail in the following how to
revisit the k-means algorithm to make it use our progressive barycenters
as estimates of the centroids of the clusters.

The k-means is an iterative algorithm, which highly resembles
barycenter computation algorithms (Sec. 2.4), where each Cluster-
ing iteration is composed itself of two sub-routines: (i) Assignment and
(ii) Update. Initially, k cluster centroids D∗j ( j ∈ [1,k]) are initialized
on k diagrams D( fi) of the input set F . For this, in practice, we use
the k-means++ heuristic described by Celebi et al. [21], which aims
at maximizing the distance between centroids. Then, the Assignment
step consists in assigning each diagram D( fi) to its closest centroid D∗j .
This implies the computation, for each diagram D( fi) of its Wasserstein
distance W2 to all the centroids D∗j , j ∈ [1,k]. For this step, we estimate
these pairwise distances with the Auction algorithm run until conver-
gence (γ = 0.01, Sec. 2.3). In practice, we use the accelerated k-means
strategy described by Elkan [31], which exploits the triangle inequality
between centroids to skip, given a diagram D( fi), the computation of
its distance to centroids D∗j which cannot be the closest. Next, the
Update step consists in updating each centroid’s location by placing
it at the barycenter (with Alg. 2) of its assigned diagrams D( fi). The
algorithm continues these Clustering iterations until convergence, i.e.
until the assignments between the diagrams D( fi) and the k centroids
D∗j do not evolve anymore, hence yielding the final clustering.

From our experience, the Update step of a Clustering iteration is
by far the most computationally expensive. To speed up this stage
in practice, we derive a strategy that is similar to our approach for
barycenter approximation: we reduce the computation load of each
Clustering iteration and progressively increase their accuracy along the
optimization. This strategy is motivated by a similar observation: early
centroids are quite different from the converged ones, which motivates
an accuracy reduction in the early Clustering iterations of the algorithm.
Thus, for each Clustering iteration, we use a single round of auction
with price memorization (Sec. 3.2), and a single barycenter update
(i.e. a single Relaxation iteration, Alg. 2). Overall, only one global
ε-scaling (Sec. 3.3) is applied at the end of each Clustering iteration.
This enhances the k-means algorithm with accuracy progressivity. If a
diagram D( fi) migrates from a cluster j to a cluster l, the prices of the
objects of D∗l for the bidders of D( fi) are initialized to 0 and we run
the auction algorithm between D( fi) and D∗l until the pairwise ε value
matches the global ε value, in order to obtain prices for D( fi) which are
comparable to the other diagrams. Also, we apply persistence-driven
progressivity (Sec. 3.4) by adding persistence pairs of decreasing per-
sistence in each diagram D( fi) along the Clustering iterations. Finally,
a computation time constraint can also be provided, as described in
Sec. 3.6. Results of our clustering scheme are presented in Sec. 5.3.

Fig. 6. Comparison of the evolution of the Fréchet energy (log scale,
Sea Surface Height, maximum diagrams), for the Auction barycenter
method [94]+[51](red) and 3 variants of our approach: without (blue) and
with (orange) persistence progressivity, and with time constraints (green).
Persistence-driven progressivity drastically accelerates convergence.

5 RESULTS

This section presents experimental results obtained on a ècomputer with
two Xeon CPUs (3.0 GHz, 2x4 cores), with 64GB of RAM. The input
persistence diagrams were computed with the FTM algorithm [37, 92].
We implemented our approach in C++, as TTK modules.

Our experiments were performed on a variety of simulated and
acquired 2D and 3D ensembles, taken from Favelier et al. [32]. The
Gaussians ensemble contains 100 2D synthetic noisy members, with 3
patterns of Gaussians (Fig. 8). The considered features of interest in this
example are the maxima. The Vortex Street ensemble (Fig. 9) includes
45 runs of a 2D simulation of flow turbulence behind an obstacle. The
considered scalar field is the curl orthogonal component, for 5 fluids
of different viscosity. In this application, salient extrema are typically
considered as reliable estimations of the center of vortices. Thus, each
run is represented by two diagrams, processed independently by our
algorithms: one for the (0,1) pairs (involving minima) and one for the(
(d−1),d

)
pairs (involving maxima). The Starting Vortex ensemble

(Fig. 10) includes 12 runs of a 2D simulation of the formation of a vortex
behind a wing, for 2 distinct wing configurations. The considered data
is also the curl orthogonal component and diagrams involving minima
and maxima are also considered. The Isabel data set (Fig. 1) is a volume
ensemble of 12 members, showing key time steps (formation, drift and
landfall) in the simulation of the Isabel hurricane [84]. In this example,
the eyewall of the hurricane is typically characterized by high wind
velocities, well captured by velocity maxima. Thus we only consider
diagrams involving maxima. Finally, the Sea Surface Height ensemble
(Fig. 11) is composed of 48 observations taken in January, April, July
and October 2012 (https://ecco.jpl.nasa.gov/products/all/). Here, the
features of interest are the center of eddies, which can be reliably
estimated with height extrema. Thus, both the diagrams involving the
minima and maxima are considered and independently processed by
our algorithms. Unless stated otherwise, all results were obtained by
considering the Wasserstein metric W2 based on the original pointwise
metric (Eq. 1) without geometrical lifting (i.e. α = 0, Sec. 2.2).

5.1 Time performance
Tab. 1 evaluates the time performance of our progressive framework
when run until convergence (i.e. no computation time constraint).
This table also provides running times for 3 alternatives. The column,
Sinkhorn, provides the timings obtained with a Python CPU imple-
mentation kindly provided by Lacombe et al. [53], for which we used
the recommended parameter values (entropic term: 10−1/#D( fi) heat
map resolution: 1002). Note that this approach casts the problem as
an Eulerian transport optimization under an entropic regularization
term. Thus, it optimizes for a convex functional which is considerably
different from the Fréchet energy considered in our approach (Eq. 8).
Overall, these aspects, in addition to the difference in programming
language, challenge direct comparisons and we only report running
times for completeness. The columns Munkres, noted [94]+[86], and
Auction, noted [94]+[51], report the running times of our own C++

https://ecco.jpl.nasa.gov/products/all/


Fig. 7. Interrupted Wasserstein barycenters for one cluster of the Sea
Surface Height ensemble with different computation time constraints.
From left to right : 0.1 s., 1 s., 10 s., and full convergence (21 s.).

Fig. 8. Clustering the Gaussians ensemble. From left to right, pointwise
mean and Wasserstein barycenter for each of the identified clusters
(tmax : 10s.) with geometrical lifting (α = 0.65).

implementation of Turner’s algorithm [94] where distances are respec-
tively estimated with the exact method by Soler et al. [86] and our own
C++ implementation of the auction-based approximation by Kerber et
al. [51] (with kd-tree and lazy heap, run until convergence, γ = 0.01).

As predicted, the cubic time complexity of the Munkres algorithm
makes it impractical for barycenter estimation, as the computation com-
pleted within 24 hours for only two ensembles. The Auction approach
is more practical but still requires up to hours to converge for the largest
data sets. In contrast, our approach converges in sequential in less than
15 minutes at most. The column Speedup reports the gain obtained with
our method against the fastest of the two explicit alternatives, Munkres
or Auction. For ensembles of realistic size, this speedup is about an
order of magnitude. As reported in Tab. 2, our approach can be trivially
parallelized with OpenMP by running the Assignment step (Alg. 2)
in independent threads (Sec. 3.5). As the size of the input diagrams
D( fi) may strongly vary within an ensemble, this trivial parallelization
may result in load imbalance among the threads, impairing parallel
efficiency. In practice, this strategy still provides reasonable speedups,
bringing the computation down to a couple of minutes at most.

5.2 Barycenter quality
Tab. 3 compares the Fréchet energy (Eq. 8) of the converged barycenters
for our method and the Auction barycenter alternative [94]+[51] (the
Wasserstein distances between the results of the two approaches are pro-
vided in additional material for further details). The Fréchet energy has
been precisely evaluated with an estimation of Wasserstein distances
based on the Auction algorithm run until convergence (γ = 0.01). While
the actual values for this energy are not specifically relevant (because of
various data ranges), the ratio between the two methods indicates that
the local minima approximated by both approaches are of comparable
numerical quality, with a variation of 2% in energy at most. Fig. 5
provides a visual comparison of the converged Wasserstein barycenters
obtained with the Auction barycenter alternative [94]+[51] and our
method, for one cluster of each of our data sets (Sec. 5.3). This figure
shows that differences are barely noticeable and only involve pairs with
low persistence, which are often of small interest in the applications.

Fig. 6 compares the convergence rates of the Auction barycen-
ter [94]+[51](red) to three variants of our framework: without (blue)
and with (orange) persistence progressivity and with time computation
constraints (green, complete computations for increasing time con-
straints). It indicates that our approach based on Price Memorization
and single auction round (blue) already substantially accelerates conver-
gence (the first iteration, dashed, is performed with a large ε and thus
induces a high energy). Interestingly, persistence-driven progressivity
(orange) provides the most important gains in convergence speed. The
number of Relaxation iterations is larger for our approach (43, orange)
than for the Auction barycenter method (23, red), which emphasizes

Fig. 9. Clusters automatically identified by our topological clustering
(tmax: 10 seconds). From top to bottom: pointwise mean of each cluster.
Left: Centroids computed by our interruptible clustering algorithm. Right:
Wasserstein barycenters of the clusters, computed by our progressive al-
gorithm run until convergence. Differences are visually indistinguishable.
Barycenter extrema are scaled in the domain by persistence (spheres).

the low computational effort of each of our iterations. Finally, when
the Auction barycenter method completed its first Relaxation itera-
tion (leftmost red point), our persistence-driven progressive algorithm
already achieved 80% of its iterations, resulting in a Fréchet energy
almost twice smaller. The quality of the barycenters obtained with the
interruptible version of our approach (Sec. 3.6) is illustrated in Figs. 1
and 7 for varying time constraints. As predicted, features of decreasing
persistence progressively appear in the diagrams, while the most salient
features are accurately represented for very small constraints, allowing
for reliable estimations within interactive times (below a second).

5.3 Ensemble visual analysis with Topological Clustering
In the following, we systematically set a time constraint tmax of 10
seconds. To facilitate the reading of the diagrams, each pair with a
persistence smaller than 10% of the function range is shown in trans-
parent white, to help visually discriminate salient features from noise.
Fig. 8 shows the clustering of the Gaussians ensemble by our approach.
This synthetic ensemble exemplifies the motivation for the geometrical
lifting (Sec. 2.2). The first and third clusters both contain a single Gaus-
sian, resulting in diagrams with a single persistent feature, but located
in drastically different areas of the domain M . Thus, the diagrams of
these two clusters would be indistinguishable for the clustering algo-
rithm if geometrical lifting was not considered. If feature location is
important for the application, our approach can be adjusted thanks to ge-
ometrical lifting (Sec. 2.2). For the Gaussians ensemble, this makes our
clustering approach compute the correct clustering. Moreover, taking
the geometry of the critical points into account allows us to represent
in M the extrema involved in the Wasserstein barycenters (spheres,
scaled by persistence, Fig. 8) which allows user to have a visual feed-
back in the domain of the features representative of the set of scalar
fields. Geometrical lifting is particularly important in applications
where feature location bears a meaning, such as the Isabel ensemble
(Fig. 1(f)). For this example, our clustering algorithm with geometrical
lifting automatically identifies the right clusters, corresponding to the
three states of the hurricane (formation, drift and landfall). For the
remaining examples, geometrical lifting was not necessary (α = 0).
For the Vortex Street ensemble (Fig. 9), our approach manages to au-
tomatically identify the correct clusters, precisely corresponding to
the distinct viscosity regimes found in the ensemble. Note that the



Fig. 10. Clusters automatically identified by our topological clustering
(tmax : 10s.). Left insets (a, c): Centroids computed by our interruptible
clustering algorithm. Right insets (b, d): Wasserstein barycenters of the
clusters, computed by our progressive algorithm run until convergence.
Differences are visually indistinguishable. Top: pointwise mean of each
cluster, with barycenter extrema scaled by persistence (spheres).

centroids computed by our topological clustering algorithm with a time
constraint of 10 seconds (left) are visually indistinguishable from the
Wasserstein barycenters of each cluster, computed after the fact with
our progressive algorithm run until convergence (right). This indicates
that the centroids provided by our topological clustering are reliable and
can be used to visually represent the features of interest in the ensemble.
In particular, for the Vortex Street example, these centroids enable the
clear identification of the number and salience of the vortices: pairs
which align horizontally and vertically respectively denote minima and
maxima of flow vorticity, which respectively correspond to clockwise
and counterclockwise vortices. Fig. 10 presents our results on the Start-
ing Vortex, where our approach also automatically identifies the correct
clustering, corresponding to two wing configurations. In this example,
the difference in turbulence (number and strength of vortices) can be
directly and visually read from the centroids returned by our algorithm
(insets). Finally, Fig. 11 shows our results for the Sea Surface Height,
where our topological clustering automatically identifies four clusters,
corresponding to the four seasons: winter (top left), spring (top right),
summer (bottom left), fall (bottom right). As shown in the insets, each
season leads to a visually distinct centroid diagram. In this example,
as diagrams are larger, differences between the interrupted centroids
(left) and the converged barycenters (right) become noticeable. How-
ever, these differences only involve pairs of small persistence, whose
contribution to the final clustering reveal negligible in practice.

Overall, our approach provides the same clustering results than Fave-
lier et al. [32]: the returned clusterings are correct for both approaches,
for all of the above data sets. However, once the input persistence dia-
grams are available, our algorithm computes within a time constraint
of ten seconds only, while the approach by Favelier et al. requires up to
hundreds of seconds (on the same hardware) to compute intermediate
representations (Persistence Maps) which are not needed in our work.

5.4 Limitations

In our experiments, we focused on persistence diagrams which only
involve extrema, as these often directly translate into features of in-
terest in the applications. Although our approach can consider other
types of persistence pairs (e.g. saddle-saddle pairs in 3D), from our
experience, the interpretation of these structures is not obvious in prac-
tice and future work is needed to improve the understanding of these
pairs in the applications. Thanks to the assignments computed by our
algorithm, the extrema of the output barycenter can be embedded in the
original domain (Fig. 8 to 11). However, in practice a given barycenter
extremum can be potentially assigned with extrema which are distant
from each other in the ensemble members, resulting in its placement at
an in-between location which may not be relevant for the application.
Regarding the Fréchet energy, our experiments confirm the proximity
of our approximated barycenters to actual local minima (Fig. 5, Tab. 3).
However, theoretical proximity bounds to these minima are difficult to
formulate and we leave this for future work. Also, as it is the case for
the original algorithm by Turner et al. [94], there is no guarantee that

Fig. 11. Clusters automatically identified by our topological clustering
(tmax : 10s.). From left to right, top to bottom: pointwise mean of each
cluster with barycenter extrema scaled by persistence (spheres). Left
insets (a, c, e, g): Centroids computed by our interruptible clustering
algorithm. Right insets (b, d, f, h): Wasserstein barycenters of the
clusters, computed by our progressive algorithm run until convergence.

our solutions are global minimizers. For the clustering, we observed
that the initialization of the k-means algorithm had a major impact on
its outcome but we found that the k-means++ heuristic [21] provided
excellent results in practice. Finally, when the geometrical location
of features in the domain has a meaning for the applications, the geo-
metrical lifting coefficient (Sec. 2.2) must be manually adjusted by the
user on a per application basis, which involves a trial and error process.
However, our interruptible approach greatly helps in this process, as
users can perform such adjustments at interactive rates.

6 CONCLUSION

In this paper, we presented an algorithm for the progressive approxi-
mation of Wasserstein barycenters of Persistence diagrams, with appli-
cations to the visual analysis of ensemble data. Our approach revisits
efficient algorithms for Wasserstein distance approximation [12, 51] in
order to specifically extend previous work on barycenter estimation [94].
Our experiments showed that our strategy drastically accelerates con-
vergence and reported an order of magnitude speedup against previous
work, while providing barycenters which are quantitatively and visually
comparable. The progressivity of our approach allows for the defini-
tion of an interruptible algorithm, enabling the estimation of reliable
barycenters within interactive times. We presented an application to en-
semble data clustering, where the obtained centroid diagrams provided
key visual insights about the global feature trends of the ensemble.

A natural direction for future work is the extension of our frame-
work to other topological abstractions, such as Reeb graphs or Morse-
Smale complexes. However, the question of defining a relevant, and
importantly, computable metric between these objects is still an ac-
tive research debate. Our framework provides only approximations of
Wasserstein barycenters. In the future, it would be useful to study the
convergence of these approximations from a theoretical point of view.
Although we have focused on scientific visualization applications, our
framework can be used mostly as-is for persistence diagrams of more
general data, such as filtrations of high dimensional point clouds. In
that context, other applications than clustering will also be investigated.
Moreover, we believe our progressive strategy for Wasserstein barycen-
ters can also be used for more general inputs than persistence diagrams,
such as generic point clouds, as long as an importance measure substi-
tuting persistence is available, which would significantly enlarge the
spectrum of applications of the ideas presented in this paper.
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[67] C. Petz, K. Pöthkow, and H.-C. Hege. Probabilistic local features in
uncertain vector fields with spatial correlation. Computer Graphics Forum,
2012.

[68] T. Pfaffelmoser, M. Mihai, and R. Westermann. Visualizing the vari-
ability of gradients in uncertain 2D scalar fields. IEEE Transactions on
Visualization and Computer Graphics, 2013.

[69] T. Pfaffelmoser, M. Reitinger, and R. Westermann. Visualizing the posi-
tional and geometrical variability of isosurfaces in uncertain scalar fields.
Computer Graphics Forum, 2011.

[70] T. Pfaffelmoser and R. Westermann. Visualization of global correlation
structures in uncertain 2D scalar fields. Comp. Grap. For., 2012.
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