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ABSTRACT
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Heat transfers in dilute gas-particle mixtures are often modeled using hybrid Euler-Lagrange descrip-
tions, treating the carrier fluid via an Eulerian representation and following each particle in a Lagrangian
framework. One of the focal issues in these models is the calculation of the macro-scale heat transfer
between the continuous phase and particles. In the standard approach, the heat transfer for each particle
is considered to vary linearly with the average temperature difference between the particle and the fluid.
Here, we use the method of volume averaging with closure to filter the heat transfer equations at the
micro-scale and derive a closed form of the heat transfer rate, which is significantly different from the
standard case. The primary difference is that the heat transfer for a given particle does not only depend
on the temperature of the particle but also depends on the temperatures of all other particles within
the averaging volume. This yields a matrix of heat exchange coefficients that captures indirect particle-
particle exchanges at macro-scale. Using simple model cases, we validate our approach, compare it to the
standard heat transfer model and show that it degenerates toward the standard model only in specific

cases.

1. Introduction

We are interested in dust explosion hazard in the context of
nuclear safety and, in particular, in modeling flame propagation
for dilute and dispersed gas-particle flows with particle sizes typ-
ically ranging from 1076 to 10~4m and a volume fraction of par-
ticles up to 10-3. Such configurations correspond to accident sce-
narios that may happen during operations of decommissioning of
uranium natural graphite gas reactors (D’Amico et al.,, 2016) that
involve graphite particles or loss of vacuum accident in the vessel
of fusion reactors (Denkevits and Dorofeev, 2005; Janeschitz, 2001)
that involve either tungsten or beryllium particles. In this context,
an important modeling issue is to identify the mechanisms that in-
fluence the severity of the explosion and may result in the release
of radioactive or toxic materials.

Our global strategy follows the ones proposed in e.g.,
Canneviere (2003) and Neophytou and Mastorakos (2009) for
liquid fuel droplets or in Cloney et al. (2018) and Park and
Park (2016) for coal particles. The idea is to use detailed numer-
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ical simulations to analyze the flame structure and calculate the
laminar burning velocity that is then used in a second step to de-
termine the turbulent flame velocity (see for instance Proust, 2017;
Silvestrini et al., 2008). Detailed numerical simulations are often
computed via a hybrid Euler-Lagrange description, which uses a
filtered Eulerian representation of the fluid phase and a Lagrangian
tracking of the particles (Boivin et al., 2000; Capecelatro and Des-
jardins, 2013; Crowe et al., 2011; Simonin et al., 1993). In this con-
text, the macro-scale energy balance equations are written classi-
cally as

3t (crp(0cp)p(Tg)P) + V - (g (0cp) g (Tg) P (ug)F)

Ny
:v.(aﬂ,\gvnﬁ)ﬂ)—%zltzﬁp (1
p=

(mcp)p% =Qgp (2)

The first equation corresponds to the heat transfer equation
for the filtered temperature (Tﬂ)ﬂ of the continuous B-phase,

where }‘73’ (uﬂ)ﬁ, (pcp)p and ag are respectively an effective
thermal conductivity, the intrinsic velocity, the volumetric heat



Nomenclature

Roman letters

Ap surface area of a particle, m?

Aggy interfacial area of the J — o contained
within the averaging volume, m?

ay interfacial area per unit volume, m~!

Bi, = hpdp/As particle Biot number

bg vector that maps V(Tﬁ)ﬂ onto fﬂ, m

Cp specific heat capacity, Jkg’l K1

dp particle diameter, m

hp; heat exchange coefficients, Wm=2K~!

Kg effective thermal dispersion tensor,
WmTK-1

lg characteristic length (micro-scale) for the 8-
phase, m

Lg macroscopic characteristic length, m

mp particle mass, kg

g weighting function

Ny number of particles contained in the averag-
ing volume V

ng, unit normal vector from the S-phase towards
the o-phase

Qgp macro-scale heat transfer rate between the
continuous phase and particle p, W

r position vector, m

Tg radius of the averaging volume, m

Sp scalar that maps (Tﬁ)ﬂ —T; onto Tg

T, n = B, o, temperature in the n-phase, K

Tp particle temperature, K

(Tﬁ)ﬁ intrinsic average temperature for the pS-
phase, K

Tﬁ deviation temperature for the S-phase, K

T/g undisturbed temperature for the 8-phase, K

t* characteristic time associated with the micro-
scale diffusion, s

ug velocity in the B-phase, ms~!

(uﬂ)ﬁ intrinsic average velocity for the B-phase,
ms~!

ﬁﬂ deviation velocity for the B-phase, ms~!

v averaging volume, m3

Xp particle position, m

Greek letters

Ag thermal conductivity for the B-phase, Wm~1K~!

Wo volumetric heat source, Wm3

On n = B, o, density for the n-phase, kgm—3

oy n = B, o, volume fraction of the n-phase

3gs Dirac distribution associated with the 8 — o inter-

face

VB indicator function for the B-phase

B continuous phase

o dispersed phase

& Laplace variable, s!

Superscripts

00 quasi-steady

* time convolution product

capacity and the volume fraction of the S-phase. The last term in
Eq. (1) corresponds to the macro-scale heat transfer rate between
the continuous phase and the Ny particles contained within the
averaging volume V. For the pth-particle, the corresponding heat
transfer reads

Ap

where A is the surface of particle p and n denotes the outward
unit normal vector on the particle surface A,.

The second equation in the Euler-Lagrange description
Eq. (2) describes the averaged particle temperature T,, where
(mcp)p is the product of the mass and heat capacity of the
pth-particle. The model for the macro-scale heat transfer Qg, is
usually based on the description of heat transfer in the case of an
isolated particle (Michaelides and Feng, 1994). To solve the heat
transfer problem, this description uses a decomposition of the
surrounding phase temperature into an undisturbed temperature
and a disturbance due to the presence of the particle. Generalizing
from an isolated particle to a set of particles, the undisturbed tem-
perature is often viewed as a macro-scale temperature (Tﬁ)/S and
the resulting heat exchange reads (Ling et al., 2016; Michaelides
and Feng, 1994)

Q*‘“’:fA n- 1V (Ts)? dS+ Aphy((Tg)# — Tp)

t d((Tg)P —T,
+A, /0 1<p<r>i(< “‘ZT ") e (4)

In Eq. (4), the first term refers to the undisturbed heat flux seen by
the particle. It represents the flux that would have entered the vol-
ume occupied by the continuous phase in the absence of the parti-
cle. The second term corresponds to the quasi-steady heat transfer
from the particle to the surrounding phase due to temperature dif-
ference. The heat exchange coefficient h, between the continuous
phase and the particle is usually expressed in terms of the par-
ticle Nusselt number as Nup = hpdp/Ag for which numerous em-
pirical functions of the particle Reynolds number have been pro-
posed (see for instance Ranz and Marshall, 1952; Whitaker, 1972)
with the asymptotic limit Nup =2 when the particle Reynolds
number effect can be neglected. The last term in Eq. (4) is non-
local and captures history effects due to the transient develop-
ment of the temperature in the particle vicinity. The kernel func-
tion Kp(7) that appears in the history integral has been calculated
analytically in Michaelides and Feng (1994) for an isolated particle
without a velocity difference between the continuous phase and
the particle, and the results have been extended to finite parti-
cle Reynolds number in Balachandar and Ha (2001) and Feng and
Michaelides (1996). Usual simplifications of this problem include
neglecting the non-local contribution to decrease the computa-
tional cost and replacing the first term by the time derivative of
the undisturbed temperature (Ling et al, 2016; Michaelides and
Feng, 1994).

In this work, our goal is to propose alternative expressions
of the heat transfer rate using an up-scaling methodology based
on spatial averaging with closure (Carbonell and Whitaker, 1984;
Davit et al., 2013; Quintard and Whitaker, 2000). This methodol-
ogy allows us to derive macro-scale equations that, unlike standard
Euler-Lagrange approaches, take into account heat transfer be-
tween particles in the heat exchange Qg, through a matrix of heat
exchange coefficients. To be more clear about heat transfer be-
tween particles, these have not to be confused with direct particle-
particle exchanges that take place during collisions and that are
negligible in the dilute regime considered in this work. Here, heat
transfer between particles take place through the continuous car-
rier phase and thus will be referred as indirect particle-particle
exchanges. The resulting heat exchange coefficients involve both a
quasi-steady and a non-local contribution that captures history ef-
fects. Our approach further provides closure problems that link the
effective transport coefficients to the micro-scale geometry. To re-
cover more standard formulations, the problem can be simplified



Averaging Volume

Fig. 1. Macroscopic region of a two-phase system and the corresponding averaging volume.

through quasi-steady approximations and a diagonalization of the
heat exchange matrix. In the last part of this work, we validate our
models and compare the different approaches for model one-, two-
and three-dimensional configurations with immobile particles in a
purely conductive setup. The macro-scale models are then com-
pared together and to the results from the direct computations at
the micro-scale.

2. Micro-scale heat transfer problem

We consider the problem of heat transfer in a dispersed two-
phase system as represented in Fig. 1, together with a homoge-
neous heat source in the solid phase that mimics heat release
from burning particles. The continuous phase is identified as the
B-phase while the dispersed one is identified as the o-phase. The
dispersed phase consists of rigid spherical particles of diameter dp.
The physical properties of each phase are considered to be uniform
and constant.

The micro-scale boundary value problem describing heat trans-
fer reads

% ((pcr)pTp) +V - ((pCp)pTpup) = V- (ApVTp),

in the B-phase (5)
nﬂa . (A.ﬂVTﬂ) = nﬁa - (Ag VTU), at Aﬂa (6)
Tg=T,, at Ag, (7)

3[((Pcp)oT0) +V. ((PCp)aTan) =V VTy) + g,

in the o-phase (8)
where Ay, (pcp)y and uy, are respectively the thermal conduc-
tivity, the volumetric heat and the velocity of the n-phase (7=
B.o). ws denotes the homogeneous heat source that may depend
on position but not on temperature. In the boundary conditions,
Egs. (6) and (7), Agy refers to the B — o interface and ng, is
the unit normal vector oriented from the S-phase towards the o-
phase.

We are primarily interested in dust mixtures for which the
thermal conductivity of the o-phase is much larger than that of
the B-phase, typically Aq/Ag~ 103 for a mixture of graphite parti-
cles and air. In the remainder of this paper, we therefore assume
that Ay /Ag>> 1. This implies that the particle Biot number is much

smaller than unity (Bip« 1), so that the temperature of the o-
phase is considered uniform within each particle.

3. Macro-scale Eulerian-Lagrangian equations
3.1. Average equations

In a macro-scale Eulerian-Lagrangian description, the fluid is
described as a continuous phase while the solid phase is treated by
a Lagrangian tracking of each particle. The dispersed and continu-
ous phases exchange heat through transfer terms in the transport
equations. Since the characteristic size dp of each particle is much
smaller than a characteristic macroscopic lengthscale Lg, such ex-
change terms cannot be directly determined from a detailed com-
putation of temperature gradients in the vicinity of each particle
and require the development of specific models. To derive these
models, we use an up-scaling methodology that consists in apply-
ing a spatial filter to the micro-scale heat transfer problem for the
continuous phase at a scale rg, such that dp «rg<Lg (see for in-
stance Anderson and Jackson, 1967; Capecelatro and Desjardins,
2013; Carbonell and Whitaker, 1984). Here, we use the method
of volume averaging with closure and only the main steps of the
methodology are outlined below, since this approach has been ex-
tensively discussed in the literature (Davit and Quintard, 2015;
Quintard and Whitaker, 1993a; 2000; Whitaker, 1998).

First, a spatial averaging operator is defined at point x for a
function g associated with the B-phase as

(Vg) =g+ ¥p = [ gx—m)Wp(r) dr (©)

where g is a kernel defining the properties of the spatial filter-
ing. To localize the average, we generally require that g has com-
pact support in RY with a characteristic lengthscale rg. For sim-
plicity, we also need to normalize it so that its integral over the
entire physical space is unity. More details concerning the mathe-
matical background necessary to introduce Eq. (9) can be found in
Davit and Quintard (2015) and Quintard and Whitaker (1994a,b).
In order to construct an intrinsic phase average, we further define
the B-phase volume fraction at point x by

=g+ = [ Bx-Dyp(r)ar (10)

where yg is the B-phase indicator function, whose value is 1 if
x is located in the B-phase and O otherwise. The intrinsic phase



average of Y is defined as

()P = gxvp _ (¥p)
g &xYp g
Second, we now average the micro-scale heat Eq. (5) on the

averaging volume V, by multiplying the micro-scale transport Eq.

(5) by ygg(x—r), and then integrating it over the physical space

to finally apply the general transport theorem (Whitaker, 1985),

which leads to

3 ((0cp)p(Tp)) + V- {(pcp) g Tgug) = V - (g VTp)
+ (l'lﬁ(, . )\ﬁVTﬁ(Sﬁ(,> (12)
where 8g, is the Dirac delta function associated to the interface

between the two phases.
Next, we introduce the perturbation decomposition of ¥ into

an average and a deviation 1;/3 (see for instance Gray, 1975)

Vg = (V)P + g (13)

Finally, following Carbonell —and  Whitaker  (1984),
Gray (1975) and Quintard and Whitaker (1993a), we write
the averaged equation, Eq. (12), as

at(aﬁ(pcp)ﬁ (Tg)f) + V. (O‘ﬁ(pcp)5<Tﬂ)ﬂ<uﬂ>ﬂ)
=V - (aphsV(Ts)P + (gTynp,8p,))
~Vag - AgV(Tg)# + (g, - AgVTgdg,)
=V - ((pep)(Tyiig)) (14)

where we have ignored the variations of the physical properties
within the averaging volume.

The Lagrangian description of the dispersed phase is obtained
by integrating the micro-scale heat transfer Eq. (8) over each par-
ticle (Crowe et al., 2011). The boundary condition Eq. (6) leads to
the following equation for the averaged particle temperature T,

(11)

dr,
(mep)y gl :/A . A5 VT, dS + wpVp (15)

where V), is the volume of the particle. At this stage of the de-
velopments, we have obtained the macro-scale Euler-Lagrange de-
scription that corresponds to Eqs. (14) and (15) of the heat transfer
problem. However, they are not in a closed form since the tem-
perature deviations Ty are still present. To get rid of these devi-
ations, it is necessary to propose an estimation of the deviation
from its boundary value problem. In order to obtain the govern-
ing equation for the deviation Tﬂ, we introduce the decomposition
Eq. (13) in the micro-scale Eq. (5), and then we subtract the av-
eraged Eq. (14) divided by ag. The micro-scale transport equation
for the deviation may be written as

(pc,,)ﬂa{fﬂ + (pcp)gug - Vfﬂ + (,ocp)ﬁﬁﬂ . V(Tﬂ)ﬁ
=V. ()\,ﬂV?ﬂ) — OlE]V . (Aﬁfﬁnﬁoéﬂn)
—0[51 <l'lﬁg . )\,ﬁVTﬂ(Sﬁg) +(XB]V . ((,OCp)ﬁ (Tﬂﬁﬁ)) (16)

The corresponding boundary conditions are also obtained by in-
troducing the decomposition Eq. (13) in the boundary conditions
Egs. (6) and (7). As a result, one obtains the following set of
boundary conditions on each particle surface Ay, 1 < p <Ny

T =T, — (Tg)? (17)

AV g, = (Ao VT, — AgV(T5)F) -ng, (18)
These equations can be simplified through an evaluation of the or-

ders of magnitude of the different terms. Introducing the decom-
position Eq. (13) in the boundary conditions (7) and in the no-slip

condition (ug =0) at the B — o interface leads to an estimation
of the order of magnitude of the velocity deviation ﬁﬁ and of Tﬁ as
(see Carbonell and Whitaker, 1984; Quintard and Whitaker, 1993a;
Quintard and Whitaker, 2000)

Ty = o(ii(r,,)ﬁ) (20)

Furthermore, according to the developments in Quintard and
Whitaker (1993a,b), the specific area can be estimated by

A o

Bo B

n 0gy) = — = - 21
(ngs¥pdp0) v 0(1ﬁ> (21)
where lg is the micro-scale characteristic length. Eqs. (19)-(21) al-
low us to obtain the following estimates

~ A
27 _ B B
2 V2T, = O(lﬁLﬂ (Ty) ) (22)
~ A
Ol;lv . (AﬂTﬁnﬁGSﬂg) = O(Lg (Tﬁ>ﬂ> (23)

- I
ay'V - (ap(pcp)s(Tplig)) = 0((:0;3%),5:;3@6)’3(“/9)’3) (24)

~ 1
(0pCs) gus - Vp = 0<(Pﬂcv)ﬂLﬂ(Tﬂ>’3<“ﬂ>ﬁ) (25)
Using the length-scale constraint Ig « Lg further leads to
OlE]V . (AﬂfﬂnﬁUSﬂg) < )\‘ﬁvzfﬁ (26)
alglv . (aﬁ(pcp)ﬂ(fﬂﬁﬂ)) <« (,oﬁcp)ﬁuﬂ VT (27)

Therefore, the micro-scale transport equation for the deviation
Eq. (16) can be rewritten as

(,ocp)ﬁf)rfﬂ + (pcp)gug - Vfﬂ + (pcp)ﬂﬁﬁ -V(Tg)P
=V ()‘ﬁVfﬂ) - 0‘51 gy - 2sVT85,) (28)

As previously discussed, the thermal conductivity in the solid, Ay,
is much larger than the thermal conductivity in the S-phase and
thus the boundary condition Eq. (6) yields

Ap
VT, | = ‘Aavrﬁ

< ’VT5| (29)

This implies that the temperature field can be considered uniform
within each particle and that the boundary condition Eq. (18) can
be eliminated from the micro-scale boundary value problem for
the deviation while boundary condition Eq. (17) reads

To =T, — (Tg)? atAp,1<p<Ny (30)

One way to proceed further would be to solve simultaneously
the macroscopic problem and the problem for the deviation fﬁ,
which in many ways is more complex than solving the initial one
Egs. (5)-(8). There is another way to proceed that consists in build-
ing an approximate form of the deviations fﬂ by mapping it to
macroscopic quantities through closure variables. As we will see,
this makes it possible to fully uncouple micro- and macro-scale
problems.

3.2. Unsteady closure

In the boundary value problem for the deviation Eqs. (17)-(28),
we can identify the macroscopic quantities (T, — (Tﬁ)ﬁ|xp) with



1<p<Ny and V(Tﬁ)ﬂ. These terms can be treated as macro-
scopic source terms responsible for generating the spatial deviation
Tg. In this way, deviations can be mapped to these source terms
(Carbonell and Whitaker, 1984; Quintard et al., 1997; Quintard and
Whitaker, 1993a; 2000; Zanotti and Carbonell, 1984) through clo-
sure variables.

To build the form of a local solution for the spatial deviation,
we first follow Davit and Quintard (2012) and Moyne (1997) to ex-
press the deviation in the form of a time convolution according
to
~ N\)

T == sp# 0:((Tg)Plx, — Tp) + bg - 3 V(Ty)P (31)
p=1

where sp and by are the closure variables, which depend on space

x and time t. The time convolution, denoted here by *, is defined

for the functions a and b as

t
(@ +b)(t) :/ alt — T)b(t) dt (32)
0

The closure variables are solutions of unsteady closure problems
given in Appendix A.2, in which we have assumed thermal equi-
librium at t <0. These closure problems need to be solved in ge-
ometries representative of the structure of interest and, in many
cases, this is done in unit cells with periodic boundary condi-
tions. Effects of using periodic unit cells on the macroscopic results
and the validity of the method in ordered and disordered systems
are further discussed in Quintard et al. (1997) and Quintard and
Whitaker (1993a). For disordered media, the periodicity condi-
tions can be used when the size of the unit cell is sufficiently
large compared to the correlation lengths of the heterogeneities
(Quintard et al., 1997).

For the Eulerian field, we inject Eq. (31) in the averaged trans-
port Eq. (14) and obtain

8t(0f/3 (PCp)p (Tﬁ>ﬂ) +V. (aﬂ (Pcp)ﬂaﬁ)ﬂ(uﬂ)ﬂ)

N
p=1

N
+ 3V (dgp = 0 ((Tg)P s, — Tp)) (33)

p=1
where K is the effective thermal dispersion defined by

Eq. (121) and accounts for thermal conduction, tortuosity and hy-
drodynamic thermal dispersion. The coefficient dg, is an additional
velocity-like coefficient and is defined by Eq. (122). Finally, Qg,
represents the macro-scale heat transfer between the continuous
phase and the particle p and is defined by

Ny
QﬂpzfA n V(TP S+ ApS by 3 ((Tp)P L, — Te)
P k=1

The effective properties hy. defined by Eq. (93) and vg, defined
by Eq. (98) are respectively the effective heat exchange coefficients
and the velocity-like coefficient.

For the Lagrangian description of the dispersed phase, substi-
tuting Eq. (31) into Eq. (15) and using the definition Eq. (34) of the
macro-scale heat transfer yields for averaged particle temperature
Tp
(mc,,)p% = Qgp + wpV)p (35)

In these macro-scale Euler-Lagrange equations, both the ther-
mal dispersion tensor, Kgg, and the heat exchange coefficients, hy,
appearing in Eqs. (33)-(35) look like classical terms. This contrasts

with the velocity-like vg, and additional velocity-like dg, terms
that do not appear in the classical macro-scale Euler-Lagrange de-
scription (Crowe et al,, 2011; Ling et al., 2016; Michaelides and
Feng, 1994; Simonin, 1996; Zhang and Prosperetti, 1997). These can
be calculated from the closure problems given in Appendix A.2 and
their contributions have been studied in the literature (Quintard
et al., 1997; Zhang and Huang, 2001) for heat transfer in porous
media with a thermal non-equilibrium model. In this work, we as-
sume that the contributions of the non-classical terms can be ne-
glected compared to the classical terms. In doing so, we obtain the
following simplified model

(o (pcp)g(Tp)P) + V - (et (0p) 4 (Tp) P (up)P)

Ny
p=1

dT,
(mcp)p(Ttp = Qgp + @pV)p (37)

where

Ny
Q= //; n- A,/SV(Tﬁ)ﬂ ds-i-Athpk * at(<Tﬁ>ﬂ|xk - T/‘) (38)
p k=1

3.3. Steady-state closure

Eqgs. (36)-(38) are obtained by expressing the spatial deviation
in the form of a time convolution. The main consequence is that
the resulting effective transport coefficients in the model are not
only depending on the physical properties and the micro-scale ge-
ometry but they also depend upon time. In addition, the macro-
scale Euler-Lagrange equations with unsteady closure problems
must degenerate into the quasi-steady version when the macro-
scopic time is significantly greater than the characteristic time as-
sociated to the relaxation of the micro-scale conduction process
(Davit and Quintard, 2012; Moyne, 1997). This constraint has been
discussed in previous works (Quintard et al., 1997; Quintard and
Whitaker, 1993a) and can be written as

Agt
% >1 (39)
(IOCP),SIﬁ

When this is verified, the unsteady term in the transport equa-
tion for Tg can be neglected, so that the boundary value problem
for the deviation can be treated as quasi-steady. Following previous
works Carbonell and Whitaker (1984), Quintard et al. (1997) and
Quintard and Whitaker (1993a, 2000), we can then express the de-
viation in terms of the macroscopic source terms as
~ Ny
Tg ==Y sy ({Ts)Plx, — Tp) + b - V(Tp)” (40)

p=1
Here, the mapping variables sg° and b%c are solutions of the quasi-
steady problems given in Appendix A.2. This asymptotic behavior
corresponds to the transition form s, and bg to the limit u(t)sy
and u(t)b%o in the convolution product defined by Eq. (31), where

u(t) is the Heaviside function. These decompositions can be written
as follows (Davit and Quintard, 2012)

sp— u(t)sy =s (41)

by — u(t)by =by, (42)
where s} and bg represent the contribution of history effects in
the unsteady closure problem and verify respectively

lim s¥ =0, and lim b;, =0 (43)

t—>+o0 P t—+o0



The mapping variables associated with the history effects s} and
b* are solutions of the closure problems related to the his-
tory effects (Appendix A.3). These closure problems are obtained
by introducing the decompositions Eqs. (41) and (42) into the
unsteady closure problems (Appendix A.1), then subtracting the
quasi-stationary closure problems (Appendix A.2) multiplied by
u(t).

Similarly, introducing the decompositions Eqs. (41) and (42) re-
spectively in Egs. (93) and (121) yields the following expression for
the effective transport coefficients h,, and Kgg

hye =u (R, + (44)

Kgp =u(t)l(%°ﬂ + K3 (45)
where h’lgk and I(Z; are respectively the effective heat exchange
and the effective thermal dispersion coefficients related to history
effects. The definitions of these coefficients are given in appendix
Egs. (115)-(125).

Lastly, by introducing Eqs. (44) and (45) into the averaged
transport equation for the g-phase Eq. (36) and the equation for
the averaged particle temperature Eq. (38), the macro-scale Euler-
Lagrange equations with unsteady closure problems can be written
as

8r(05,3 (0Cp)p (Tﬁ)ﬂ) +V- (05;3 (:OCP),3<T5)/S(“;3>5)

Ny
=V (K5, - V(T5)P) - leg(x —Xp)Qpp
p:

+V - (K -0 (V(Tp)F)) (46)
dT,
(mcp)pd—tp =Qgp+wpVp (47)
where
Ny
Qs = /A nhpV(Ts)Pds+ A, 3 0 ((T)Plx, — i)
P k=1
Ny
+Ap Y kw0 ((Ta) P, — Ti)) (48)
k=1

In the averaged transport equation for the f-phase Eq. (46),
the first term corresponds to the quasi-steady conductive term; the
second term to the macro-scale heat transfer between the continu-
ous phase and particles in the averaging volume; and the last term
takes the form of a history integral that accounts for memory ef-
fects of the unsteady thermal conduction. The appearance of this
term is a direct consequence of the decomposition in the quasi-
steady and memory contributions of the effective thermal disper-
sion.

In the macro-scale heat exchange Eq. (48), the first term looks
like, at least formally, the undisturbed heat flux contribution while
the second term corresponds to the quasi-steady thermal transfer
from the particle to the continuous phase. The last term represents
the unsteady thermal diffusion due to the temporal variation of
the thermal boundary layer around the particles in the averaging
volume. This contribution accounts for the effect of the past his-
tory temperature changes of the S-phase and particles within the
averaging volume to the current temperature change of the pth-
particle.

4. Theoretical comparison with standard models
When comparing the classical Euler-Lagrange model with the

proposed model (46)-(48), the main differences are the convolu-
tion term in Eq. (46) and the expression of the macro-scale heat
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Fig. 2. Comparison of Chang’s unit cell (dashed line) with a spatially periodic sys-
tem (solid line).

exchange term Qﬂp. In this section, we review these differences in
detail for the cases of isolated particles and clouds of particles.

4.1. Isolated particle

As mentioned in the introduction, the modeling of heat ex-
change between the filtered continuous phase and the particles is
usually based on the description of heat transfer for an isolated
particle in an infinite medium (Crowe et al., 2011; Ling et al., 2016;
Michaelides and Feng, 1994; Zhang and Prosperetti, 1997). This de-
scription uses a decomposition of the surrounding B-phase tem-
perature into an undisturbed thermal field T, which is not in-
fluenced by the presence of the particle, and a disturbance field,
which is entirely due to the influence of the heat transfer from the
particle.

In order to compare our model to the standard results in
the case of an isolated particle, we consider the case of a sin-
gle isolated spherical particle with no macroscopic gradient. We
consider an immobile sphere in a spherical unit cell, as repre-
sented in Fig. 2, which is a spherical version of Chang’s unit cell
(Chang, 1983). This unit cell has been extensively studied in the
literature (Quintard and Whitaker, 1993b; 1995) as it allows to
obtain an analytical solution of the closure problems. Following
Quintard and Whitaker (1995), the correspondence between the
Chang’s unit cell and the spatially periodic system is obtained by
requiring that the volume fraction be equal. This leads to lf; =
(4/3)7R3 where R is the radius of the Chang’s unit cell illustrated
in Fig. 2. The radius of the particle, rp, and the characteristic length
of the unit cell, R, are linked by

r
R= —F—= (49)
(1-ap)

The closure problem associated to Chang’s unit cell for the
mapping variable s3° can be written as

Ozkﬂvzsfffagl%hff, forr, <r <R (50)
se=1, atr=r, (51)
n-Vsy=0, atr=R (52)
Average: (s¥) =0 (53)
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Fig. 3. Dimensionless heat transfer coefficient as a function of the solid volume
fraction for the Chang’s unit cell and the spatially periodic system.

where hi° refers here to hg, (single particle within the representa-
tive unit cell) and is given

1
he — — fn-x Vs dS 54
P Ap Ja, BY>p (54)

To solve analytically the closure problem, we proceed as fol-
lows. First, the exchange coefficient hj® is treated as an unknown
constant and the problem given by Egs. (50)-(52) is solved. We
thus obtain the mapping variable s3° as a function of the exchange
coefficient. As a second step, the average constraint Eq. (53) is used
to determine the exchange coefficient. Following this methodology,
the quasi-steady exchange coefficient can be written as

heed, 100:%3

— = l (55)
Ap 9(1 - (1 —a,g)’) —ap(3+ap)

For an isolated particle in an infinite continuous phase (ag— 1),
h reduces to the classical quasi-steady heat exchange coefficient
(Michaelides and Feng, 1994)

%
lim 22 _2 (56)
(Xﬁ—»] A.ﬂ

The correspondence between the Chang’s unit cell and the spa-
tially periodic system has been studied elsewhere (Quintard and
Whitaker, 1993b; 1995) and we just repeat here the analysis per-
formed in Quintard and Whitaker (1995) by comparing the ana-
lytical solution and the numerical solution of the closure prob-
lem for the spatially periodic system. Results displayed in Fig. 3
are in accordance with previous results reported in Quintard and
Whitaker (1995) and show a very good agreement between the
analytical solution and the numerical one, at least for low values
of the solid volume fraction «, which correspond here to the do-
main of interest.

Moving to the unsteady closure problem, in order to solve an-
alytically the closure problem, we further use a Laplace transform

to eliminate the convolutions. The unilateral Laplace transform is
defined by

__ 00 &t
w—[) e='ydt (57)

where £ is the Laplace variable. Applying the Laplace transform
to the closure problem associated with Chang’s unit cell for the
mapping variable s}, yields to the following problem for ?;,

=+ < _1Ap~

(o) 4 (55 +55) = A5 V7S, — aﬂ‘v”hp , forrp<r<R (58)
5,=0, atr=rp (59)
n-Vs;=0, atr=R (60)
Average: (5;)f =0 (61)
with

Ej,:—lf n .z Vs,ds (62)

A

This problem can be solved analytically with the same methodol-
ogy outlined for the quasi-steady case. The coefficient F; has been
obtained in the Laplace domain as a function of ag as well as the
physical properties. Unfortunately h, is a complex expression and
the analytical expression of h;‘, cannot be given in the time domain.
As a consequence, the constraint azg — 1 is directly introduced into

the expression of F;, which leads to

. —
Jim =14

(63)

Applying the inverse Laplace transform to h* leads to the classical
kernel used for the unsteady heat exchange for an isolated particle
in an infinite continuous phase (Michaelides and Feng, 1994)

A -172
. _ 8
hy = Ag ( AP m) (64)

Introducing Egs. (56) and (64) into Eqs. (47) and (48) leads
to the classical energy equation of a rigid sphere in a continuous
phase (Michaelides and Feng, 1994)

dT,
(me)pd—tp =27 Apdp((Tp)P|x, — Tp)

d((Tﬂ)ﬁ IXp - Tp)
dz dr (65)

12
Ap
—f _a@-1)
<(pﬂc")ﬂ )

Due to this specific configuration, the contribution involving the
macroscopic B-phase temperature gradient that usually refers to
the undisturbed heat flux seen by the particle is absent from the
energy equation. Besides the fact that the temperatures are spa-
tial averages, we recover known results in the case of an isolated
particles including history effects.

t

+ A [)

4.2. Cloud of particles

The case of a cloud of particles is fundamentally different. For
a cloud containing Np particles, the fluid temperature TO seen by
the pth-particle is that locally undisturbed by the presence of par-
ticle p, but taking into account the disturbance created by all other
Np —1 particles in the cloud (Boivin et al., 1998). Restricting to
very diluted cases when ag is very close to one, perturbations
to the temperature field induced by the presence of other par-
ticles can be neglected and this leads to the one-way coupling



(Crowe et al., 2011) for which Tg is identical to the fluid tempera-

ture without particles. Moving to less dilute cases that lead to the
two-way coupling (Crowe et al., 2011), the locally undisturbed fluid
temperature is usually treated as a macro-scale temperature (Tﬂ)ﬂ
provided that the characteristic lengthscale rg is much larger than
the particle diameter (Boivin et al., 1998; Climent and Magnaudet,
2006). In this work, the use of spatial averaging with closure fol-
lows similar constraints but allows us to obtain an expression of
the heat exchange that is much more general. This is because the
temperature in the B-phase is decomposed into the averaged tem-
perature (Tﬁ)ﬂ and a deviation, without assuming that the parti-
cle is isolated. The result is an expression for the deviation that
takes into account the effects of all the Ny particles within the av-
eraging volume. The heat exchange for the pth-particle explicitly
captures the effects of other particles as well as the pth-particle
and the Euler-Lagrange equations, Eqs. (46)-(48), are a general-
ization of the classical models (Crowe et al., 2011; Ling et al.,
2016; Michaelides and Feng, 1994; Zhang and Prosperetti, 1997).
This generalization degenerates toward the standard models when
the exchange between the filtered continuous phase and the pth-
particle is the dominant contribution in the heat exchange Qg,. In
this case, we can diagonalize the heat exchange matrix and ob-
tain

QﬂpzfA n-AgV(Tp)? dS+ Aph ((Tp)Plx, — Ty)
P

+Aphy % 8 ((Tg)P|x, — Tp) (66)

where h* and hj, are obtained by solving the closure problems for
unit cell with isolated particle.

It is also of some interest to perform a preliminary com-
parison between the proposed macro-scale description and heat
transfer models that take into account some particle-particle in-
teractions on average in the frame of Eulerian-Eulerian descrip-
tions. For small Reynolds numbers, spatially periodic models of the
micro-scale geometry usually leads to good estimates of the ef-
fective transport coefficients (Carbonell and Whitaker, 1984) while
higher Reynolds number flow cases require more realistic config-
urations such that the ones carried out in Sun et al. (2015) and
Thiam et al. (2019). Hence, restricting to small Reynolds numbers,
it can be instructive to compare the analytical result obtained for
the Chang’s unit cell with heat transfer models used in Eulerian-
Eulerian descriptions (Gunn, 1978; Sun et al., 2015). This can be
achieved by first establishing a correspondence between Eulerian—
Eulerian and Eulerian-Lagrangian descriptions that reads here for
the average temperature of the dispersed phase in the simple case
of monodisperse spherical particles

1 Ny
(%) =55 2T (67)
p=

For motionless particles in a quiescent continuous phase and re-
stricting further to the case where there is no averaged tempera-
ture gradient and to the quasi-steady closure, the resulting macro-
scale description reads

d(Tg)#
Qg (pCp)ﬂ dﬁ

=—a,hy ((Tg)f — (T,)?) (68)

d(T, )*
aa(pcp)g (d(;,)

Ny
— —ah((T,)7 — (Tp)f) + 11-) Yo,  (69)
p=1

where ay, =NyAp/V denotes the interfacial area per unit volume
and hy corresponds to lumped coefficients

Ny
he =3 h3g (70)
k=1
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Fig. 4. Dimensionless heat transfer coefficient as a function of the solid vol-
ume fraction for the Chang’s unit cell and the correlations proposed by
Sun et al. (2015) at vanishing Reynolds number.

Hence, the analytical estimate Eq. (55) obtained from the
Chang’s unit cell can be compared with empirical correlations for
some average Nussel number (Nu). Using the Gunn’s correlation
(Gunn, 1978) that has been established for a wide range of volume
fraction and restricting to vanishing Reynolds numbers, we follow
here Sun et al. (2015) to express the average Nusselt number as

(Nu) = (7 - 10ag + 503) f " (etp) ,
4
flap) = —(1-1.6asa5 —3a,0f) (71)

where f (ag) is a correction factor that relates the Nusselt number
based on the continuous phase temperature to the one based on
the bulk temperature (Sun et al., 2015; Thiam et al., 2019). A com-
parison between the above correlation and the estimate provided
by Eq. (55) for the Chang's unit cell is reported in Fig. 4. Despite
the simplicity of the Chang's unit cell, the analytical estimate fol-
lows similar tendencies featured by empirical correlations. While
such an estimate is expected to over-predict heat transfers for
moderate to high values of the solid volume fraction (Quintard and
Whitaker, 1995), it fulfills the correct asymptotic behavior for very
low solid volume fraction contrary to correlations that use the cor-
rection factor that tend to under-predict heat transfers in this di-
lute regime (Thiam et al., 2019).

5. Results for model cloud cases

The main purpose of this section is to study our model and
compare it to standard approaches in idealized cloud configura-
tions. Such model cloud cases allow us to get a reference solu-
tion by solving numerically the micro-scale heat transfer problem
and averaging the obtained results for the micro-scale tempera-
ture fields Tg and T,. We focus on systems that are infinite in
all directions and where there is no average temperature gradi-
ent in Eqgs. (46)-(48). We further study a relatively dilute dispersed
two-phase flow in the laminar regime with particles smaller than
10— m. The velocity of the continuous phase is considered uniform
and the relative velocity between the particles and the continuous
phase is neglected. Positioning the coordinate system in a moving



frame attached to the continuous phase allows us to further re-
move the convective term in Eq. (46) and the undisturbed heat
flow in Eq. (48).

In this case, the macroscopic description is a OD problem with

d(Tg)B 1
aﬂ(PCp)ﬂT/i :_ﬁzo—ﬁp (72)
p=1
dT,
(mc,,)pd—t’J = Qpp + wpV)p (73)
where

Ny Ny
Qsp = 2 Aph((To)Plx, — ) + D Apht = 8 ((Tp) P I, — i)
k=1 k=1

(74)

Here, we have used the classical box weighting function g defined
by

1
800 =1 7" "Zz (75)
, X

In this framework with no average gradient, only the closure prob-
lems for s§° and s}, need to be solved.

As stated previously, the accuracy of the macro-scale models
is assessed by comparing results to computations of the complete
micro-scale problem. In the remainder of this section, these micro-
scale simulations are termed Direct Numerical Simulations (DNS).
We consider two different studies. In the first study, the validity
of both the unsteady and quasi-steady models is addressed for a
micro-scale one-dimensional geometry for which the closure prob-
lems as well as the macroscopic equations can be solved analyti-
cally. In the second study, we consider only the quasi-steady ap-
proximation and we assess the validity of a diagonal approxima-
tion of the heat exchange matrix for two- and three-dimensional
geometries. DNS of the micro-scale problem have been performed
using the CALIF3S software (CALIF) that employs unstructured fi-
nite volume discretization. The interested reader is referred to
Piar et al. (2013) for a detailed presentation of the finite volume
discretization based on the SUSHI scheme for the approximation
of the diffusive fluxes.

5.1. Validity of the quasi-steady closure

In this section, we compare the unsteady and quasi-steady
models. The micro-scale structure is a one-dimensional geometry
illustrated in Fig. 5 and consists in an array of three particles with
the same diameter d, and separated by the distance lg.

The averaging volume is assumed to be spatially periodic (Davit
and Quintard, 2015; Quintard and Whitaker, 1993a). Further, taking
into account the symmetry with respect to the center of particle
1, the matrix of heat exchange coefficients is symmetric h;’;;{ = hko‘;).
Moreover the considered geometry allows us to solve analytically
the coefficients and to determine them all from only h$j and h$$
(see Appendix C.1).

The macro-scale Eulerian-Lagrangian ordinary differential equa-
tions are non-dimensionalized with the following dimensionless

variables

V=1V;i *p D '
= b= —"—1t; Wp= =Wy ;
’ Bocyyy " Thpe
c . I2A . _
_ P oo By i BT gk (76)
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where T; refers to some reference temperature. The corresponding
macro-scale equations can be expressed in matrix form according
to

d - o 1A A
Flll=# 111+ [a] (77)

where [T] and [®] are column vectors and H> is a four-by-four
matrix. All three can be represented explicitly as

() 0
S T ~ )]
T = N 5 = PN 78
(T] i (@] = | &, (78)
TZ/ Wy
T B —hi h o hi (79)
we| R kg ke ke
e Chy by ke

where fi® = flﬁ + 2?1;3.

By using the matrix exponential exp(.) (see e.g., Magnus, 1954),
the solution of the linear differential equation system Eq. (77) is
given by

[T1(F) = (/{: exp (UH™) du) &) + e [To] (80)

where the vector [Ty] represents the vector [T] at the initial state.
The matrix H> is diagonalizable with three distinct eigenvalues ay,
a, and a, defined by

{ }=10 B(hﬁ _ hﬁ) 3hee( ! ! (81)
ap, ap,dz} =40, ————~, -3h% + —
0,01, 0 o wo " a
We apply successively the Cayley-Hamilton theorem and

Sylvester’s formula to exp (uH*>) (for example, see Horn and
Johnson, 1990; Cvetkovic et al., 1997). Accordingly, Eq. (80) reads

2

(116 = Fo-1To] = 3. L Fi- 1) + Fo - o

i=1 !
2

+ Y etR (161 + 1)) (82)

where F; are the Frobenius covariants of the matrix %, defined
by

2/

Fig. 5. Micro-scale one-dimensional system with Ny, = 3.
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Fig. 6. Comparison of the quasi-steady closure with the reference solution obtained by averaging Direct Numerical Simulations (DNS) results of the micro-scale problem.

Table 1
Model parameters.
)"a (pcp)o A~
Parameter — o T, [0} o o
» (005 I r 1 2 2
Value 103 103 103 300 O 10 5
2 1
Fi= H® —a;T 83
' .H..ai*aj( J) (83)
i=0, j#i

where 7 is the identity matrix.

The micro-scale problem, Eqgs. (5)-(8), is solved numerically to
obtain the Tg and T, fields, which can be averaged to produce the
reference values for the macro-scale models. Comparisons are car-
ried out for scenarios of dust explosion typical of nuclear safety
(Table 1). Results in Fig. 6 show that the values obtained by the
Euler-Lagrange model with the quasi-steady closure are in very
good agreement with the reference values, particularly for a time
greater than 0.5. For shorter times (i.e. f < 0.5), a good agreement
between results is observed for the averaged S-phase temperature,
as well as the temperature of particles 2 and 2’. However, the tem-
perature of the inert particle (particle 1) decreases initially and this
is in clear contradiction with the micro-scale results Fig. 6 and in
violation of physical principles.

To determine the origin of this difference and whether it is a
consequence of the quasi-steady closure, we now consider the so-
lution of the problem with history effects and compare the ref-
erence solution, the quasi-steady model and the fully transient
formulations. The closure problems for the memory variable are
solved analytically in the Laplace domain (Appendix C.2) and the
Eulerian-Lagrangian model with the unsteady closure is rewritten
in the Laplace domain as

EIT1 - [Tol = (H* +E7) - [T] + (] (84)

where the overbar denotes the transformed variable in the Laplace
domain. #* is defined by analogy to the matrix #> using the
memory heat exchange coefficients. The solution of the system of
linear equations (84) is straightforward and the temperatures in
physical space are obtained by using numerical inverse Laplace al-
gorithms. Results in Fig. 7 show that the model with the unsteady
closure is in perfect agreement with the reference solution. The av-

eraged temperatures are also very close to the two previous results
if f < 0.5 and the three types of results are similar for £ > 0.5.

This comparison demonstrates that our models accurately pre-
dict the averaged temperatures, even in the short-time limit. The
quasi-steady assumption is valid when the constraint Eq. (39) is
verified, which means that the history effects can be neglected. In
the next study case, we consider only the quasi-steady model and
assume that this constraint is verified.

5.2. Validity of the diagonalization for the heat exchange coefficients
matrix

We now assess the accuracy of the quasi-steady macro-scale
model for a two-dimensional micro-scale geometry and the impact
of a diagonal approximation of the heat exchange coefficients ma-
trix Eq. (79). Such a diagonalization consists in neglecting the in-
direct exchange between particles in Eqs. (72)-(74). To clarify this
point, consider the following expression of the heat exchange

Ny
Qpp = Aphy ((Tg)P |x, — Tp) + Y AphSi(Ty — To) (85)
k=1

where h$® correspond to lumped coefficients already defined and
that are recalled below

Ny
hy =>"h%, (86)
k=1

Note that this expression is only valid when there is no aver-
aged temperature gradient, thus allowing us to identify the macro-
scale continuous phase temperature (Tﬂ)ﬁ|xk with (Tﬂ)ﬁ|xp. The
most straightforward way to obtain a diagonal approximation is
therefore to neglect the sum in Eq. (85), which is often referred
to as lumping the coefficients in the matrix. When this is done,
the diagonal coefficients can be calculated from a single closure
problem corresponding to the sum of all mapping variables (see
Appendix D). This greatly simplifies the determination of the heat
exchange coefficients and allows us to obtain analytical expressions
for simple unit cells like the one illustrated in Fig. 2.

For instance, the lumped coefficients can be solved analytically
for the cylindrical version of the Chang’s unit cell shown in Fig. 2.
As for the spherical case, we compare the analytical solution ob-
tained for Chang's unit cell with the numerical solution of the
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Fig. 8. Dimensionless heat transfer coefficient as a function of the solid volume
fraction for the cylindrical version of the Chang’s unit cell and the spatially periodic
system.

closure problems for various volume fractions. Here again, the cor-
respondence between the two cells requires that their volume frac-
tion are identical (Quintard and Whitaker, 1995) and this leads to
R% =12, where R is the radius of the Chang’s unit cell. The re-

sulting lumped heat exchange coefficient reads
hydp 8a§
Ag ap(2+ap)+2log(1—ag)

(87)

Results in Fig. 8 show a good agreement between the analytical so-
lution and the numerical one as already observed in the spherical
case and in Quintard and Whitaker (1995) for the cylindrical case
for low values of o, which is here the domain of interest.

T Y
L.x

Fig. 9. Micro-scale two-dimensional geometry with Ny = 3 x 3 particles.

The validity of the lumped approximation is tested for the two-
dimensional system illustrated in Fig. 9. The micro-structure cor-
responds to a periodic arrangement of in-line cylinders that play
the role of particles. Here again, there is no averaged temperature
gradient and it is further assumed that the system is homogeneous
in the y-direction. As a result, a single row of particles, as shown
in Fig. 9, is representative of the entire system. Since we are in-
terested in dilute gas-particle mixtures, we consider that the solid
volume fraction «, should remain below 10-3. Using this upper
bound, the value of the heat exchange coefficients are reported in
Table 2. The first line with Ny =1 corresponds to the previously
discussed spatially periodic cell in connection with the Chang's
unit cell. The second line with Ny, =3 corresponds to the case of
interest. The results for Ny up to 13 particles within the averag-
ing volume are reported in Table 2. They show that the value of
the lumped coefficient h,°,° is much larger than the value of h‘;’(
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Table 2

Dimensionless heat exchange coefficients Epk = h;j{dp/)»ﬁ for different values of N,
and a, = 103 for a periodic arrangement of in-line cylinders (|| denotes particles
on the same x-axis, L between the first and the second rows and L1 between the
first and the third rows).

Ny hy by I bzt fus I Pz Bisio
1 0.737

3x3 0.537 0.01 0.039

5x5 0.492 —0.028 0.0017 0.0186 0.0218 0.025

except for the diagonal coefficient hjj, which is of the same order
of magnitude. Also note that the value of hy® does not depend on
Ny, since the lumped coefficients can be obtained from summing
mapping variables s defined in Appendix D and solved for the spa-
tially periodic cell shown in Fig. 8.

Next, we compare the average temperature (Tﬂ)ﬂ and the
temperatures of particles 1, 2 and 2’ obtained from micro-scale
simulations to those obtained from the macro-scale Eulerian-
Lagrangian description using the heat exchange coefficients given
in Table 2 and the same parameter values reported in Table 1.
Recall from Eq. (85) that the lumped approximation is formally
equivalent to the full macro-scale heat exchange coefficients matrix
when there is no temperature difference between particles. The
proposed case involving active and inert particles leads to large
temperature differences between particles and, therefore, allows us
to test the validity of the lumped approximation. Parameters are
listed in Table 1 and results are plotted in Fig. 10. We find that the
quasi-steady model is in good agreement with the reference micro-
scale simulations for a dimensionless time greater than 3 (recall
that the theoretical constraint is £ > 1).

The lumped approximation yields a good agreement for the av-
eraged fB-phase temperature (Tﬁ)ﬁ but an underestimation of the
temperature difference between particles. In order to get more in-

sight for larger temperature differences between particles, we ex-
tend the previous case to Ny, =5 with only particle 1 remaining
active and &, = 100. The results reported in Fig. 11 show that the
lumped approximation still yields a good agreement for (Tﬁ)/3 at
f > 4 but fails to capture differences observed in DNS results for
particles 1 and 3.

We further remark that other diagonal approximations may
produce better results. In this specific configuration, Fig. 12 shows
that we obtain slightly better results if we substitute the lumped
coefficients by the diagonal coefficients hgj, reported in Table 2.
This suggests that, depending on the situation of interest, different
diagonalizations may yield better results. This is something that
needs to be addressed in future works, especially when consider-
ing average gradients of temperature.

We move finally to the three-dimensional case and assess the
validity of the lumped approximation for the three-dimensional
version of the system illustrated in Fig. 9 that consists in a peri-
odic arrangement of in-line spherical particles. As previously, it is
assumed that there is no averaged temperature gradient and that
the system is homogeneous except in the x-direction. As a result,
here again a single row of particles along the x-direction is repre-
sentative of the entire system. We do not repeat here all the cases
studied previously in the two-dimensional case and we restrict to
the case Ny =3 x 3 x 3. The results reported in Fig. 13 in which
the B-phase average temperature (Tﬁ)ﬁ is compared to the tem-
peratures of particles reflect the same trends as already observed
in the previous two-dimensional case. Here again, the quasi-steady
approximation leads to a good prediction of the macro-scale tem-
peratures while the lumped approximation fails to accurately pre-
dict the temperatures of particles. It is instructive to note that
in this special case of ordered distribution of spherical particles
with large temperature difference between particles and with no
averaged temperature gradient in the continuous phase, both the
quasi-steady and the quasi-steady lumped approximation yields
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the same averaged temperature for the continuous phase. This be-
havior was expected from Eqs. (68) to (69) as macro-scale Eulerian
description is equivalent to the lumped approximation. This also
means that in this case, the lumped approximation accurately pre-
dict the averaged temperature for the dispersed phase defined by
Eq. (67).

6. Discussion and conclusion

Using the method of volume averaging with closure, we
have derived a novel macroscopic Euler-Lagrange model for heat
transfer in gas-particle mixtures. The primary difference be-
tween our model and the classical one is an expression of heat
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transfers that captures indirect particle-particle interactions. We
recall here that indirect exchanges refer to heat transfer between
particles through the continuous carrier phase and have not to be
confused with direct particle-particle exchanges that take place
during collisions in dense suspensions. By comparing our theory to
micro-scale computations in simple model cases of particle clouds,
we found that the general formulation with time convolutions is
able to predict the exact macroscopic temperatures for any time
in a case with no average gradient. This shows that the most
general formulation of the heat transfer captures both history ef-
fects and heat exchanges between particles. We have also shown
that the quasi-steady model accurately captures the temperature
fields for sufficiently long times. This illustrates the usefulness of
the quasi-steady approximation which is, in practice, frequently
adopted when the constraint Eq. (39) is verified.

We have further shown that the standard formulations can be
recovered from a diagonalization approximation of the exchange
matrix. In particular, a lumped matrix can be used and the di-
agonal coefficients can be obtained by solving the closure prob-
lem for a unit cell with an isolated particle, similarly to the classi-
cal approach. This approximation is formally equivalent to the full
macro-scale model when the temperature differences between par-
ticles can be neglected. This approximation was tested in the case
of two- and three-dimensional systems. The simplified version of
the model was able to accurately describe the average tempera-
ture (Tﬂ)ﬂ . However, the lumped approximation failed in capturing
temperature differences between particles, which is due to the fact
that the indirect exchange between the particles is neglected.

The considered model cases of particle clouds, even if very sim-
ple, have led us to a better fundamental understanding of the
models. The validity of the various macro-scale approximations
have been assessed in cases with large temperature difference be-
tween particles within the averaging volume but no average gradi-
ents of temperature. Therefore, limitations of the standard descrip-
tion, which neglect both indirect exchange between particles and
memory effects, must be further evaluated in practical cases with
macroscopic gradients.

Such practical cases would require more realistic configurations
such as random arrangements of spherical particles investigated
in Sun et al. (2015) and Thiam et al. (2019) for the closure of

Eulerian-Eulerian heat transfer using direct numerical simulations.
This would represent a highly challenging task since different ar-
rangements that correspond to the same volume fraction may lead
to very different heat transfer coefficients values. One could then
adopt the methodology followed in the Eulerian-Eulerian frame-
work by using ensemble average of a number of realizations to
get relationships for the effective properties such as hp, = hy(2g).
However, it is not clear at this stage on how this methodology may
apply in the Eulerian-Lagrangian framework (Kriebitzsch et al.,
2013) and this calls to future work.

Appendix A. Closure problems

In order to obtain the closure problems for the mappings vari-
ables, we introduce Eq. (40) in the local problem for the deviation
ﬁg and proceed in the standard way in the volume averaging the-
ory. In doing so, we obtain Ny identical closure problems I, for the
variables s; and the closure problem II for variable bg. These prob-
lems are as follows.

Al. Unsteady closure problems
- Problem I, for s, with 1 <k <Ny,

(,oﬁcp)ﬂ(atsk +ug - Vs) =g V7s;

- algl %g(x— Xp)Aphy, in the B-phase (88)

=1
s =1, at Ay ' (89)
sk =0, at Aj with j#k (90)
Periodicity: s, (X +r) = 5, (X) (91)
Initial condition: s, =0, at t =0 (92)

where:

1
=7 /Apn.xﬂvSkds (93)



- Problem II for bﬁ

(,OﬂCp)ﬂ(atbﬁ =+ llﬁ . Vbﬂ -I—U;s) = )\ﬂvzbﬁ

Ny
- a;l > g(X—Xp)Vgp, in the S-phase
k=1
bg =0, at Ap, with 1 <p <Ny
Periodicity: bg(x+r) = bg(X)

Initial condition: bg =0, at t =0
where:

vy, = /A n. Vb ds
P
A2. Quasi-steady closure problems
- Problem I for sy with 1 <k <Ny
(Ppcp) gup - Vsie = A V2s?
Ny
— o' ) g(x —xp)Aph3y, in the B-phase

p=1
sg =1, at Ay
sp =0, at A; with j#k
Periodicity: sp° (X +1) = s;°(X)
Average: (s*) =0
where:
1

he :_7/ ., Vs ds

pk Ap A B Yk
- Problem II* for b°

B

(,OﬂCp)ﬂ(llﬁ . Vb%o + U};) = )\,ﬂvzb%c

Ny
- a;l > g(x—x,)vy,, in the f-phase
p=1
by =0, at Ay, with 1<p=<Ny
Periodicity: bg’ (X +r) = bg’ (X)

Average: (b%)” =

where:

vy, = —/Apn.)\,ng;;ds

A3. Memory effects closure problems
- Problem [} for s; with 1 <k <Ny

(pﬁcp)ﬁ(ats,j +ug - Vsp+8(t)sy°) = A Vs;

Ny
— o' ) g(x —Xp)Aphty, in the B-phase
p=1
sp=1—u(t), at Ay

sp =0, at Aj with j#k

(99)

(100)
(101)
(102)

(103)

(104)

(105)

(106)
(107)

(108)

(109)

(110)

(111)

(112)

Periodicity: s;(X +r) = s;(X)

Initial condition: sy =0, at t =0
where:
1
h* =—— | n-AgVsidS
pk AP M B Yk

- Problem II* for b/*S

(pﬁcp)ﬁ (8tb;§ +ug - Vb +8(6)s + (1 —u(t))uy)
Ny
=g Vb — a/gl > g(x—xp)vy,, in the B-phase

p=1
E:O.atAp,lgpng

Periodicity: b (X +r) = b (x)

Initial condition: =0,att=0

where:

vgpszA n- g Vby ds

(113)

(114)

(115)

(116)

(117)
(118)

(119)

(120)

Appendix B. Definitions of the effective transport coefficients

Kgp = aghgl+ (Agng, -bgdp,) — (pCp) g (ubg)

dgp = (IOCP);}<SP“;S) — (ApSpNgsdps)

K35 = aphpl+ (Agngs - bFéps) — (pCp) g (uphiy)
d3, = (pCp) g (syuy) — (ApSympsdps)

Ky = (Agngy - b3845) — (0Cp) 5 (ujbiy)

dj, = (0pcp) 5 spus) — (hpsynpodps)

(121)
(122)
(123)
(124)
(125)

(126)

Appendix C. Heat exchange coefficients for one-dimensional

unit cells

C1. Quasi-steady closure problems

The closure problems I® for the mapping variables s3° with 1 <

k < Ny read for one-dimensional unit cells as

2
dsk

T v thk, in the B-phase

5,20 =1, at x’ :xk:trk
s=0,atx' =xp+r, with p£k
Periodicity: si°(x' + L) = sp°(x')

Average: (s%°)f =0
where:
N dsy ds;;o

o0
pk = dX’ |(Xp ™ Ty |(xp+rp)

(127)
(128)
(129)
(130)

(131)

(132)



The solutions of the closure problems for s° can be calculated

from the second order polynomial for each interval ]x;; x; il

Ny
s = % 5 Y RSx4 o+ d (133)
p=1
By introducing the previous expression into the closure problems,
we obtain a linear system of 3 x 9 equations. The resolution of this
system allows us to determine all the polynomial coefficients. In-
troducing the solution in Eq. (132) leads to

- he . ifp=k
h =y TP (134)
hsg s ifp#k
where ﬁ‘l"f and ﬁ‘l’g are defined as
N 2402
oo B p (135)
ap 36 -ap(38-3(1-ag)ap)
N 2402
hoo 3 g (136)
ap 36— ap(38—3(1-ag)ap)
C2. Memory effects closure problems
- Problem I for sy with 1 <k <Ny,
Ny
sy +8(t)sy = Vs — a; > hy,. in the B-phase (137)
p=1
sp=1—u(t'), at A (138)
sy, =0, at A; with j#k (139)
Periodicity: s;(x' + L) = s;(x) (140)
Initial condition: s; =0, at t' =0 (141)
where:
Rty = Bt xy-ry) — B Stl Gy, (142)
In Laplace space, the closure problem can be written as
. d2§;§ " Mo
ESp+ s = ~7 % !;hpk, in the B-phase (143)
Sp=0,at A, with 1 <p <Ny, (144)
Periodicity: S;(x' + L) = 5,(x") (145)
Average: (5;)? =0 (146)
where:
~ dsy ds;,
hpk = W|(xp—rp) - ka,ﬁr,) (147)

The solutions of those closure problems can be calculated
from

~ , A B
5 = ceVE ydevEr _ galgl > hy
p=1

1 X\ & X +d
_a51<£__2+2€>2hpk—k€ k (148)
p=1

Using the same methodology as in the previous section, the heat

s

exchange coefficients h,, can be rewritten as

pk
=k
. hy

hpk = )=
hy: ifp#k

(149)

7o ag (3 coth(k) + tanh(k)) 20
1n= 18k 9(1 — k coth(k)) f(ag)

o
- szaﬂ)(% — (38— (3 - Tag)ap))

(150)

= Sal‘;fce*’(
127 36(k — 1) f(ap) (k cosh(x) — sinh(x))
ag(3 coth(x) + tanh(x))
36k
ap(108(k — 1) +ap(1 - ap) (114 — s — 1502) — 8karh)
+ 36(c — D2 (p)

(151)

where we have adopted the notations

a2
Flap) =36 -ay(38-3(1 - ap)ay). «k? =% (152)

Appendix D. Lumped coefficients for periodic micro-structure
We define here the lumped mapping variable s> by
Ny
§° =5
k=1

Summing up the quasi-steady closure problems for si°, the closure
problem for s reads

(153)

Ay
0=2gV2s™ — ay! 7” X}hm, in the B-phase (154)
p=

s*=1,atAp 1<p=<Ny (155)
Periodicity: s* (X +r) = s*(x) (156)
Average: (s*°)f =0 (157)
where:

Ny 1
hf:Zhﬁ(:—A—/ n.AVs™ds (158)

k=1 p Ay

Since the system illustrated in Fig. 1 is periodic in all directions,
the value of hy® does not depend on the number of particles Ny.
As a result hy® can be calculated for a spatially periodic unit cell
that contains solely one particle.
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