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Steve Ndengué,1, 2 Yohann Scribano,3 Fabien Gatti,4 and Richard Dawes2, a)
1)ICTP-East African Institute for Fundamental Research, University of Rwanda, Kigali,
Rwanda
2)Department of Chemistry, Missouri University of Science and Technology, 65409 Rolla, Missouri,
United States.
3)Laboratoire Univers et Particules de Montpellier, Université de Montpellier,
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We present a MCTDH method as an attractive alternative approach to the usual quantum close-coupling
method which approaches some computational limits in the calculation of rotational excitation (and de-
excitation) between polyatomic molecules (here collisions between triatomic and diatomic rigid molecules).
We have perfomed a computational investigation of the rotational (de-)excitation of the benchmark rigid rotor
H2O–H2 system on a recently developed Potential Energy Surface of the complex using the MultiConfiguration
Time Dependent Hartree (MCTDH) method. We focus here on excitations and de-excitations from the 000,
111 and 110 states of H2O with H2 in its ground rotational state, looking at all the potential transitions in
the energy range 1–200 cm−1. This work follows a recently completed study on the H2O-H2 cluster where we
characterized its spectroscopy, and more generally serves a broader goal to describe inelastic collision processes
of high dimensional systems using the MCTDH method. We find that the cross sections obtained from the
MCTDH calculations are in excellent agreement with time independent calculations from previous studies,
but does become challenging for the lower kinetic energy range of the de-excitation process. The MCTDH
method therefore appears to be a useful complement to standard approaches to study inelastic collision for
various collision partners, even at low energy, though performing better for rotational excitation than for
de-excitation.

I. INTRODUCTION

Our understanding of energy transfer between colliding
atoms and molecules is crucial for several fields like chem-
ical processes in Earth’s atmosphere, combustion chem-
istry processes for industrial and aeronautic applications,
and also in outside Earth’s environnement, such as in the
InterStellar Medium (ISM), stellar and planetary (and
exo-planetary) atmospheres. For example, determination
of molecular abundances in proto-stellar clouds requires
one to solve radiative transfer equations which them-
selves require knowledge of state-to-state rotational exci-
tation (and de-excitation) rate constants. The most accu-
rate technique to determine accurate rotational inelastic
cross sections (and thus rate constants) is certainly the
time independent quantum method based on Close Cou-
pling (CC) which solves the nuclear Schrödinger equa-
tion. The CC-methodology is a powerful and intuitive
method to solve for the rovibrational states and obtain
the collisional cross-sections using potential energy func-
tion typically obtained by means of accurate ab initio
methods. This approach was intensively used in the
past for the simulation of rotationally inelastic collisions
of nonreactive diatomic and polyatomic molecules with
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atoms and molecular colliders such as H2 which is the
most abundant molecule in space. The other well-known
technique is the Quasi-Classical trajectory method which
solves the classical Hamilton’s equations of motion, and
is usually processed by quantizing the classical action of
trajectories using binning histogram methods. This ap-
proach is numerically very efficient since computational
time decreases as the collision energy increases. How-
ever, the QCT approach is best suited for the high tem-
perature regime where quantum effects are expected to
be less important, and whereas for low temperature,
its validity could be questionable. More recently, the
mixed quantum-classical trajectory (MQCT)1 and sta-
tistical adiabatic channel model (SACM)2,3 have been
proposed as alternative approaches to the CC method
and they have both shown very promising results in cer-
tain cases, but less accurate behavior in other cases, with
their domain of validity not yet fully known and needing
to be investigated.
In this work, we want to address another alternative ap-
proach which can have some numerical advantages com-
pared to CC approaches and especially when we consider
high-dimensional molecular systems for which the den-
sity of internal rovibrationnal state is large leading to
unfeasable CC simulations. Here we extend a recently re-
ported MCTDH investigation4 of Ar colliding with a rigid
triatomic rotor (H2O) by studying the collision between
diatomic rigid rotors with triatomic rigid rotors using
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the MCTDH methodology. This five-dimensional system
corresponds to the description of rigid rotors inelastic ro-
tational excitation, an example of which is H2O colliding
with H2, a system of interest for ISM and astrochemistry.
In the past, the spectroscopy of the weakly bounded com-
plex H2O–H2 was intensively studied5–9 but also the col-
lisional dynamics between those two molecules with var-
ious methods. Those methods used Time Independent
CC formalism7,10–15, as well as quasi-classical approach16

which make this system a very good five-dimensional
benchmark. The MCTDH method has emerged in recent
years as one of the methods of choice for the study of the
quantum molecular dynamics (spectroscopy or collisional
dynamics) for system in high dimensionality. We are par-
ticularly focused here on the low-energy collision region
in order to most stringently test the method. This is be-
cause of the resonance structures mentioned before, and
also because of the known difficulty for time-dependent
approaches to describe low-energy collisions, since the
wavepacket in that case moves slowly, and the propaga-
tion then takes a very long time (which may lead to a
propagation of errors).
The paper is organized as follows: in Sec.II we will first
give a brief introduction to the MCTDH method and the
Hamiltonian (the kinetic energy operator and the poten-
tial energy surfaces) used for the dynamics, in Sec.II D
we will describe how the cross-sections are obtained and
discuss the convergence of the calculations. In Sec.III we
will present our results and their comparison to CC simu-
lations. We will finally conclude in Sec.IV and give some
perspectives of this method for more complex molecular
systems.

II. COMPUTATIONAL METHODOLOGY

A. MCTDH method

The MultiConfiguration Time Dependent Hartree
(MCTDH)17–20 is a time-dependent method in which
each degree of freedom is associated with a small num-
ber of orbitals or single particle functions (SPFs) which,
through their time dependence, allow an efficient de-
scription of the molecular dynamic process. The total
MCTDH wave function is expanded in Hartree products,
that is, products of single-particle functions

Ψ(Q1, . . . , Qf , t)=

n1∑
j1=1

· · ·
nf∑
jf=1

Aj1···jf (t)

f∏
κ=1

ϕ
(κ)
jκ

(Qκ, t)

=
∑
J

AJΦJ , (1)

where f is the number of degree of freedom of the system,
Q1, . . . , Qf are the nuclear coordinates, Aj1···jf denotes

the MCTDH expansion coefficients, and ϕ
(κ)
jκ

(Qκ, t) are
the nκ SPFs associated with each degree of freedom κ.
The subsequent equation of motion for the coefficients

and single particle functions, obtained by applying the
Dirac-Frenkel variational principle to the wave function
ansatz, are a set of coupled nonlinear differential equa-
tions which conserve the norm and the total energy (for
time-independent Hamiltonian).

The MCTDH equations of motion are solved at ev-
ery time step and require to build the mean fields and
the Hamiltonian matrix. As the Hamiltonian matrix and
mean fields require evaluation of integrals of the type

〈ϕ(1)
j1
· · ·ϕ(f)

jf
|Ĥ|ϕ(1)

l1
· · ·ϕ(f)

lf
〉. (2)

Because of the considerable time those calculations take
in the process, the MCTDH approach relies in transform-
ing the Hamiltonian operator Ĥ to a sum-of-products of
single particle operators

Ĥ =

s∑
r=1

cr

f∏
κ=1

ĥ(κ)r , (3)

which then significantly simplifies the evaluation of the
Hamiltonian matrix and the mean fields

〈ϕ(1)
j1
· · ·ϕ(f)

jf
|Ĥ|ϕ(1)

l1
· · ·ϕ(f)

lf
〉 =

s∑
r=1

cr

f∏
κ=1

〈ϕ(κ)
jκ
|ĥ(κ)r |ϕ

(κ)
lκ
〉.

(4)
In the following two subsections we will describe the ex-
pression of the Kinetic Energy Operator and the Poten-
tial Energy Operator as a sum-of-products of single par-
ticle operators.

B. MCTDH Kinetic Energy Operator

We described quite extensively in the previous paper21

on this system the Hamiltonian (Kinetic Energy Oper-
ator (KEO) and Potential Energy Surface (PES)). The
Kinetic Energy Operator (KEO) expressed in Jacobi co-
ordinates is used in this work, following the subsystem
KEO derivation presented by Brocks et al.22 and gener-
alized by Gatti and Iung23. Here, just as in our previous
work21 on the same system we work in the E2 frame ob-
tained by rotation of the first two Euler angles of the SF
frame. Althrough this section we express the KEO in
atomic units.

2T̂= − 1

µR

∂2

∂R2
+ 2T̂1 + 2T̂2

+
1

µR2

(
~̂J† ~̂J + (~̂L1 + ~̂L2)2 − 2(~̂L1 + ~̂L2) ~̂J

)
E2

, (5)

where µR is the reduced mass of the H2O–H2 cluster,
the 1 and 2 subscripts refer respectively to the H2O and
H2 fragments. The rigid rotor Hamiltonian of the H2O
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molecule is expressed as22,24

T̂1=
A

2

(
L̂2
1,+ + L̂2

1,− + L̂1,+L̂1,− + L̂1,−L̂1,+

)
BF1

−C
2

(
L̂2
1,+ + L̂2

1,− − L̂1,+L̂1,− − L̂1,−L̂1,+

)
BF1

+BL̂2
zBF1 , (6)

where the rotational constants6 have values A = 27.8572
cm−1, B = 14.5145 cm−1and C = 9.2799 cm−1. The
rigid rotor kinetic energy of the H2 fragment is written

simply as T̂2 = BH2
~̂L2
2 where the rotational constant

BH2 = 59.2434 cm−1. The final form of the KEO ob-
tained after some analytical development and which is
implemented in the MCTDH code is then

2T̂= − 1

µR

∂2

∂R2
+ 2T̂1 + 2T̂2

+
1

µR2

(
J(J + 1) + ~̂L2

1 + ~̂L2
2 − 2L̂2

1,z − 2L̂2
2,z

)
E2

+
1

µR2

(
L̂1,+L̂2,− + L̂1,−L̂2,+ − 2L̂1,zL̂2,z

)
E2

+
1

µR2

(
C+(J,K)(L̂1,+ + L̂2,+)

)
E2

+
1

µR2

(
C−(J,K)(L̂1,− + L̂2,−)

)
E2

, (7)

with

C±(J,K) =
√

(J(J + 1)−K(K ± 1). (8)

In the previous equations, ~̂LX (X = 1, 2) is the total

angular momentum of fragment 1 or 2 and L̂X,± are their
corresponding creating and lowering operators expressed
as L̂X,± = L̂X,x± L̂X,y. In terms of angles, we can write
for their expressions in the E2 frame

L̂2
1 = − 1

sinβ

∂

∂β
sinβ

∂

∂β
+

kα

sin2β
, (9)

L̂2
2 = − 1

sinθ

∂

∂θ
sinθ

∂

∂θ
+

kφ

sin2θ
(10)

and

L̂1± = ± ∂

∂β
− kαcotβ, (11)

L̂2± = ± ∂

∂θ
− kφcotθ, (12)

with an additional shift k → k ± 1 in the equations (11)
and (12). In the BF1 frame (for H2O) we have similar ex-
pressions with kα changed into kγ and the corresponding
additional shift kγ → kγ ± 1

L̂2
1 = − 1

sinβ

∂

∂β
sinβ

∂

∂β
+

kγ

sin2β
(13)

and

L̂1± = ± ∂

∂β
− kγcotβ. (14)

C. MCTDH Potential Energy Operator

We use as in our previous work21 the same PES of
Valiron et al25 and transform it to the appropriate set of
coordinates21, but now for scattering calculations. Using
the multipolar description of Valiron PES and the trans-
formation suggested by Avoird and Nesbitt5, we can have
an analytically exact representation of the PES in the set
of coordinates used for the dynamics and thus be able to
extend the PES to any distance without doing an addi-
tional refitting with MCTDH. This analytical represen-
taion is particularly useful as the range of the PES which
is significantly extended along the R coordinate in order
to describe accurately the low energy region of the cross
section. The surface from Ref. 25 after transformation
from its original set of coordinates to the E2 frame can
be expressed as

V (R, β1, γ1, α1, θ2, φ2) =
∑
rβ ,rγ
rα,rθ

Ṽrβ ,rγ
rα,rθ

(R)frβ ,rγ
rα,rθ

(ω1, ω2)

(15)
where

frβ ,rγ
rα,rθ

(ω1, ω2) = D
(rβ)
rα,rγ (β1, γ1, α1)?Crθ,−rα(θ2, φ2).

(16)

D
(rβ)
rα,rγ (β1, γ1, α1) is the Wigner D-matrix and

Crθ,−rα(θ2, φ2) is the Racah normalized spherical
harmonics. As we work in the momentum representation
for the degrees of freedom γ, α and φ we replace γ1, α1

and φ1 by their momentum representation kγ , kα and
kφ where we dropped the 1 and 2 indices to simplify the
notation.

D. Inelastic cross-sections calculations

The H2O+H2 scattering calculations were designed
in a similar way as our previous scattering studies4,9,26

where we used the MCTDH program: we will repeat
those steps here.

(i) First a wavepacket defining the initial state has to
be constructed: it is here (since we are in the rigid rotor
approximation) the product of the initial rotational state
of H2O, the initial rotational state of H2 and a Gaussian
function along the dissociative coordinate R, starting far
away from the interaction region. The Gaussian’s param-
eters (with a negative impulsion) are selected in order to
cover the energy range of interest. The initial wavefunc-
tion is thus expressed as

Ψi(R, β, kγ , kα, θ̃, kφ)= ψi(β, kγ , kα, θ̃, kφ)χ(R) (17)

= τ1,i(β, kγ , kα)τ2,i(θ, kφ)χ(R)

where ψi is a product of the initial rotation states of
H2O (τ1,i) and H2 (τ2,i). The initial rotational state of
H2O are linear combination of Wigner-D matrices usually
written in the simplified notation jKaKc where j is the
molecular rotational angular momentum and Ka, Kc the
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TABLE I. Rotational energy levels (cm−1) or ortho and para
H2O and H2. The rotational constants used to generate those
levels are A=27.8572 cm−1, B=14.5145 cm−1 and C=9.2799
cm−1 for H2O and BH2= 59.2434cm−1for H2. Ortho levels
of H2 are displayed in italic.

H2O H2

ortho para ortho & para

101 23.7995 000 0.00000 0 0.0000
110 42.4024 111 37.1583 1 118.4868
212 79.5133 202 70.1329 2 355.4604
221 135.3220 211 95.2454 3 710.9208
312 173.5976 220 136.5876 4 1184.8680

projection on the BF-axis along the prolate and oblate
limits. If, for example, we write the Wigner D-matrices as
|j, k,m〉, the rotational state for j = 0 is |000〉 = |0, 0, 0〉
with eigenvalue 0. The rotational states for j = 1 are6:

|110〉 =
1√
2

[|1, 1,m〉+ |1,−1,m〉],

|111〉 = |1, 0,m〉,

|101〉 =
1√
2

[|1, 1,m〉 − |1,−1,m〉], (18)

with respective eigenvalues A + B, A + C and B + C
(clearly with a 2j + 1 = 3 degeneracy) with A, B and C
being the rotational constants of H2O given above and
m = −1, 0, 1 the magnetic quantum number projections.
For j ≥ 2, we used the symbolic arithmetic program
Sympy27 and obtained the normalized eigenfunctions and
related eigenvalues that helped to generate analytically
the initial but also the final rotational functions. While
it is obviously not compulsory to obtain the initial and
final functions analytically, it nevertheless helps to verify
that these results match the known analytical results for
this rotational Hamiltonian.

The initial state of H2 is an associated Legendre poly-
nomial that we write simply as lm where l is the molec-
ular angular momentum of the H2 fragment and m the
projection along the BF-axis. The Gaussian χ writes

χ(R) =
1√
2πw

exp

[
−
(
R−R0

2w

)2
]
eip0(r−R0) (19)

with R0, p0 and w being respectively its center in coordi-
nate and momentum space and its width. For this work,
we tested various parameters and two sets of energy dis-
tributions (for which a state-to-state cross section will be
presented later) are shown in Figure 2.

When the initial rotational states of H2O or H2 have
a non-zero angular quantum number (j 6= 0 in jKaKc or
l 6= 0 in lm), then calculations for each magnetic quan-
tum number projection have to be done also in order
to obtain the state-to-state cross-sections from a specific
initial rotational state. The lowest para and ortho rota-
tional levels of H2O and H2 are presented in Table I. The
2j+1 (and 2l+1) repetition of the calculations is avoided

TABLE II. Parameters of the primitive basis used for the
rovibrational calculations of H2O-H2. FFT stands for the
Fast Fourier Transform. Wigner stands for the Wigner DVR.
KLeg is the K-Legendre DVR. The units for distance and
angle are bohrs and radians respectively.

Coordinate Primitive Number of Range Size of
Basis Points SPF basis

R FFT 960 2.0 – 72.0 10–20
β Wigner 6 0 – 5 10–25
kγ K 11 -5 – 5
kα K 11 -5 – 5

θ̃ KLeg 3 0 – 2 10–12
kφ K 5 -2 – 2

due to the symmetry of H2O (and H2). If we write an
initial rotational eigenstate of H2O as |j, ζ,m〉 (H2 as
|l,m〉), then the state-to-state probabilities from the ini-
tial states |j, ζ,m〉 and |j, ζ,−m〉 (|l,m〉 and |l,−m〉) are
identical and instead of running for a rotational state
jKaKc of H2O and l of H2 (2j+ 1)× (2l+ 1) calculations,
we can simply run (j+ 1)× (l+ 1) calculations to obtain
the cross-sections.

(ii) Next we have to use a suitable Complex Absorb-
ing Potential (CAP). The intensity of the CAP was
determined using the program plcap included in the
MCTDH package. As before the form of the CAP is
W (x) = η|x − xc|bΘ(x − xc), where Θ is the Heaviside
step function, xc the starting point of the CAP was se-
lected such that the length of the CAP is 20 bohrs, η its
strength is 4.76×10−9 and b its order is 4.

(iii) We then have to select a primitive and SPF bases
for the calculation. The primitive basis, its range and the
number of the SPFs used for the wavepacket propagation
are summarized in Table II. A primitive basis composed
of Fast Fourier Transform (FFT) functions for the inter-
molecular distance R was coupled with a Wigner-DVR24

and a two dimensional Legendre-K DVR28 to describe
respectively the orientation of the H2O and the H2 frag-
ments in the E2 frame.

(iv) As we are interested in the low-energy region of the
cross-sections, we need to propagate the wavepacket for
a very long time. In order to control the propagation and
the convergence of the calculation, we allowed the wave
packet to propagate for a maximum of 200 ps (with the
wavefunction printed every 20 fs) or when 99.0% of the
wavepacket has been absorbed by the CAP. For higher
values of J the propagations completes very quickly: for
example, for J = 35 the calculation stops after about 10
ps while for J = 0 a complete 200 ps of propagation is
needed and still by that time only about 98.5% of the
wavepacket has been absorbed by the CAP. Once the
propagations are completed, two procedures can be used
to obtain the various state-to-state transition probabili-
ties: it is either the flux20,29,30 approach or the Tannor
and Weeks31 method. We tested both methods but we
will mainly present results from the Tannor and Weeks
method as both results were similar. Unless specified
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otherwise, in the following equations and text E = Etot
that is the total energy in the collisional process. The ki-
netic or collision energy will be labelled Ekin. Using the
Tannor and Weeks method, the state-to-state reaction
probabilities are expressed as31,32

P Jf←i(E) = |SJfi(E)|2 (20)

=
1

4π2|∆i(E)|2|∆j(E)|2

∣∣∣∣∣
∫ T

0

eiEtCfi(t)dt

∣∣∣∣∣
2

,

where Sfi is the S-matrix element, Cfi is the autocorrela-
tion function obtained in term of the propagated function
Ψi and the final state function Ψf ,

Cfi(t) = 〈Ψf |e−iHt|Ψi〉. (21)

where ∆i and ∆f are the energy distribution33,34 of the
initial and final wavepackets, respectively. The functions
Ψi and Ψf are expressed as in Eq. (17) where we can
rewrite the labelled transition i← j as

j′1ζ
′
1m
′
1, j
′
2l
′
2 ← j1ζ1m1, j2l2. (22)

Here j1(j1’) and j2(j2’) are respectively the orbital an-
gular momentum quantum numbers of the H2O and
H2 molecule, ζ1(ζ ′1) and m1(m′1) are respectively an in-
dex along the BF-axis which identifies specific rotational
states and the Space-Fixed projection of H2O running
from −j1 to j1. l2(l′2) is the Space-Fixed projection of
H2 running from −j2 to j2. In the literature, ζ1(ζ ′1) is of-
ten replaced by KaKc where Ka and Kc are respectively
the projection of the molecular orbital angular momen-
tum along the Body-Fixed (Molecular) axis in the prolate
and oblate limits.

As mentioned in a previous publication4, while the flux
and Tannor and Weeks methods lead to similar proba-
bilities, the flux method usually produces a small, but
non-negligible flux in an energetically forbidden region
(at energies lower than the total energy threshold). This
numerical issue can easily be corrected by zeroing the
probabilities in the energetically forbidden region when
summing the cross-sections (Eqn. (23)). Conversely, the
Tannor and Weeks method requires a broad energy dis-
tribution of the final wavefunctions (wavefunctions on
which the propagated wavefunction is projected) to make
the correlation function disappear more quickly. Follow-
ing the calculation of the state-to-state transition proba-
bilities, a weighted sum (by the 2JBF +1 factor) of these
probabilities then produces the inelastic scattering cross-
section from the relation

σ
j′1ζ

′
1j

′
2

j1ζ1j2
(E) =

π~2

2µR(2j1 + 1)(2j2 + 1)Ekin
×

j1∑
m1=−j1

j2∑
l2=−j2

j′1∑
m′

1=−j′1

j′2∑
l′2=−j′2

Jmax∑
JBF=0

×

(2JBF + 1)P JBFj′1ζ
′
1m

′
1,j

′
2l

′
2←j1ζ1m1,j2l2

(E),

(23)

where Ekin = E −Eint = E − εH2
− εH2O with Eint, εH2

and εH2O the internal initial energy of the whole system
and the initial rotational energies of the H2 and H2O
fragments respectively.

III. RESULTS AND DISCUSSIONS

Before presenting and discussing the results, it is worth
pointing out that the purpose of this work was not simply
to demonstrate precise agreement between the MCTDH
results and those obtained with the Time-Independent
Close-Coupling method (if any could be found), but
rather to highlight the computational efficiency with
which MCTDH makes it possible to obtain accurately
the cross section with reasonably limited resources. How-
ever, as the following results will show, we were able to
obtain overall a good agreement with Close Coupling re-
sults. For all of the calculations reported in this work
we used a Primitive and Single Particle Functions basis
as reported in Table II. Between 1,000 to 6,000 Single
Particle Functions were used to describe the dynamics of
the system compared with more than 1,000,000 Primitive
Basis functions that would have been needed overall for
a standard wave packet calculation.

A. Convergence of the calculations

The convergence of the MCTDH calculations depends
on various parameters: the primitive basis, the SPF ba-
sis, the range of the propagation, the intensity of the
CAP and the duration of the propagation. For this work
we used a primitive basis with angular parameters sim-
ilar to the one used by Scribano et al15: the number of
DVR points for the radial degree of freedom was selected
to be sufficiently dense for the range selected.

1. Convergence: radial coordinate range

To determine the range of integration, we performed
2 scattering calculations: one going from 2 to 52 bohrs
(with 768 radial DVR points) and the other from 2 to 72
bohrs (with 960 radial DVR points), that is with about
the same density of points along the radial coordinate
for the 2 calculations, but also the same number of SPF
(1,000 SPF for these tests). Those 2 calculations were
compared with the available close-coupling calculations
(considered exact) as depicted in Figure 1. As expected,
extending the grid and displacing the position of the
CAP (which however keeps the same length) improves
the quality of the results. Also, the contraction of the
grid induces a very small blue shift in the position of the
resonance structures of the cross-section. We computed
the transition probabilities for each individual J from 0
to 35 (the maximum J value considered for the time in-
dependent close coupling calculations) in parallel using
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FIG. 1. Comparison of MCTDH calculations for Rmax = 52
and Rmax = 72 with time independent close coupling results
for the 000 → 111 rotational transition of H2O.
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32 processors for each J-calculation. These calculations
with 1,000 SPF lasted from less than a day for the higher
J-values to about 7 days for the lower J-values which re-
quire a longer propagation.

2. Convergence: the energy distribution

An important aspect of the calculation is the choice of
the initial wavefunction. As stated before, the width and
initial momentum of the Gaussian are connected to the
energy range that will be covered by the scattering calcu-
lation. We perform 2 separate scattering calculations to
see the influence of the final cross-sections on the choice
of the energy range covered by the scattering. For the
first calculation we selected a Gaussian centered at 52
bohr with a width of 1.2 a.u. and an initial momentum
of -1.6 a.u. (where the negative sign emphasizes the fact
that the initial wave packet goes towards the interaction
region) and for the second calculation, the Guassian is
centered at 52 bohr but with a width of 1.0 a.u. and an
initial momentum of -2.1 a.u. The energy distribution of
the 2 calculations at J = 0 are displayed in Figure 2 and
a comparison between the cross-section for the 000 → 111
transition are compared with the time independent close
coupling calculation on Figure 3. The comparison shows
that the calculation with the shorter energy distribution
range describes better the low energy than one with the
larger range. Therefore, for calculations spanning a large
collisional energy range, it would be necessary to perform
different sets of calculations with two or more energy dis-
tribution ranges in order to cover accurately a wide range
of collision energies.

FIG. 2. Energy distribution used for the MCTDH calculations
at J = 0. edist1 is generated with a Gaussian of width 1.2
a.u. and an initial momentum of -1.6 a.u. and edist2 with a
Gaussian of width 1.0 a.u. and momentum of -2.1 a.u.
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FIG. 3. Comparison of MCTDH calculations for edist1 and
edist2 with time independent close coupling results for the
000 → 111 rotational transition of H2O.
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3. Convergence: the SPF basis

An advantage of the MCTDH method is that the ap-
proach, just like the Close Coupling method, is varia-
tional. Therefore, we know that once a suitable choice of
a primitive basis is made, we can improve the accuracy of
the calculation by further increasing the size of the SPF
basis. A characteristic of the MCTDH method is that it
is designed to reproduce very well the most intense fea-
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FIG. 4. Comparison between MCTDH calculations with 4
different set of basis and Exact (MOLSCAT) time indepen-
dent close coupling calculations. Each MCTDH calculations
is shifted by 0.2 Å2 downward with respect to the previous one
and the most accurate calculation is closer to the MOLSCAT
result. The parameters of the basis are given in Table III.
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TABLE III. Parameters of the SPF basis used in Figure 4.

Basis 1 Basis 2 Basis 3 Basis 4

nR 10 12 15 20
nβ,kγ ,kα 10 15 20 25
nθ̃,kφ 10 10 12 12

tures of a process with a limited number of functions:
however, the less intense features can be recovered easily
by increasing the size of the Single Particle Functions. In
the limit NSPF → NPBF , we can recover the exact nu-
merically exact calculations, where NSPF and NPBF are
the total number of Single Particle and Primitive Basis
Functions respectively. We were able to verify this fea-
ture by looking specifically at the 000 → 211 transition
with an increasing SPF basis, and comparing the results
with the exact Time Independent results. One aspect of
that transition is that it is about 50 times less intense
than the 000 → 111 transition which is the most intense
one, and also retrieved from the same set of calculations.
The comparison is shown in Figure 4. The parameters of
the 4 basis are presented in Table III for the 3 combined
modes and are such that the larger combination of SPF
basis is the one mentioned in the Table, but for calcula-
tion a higher J , the combination of numbers is likely to
be smaller. For the final results reported in this work, we
had to decide on convergence criteria. As we had to do
several propagations (for each J), and since the SPF ba-
sis size decreases as J increases, we chosed an SPF basis
such that for each (combined) mode, the weight of the
last SPF (arranged in decreasing order of weight) should

FIG. 5. Comparison of MCTDH calculations with time in-
dependent close coupling results for the 000 → 111 rotational
transition of H2O.
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be less than 10−5 for all the calculations. This uniform
criteria allowed to varying basis which will however main-
tain a consistent accuracy of the calculation.

B. Rotational excitation cross sections

The calculated inelastic scattering cross-sections for
the transitions from the ground state to the first excited
states, i.e. 000 → 111, 000 → 202 and 000 → 211 are
displayed on Figures 5, 6 and 7 respectively. The fig-
ures show a very good agreement between the MCTDH
calculations and the CC calculations at these low ener-
gies. In particular, the position of the resonances are
well reproduced in each calculations and an even better
agreement will certainly be met with a larger SPF ba-
sis. The position and the intensity/width of the peaks
are connected in the calculations to the range and the
duration of the propagation respectively. A too-narrow
range of the propagation shifts the peaks to higher en-
ergies because of confinement effects and a shorter dura-
tion of the propagation would make the resonances too
broad or even nonexistent. In fact, we actually see in the
course of the propagation that some resonances start to
appear only after a specific amount of propagation time
has elapsed. Similarly, just like with a rovibrational cal-
culation, increasing the size of the (SPF) basis improves
the agreement on the peaks position with the time in-
dependent calculations which are considered here to be
numerically exact.

Similarly to the calculations involving the para-states,
we perfomed calculations for the ortho-states. Here how-
ever, as we mentiond before, we used the same basis
sets (made of both para and ortho rotational states
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FIG. 6. Comparison of MCTDH calculations with time in-
dependent close coupling results for the 000 → 202 rotational
transition of H2O.
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FIG. 7. Comparison of MCTDH calculations with time in-
dependent close coupling results for the 000 → 211 rotational
transition of H2O.
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of H2O) to run the propagation and obtain the cross-
sections. The excitattion cross-sections for 2 ortho tran-
sitions 101 → 110 and 101 → 212 are displayed respec-
tively in Figures 8 and 9. Here again, we observe a very
good agreement between the MCTDH and the time in-
dependent results, both with respect to the position and
the intensity of the peaks. We notice however some small
issues at the start of the cross-sections where some peaks
are displayed with a smaller intensity than the time in-
dependent results, an issue that is likely linked to the

FIG. 8. Comparison of MCTDH calculations with time in-
dependent close coupling results for the 101 → 110 rotational
transition of H2O.
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FIG. 9. Comparison of MCTDH calculations with time in-
dependent close coupling results for the 101 → 212 rotational
transition of H2O.
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duration of the propagation. Also towards the end of the
spectrum, it appears that the MCTDH calculations have
a higher amplitude than the time independent results, an
issue that would be corrected if a wider energy distribu-
tion appropriate to describe higher energy values were to
be selected.
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FIG. 10. Comparison of MCTDH calculations with time in-
dependent close coupling results for the 111 → 000 rotational
transition of H2O.
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C. Rotational de-excitation cross sections

We performed additional calculations to determine the
state-to-state cross-sections from the first excited para-
state. This allowed to obtain a de-excitation cross-section
111 → 000 in addition to an excitation cross-section
111 → 202. These cross-sections are displayed in Fig-
ures 10 and 12. Figure 11 is similar to Figure 10 with
however a logarithmic scale used for the y − axis (cross-
sections intensity). We observe as in the previous cases
that the excitation cross-section reproduces quite well
the position of the peaks/resonances of the spectrum;
this is also the case for the de-excitation process until
we get to very low kinetic energy values. However, while
the intensities are usually quite well reproduced for the
excitation processes, the logarithmic scale cross-sections
(Figure 11) highlights how difficult it is to accomplish it
for the de-excitation process. This difference in accuracy
between the 2 types of calculations (excitation and de-
excitation) using the same SPF basis can be understood
from the cross-sections equation (Eq. (23)) but also from
the calculation of state-to-state transition probabilities
in the flux formalism. Within this formalism, the tran-
sition probabilities are obtained as a ratio of the flux
going towards a specific channel to the total flux. When
the calculation is exact, the total flux is well approx-
imated by the energy distribution of the propagation.
While for the excitation processes the starting point of
the state-to-state cross-sections is often in an energy re-
gion where the absolute value of the energy distribution
is quite significant, for de-excitation processes, this of-
ten corresponds to an energy region where the energy
distribution is very small, 2 order of magnitude or more
lower than the peak of the energy distribution. As the

FIG. 11. Comparison of MCTDH calculations with time in-
dependent close coupling results for the 111 → 000 rotational
transition of H2O. Note the logscale applied to the y − axis
(cross-section intensity).
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FIG. 12. Comparison of MCTDH calculations with time in-
dependent close coupling results for the 111 → 202 rotational
transition of H2O.
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flux to that channel at low kinetic energy is also very
small, it is quite difficult to describe with a small con-
tracted basis designed for the whole energy range, the
small features that mainly influence the low kinetic en-
ergy domain. Additionally, the 1/Ec term amplifies the
disagreement between the MCTDH and time indepen-
dent calculations at low collision energies where its role
is alleviated as energy increases as we can see from the
picture. However, we realized that by increasing the SPF
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FIG. 13. Comparison of MCTDH calculations–with the
smaller (old) and larger (new) basis– with time independent
close coupling results for the 111 → 000 rotational transition
of H2O. Note the logscale applied to the y − axis.
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basis size we were able to significantly improve the com-
parison with the time independent results. For example,
while for most of the calculations displayed in this work
we used a SPF basis with parameters described in Table
II, for the 111 → 000 we used up to 35 SPFs for the H2O
angular basis and up to 25 SPFs for the FFT on the R
coordinate on some J propagation that we identified as
the most problematic. Despite this significant increase,
we noted some (modest) change on the low energy re-
gion of the de-excitation cross-section for the 111 → 000
transition while only a modest to nonexistant one on the
excitation cross-section for the 111 → 202 transition as
we can see on Figures 13 and 14 respectively. So es-
sentially we only observe a problem in the de-excitation
cross-section of the 111 → 000 transition within 10 − 20
cm−1 above the treshold energy, i.e. here, below ≈ 55
cm−1 of total energy E.

IV. CONCLUSION

We performed the first benchmark 5D calculations for
the inelastic scattering of an asymmetric top molecule
(H2O) with a linear molecule (H2), all in the rigid rotor
approximation, using the MultiConfiguration Time De-
pendent Hartree procedure and without any additional
approximation on a recently constructed PES. We find as
expected a very good agreement between the time inde-
pendent close coupling results and our calculations which
are done with a relatively modest amount of resources.

Time Independent Close Coupling calculations are
frequently regarded as the benchmark for these type
of atom/molecule or molecule/molecule collisional pro-

FIG. 14. Comparison of MCTDH calculations–with the
smaller (old) and larger (new) basis–with time independent
close coupling results for the 111 → 202 rotational transition
of H2O.
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cesses. However, they quickly become untractable when
either the density of rotational states of the partners or
the dimensionality of the collisional system increases. It
then becomes essential to look for alternate means of
computing collisional cross-sections. We anticipate that
the MCTDH procedure (and its variants ML-MCTDH,
...) could be one of those alternate methods to describe
fully quantum mechanically the collisional dynamics in
these challenging cases. As the MCTDH inelastic scat-
tering calculations usually generate cross-sections for all
transitions starting from an initial state, they will also
be very relevant for comparison with experimental re-
sults where quite often only selected transitions could be
measured.

With respect to astrophysical applications where one
is often interested in the state-to-state rates, instead of
the specific state-to-state cross-sections, one can infer the
state-to-state rate of a de-excitation process (where the
cross-sections calculations appear to be challenging at
low kinetic energy using the MCTDH method) from the
reverse excitation process, which is known as detailed
balance.

The current MCTDH implementation of the Wigner-
DVR does not yet enable even/odd symmetry specified
calculations. Hence it was not possible to selectively per-
form wavepacket propagation calculations for the para
and ortho cases which have a specific symmetry with re-
spect to the H2O fragment axis. We thus did not take ad-
vantage of the primitive basis size reductions that would
occur from the symmetry consideration. Nevertheless,
the calculations for this system are still tractable with
respect to both the time and memory requirements.

The usage of the MCTDH method for this type of ap-
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plications is still at a development stage. However, we are
working on defining a scheme for which these type of com-
putations are likely to become standard and straightfor-
ward for people interested in such applications. Imposing
the symmetry for the Wigner-DVR in the MCTDH pack-
age will be part of this process and will certainly improve
the results.
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pichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh,
T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi,
H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R.
Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman,
and A. Scopatz, PeerJ Computer Science 3, e103 (2017).

28S. Sukiasyan and H. D. Meyer, J. Chem. Phys. 116, 10641 (2002).
29T. Seideman and W. H. Miller, J. Chem. Phys. 96, 4412 (1992).
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34A. Jäckle and H. D. Meyer, J. Chem. Phys. 109, 2614 (1998).


