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Heat transfers in dilute gas-particle mixtures are often modeled using hybrid Euler-Lagrange descriptions, treating the carrier fluid via an Eulerian representation and following each particle in a Lagrangian framework. One of the focal issues in these models is the calculation of the macro-scale heat transfer between the continuous phase and particles. In the standard approach, the heat transfer for each particle is considered to vary linearly with the average temperature difference between the particle and the fluid. Here, we use the method of volume averaging with closure to filter the heat transfer equations at the micro-scale and derive a closed form of the heat transfer rate, which is significantly different from the standard case. The primary difference is that the heat transfer for a given particle does not only depend on the temperature of the particle but also depends on the temperatures of all other particles within the averaging volume. This yields a matrix of heat exchange coefficients that captures indirect particleparticle exchanges at macro-scale. Using simple model cases, we validate our approach, compare it to the standard heat transfer model and show that it degenerates toward the standard model only in specific cases.

Introduction

We are interested in dust explosion hazard in the context of nuclear safety and, in particular, in modeling flame propagation for dilute and dispersed gas-particle flows with particle sizes typically ranging from 10 -6 to 10 -4 m and a volume fraction of particles up to 10 -3 . Such configurations correspond to accident scenarios that may happen during operations of decommissioning of uranium natural graphite gas reactors [START_REF] D'amico | Parametric study of the explosivity of graphite-metals mixtures[END_REF] that involve graphite particles or loss of vacuum accident in the vessel of fusion reactors ( Denkevits and Dorofeev,20 05;Janeschitz,20 01 ) that involve either tungsten or beryllium particles. In this context, an important modeling issue is to identify the mechanisms that influence the severity of the explosion and may result in the release of radioactive or toxic materials.

Our global strategy follows the ones proposed in e.g., [START_REF] Cannevière | Simulation Numérique Directe de la Combustion Turbulente Diphasique: Application à L'étude de la Propagation et de la Structure des Flammes[END_REF] and [START_REF] Neophytou | Simulations of laminar flame propagation in droplet mists[END_REF] for liquid fuel droplets or in [START_REF] Cloney | Laminar burning velocity and structure of coal dust flames using a unity Lewis number CFD model[END_REF] and [START_REF] Park | Laminar burning velocities of atmospheric coal air mixtures[END_REF] for coal particles. The idea is to use detailed numer-ical simulations to analyze the flame structure and calculate the laminar burning velocity that is then used in a second step to determine the turbulent flame velocity (see for instance [START_REF] Proust | Turbulent flame propagation in large dust clouds[END_REF][START_REF] Silvestrini | Correlations for flame speed and explosion overpressure of dust clouds inside industrial enclosures[END_REF]. Detailed numerical simulations are often computed via a hybrid Euler-Lagrange description, which uses a filtered Eulerian representation of the fluid phase and a Lagrangian tracking of the particles ( Boivin et al., 20 0 0;[START_REF] Capecelatro | An Euler-Lagrange strategy for simulating particle-laden flows[END_REF][START_REF] Crowe | Multiphase Flows with Droplets and Particles[END_REF][START_REF] Simonin | Eulerian prediction of the fluid/particle correlated motion in turbulent two-phase flows[END_REF]. In this context, the macro-scale energy balance equations are written classically as

∂ t α β (ρc p ) β T β β + ∇ • α β (ρc p ) β T β β u β β = ∇ • α β λ * β ∇ T β β - 1 V N V p=1 Q β p (1) (mc p ) p dT p dt = Q β p (2)
The first equation corresponds to the heat transfer equation for the filtered temperature T β β of the continuous β-phase, (1) corresponds to the macro-scale heat transfer rate between the continuous phase and the N V particles contained within the averaging volume V. For the p th -particle, the corresponding heat transfer reads

Q β p = A p n • λ β ∇T β d S ( 3 
)
where A p is the surface of particle p and n denotes the outward unit normal vector on the particle surface A p . The second equation in the Euler-Lagrange description Eq. (2) describes the averaged particle temperature T p , where ( mc p ) p is the product of the mass and heat capacity of the p th -particle. The model for the macro-scale heat transfer Q βp is usually based on the description of heat transfer in the case of an isolated particle [START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF]. To solve the heat transfer problem, this description uses a decomposition of the surrounding phase temperature into an undisturbed temperature and a disturbance due to the presence of the particle. Generalizing from an isolated particle to a set of particles, the undisturbed temperature is often viewed as a macro-scale temperature T β β and the resulting heat exchange reads [START_REF] Ling | Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows[END_REF][START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF] )

Q β p = A p n • λ β ∇ T β β d S + A p h p T β β -T p + A p t 0 K p (τ ) d T β β -T p dτ d τ (4)
In Eq. ( 4) , the first term refers to the undisturbed heat flux seen by the particle. It represents the flux that would have entered the volume occupied by the continuous phase in the absence of the particle. The second term corresponds to the quasi-steady heat transfer from the particle to the surrounding phase due to temperature difference. The heat exchange coefficient h p between the continuous phase and the particle is usually expressed in terms of the particle Nusselt number as Nu p = h p d p /λ β for which numerous empirical functions of the particle Reynolds number have been proposed (see for instance [START_REF] Ranz | Evaporation from drops[END_REF][START_REF] Whitaker | Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles[END_REF] with the asymptotic limit Nu p = 2 when the particle Reynolds number effect can be neglected. The last term in Eq. ( 4) is nonlocal and captures history effects due to the transient development of the temperature in the particle vicinity. The kernel function K p ( τ ) that appears in the history integral has been calculated

analytically in [START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF] for an isolated particle without a velocity difference between the continuous phase and the particle, and the results have been extended to finite particle Reynolds number in [START_REF] Balachandar | Unsteady heat transfer from a sphere in a uniform cross-flow[END_REF] and [START_REF] Feng | Unsteady heat transfer from a sphere at small Peclet numbers[END_REF] . Usual simplifications of this problem include neglecting the non-local contribution to decrease the computational cost and replacing the first term by the time derivative of the undisturbed temperature [START_REF] Ling | Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows[END_REF][START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF].

In this work, our goal is to propose alternative expressions of the heat transfer rate using an up-scaling methodology based on spatial averaging with closure [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF][START_REF] Davit | Homogenization via formal multiscale asymptotics and volume averaging: how do the two techniques compare?[END_REF]Quintard and Whitaker, 20 0 0 ). This methodology allows us to derive macro-scale equations that, unlike standard Euler-Lagrange approaches, take into account heat transfer between particles in the heat exchange Q βp through a matrix of heat exchange coefficients. To be more clear about heat transfer between particles, these have not to be confused with direct particleparticle exchanges that take place during collisions and that are negligible in the dilute regime considered in this work. Here, heat transfer between particles take place through the continuous carrier phase and thus will be referred as indirect particle-particle exchanges. The resulting heat exchange coefficients involve both a quasi-steady and a non-local contribution that captures history effects. Our approach further provides closure problems that link the effective transport coefficients to the micro-scale geometry. To recover more standard formulations, the problem can be simplified average of ψ β is defined as

ψ β β = g * ψ β g * γ β = ψ β α β (11)
Second, we now average the micro-scale heat Eq. ( 5) on the averaging volume V, by multiplying the micro-scale transport Eq.

(5) by γ β g ( xr ) , and then integrating it over the physical space to finally apply the general transport theorem [START_REF] Whitaker | A simple geometrical derivation of the spatial averaging theorem[END_REF], which leads to (12) where δ βσ is the Dirac delta function associated to the interface between the two phases.

∂ t ( ρc p ) β T β + ∇ • ( ρc p ) β T β u β = ∇ • λ β ∇T β + n βσ • λ β ∇T β δ βσ
Next, we introduce the perturbation decomposition of ψ β into an average and a deviation ψ β (see for instance [START_REF] Gray | A derivation of the equations for multi-phase transport[END_REF] 

ψ β = ψ β β + ψ β (13)
Finally, following Carbonell and Whitaker (1984) , [START_REF] Gray | A derivation of the equations for multi-phase transport[END_REF] and Quintard and Whitaker (1993a) , we write the averaged equation, Eq. ( 12) , as

∂ t α β ( ρc p ) β T β β + ∇ • α β ( ρc p ) β T β β u β β = ∇ • α β λ β ∇ T β β + λ β T β n βσ δ βσ -∇ α β • λ β ∇ T β β + n βσ • λ β ∇ T β δ βσ -∇ • ( ρc p ) β T β u β β ( 14 
)
where we have ignored the variations of the physical properties within the averaging volume.

The Lagrangian description of the dispersed phase is obtained by integrating the micro-scale heat transfer Eq. ( 8) over each particle [START_REF] Crowe | Multiphase Flows with Droplets and Particles[END_REF]. The boundary condition Eq. ( 6) leads to the following equation for the averaged particle temperature T p

(mc p ) p dT p dt = A p n • λ β ∇T β d S + ω p V p ( 15 
)
where V p is the volume of the particle. At this stage of the developments, we have obtained the macro-scale Euler-Lagrange description that corresponds to Eqs. ( 14) and (15) of the heat transfer problem. However, they are not in a closed form since the temperature deviations T β are still present. To get rid of these deviations, it is necessary to propose an estimation of the deviation from its boundary value problem. In order to obtain the governing equation for the deviation T β , we introduce the decomposition Eq. ( 13) in the micro-scale Eq. ( 5) , and then we subtract the averaged Eq. ( 14) divided by α β . The micro-scale transport equation for the deviation may be written as

( ρc p ) β ∂ t T β + ( ρc p ) β u β • ∇ T β + ( ρc p ) β u β • ∇ T β β = ∇ • λ β ∇ T β -α -1 β ∇ • λ β T β n βσ δ βσ -α -1 β n βσ • λ β ∇ T β δ βσ + α -1 β ∇ • ( ρc p ) β T β u β ( 16 
)
The corresponding boundary conditions are also obtained by introducing the decomposition Eq. ( 13) in the boundary conditions Eqs. ( 6) and ( 7) . As a result, one obtains the following set of boundary conditions on each particle surface

A p , 1 ≤ p ≤ N V T β = T σ -T β β (17) λ β ∇ T β • n βσ = λ σ ∇ T σ -λ β ∇ T β β • n βσ ( 18 
)
These equations can be simplified through an evaluation of the orders of magnitude of the different terms. Introducing the decomposition Eq. ( 13) in the boundary conditions ( 7) and in the no-slip condition (u β = 0) at the βσ interface leads to an estimation of the order of magnitude of the velocity deviation u β and of T β as (see [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF]Quintard and Whitaker, 1993a; Quintard and Whitaker, 20 0 0 )

u β = O u β β (19) T β = O l β L β T β β ( 20 
)
Furthermore, according to the developments in Quintard and Whitaker (1993a,b) , the specific area can be estimated by

n βσ γ β δ βσ = A βσ V = O α β l β ( 21 
)
where l β is the micro-scale characteristic length. Eqs. ( 19) -( 21) allow us to obtain the following estimates

λ β ∇ 2 T β = O λ β l β L β T β β (22) α -1 β ∇ • λ β T β n βσ δ βσ = O λ β L 2 β T β β (23) α -1 β ∇ • α β ( ρc p ) β T β u β = O ρ β c p β l β L 2 β T β β u β β (24) ρ β c p β u β • ∇ T β = O ρ β c p β 1 L β T β β u β β ( 25 
)
Using the length-scale constraint l β L β further leads to

α -1 β ∇ • λ β T β n βσ δ βσ λ β ∇ 2 T β (26) α -1 β ∇ • α β ( ρc p ) β T β u β ρ β c p β u β • ∇ T β (27)
Therefore, the micro-scale transport equation for the deviation Eq. ( 16) can be rewritten as

( ρc p ) β ∂ t T β + ( ρc p ) β u β • ∇ T β + ( ρc p ) β u β • ∇ T β β = ∇ • λ β ∇ T β -α -1 β n βσ • λ β ∇ T β δ βσ ( 28 
)
As previously discussed, the thermal conductivity in the solid, λ σ , is much larger than the thermal conductivity in the β-phase and thus the boundary condition Eq. ( 6) yields

| ∇T σ | = λ β λ σ ∇T β ∇T β (29)
This implies that the temperature field can be considered uniform within each particle and that the boundary condition Eq. ( 18) can be eliminated from the micro-scale boundary value problem for the deviation while boundary condition Eq. ( 17) reads

T β = T p -T β β at A p , 1 ≤ p ≤ N V ( 30 
)
One way to proceed further would be to solve simultaneously the macroscopic problem and the problem for the deviation T β , which in many ways is more complex than solving the initial one Eqs. ( 5) -( 8) . There is another way to proceed that consists in building an approximate form of the deviations T β by mapping it to macroscopic quantities through closure variables. As we will see, this makes it possible to fully uncouple micro-and macro-scale problems.

Unsteady closure

In the boundary value problem for the deviation Eqs. ( 17) -( 28) ,

we can identify the macroscopic quantities

(T p -T β β | x p ) with 1 ≤ p ≤ N V and ∇ T β
β . These terms can be treated as macroscopic source terms responsible for generating the spatial deviation T β . In this way, deviations can be mapped to these source terms [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF][START_REF] Quintard | Two-medium treatment of heat transfer in porous media: numerical results for effective properties[END_REF]Quintard and Whitaker, 1993a;20 0 0;[START_REF] Zanotti | Development of transport equations for multiphase system-I: general development for two phase system[END_REF] through closure variables.

To build the form of a local solution for the spatial deviation, we first follow [START_REF] Davit | Comment on frequency-dependent dispersion in porous media[END_REF] and [START_REF] Moyne | Two-equation model for a diffusive process in porous media using the volume averaging method with an unsteady-state closure[END_REF] to express the deviation in the form of a time convolution according to

T β = - N V p=1 s p * ∂ t T β β | x p -T p + b β • * ∂ t ∇ T β β ( 31 
)
where s p and b β are the closure variables, which depend on space x and time t . The time convolution, denoted here by * , is defined for the functions a and b as

( a * b ) (t) = t 0 a (t -τ ) b(τ ) d τ (32)
The closure variables are solutions of unsteady closure problems given in Appendix A.2 , in which we have assumed thermal equilibrium at t < 0. These closure problems need to be solved in geometries representative of the structure of interest and, in many cases, this is done in unit cells with periodic boundary conditions. Effects of using periodic unit cells on the macroscopic results and the validity of the method in ordered and disordered systems are further discussed in [START_REF] Quintard | Two-medium treatment of heat transfer in porous media: numerical results for effective properties[END_REF] and Quintard and Whitaker (1993a) . For disordered media, the periodicity conditions can be used when the size of the unit cell is sufficiently large compared to the correlation lengths of the heterogeneities [START_REF] Quintard | Two-medium treatment of heat transfer in porous media: numerical results for effective properties[END_REF].

For the Eulerian field, we inject Eq. ( 31) in the averaged transport Eq. ( 14) and obtain

∂ t α β ( ρc p ) β T β β + ∇ • α β ( ρc p ) β T β β u β β = ∇ • K ββ • * ∂ t ∇ T β β - N p=1 g(x -x p ) Q β p + N p=1 ∇ • d β p * ∂ t T β β | x p -T p ( 33 
)
where K ββ is the effective thermal dispersion defined by Eq. ( 121) and accounts for thermal conduction, tortuosity and hydrodynamic thermal dispersion. The coefficient d βp is an additional velocity-like coefficient and is defined by Eq. ( 122) . Finally, Q βp represents the macro-scale heat transfer between the continuous phase and the particle p and is defined by

Q β p = A p n • λ β ∇ T β β d S + A p N V k =1 h pk * ∂ t T β β | x k -T k -v β p • * ∂ t ∇ T β β ( 34 
)
The effective properties h pk defined by Eq. ( 93) and v βp defined by Eq. ( 98) are respectively the effective heat exchange coefficients and the velocity-like coefficient.

For the Lagrangian description of the dispersed phase, substituting Eq. (31) into Eq. ( 15) and using the definition Eq. ( 34) of the macro-scale heat transfer yields for averaged particle temperature T p

(mc p ) p dT p dt = Q β p + ω p V p (35)
In these macro-scale Euler-Lagrange equations, both the thermal dispersion tensor, K ββ , and the heat exchange coefficients, h pk , appearing in Eqs. ( 33) -( 35) look like classical terms. This contrasts with the velocity-like v βp and additional velocity-like d βp terms that do not appear in the classical macro-scale Euler-Lagrange description [START_REF] Crowe | Multiphase Flows with Droplets and Particles[END_REF][START_REF] Ling | Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows[END_REF][START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF][START_REF] Simonin | Continuum modelling of dispersed two-phase flows. In: Combustion and Turbulence in Two-Phase Flows[END_REF][START_REF] Zhang | Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions[END_REF]. These can be calculated from the closure problems given in Appendix A.2 and their contributions have been studied in the literature [START_REF] Quintard | Two-medium treatment of heat transfer in porous media: numerical results for effective properties[END_REF][START_REF] Zhang | A two-equation analysis of convection heat transfer in porous media[END_REF] for heat transfer in porous media with a thermal non-equilibrium model. In this work, we assume that the contributions of the non-classical terms can be neglected compared to the classical terms. In doing so, we obtain the following simplified model

∂ t α β ( ρc p ) β T β β + ∇ • α β ( ρc p ) β T β β u β β = ∇ • K ββ • * ∂ t ∇ T β β - N V p=1 g(x -x p ) Q β p (36) (mc p ) p dT p dt = Q β p + ω p V p ( 37 
)
where

Q β p = A p n • λ β ∇ T β β d S + A p N V k =1 h pk * ∂ t T β β | x k -T k (38)

Steady-state closure

Eqs. ( 36) -( 38) are obtained by expressing the spatial deviation in the form of a time convolution. The main consequence is that the resulting effective transport coefficients in the model are not only depending on the physical properties and the micro-scale geometry but they also depend upon time. In addition, the macroscale Euler-Lagrange equations with unsteady closure problems must degenerate into the quasi-steady version when the macroscopic time is significantly greater than the characteristic time associated to the relaxation of the micro-scale conduction process [START_REF] Davit | Comment on frequency-dependent dispersion in porous media[END_REF][START_REF] Moyne | Two-equation model for a diffusive process in porous media using the volume averaging method with an unsteady-state closure[END_REF]. This constraint has been discussed in previous works [START_REF] Quintard | Two-medium treatment of heat transfer in porous media: numerical results for effective properties[END_REF]Quintard and Whitaker, 1993a ) and can be written as

λ β t ( ρc p ) β l 2 β 1 ( 39 
)
When this is verified, the unsteady term in the transport equation for T β can be neglected, so that the boundary value problem for the deviation can be treated as quasi-steady. Following previous works [START_REF] Carbonell | Heat and mass transfer in porous media[END_REF] , [START_REF] Quintard | Two-medium treatment of heat transfer in porous media: numerical results for effective properties[END_REF] and Quintard and Whitaker (1993a, 20 0 0) , we can then express the deviation in terms of the macroscopic source terms as

T β = - N V p=1 s ∞ p T β β | x p -T p + b ∞ β • ∇ T β β (40)
Here, the mapping variables s ∞ p and b ∞ β are solutions of the quasisteady problems given in Appendix A.2 . This asymptotic behavior corresponds to the transition form s p and b β to the limit u (t) s ∞ p and u (t) b ∞ β in the convolution product defined by Eq. ( 31) , where u ( t ) is the Heaviside function. These decompositions can be written as follows [START_REF] Davit | Comment on frequency-dependent dispersion in porous media[END_REF] The mapping variables associated with the history effects s * p and b * β are solutions of the closure problems related to the history effects (Appendix A.3 ). These closure problems are obtained by introducing the decompositions Eqs. ( 41) and ( 42) into the unsteady closure problems (Appendix A.1 ), then subtracting the quasi-stationary closure problems (Appendix A.2 ) multiplied by u ( t ).

s p -u (t) s ∞ p = s * p (41) b β -u (t) b ∞ β = b * β (42)
Similarly, introducing the decompositions Eqs. ( 41) and ( 42) respectively in Eqs. ( 93) and ( 121) yields the following expression for the effective transport coefficients h pk and K ββ

h pk = u (t) h ∞ pk + h * pk (44) K ββ = u (t) K ∞ ββ + K * ββ (45)
where h * pk and K * ββ are respectively the effective heat exchange and the effective thermal dispersion coefficients related to history effects. The definitions of these coefficients are given in appendix Eqs. ( 115) -( 125) .

Lastly, by introducing Eqs. ( 44) and ( 45) into the averaged transport equation for the β-phase Eq. ( 36) and the equation for the averaged particle temperature Eq. ( 38) , the macro-scale Euler-Lagrange equations with unsteady closure problems can be written as

∂ t α β ( ρc p ) β T β β + ∇ • α β ( ρc p ) β T β β u β β = ∇ • K ∞ ββ • ∇ T β β - N V p=1 g(x -x p ) Q β p + ∇ • K * ββ • * ∂ t ∇ T β β (46) (mc p ) p dT p dt = Q β p + ω p V p ( 47 
)
where

Q β p = A p n • λ β ∇ T β β d S + A p N V k =1 h ∞ pk T β β | x k -T k + A p N V k =1 h * pk * ∂ t T β β | x k -T k ( 48 
)
In the averaged transport equation for the β-phase Eq. ( 46) , the first term corresponds to the quasi-steady conductive term; the second term to the macro-scale heat transfer between the continuous phase and particles in the averaging volume; and the last term takes the form of a history integral that accounts for memory effects of the unsteady thermal conduction. The appearance of this term is a direct consequence of the decomposition in the quasisteady and memory contributions of the effective thermal dispersion.

In the macro-scale heat exchange Eq. ( 48) , the first term looks like, at least formally, the undisturbed heat flux contribution while the second term corresponds to the quasi-steady thermal transfer from the particle to the continuous phase. The last term represents the unsteady thermal diffusion due to the temporal variation of the thermal boundary layer around the particles in the averaging volume. This contribution accounts for the effect of the past history temperature changes of the β-phase and particles within the averaging volume to the current temperature change of the p thparticle.

Theoretical comparison with standard models

When comparing the classical Euler-Lagrange model with the proposed model ( 46) -( 48) , the main differences are the convolution term in Eq. ( 46) and the expression of the macro-scale heat exchange term Q βp . In this section, we review these differences in detail for the cases of isolated particles and clouds of particles.

Isolated particle

As mentioned in the introduction, the modeling of heat exchange between the filtered continuous phase and the particles is usually based on the description of heat transfer for an isolated particle in an infinite medium [START_REF] Crowe | Multiphase Flows with Droplets and Particles[END_REF][START_REF] Ling | Inter-phase heat transfer and energy coupling in turbulent dispersed multiphase flows[END_REF][START_REF] Michaelides | Heat transfer from a rigid sphere in a nonuniform flow and temperature field[END_REF][START_REF] Zhang | Momentum and energy equations for disperse two-phase flows and their closure for dilute suspensions[END_REF]. This description uses a decomposition of the surrounding β-phase temperature into an undisturbed thermal field T 0 β , which is not influenced by the presence of the particle, and a disturbance field, which is entirely due to the influence of the heat transfer from the particle.

In order to compare our model to the standard results in the case of an isolated particle, we consider the case of a single isolated spherical particle with no macroscopic gradient. We consider an immobile sphere in a spherical unit cell, as represented in Fig. 2 , which is a spherical version of Chang's unit cell [START_REF] Chang | Effective diffusion and conduction in two-phase media: a unified approach[END_REF]. This unit cell has been extensively studied in the literature ( Quintard and Whitaker, 1993b;[START_REF] Quintard | Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments[END_REF] as it allows to obtain an analytical solution of the closure problems. Following [START_REF] Quintard | Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments[END_REF] , the correspondence between the Chang's unit cell and the spatially periodic system is obtained by requiring that the volume fraction be equal. This leads to l 3 β = (4 / 3) π R 3 where R is the radius of the Chang's unit cell illustrated in Fig. 2 . The radius of the particle, r p , and the characteristic length of the unit cell, R , are linked by

R = r p 1 -α β 1 / 3 ( 49 
)
The closure problem associated to Chang's unit cell for the mapping variable s ∞ p can be written as

0 = λ β ∇ 2 s ∞ p -α -1 β A p V h ∞ p , for r p ≤ r ≤ R (50) s ∞ p = 1 , at r = r p (51) n • ∇s ∞ p = 0 , at r = R (52) Average: s ∞ p β = 0 ( 53 
)
frame attached to the continuous phase allows us to further remove the convective term in Eq. ( 46) and the undisturbed heat flow in Eq. ( 48) .

In this case, the macroscopic description is a 0D problem with

α β ( ρc p ) β d T β β dt = - 1 V N V p=1 Q β p (72) (mc p ) p dT p dt = Q β p + ω p V p ( 73 
)
where

Q β p = N V k =1 A p h ∞ pk T β β | x k -T k + N V k =1 A p h * pk * ∂ t T β β | x k -T k (74)
Here, we have used the classical box weighting function g defined by

g(x ) = 1 V , x ∈ V 0 , x / ∈ V (75)
In this framework with no average gradient, only the closure problems for s ∞ p and s * p need to be solved. As stated previously, the accuracy of the macro-scale models is assessed by comparing results to computations of the complete micro-scale problem. In the remainder of this section, these microscale simulations are termed Direct Numerical Simulations (DNS). We consider two different studies. In the first study, the validity of both the unsteady and quasi-steady models is addressed for a micro-scale one-dimensional geometry for which the closure problems as well as the macroscopic equations can be solved analytically. In the second study, we consider only the quasi-steady approximation and we assess the validity of a diagonal approximation of the heat exchange matrix for two-and three-dimensional geometries. DNS of the micro-scale problem have been performed using the CALIF 3 S software (CALIF) that employs unstructured finite volume discretization. The interested reader is referred to [START_REF] Piar | A formally second-order cell centred scheme for convection-diffusion equations on general grids[END_REF] for a detailed presentation of the finite volume discretization based on the SUSHI scheme for the approximation of the diffusive fluxes.

Validity of the quasi-steady closure

In this section, we compare the unsteady and quasi-steady models. The micro-scale structure is a one-dimensional geometry illustrated in Fig. 5 and consists in an array of three particles with the same diameter d p and separated by the distance l β .

The averaging volume is assumed to be spatially periodic [START_REF] Davit | Handbook of Porous Media[END_REF]Quintard and Whitaker, 1993a ). Further, taking into account the symmetry with respect to the center of particle 1, the matrix of heat exchange coefficients is symmetric h 

∞ pk = h ∞ kp .
ˆ ∇ = l β ∇ ; ˆ t = λ β l 2 β ( ρc p ) β t ; ˆ ω p = l 2 β T r λ β ϕ ω p ; ϕ = ( ρc p ) p ( ρc p ) β ; ˆ h ∞ pk = l 2 β A p λ β V h ∞ pk ; ˆ T η = T η -T r T r , with η = β, k (76)
where T r refers to some reference temperature. The corresponding macro-scale equations can be expressed in matrix form according to

d d ˆ t [ ˆ T ] = H ∞ • [ ˆ T ] + [ ˆ ω ] (77) 
where [ ˆ T ] and [ ˆ ω ] are column vectors and H ∞ is a four-by-four matrix. All three can be represented explicitly as

[ ˆ T ] = ⎛ ⎜ ⎝ ˆ T β β ˆ T 1 ˆ T 2 ˆ T 2 ⎞ ⎟ ⎠ ; [ ˆ ω ] = ⎛ ⎜ ⎝ 0 ˆ ω 1 ˆ ω 2 ˆ ω 2 ⎞ ⎟ ⎠ ( 78 
)
H ∞ = 3 α σ ϕ ⎛ ⎜ ⎜ ⎝ -ασ ϕ α β ˆ h ∞ ασ ϕ 3 α β ˆ h ∞ ασ ϕ 3 α β ˆ h ∞ ασ ϕ 3 α β ˆ h ∞ ˆ h ∞ -ˆ h ∞ 11 -ˆ h ∞ 12 -ˆ h ∞ 12 ˆ h ∞ -ˆ h ∞ 12 -ˆ h ∞ 11 -ˆ h ∞ 12 ˆ h ∞ -ˆ h ∞ 12 -ˆ h ∞ 12 -ˆ h ∞ 11 ⎞ ⎟ ⎟ ⎠ (79) where ˆ h ∞ = ˆ h ∞ 11 + 2 ˆ h ∞ 12
. By using the matrix exponential exp (.) (see e.g., [START_REF] Magnus | On the exponential solution of differential equations for a linear operator[END_REF], the solution of the linear differential equation system Eq. ( 77) is given by

[ ˆ T ]( ˆ t ) = t 0 exp ( u H ∞ ) d u • [ ˆ ω ] + e ˆ t H ∞ • [ ˆ T 0 ] ( 80 
)
where the vector [ ˆ T 0 ] represents the vector [ ˆ T ] at the initial state. The matrix H ∞ is diagonalizable with three distinct eigenvalues a 0 , a 1 and a 2 defined by

{ a 0 , a 1 , a 2 } = ⎧ ⎨ ⎩ 0 , - 3 ˆ h ∞ 11 -ˆ h ∞ 12 α σ ϕ , -3 ˆ h ∞ 1 α σ ϕ + 1 α β ⎫ ⎬ ⎭ (81) 
We apply successively the Cayley-Hamilton theorem and Sylvester's formula to exp ( u H ∞ ) (for example, see Horn and Johnson, 1990; Cvetkovic et al., 1997 ). Accordingly, Eq. ( 80) reads

[ ˆ T ]( ˆ t ) = F 0 • [ ˆ T 0 ] - 2 i =1 1 a i F i • [ ˆ ω ] + F 0 • [ ˆ ω ] ˆ t + 2 i =1 e a i ˆ t F i • 1 a i [ ˆ ω ] + [ ˆ T 0 ] ( 82 
)
where F i are the Frobenius covariants of the matrix H ∞ , defined by Fig. 5. Micro-scale one-dimensional system with N V = 3 . 

F i = 2 i =0 , j = i 1 a i -a j H ∞ -a j I ( 83 
)
where I is the identity matrix.

The micro-scale problem, Eqs. ( 5) -( 8) , is solved numerically to obtain the T β and T σ fields, which can be averaged to produce the reference values for the macro-scale models. Comparisons are carried out for scenarios of dust explosion typical of nuclear safety ( Table 1 ). Results in Fig. 6 show that the values obtained by the Euler-Lagrange model with the quasi-steady closure are in very good agreement with the reference values, particularly for a time greater than 0.5. For shorter times ( i.e. ˆ t < 0 . 5 ), a good agreement between results is observed for the averaged β-phase temperature, as well as the temperature of particles 2 and 2 . However, the temperature of the inert particle (particle 1) decreases initially and this is in clear contradiction with the micro-scale results Fig. 6 and in violation of physical principles.

To determine the origin of this difference and whether it is a consequence of the quasi-steady closure, we now consider the solution of the problem with history effects and compare the reference solution, the quasi-steady model and the fully transient formulations. The closure problems for the memory variable are solved analytically in the Laplace domain ( Appendix C.2 ) and the Eulerian-Lagrangian model with the unsteady closure is rewritten in the Laplace domain as

ξ [ ˆ T ] -[ ˆ T 0 ] = H ∞ + ξ H * • [ ˆ T ] + [ ˆ ω ] ( 84 
)
where the overbar denotes the transformed variable in the Laplace domain. H * is defined by analogy to the matrix H ∞ using the memory heat exchange coefficients. The solution of the system of linear equations ( 84) is straightforward and the temperatures in physical space are obtained by using numerical inverse Laplace algorithms. Results in Fig. 7 show that the model with the unsteady closure is in perfect agreement with the reference solution. The av-eraged temperatures are also very close to the two previous results if ˆ t < 0 . 5 and the three types of results are similar for ˆ t > 0 . 5 . This comparison demonstrates that our models accurately predict the averaged temperatures, even in the short-time limit. The quasi-steady assumption is valid when the constraint Eq. ( 39) is verified, which means that the history effects can be neglected. In the next study case, we consider only the quasi-steady model and assume that this constraint is verified.

Validity of the diagonalization for the heat exchange coefficients matrix

We now assess the accuracy of the quasi-steady macro-scale model for a two-dimensional micro-scale geometry and the impact of a diagonal approximation of the heat exchange coefficients matrix Eq. ( 79) . Such a diagonalization consists in neglecting the indirect exchange between particles in Eqs. ( 72) -(74) . To clarify this point, consider the following expression of the heat exchange

Q β p = A p h ∞ p T β β | x p -T p + N V k =1 A p h ∞ pk ( T p -T k ) (85)
where h ∞ p correspond to lumped coefficients already defined and that are recalled below

h ∞ p = N V k =1 h ∞ pk ( 86 
)
Note that this expression is only valid when there is no averaged temperature gradient, thus allowing us to identify the macroscale continuous phase temperature T

β β | x k with T β β | x p .
The most straightforward way to obtain a diagonal approximation is therefore to neglect the sum in Eq. ( 85) , which is often referred to as lumping the coefficients in the matrix. When this is done, the diagonal coefficients can be calculated from a single closure problem corresponding to the sum of all mapping variables (see Appendix D ). This greatly simplifies the determination of the heat exchange coefficients and allows us to obtain analytical expressions for simple unit cells like the one illustrated in Fig. 2 . For instance, the lumped coefficients can be solved analytically for the cylindrical version of the Chang's unit cell shown in Fig. 2 . As for the spherical case, we compare the analytical solution obtained for Chang's unit cell with the numerical solution of the Fig. 10. Comparison of averaged DNS results with the macro-scale predictions for both the quasi-steady and the quasi-steady lumped approximation -two-dimensional case

N V = 3 × 3 . Table 2 Dimensionless heat exchange coefficients ˆ h pk = h ∞ pk d p /λ β for different values of N V
and ασ = 10 -3 for a periodic arrangement of in-line cylinders ( denotes particles on the same x -axis, ⊥ between the first and the second rows and ⊥⊥ between the first and the third rows). except for the diagonal coefficient h ∞ pp which is of the same order of magnitude. Also note that the value of h ∞ p does not depend on N V since the lumped coefficients can be obtained from summing mapping variables s defined in Appendix D and solved for the spatially periodic cell shown in Fig. 8 .

N V ˆ h 11 ˆ h 12 ˆ h 12 ⊥ ˆ h 13 ˆ 13 ⊥ h 13
Next, we compare the average temperature T β β and the temperatures of particles 1, 2 and 2 obtained from micro-scale simulations to those obtained from the macro-scale Eulerian-Lagrangian description using the heat exchange coefficients given in Table 2 and the same parameter values reported in Table 1 . Recall from Eq. ( 85) that the lumped approximation is formally equivalent to the full macro-scale heat exchange coefficients matrix when there is no temperature difference between particles. The proposed case involving active and inert particles leads to large temperature differences between particles and, therefore, allows us to test the validity of the lumped approximation. Parameters are listed in Table 1 and results are plotted in Fig. 10 . We find that the quasi-steady model is in good agreement with the reference microscale simulations for a dimensionless time greater than 3 (recall that the theoretical constraint is ˆ t 1 ). The lumped approximation yields a good agreement for the averaged β-phase temperature T β β but an underestimation of the temperature difference between particles. In order to get more in-sight for larger temperature differences between particles, we extend the previous case to N V = 5 with only particle 1 remaining active and ˆ ω 1 = 100 . The results reported in Fig. 11 show that the lumped approximation still yields a good agreement for T β β at ˆ t > 4 but fails to capture differences observed in DNS results for particles 1 and 3. We further remark that other diagonal approximations may produce better results. In this specific configuration, Fig. 12 shows that we obtain slightly better results if we substitute the lumped coefficients by the diagonal coefficients h ∞ pp reported in Table 2 . This suggests that, depending on the situation of interest, different diagonalizations may yield better results. This is something that needs to be addressed in future works, especially when considering average gradients of temperature.

We move finally to the three-dimensional case and assess the validity of the lumped approximation for the three-dimensional version of the system illustrated in Fig. 9 that consists in a periodic arrangement of in-line spherical particles. As previously, it is assumed that there is no averaged temperature gradient and that the system is homogeneous except in the x -direction. As a result, here again a single row of particles along the x -direction is representative of the entire system. We do not repeat here all the cases studied previously in the two-dimensional case and we restrict to the case N V = 3 × 3 × 3 . The results reported in Fig. 13 in which the β-phase average temperature T β β is compared to the temperatures of particles reflect the same trends as already observed in the previous two-dimensional case. Here again, the quasi-steady approximation leads to a good prediction of the macro-scale temperatures while the lumped approximation fails to accurately predict the temperatures of particles. It is instructive to note that in this special case of ordered distribution of spherical particles with large temperature difference between particles and with no averaged temperature gradient in the continuous phase, both the quasi-steady and the quasi-steady lumped approximation yields the same averaged temperature for the continuous phase. This behavior was expected from Eqs. ( 68) to (69) as macro-scale Eulerian description is equivalent to the lumped approximation. This also means that in this case, the lumped approximation accurately predict the averaged temperature for the dispersed phase defined by Eq. ( 67) .

Discussion and conclusion

Using the method of volume averaging with closure, we have derived a novel macroscopic Euler-Lagrange model for heat transfer in gas-particle mixtures. The primary difference between our model and the classical one is an expression of heat transfers that captures indirect particle-particle interactions. We recall here that indirect exchanges refer to heat transfer between particles through the continuous carrier phase and have not to be confused with direct particle-particle exchanges that take place during collisions in dense suspensions. By comparing our theory to micro-scale computations in simple model cases of particle clouds, we found that the general formulation with time convolutions is able to predict the exact macroscopic temperatures for any time in a case with no average gradient. This shows that the most general formulation of the heat transfer captures both history effects and heat exchanges between particles. We have also shown that the quasi-steady model accurately captures the temperature fields for sufficiently long times. This illustrates the usefulness of the quasi-steady approximation which is, in practice, frequently adopted when the constraint Eq. ( 39) is verified.

We have further shown that the standard formulations can be recovered from a diagonalization approximation of the exchange matrix. In particular, a lumped matrix can be used and the diagonal coefficients can be obtained by solving the closure problem for a unit cell with an isolated particle, similarly to the classical approach. This approximation is formally equivalent to the full macro-scale model when the temperature differences between particles can be neglected. This approximation was tested in the case of two-and three-dimensional systems. The simplified version of the model was able to accurately describe the average temperature T β β . However, the lumped approximation failed in capturing temperature differences between particles, which is due to the fact that the indirect exchange between the particles is neglected.

The considered model cases of particle clouds, even if very simple, have led us to a better fundamental understanding of the models. The validity of the various macro-scale approximations have been assessed in cases with large temperature difference between particles within the averaging volume but no average gradients of temperature. Therefore, limitations of the standard description, which neglect both indirect exchange between particles and memory effects, must be further evaluated in practical cases with macroscopic gradients.

Such practical cases would require more realistic configurations such as random arrangements of spherical particles investigated in [START_REF] Sun | Modeling average gas-solid heat transfer using particle-resolved direct numerical simulation[END_REF] and [START_REF] Thiam | Particle-resolved numerical simulations of the gas-solid heat transfer in arrays of random motionless particles[END_REF] for the closure of Eulerian-Eulerian heat transfer using direct numerical simulations. This would represent a highly challenging task since different arrangements that correspond to the same volume fraction may lead to very different heat transfer coefficients values. One could then adopt the methodology followed in the Eulerian-Eulerian framework by using ensemble average of a number of realizations to get relationships for the effective properties such as h pk = h pk (α β ) . However, it is not clear at this stage on how this methodology may apply in the Eulerian-Lagrangian framework [START_REF] Kriebitzsch | Drag force in discrete particle models -continuum scale or single particle scale[END_REF] and this calls to future work.

Appendix A. Closure problems

In order to obtain the closure problems for the mappings variables, we introduce Eq. ( 40) in the local problem for the deviation T β and proceed in the standard way in the volume averaging theory. In doing so, we obtain N V identical closure problems I k for the variables s k and the closure problem II for variable b β . These problems are as follows.

A1. Unsteady closure problems

-Problem I k for s k with 1 ≤ k ≤ N V ρ β c p β ∂ t s k + u β • ∇s k = λ β ∇ 2 s k -α -1 β N V p=1 g(x -x p ) A p h pk , in the β-phase (88) s k = 1 , at A k (89) s k = 0 , at A j with j = k (90) Periodicity: s k (x + r ) = s k (x ) (91) Initial condition: s k = 0 , at t = 0 (92) 
where:

h pk = - 1 A p A p n • λ β ∇s k d S ( 93 
) -Problem II for b β ρ β c p β ∂ t b β + u β • ∇b β + u β = λ β ∇ 2 b β -α -1 β N V k =1 g(x -x p ) v β p , in the β-phase (94) b β = 0 , at A p , with 1 ≤ p ≤ N V (95) Periodicity: b β (x + r ) = b β (x ) (96) Initial condition: b β = 0 , at t = 0 (97) 
where:

v ∞ β p = A p n • λ β ∇b β d S (98) A2. Quasi-steady closure problems -Problem I ∞ k for s ∞ k with 1 ≤ k ≤ N V ρ β c p β u β • ∇ s ∞ k = λ β ∇ 2 s ∞ k -α -1 β N V p=1 g(x -x p ) A p h ∞ pk , in the β-phase (99) s ∞ = 1 , at A k (100) s k = 0 , at A j with j = k (101) Periodicity: s ∞ k (x + r ) = s ∞ k (x ) (102) Average: s ∞ k β = 0 (103) 
where:

h ∞ pk = - 1 A p A p n • λ β ∇s ∞ k d S (104) -Problem II ∞ for b ∞ β ρ β c p β u β • ∇b ∞ β + u β = λ β ∇ 2 b ∞ β -α -1 β N V p=1 g(x -x p ) v ∞ β p , in the β-phase (105) b ∞ β = 0 , at A p , with 1 ≤ p ≤ N V (106) Periodicity: b ∞ β (x + r ) = b ∞ β (x ) (107) Average: b ∞ β β = 0 ( 108 
)
where:

v ∞ β p = - A p n • λ β ∇b ∞ β d S ( 109 
)
A3. Memory effects closure problems

-Problem I * k for s * k with 1 ≤ k ≤ N V ρ β c p β ∂ t s * k + u β • ∇s * k + δ(t) s ∞ k = λ β ∇ 2 s * k -α -1 β N V p=1 g(x -x p ) A p h * pk , in the β-phase (110) s * k = 1 -u (t) , at A k (111) s * k = 0 , at A j with j = k (112) Periodicity: s * k (x + r ) = s * k (x ) (113) Initial condition: s * k = 0 , at t = 0 (114) 
where:

h * pk = - 1 A p A p n • λ β ∇s * k d S ( 115 
) -Problem II * for b * β ρ β c p β ∂ t b * β + u β • ∇b * β + δ(t) s ∞ j + ( 1 -u (t) ) u β = λ β ∇ 2 b * β -α -1 β N V p=1 g(x -x p ) v * β p , in the β-phase (116) b * β = 0 , at A p , 1 ≤ p ≤ N V (117) Periodicity: b * β (x + r ) = b * β (x ) (118) Initial condition: b * β = 0 , at t = 0 ( 119 
)
where:

v * β p = - A p n • λ β ∇b * β d S ( 120 
)
Appendix B. Definitions of the effective transport coefficients (132)

K ββ = α β λ β I + λ β n βσ • b β δ βσ -( ρc p ) β u β b β (121) d β p = ( ρc p ) β s p u β -λ β s p n βσ δ βσ (122) K ∞ ββ = α β λ β I + λ β n βσ • b ∞ β δ βσ -( ρc p ) β u β b ∞ β (123) d ∞ β p = ( ρc p ) β s ∞ p u β -λ
The solutions of the closure problems for s ∞ k can be calculated from the second order polynomial for each interval ] x p ; x p+1 [

s ∞ k = 1 2 α -1 β N V p=1 ˆ h ∞ pk x 2 + c j x + d j (133)
By introducing the previous expression into the closure problems, we obtain a linear system of 3 × 9 equations. The resolution of this system allows us to determine all the polynomial coefficients. Introducing the solution in Eq. ( 132) leads to 

ˆ h ∞ pk = ˆ h ∞ 11 ; if p = k ˆ h ∞ 12 ; if p = k (134)
-Problem I * k for s * k with 1 ≤ k ≤ N V ∂ t s * k + δ(t )s ∞ k = ∇ 2 s * k -α -1 β N V p=1 ˆ h *
pk , in the β-phase In Laplace space, the closure problem can be written as (147)

ξ s * k + s ∞ k = d 2 s * k x 2 -α -1 β N V p=1 ˆ h * pk ,
The solutions of those closure problems can be calculated from

s * k = c k e √ ξ x + d k e √ ξ x - 1 ξ α -1 β N V p=1 ˆ h * pk -α -1 β 1 ξ 2 + x 2 2 ξ N V p=1 ˆ h ∞ pk - c k x + d k ξ ( 148 
)
Using the same methodology as in the previous section, the heat We define here the lumped mapping variable s ∞ by

s ∞ = N V k =1 s ∞ k ( 153 
)
Summing up the quasi-steady closure problems for s ∞ k , the closure problem for s ∞ reads 0 where:

= λ β ∇ 2 s ∞ -α -1 β A p V N V
h ∞ p = N V k =1 h ∞ pk = - 1 A p A p n • λ β ∇s ∞ d S ( 158 
)
Since the system illustrated in Fig. 1 is periodic in all directions, the value of h ∞ p does not depend on the number of particles N V . As a result h ∞ p can be calculated for a spatially periodic unit cell that contains solely one particle.

V

  where λ * β , u β β , ( ρc p ) β and α β are respectively an effective thermal conductivity, the intrinsic velocity, the volumetric heat Nomenclature Roman letters A p surface area of a particle, m 2 A βσ interfacial area of the βσ contained within the averaging volume, m 2 a v interfacial area per unit volume, m -1 Bi p = h p d p / λ σ particle Biot number of particles contained in the averaging volume V n βσ unit normal vector from the β-phase towards the σ -phase Q βp macro-scale heat transfer rate between the continuous phase and particle p , W r position vector, m r g radius of the averaging volume, m s p scalar that maps T β β -T j onto T β T η η = β, σ, temperature in the η-phase, the β-phase, K t * characteristic time associated with the microscale diffusion, s u β velocity in the β-phase, m s -1 u β β intrinsic average velocity for the β-phase, m s -1 u β deviation velocity for the β-phase, m s -1 the β-phase, W m -1 K -1 ω σ volumetric heat source, W m -3 ρ η η = β, σ, density for the η-phase, kg m -3 α η η = β, σ, volume fraction of the η-phase δ βσ Dirac distribution associated with the βσ intercapacity and the volume fraction of the β-phase. The last term in Eq.

  where s * p and b * β represent the contribution of history effects in the unsteady closure problem and verify respectively lim

Fig. 2 .

 2 Fig. 2. Comparison of Chang's unit cell (dashed line) with a spatially periodic system (solid line).

Fig. 6 .

 6 Fig. 6. Comparison of the quasi-steady closure with the reference solution obtained by averaging Direct Numerical Simulations (DNS) results of the micro-scale problem.

Fig. 11 .

 11 Fig. 11.Comparison of averaged DNS results with the macro-scale predictions for both quasi-steady and quasi-steady lumped approximations -two-dimensional case N V = 5 × 5 .

Fig. 12 .

 12 Fig.12. of averaged DNS results with the macro-scale predictions for both quasi-steady and quasi-steady diagonal approximations -two-dimensional case N V = 5 × 5 .

Fig. 13 .

 13 Fig. 13. Comparison of averaged DNS results with the macro-scale predictions for the quasi-steady and the quasi-steady lumped -three-dimensional case N V = 3 × 3 × 3 .
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  = λ β n βσ • b * β δ βσ -( ρc p ) β u β b * β (125) d * β p = ρ β c p β s * p u β -λ β s * p n βσ δ βσ (126)Appendix C. Heat exchange coefficients for one-dimensional unit cellsC1. Quasi-steady closure problemsThe closure problems I ∞ k for the mapping variabless ∞ k with 1 ≤ k ≤ N V read for one-dimensional unit cells at x = x k ± r k (128) s ∞ k = 0 , at x = x p ± r p with p = k (129) Periodicity: s ∞ k (x + L ) = s ∞ k (x ) (x p -r p ) -ds ∞ k dx | (x p + r p )

  α β 38 -3 1 -α β α β (136) C2. Memory effects closure problems

  = ∂ x s * k | (x p -r p ) -∂ x s * k | (x p + r p )

  in the β-phase(143) s * k = 0 , at A p with 1 ≤ p ≤ N V (144) Periodicity: s * k (x + L ) = s * k (x ) p + r p )

  κ coth (κ ) ) f (α β ) -α β 6 κ 2 f (α β ) 36 -α β 38 -3 -7 α β α β 36 ( κ -1 ) f (α β ) ( κ cosh (κ )sinh (κ ) ) -α β ( 3 coth (κ ) + tanh (κ ) ) 36 κ + α β 108 ( κ -1 ) + α β 1 -α β 114 -9 α β -15 α 2 -8 κα 4 β 36 ( κ -1 ) κ 2 f (α β ) (151)where we have adopted the notationsf (α β ) = 36 -α β 38 -3 1 -α β α β , κ 2 =

  1 , at A p 1 ≤ p ≤ N V (155) Periodicity: s ∞ (x + r ) = s ∞ (x )

Table 1

 1 Model parameters.

	Parameter	λσ λ β	(ρc p ) σ (ρc p ) β	ασ	T r	ˆ ω 1	ˆ ω 2	ˆ ω 2
	Value	10 3	10 3	10 -3	300	0	10	5