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Abstract

Template protection is a crucial issue in biometrics. Many algorithms have
been proposed in the literature among secure computing approaches, crypto-
biometric algorithm and feature transformation schemes. The BioHashing algo-
rithm belongs to this last category and has very interesting properties. Among
them, we can cite its genericity since it could be applied on any biometric modal-
ity, the possible cancelability of the generated BioCode and its efficiency when
the secret is not stolen by an impostor. Its main drawback is its weakness face
to a combined attack (false acceptance with the stolen secret scenario). In this
paper, we propose a transformation-based biometric template protection scheme
as an improvement of the BioHashing algorithm where the projection matrix
is generated by combining the secret and the biometric data. Experimental
results on three biometric modalities, namely digital fingerprint, finger knuckle
print and hands vein images, show the benefits of the proposed method face to
attacks while keeping a good efficiency.
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1. Introduction

Biometrics is an emerging technology for authentication applications. Many
biometric modalities are well known and used (such as fingerprints), the design
of intelligent sensors is advanced (liveness detection) and algorithms provide
very good results. Privacy issues concerning this particular personal informa-
tion still limit its operational use. The General Data Protection Regulation
(GDPR) 2016/679 is a regulation in EU law on data protection and privacy for
all individuals within the European Union. Biometric data is of course consid-
ered as personal and sensitive data. In Europe, for example, the central storage
of biometric data is forbidden or limited to a small amount of users. In order
to solve this problem, new biometric systems have been proposed in the last
decade based on the “privacy by design” paradigm. These biometric template
protection schemes have as objective to guarantee the security and privacy of
users to face attacks such as identity theft (e-government applications, border
control, etc.) [1].

Three main approaches can be distinguished when dealing with template
protection in biometrics. First, biometric crypto-systems or secure sketches,
such as those presented in [2, 3, 4], resort to cryptography. Second, secure com-
puting methods aim at computing the comparison of two biometric templates
by an untrusted party [5, 6]. Last, we find feature transformations approaches
for template protection. The BioHashing algorithm is one of the most popular
technique and is based on biometric data salting. It has been developed for
different biometric modalities such as those presented in [7, 8, 9].

These last systems are called cancelable since the result generated from a
biometric template, namely BioCode, can be revoked in case of interception or
loss. This BioCode cannot be used as a cryptographic key as the generated
BioCode is not exactly the same for each biometric capture. These particular
biometric systems must of course address classical issues such as a high level of
performance (i.e., minimizing the Equal Error Rate (EER) or Area Under the
Curve (AUC) value of the system) but also new constraints concerning privacy.
In the literature, many papers [10, 11, 8, 12] have been published dealing with
the definition of new schemes for the protection of biometric templates.

Most of such protection schemes lack of robustness considering the stolen
token scenario. In this case, an attacker knowing the secret of the protection
scheme, has a big advantage to impersonate a user [13, 14]. This is due to the
fact that the used projection matrix is computed only given the secret.

Our Contributions. A major drawback of keyed projection-based transforma-
tions like BioHashing is that the generated BioCode depends on the key/token
used, and less on the input features. In this work, we propose a new trans-
formation for the protection of biometric data. Its main benefit is that the
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used projection matrix is not only related to a secret but also embeds informa-
tion computed from the biometric data. The great advantage of this proposed
method is that it limits some attacks. Second, we analyze the behavior of this
new transformation in comparison with two other methods by using a recent
analysis methodology of such schemes [15]. Emphasis will be placed on both
security and privacy aspects, i.e. by limiting attacks enabling an adversary to
get falsely authenticated and by preventing the recovery of a biometric feature
vector from its corresponding BioCode.

Organization. The paper is organized as follows. Section 2 gives the background
on feature extraction and template protection schemes. Section 3 is dedicated
to a literature review on template protection schemes based on a transforma-
tion. More specifically, in this section we recall the details of BioHashing and
BioPhasor algorithms. Then, a new transformation algorithm is described in
Section 4. Section 5 illustrates the benefits of the proposed method through
experimental results to be compared with BioHashing and BioPhasor. Finally,
in Section 6, we conclude and give some perspectives.

This invited article supports and improves the results of the original paper
entitled “Enhancing the Security of Transformation Based Biometric Template
Protection Schemes” [16].

2. Background

The general principle of template protection schemes based on a transfor-
mation is depicted in Figure 1. These schemes consist in generating a binary
vector called BioCode given a biometric template and a secret.

Feature extraction. In this paragraph, we briefly recall the concept of Gabor
filter, proposed by Dennis Gabor in [17], and used for texture analysis and ex-
traction. There are many feature extraction methods described in the literature
and it is mentionned in [14] and [18] that Gabor filter is considered as one of
the best methods. Gabor features have been used in several image analysis
applications. For example, texture classification and segmentation [19], image
recognition [20, 21], image registration and motion tracking [22].
Recall that the 2-D Gabor filter can be represented as a complex sinusoidal
signal modulated by a Gaussian kernel function as given in the following equa-
tion [23]:

Ψf,θ = exp

[
−1

2

(
x2
θ

σ2
x

+
y2
θ

σ2
y

)]
× exp(2πfθn)

with,

• xθ = x sin θn + y cos θn and yθ = −x sin θn + y cos θn.
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Figure 1: General principle of template protection schemes based on a transformation.

• σx and σy are the standard derivations of the Gaussian envelope along
the x and y dimensions and determine the ratio of the Gaussian window
width to wavelength.

• f provides the central frequency of the sinusoidal plane wave at an an-
gle θn.

• θn is the orientation angle which is θn =
(
π
k

)
× (n − 1); n = 1, 2, . . . p.

Note that we denote by p the number of orientations.

After doing the Gabor transformations, we obtain a vector of n real numbers,
denoted T . For more information, we refer the reader to the example detailed
in [24]. A comparative study [14] in the case of fingerprints shows that vectors of
n = 512 extracted features is nearly optimal. The gap of performance in terms of
EER is much smaller when passing from n = 256 to n = 512, than when passing
from n = 128 to n = 256, suggesting there is no point in increasing further the
number of features. This size is then considered in this work. The next step,
explained below, is to apply a cancelable transformation on the resulting vectors
of Gabor transformations.

Cancelable transformations. We propose to keep the notations of [13]. Let
Tz and T́z represent respectively the template and query biometric features
of user z. Let f be the feature transformation function. Let Kz be a set of
transformation parameters corresponding to the user z. A feature transforma-
tion is a non-invertible function using a user related key Kz (i.e typically a
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random seed or a strong password), applied to the used biometric template Tz.
The BioCode f(Tz,Kz) is stored in a database or in a personal device. It is gen-
erally considered that, given the transformed template f(Tz,Kz) and the key
Kz, it is possible to recover the original template Tz (or a close approximation)
as presented in [13]. Thus, it is requested to store this key in a second support,
even if the reconstruction of the original template strongly depends on the used
biometric modality.

Let n denotes the dimension of the BioCode f(Tz,Kz) for the user z. Let DT

denote a distance function between the biometric features in the untransformed
(original) domain. However, the comparison is computed in the transformed
domain, thus we need DT a distance function in the transformed one. The
verification operation of the cancelable biometric scheme outputs a verification
decision Rz ∈ {0, 1} depending whether the distance between the reference
BioCode and query BioCode is less than a decision threshold, denoted as ε:

Rz = 1{DT (f(Tz,Kz),f(T́z,Kz))≤ε} (1)

The performance of the authentication system is generally estimated with
FRR (False Rejection Rate)/FAR (False Acceptance Rate) rates, and the feature
transformation should not decline the performance of the system. In fact, this
approach tends to improve the performance of the biometric system without
any protection even if the key Kz is necessary for the user z to authenticate
herself/himself.

3. Related Works

The concept of privacy protection of biometric data has been defined in 2001
in a seminal paper [25]. Since then, many methods have been proposed among
random projections approaches [26], BioHashing methods [7], Bloom filters [27],
to cite just a few. A complete review of cancelable biometric systems can be
found in [28]. Very recently, Teoh et al. [12] proposed a new two-factor scheme
to protect the biometric template by transformation. Compared with previous
works, this method is based on localized random projection and on the rank
correlation. Moreover, the obtained results show that this system is strongly
resistant against the main attacks. These good results are the consequences of
their technical called Index-Of-Max which can be viewed as a machine learning
on the plain database. For this previous constraint, we do not compare to this
method where the BioSystem is tuned for a particular basis. More generally,
we can find a security analysis of the biometric system protecting the biometric
template based on transformations [15]. In the following paragraphs, we detail
two particularly popular template protection schemes, BioHashing [7] and Bio-
Phasor [10].

The BioHashing algorithm is applied on biometric templates that are repre-
sented by real-valued vectors of fixed length (so the metric used to evaluate the
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similarity between two biometric features is the Euclidean distance). It gener-
ates binary templates of length lower than or equal to the original length (here,
the metric DT used to evaluate the similarity between two transformed tem-
plates is the Hamming distance). This algorithm has been originally proposed
for face and fingerprints by Teoh et al. in [7]. The fingerprint images are, in a
first extraction step (e.g. using the Gabor filter described above), transformed
into a real-valued vector of fixed length, a biometric template. Then, the Bio-
Hashing algorithm transforms the biometric template T = (T1, . . . Tn) into a
binary template B = (B1, . . . Bm), with m ≤ n, as following:

Algorithm 1 BioHashing

1: Inputs
2: T = (T1, . . . , Tn): biometric template,
3: Kz: secret seed
4: Output B = (B1, . . . , Bm): BioCode
5: Generation with the seed Kz of m pseudorandom vectors V1, . . . , Vm of

length n,
6: Orthogonalize vectors with the Gram-Schmidt algorithm,
7: for i = 1, . . . ,m do compute xi =< T, Vi >.

8: Compute BioCode:

Bi =

{
0 if xi < τ
1 if xi ≥ τ,

where τ is a given threshold, generally equal to 0.

The specificity of the BioHashing algorithm is that it uses a one way func-
tion and a random seed of m bits. It is important to note that every enrolled
biometric feature uses a different seed in order to create a specific BioCode.
The performance of this algorithm is ensured by the scalar products with the
orthonormal vectors. The quantization process of the last step ensures the non-
invertibility of the data (even if n = m, because each coordinate of the input
T is a real value, whereas the coordinates of the output B is a single bit). Fi-
nally, the random seed guarantees both the diversity and revocability properties.

BioPhasor was proposed by Teoh et al. in [10] and was introduced as a
form of cancelable biometrics which is based on iterated mixing between the
user-specific pseudo-random number and the biometric feature. The BioPhasor
algorithm is supposed to be an improvement of the BioHashing one. It is de-
scribed in Algorithm 2. The step 8 is added in this paper in order to generate
a binary output.

An interesting component of these schemes is that no learning phase is re-
quired. Nevertheless, some weaknesses have been reported in the former ap-
proach in [29, 30, 31]. The main reason is that the projection matrix is only
related to the secret key. If an impostor obtains the key (known as stolen token
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Algorithm 2 BioPhasor

1: Inputs
2: b = (T1, . . . , Tn): biometric template
3: Kz: secret seed
4: Output B = (B1, . . . , Bm): BioCode
5: Generation with Kz of m pseudorandom vectors V1, . . . , Vm of length n,
6: Orthogonalize vectors with the Gram-Schmidt algorithm,
7: for i = 1, . . . ,m do compute hi = 1/n

∑n
j=1 arctan(Tj

2/V ji ).

8: Compute BioCode:

Bi =

{
0 if hi < τ
1 if hi ≥ τ,

where τ is a given threshold, generally equal to 0.

attack), the attack is quite easy especially by combining it with a real biometric
data, his own or another user’s. Indeed, with the knowledge of the key, the
impostor will use the same projection basis as the legitimate user. Thus, it
increases the success probability of its attack. In the sequel, we propose a new
transformation whose objective is to limit this issue.

4. Proposed Method

We intend in this paper to enhance the security of the BioHashing algorithm
by limiting the impact of stolen token based attacks. Geometrically, the classic
BioHashing computes a change of basis that is uniquely determined by the seed.
From a security standpoint, we can see that the seed has a most important part
than the biometric data. Thus, we propose to generate differently the projec-
tion matrix: it is derived both from the seed and from the biometric data. So,
attackers who steal the seed will have less benefit than with previous methods.
This is the point mainly described in [16]. Moreover, we propose a first transfor-
mation of the biometric template, which is only a projection onto a hypersphere.

Indeed, we first project the biometric template onto a hypersphere of radius
R, a parameter discussed in detail below, which depends only on the maximum
of the reference biometric template. This first transformation permits to replace
the knowledge of the average and standard deviation of the reference biometric
template by only the knowledge of their maximum value. Moreover, this trans-
formation improves the efficiency of the obtained biometric system.

As for BioHashing and BioPhasor methods, we assume that biometric data
are given into features forms. Thus, we have the following properties: the fea-
tures are fixed length, and the biggest versatility part is removed. It is exactly
what is assumed for existing method, moreover it is a realistic hypothesis, as
for example Gabor filters for fingerprint modality. We suppose in this method
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to have some statistics concerning the features (i.e. average and standard de-
viation). This hypothesis is not a high restriction of the operational use of the
method and keeps its possible use for any biometric modality. We generate a
projection matrix given the seed as secret and the biometric template. For the
informative purpose, let us to introduce:

• A hypersphere radius factor R. We take the Euclidean space Rn with the
Euclidean norm given for x ∈ Rn:

||x||2 =
√
x2

1 + x2
2 + · · ·+ x2

n.

and the hypersphere of Rn. Thus, we consider the hypersphere of radius
R × max, where max is the maximum of the biometric template, and
the centre is the barycenter of the last one. R is a parameter of the
proposed method which modifies the radius of the projection hypersphere.
In Section 5.5, we study the impact of R on the proposed system (Figure 10
gives some experiment results for different values).

• A constant number C. This parameter defines the domain interval of the
polynomial coefficients. Indeed, the polynomial coefficients are randomly
drawn from the interval [−C.σ; C.σ], where σ is the mean of the features.
Thus, by the choice of the parameter C, we can define a trade-off between
performance without any attack and robustness to attacks. In Figure 11
(Section 5.5), we give some experiment results for different values of C.

• A polynomial Pk such as Pk(X) =
∑3
i=0 ai∗Xi, k = 1 : m, ai ∈ [−C.σ; C.σ],

a3 6= 0. When we manipulate polynomials, a natural question is the choice
of their degrees. Since we expect a pseudo-random behavior, we propose
to use the conjecture of Hoory et al., which states that the 4-wise inde-
pendent functions reach pseudo-randomness [32, Part 6]. Thus, we choose
polynomials of degree three, which are four-wise independent functions.
A three-degree polynomial is completely defined by its four independent
monomial coefficients. Moreover, we have analyzed the different results by
changing the polynomials degree, and the best behavior is indeed obtained
when the degree is set at three.

In the following figure 2, we illustrate the general principle of the proposi-
tion of the BioHashing improvement, and in particular, the construction of the
projection matrix, computed both from the seed and the biometric data. The
transformation operation of our proposal is detailed in Algorithm 3.

The key ingredient of our proposed method is the new construction of the
projection matrix P . Firstly, we choose randomly polynomials of degree 3 ini-
tialized by the seed. Then, we construct P by evaluating these polynomials at
each component of the biometric template (Step 8). This provides a method for
biometric template protection, where the transformation depends both on the
secret and on the biometric template.
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Figure 2: General principle of the proposed method.

5. Performance and Security Analyses

In this section, we present some experimental results demonstrating the ben-
efit of the proposed transformation.

5.1. Dataset

We propose to evaluate our new transformation on databases of different
quality. We voluntary give more importance to biometric data. Then, we ana-
lyze how much is the impact of database quality on our transformation method.
In order to study its performance and robustness, we selected three biometric
datasets.

The first one is well known as the FVC2002 DB1 database composed of
digital fingerprint images. 100 individuals provided 8 samples of fingerprints.
Figure 3 presents some examples of fingerprints. We compute well known Gabor
features for each image, and we obtain in this case 512 real-valued features for
each fingerprint.

The second dataset is the PolyHK which is composed of images of knuckle
prints [33] (see figure 4). The database has been acquired on 4 fingers of 165
volunteers, leading to 660 different classes. Each class contains 12 images ac-
quired during 2 sessions. We compute Gabor features for each image, and we
obtain 256 real-valued features for each finger knuckle print.

The third dataset is the VEINEGY database which is composed of images
of dorsal hand veins [34]. 100 individuals provided 5 samples of hand veins,
for a total of 500 samples. Note that this database is of poor quality with
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Algorithm 3 GREYCHashing (transformation)

1: Inputs
2: T = (T1, . . . , Tn): biometric template
3: C: constant
4: Kz: secret seed
5: Output B = (B1, . . . , Bm): BioCode
6: Compute T̃ = R× T

||T ||2
7: Generation with the seed Kz of m polynomials Pk with k = 1 : m
8: Evaluate Pk,i = cos(Pk(T̃i)),∀i = 1 : n, ∀k = 1 : m,
9: Orthogonalize the matrix P with the Gram-Schmidt algorithm,

10: for i = 1, . . . ,m do compute xi =< T,Pi >.

11: Compute BioCode:

Bi =

{
0 if Xi < τ
1 if Xi ≥ τ,

where τ is a given threshold, generally equal to 0.

Figure 3: Some examples of fingerprint images in the FVC2002DB1 dataset.

small images. We compute Gabor features for each image, and we obtain 512
real-valued features for each of them.

5.2. Security Properties

Few works have been dedicated to the evaluation of such biometric systems
in the literature [35, 36, 13]. The ISO/IEC 24745 ”Information technology –
Security techniques – Biometric information protection” defines the security
properties of a biometric system, we use in this paper the same terms. Cance-
lable systems must fulfill several properties as also mentioned in [37, 15]:

• Revocability/Renewability:
It should be possible to revoke a biometric template and to generate a
new one from the original biometric data.

• Performance:
The template protection shall not deteriorate the performance of the orig-
inal biometric system.
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Figure 4: Some examples of finger knuckle print images in the PolyHK dataset.

• Non-invertibility or Irreversibility:
From the transformed data, it should not be possible to obtain enough
information on the original biometric data, to prevent any attack consist-
ing in forging a stolen biometric template (as for example, it is possible
to generate an eligible fingerprint given minutiae [38]). This property is
essential for security purposes. For any attack, an impostor provides an in-
formation in order to be authenticated as the legitimate user. The success
of the attack is given by:

FARA(ε) = P (DT (f(Tz,Kz), Az) ≤ ε) (2)

Where FARA is the probability of a successful attack by the impostor
for a decision threshold set to ε. The Az BioCode is computed by the
impostor by taking into account as much information as possible within
different contexts.

• Diversity or Unlinkability:
It should be possible to generate different BioCodes for multiple applica-
tions, and no information should be deduced from the comparison or the
correlation of different realizations.

• Indistinguishability:
To assure the indistinguishability, it should be infeasible to cross correlate
two protected templates.

Based on some of the early works [39], [40] which identified weak links in
each subsystem of a generic authentication system, some papers considered
the possible attacks in cancelable biometric systems (such as those presented
in [41, 1, 13, 9]). We follow the Shannon’s maxim (”The enemy knows the
system”), we so assume that the impostor has all necessary information on
the process used to generate the BioCode (feature generation method, BioCode
size...).

Based on the principle of each attack, we generate many fake attempts Az
of the genuine user in an authentication case:

• False accept attack (zero effort):
For this attack, an impostor user x provides its biometric feature T́x and
parameter Kx to be authenticated as the legitimate user z:

Az = f(T́x,Kx).

12



• Brute force attack :
For the brute force attack, an impostor tries to be authenticated by trying
different random values of A until finding:

Az = A.

• Stolen token attack :
An impostor has obtained the token Kz (stolen token) of the genuine user
z and tries different random values T to generate:

Az = f(T,Kz).

• Stolen biometric data attack :
An impostor knows T́z (directly or after computation of the feature on a
biometric raw data) and tries different random numbers K to generate:

Az = f(T́z,K).

• Worst case attack :
An impostor user x provides its biometric template T́x and parameter
Kx to be authenticated as the user z (false accept attack) and has also
obtained the token Kz (stolen token) of the genuine user z to generate:

Az = f(Tx,Kz).

• Attacks via Record Multiplicity (ARM):
An impostor must not be able to extract any information from different
BioCodes issued from the same user. Since BioCodes can be revoked, an
impostor can intercept Q of them and issue a new one by predicting an
admissible value (as for example by setting each bit to the most probable
value). These attacks consist in the following process:

– Generation of Q BioCodes for user z such that

Bz = {f(Tz,Kz
1), .., f(Tz,Kz

Q)}

– Prediction of a possible BioCode value by setting the most probable
value of each bit given Bz, ⇒ computing the FARA value for Q = 3
and Q = 11.

So, this ARM combining attack consists in computing a new BioCode
from a list of ones.

These attacks allow us to quantify the robustness of cancelable biometric veri-
fication systems based on feature transformation.
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5.3. Performance Evaluation

We now present the experimental results that we obtained when using our
proposed transformation face to the BioHashing and BioPhasor protection schemes.
Before considering their behaviors, we computed the performance of biometric
systems by using Gabor features with the Euclidean distance without any trans-
formation. For different acceptance thresholds, we compute the False Accep-
tance Rate (FAR), the rate of the illegitimate users who are authenticated; and
the False Reject Rate (FRR), the rate of the legitimate users who are rejected.
Thus, we obtain the Equal Error Rate (ERR), which is the acceptance threshold
when the FAR and FRR are equals. Usually, we set the acceptance threshold
to the EER, so that the biometric system optimizes both the FRR and FAR at
the same time. Then, smaller is the EER, more accurate is the system.

For the performance without transformation (i.e. using unprotected feature
vectors), we obtained an EER of 28.3% for the fingerprint dataset and of 25.2%
for the finger knuckle print one. We can see clearly that these results are poor
and that such a biometric system could not been used in real conditions.
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Figure 5: Security analysis of the BioHashing algorithm on the fingerprint database (a) and
the finger knuckle print database (b).

Protection schemes are known to increase performance if the secret is un-
known to impostors. Without any attack, the BioHashing and Biophasor al-
gorithms provide a perfect recognition (i.e. ERR=0%). Using the proposed
scheme, the performance is a bit lower, with 3.72% for the fingerprint dataset
and 14.93% for the finger knuckle print one. We show in the next section that
these results are compensated by a better robustness face to attacks.

5.4. Security Evaluation

We analyze the irreversibility, the robustness to attacks and the unlinkability
properties of our transformation.
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Irreversibility analysis. As stated before, the BioHashing algorithm is prone
to feature approximation attacks, a shortcoming mainly due to the linearity of
the transformation. An approximation of the feature vector is then sufficient to
gain access to the system. In a stolen token scenario, it is possible to reverse
partially the transformation using a pseudo-inverse matrix, even if the arrival
space of the transformation is of smaller dimension than the feature vector space.
The advantages of the proposed scheme are twofold:

• on the one hand, let us summarize the the proposed transformation. We
start with evaluation of random polynomials to make a random matrix.
Then, we perform a Gram-Schmidt process, which is only a change of basis
of the random matrix. Finaly, we perform a vector projection of the bio-
metric vector into this orthonormal basis followed by a quantization of the
components to obtain a binary vector. Thus, the proposed transformation
can be viewed as functions composition between polynomial evaluations
and a vector projection. Since the polynomial evaluation is non-linear and
vector projection is linear, the transformation is also non-linear from these
inputs: secret and biometric data.

• on the other hand, since the projection matrix is derived from biometrics,
finding a pseudo-inverse for a such matrix is difficult, as far as we know.

Moreover, we can see our method as an evolution of the BioHashing or
BioPhasor one, except that the projection matrix is computed from both of
the random secret and the biometric data. This step of the transformation
requires the evaluation of three-degree polynomials. As previously seen, this
family of polynomials has been chosen for their random behavior. Moreover,
an attacker who is trying to guess some information from the BioCode is faced
to the polynomial interpolation problem with only the ordinates. Indeed, the
traditionnal polynomial interpolation problem is: knowing {(xi, yi)} for some
i ∈ {1, . . . , n}, compute the unique polynomial P of degree strictly lower than
n such that

∀i, P (xi) = yi.

In the imposter context, the attacker will only know a transformation of yi,
but not xi. The computation of the polynomial P is then impossible. The
aforementioned arguments prove the one-wayness of the transformation.

Robustness to attacks. Figures 5, 6 and 7 present at the same time the per-
formance of cancelable biometric systems without any attack and the robustness
to attacks described in the previous section. The black curve presents the evolu-
tion of the false rejection rate (FRR) depending on the decision threshold (ε in
equation 2). Other curves correspond to the FARA value for all considered
attacks.

For the biometric modalities of the two first datasets (fingerprints and finger
knuckle prints), the BioHashing and BioPhasor algorithms provide a perfect
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Figure 6: Security analysis of the BioPhasor algorithm on the fingerprint database (a) and
the finger knuckle print (b).
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Figure 7: Security analysis of the proposed algorithm on the fingerprint database (a) and the
finger knuckle print (b). Experiments for GREYCHashing have been done with polynomial
functions of degree 3, C = 300 and R = 2.

performance without any attack, i.e. when the secret is unknown to the im-
postor. That means that in a non-adversarial environment, these systems work
perfectly without error. For the proposed transformation, it is not always the
case. It depends on the value of C. When C and R are set to 300 and 2 re-
spectively, the EER value equals to 3.72% for the FVC2002DB1 database, and
14.93% for the POLYFKP database. The main reason of this decrease of perfor-
mance is due to the fact that the projection matrix is computed by considering
biometric data and not only the secret. As the performance when using raw
features (i.e. without any transformation) is low, it is normal to have such an
impact. However, we will see later that we have a significant gain in term of
robustness. We will also show a study of the impact of C on the performance
and robustness of the proposed transformation scheme.
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Figure 8: Comparison between performance and robustness face to attacks for the three tested
template protection schemes. The FRR value is seen as a performance indicator while the
FARA value gives the probability of successful attack in the worst case.

We then analyze the robustness of the protection schemes for the afore-
mentioned attacks. Of course, the brute force attack (green curve) is the least
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effective and all schemes are able to avoid it. The BioHashing and BioPhasor al-
gorithms have a similar behavior for all attacks even if the BioPhasor algorithm
is more sensitive to the stolen token attack (light blue curve). Only the worst
case attack is completely possible (FARA = 100%) for these two protection
schemes when the ε decision threshold value is set to have the behavior of the
biometric systems at the EER value. The proposed transformation scheme is
slightly more robust to attacks (even in the worst case one) thanks to the use of
information related to the biometric data in the computation of the projection
matrix.

To give a better indicator of comparison of our proposal with BioHashing
and BioPhasor, and to identify the robustness behavior of these three protection
schemes, we propose in to plot in Figure 8, for several databases, the FARA value
in function of the FRR value, where A is the worst case attack. Since this attack
is the most powerful stolen token attack, it makes sense to give emphasis on it.
We can note, for this attack, that the Robustness of BioHashing is equivalent to
that of BioPhasor. There is actually a compromise to find between performance
and robustness in such transformation schemes. This curve shows clearly that
for a given performance (in terms of FRR value), the robustness evaluated by
the FARA value is lower for the proposed method up to 5%. Our proposal then
meets our main objective: providing a better robustness against stolen token
attack.

Figure 9: Pseudo-Genuine & Pseudo-Impostor distributions for unlinkability analysis. 256-bit
BioCodes were generated using GREYCHashing (with C = 300 and R = 2) from 512-feature
vectors, extracted with Gabor filter on the FVC2002DB1 database. Overlapped distribu-
tions indicates indistinction between BioCodes generated from the same user and BioCodes
generated from the others.

Unlinkability analysis. We use the same methodology as [12], by comparing
the distributions of matching scores, namely the pseudo-genuine scores and the
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pseudo-impostor scores. The pseudo-impostor scores refer to the matching scores
between BioCodes generated from different feature vectors of the same individ-
ual (intra-class) but using different seeds. The pseudo-genuine score is computed
between BioCodes derived from different (inter-class) feature vectors in stolen
token scenario. Figure 9 illustrates the pseudo-impostor and pseudo-genuine dis-
tribution plot, where we can see that the pseudo-impostor and pseudo-genuine
distributions are sufficiently overlapped, and thus sufficiently indistinguishable.

5.5. Parameters study

Figure 10 shows the performance vs robustness of GREYCHashing for sev-
eral databases when C is fixed at 300 but R takes value in {0.5, 1, 2, 5, 10}.
The BioCodes are of size 256 for the FVC and VEINEGY databases, and of
size 128 for the POLYFKP database. We can see that R = 2 performs well
for both the fingerprints (whatever is the database) and the finger knuckle
prints (POLYFKP), while R = 0.5 is better for the VEINEGY database. Fig-
ure 11 shows the performance vs robustness of GREYCHashing for the same
databases and same BioCode sizes, when R is fixed at 2 but C takes value in
{10, 50, 100, 200, 250, 275, 300, 325, 350, 500}. Except for the VEINEGY database
(of lower quality than the others), we can observe that values of C in the range
275-325 are the preferable choices. Setting the C value can adjust the compro-
mise between performance and robustness. We have to recall at this point that
the use of raw features lead to an high value of EER, for the three databases.
We could expect even better results of the proposed transformation with more
efficient features. The pair (C,R) = (300, 2) is not always optimal but is a
reasonable tradeoff. As a consequence, this pair has been chosen to conduct our
previous experiments.

Table 1 shows the results we obtained in the case of the FVC2002DB1
database for different BioCode sizes (m value), when (C,R) is set to (300, 2).
If a too small size of BioCode does not provide perfect results in terms of EER
without attack, we observe, however, a good resilience to worst case attacks.
This resistance slightly decreases when m increases, but it is still in favour of
the proposed method. We recall that in the case of the BioHashing and Bio-
Phasor algorithms, the FARA in the worst case scenario is 100%. When the size
of the BioCode is too similar to the size of the features vector, attacks are more
easy to realize (but this is also the case for other transformation approaches).

6. Conclusion and Perspectives

Protecting biometric templates is actually crucial due to new regulation laws
on data protection (such as the GDPR in Europe) and the possiblity of using bio-
metric data for authentication in cloud services. We believe that feature-based
template protection schemes could have a high impact on security services in
the near future. In this context, features, that can be computed without any
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Table 1: Study of the impact of the BioCode size (m value) on performance and robustness
in the proposed transformation scheme, when (C,R) = (300, 2).

m value EER (without attack) false accept brute force stolen token
64 28.2% 35.6% 2% 2%
128 30.3% 27.3% 0% 0%
256 3.8% 3.9% 0% 0%
384 2.2% 2.2% 0% 10%
512 4.7% 4.7% 3% 0%

m value stolen biom. worst case ARM comb. N=3 ARM comb. N=11
64 17.6% 57.6% 0% 0%
128 14% 51.8% 0% 0%
256 0.3% 73.7% 3.6% 0%
384 0.2% 86.7% 3.6% 0%
512 0.1% 78.1% 1% 0%

learning with unprotected templates from other users, should be protected by
such cancelable schemes. The proposed transformation scheme has the advan-
tage to better combine the secret with the biometric data in order to reduce the
impact of the stolen token attack. We obtain with this scheme a configurable
transformation by adjusting the compromise between the expected performance
assuming an unknown secret and a better robustness otherwise with only a pair
of parameters (C and R).

Perspectives of this work are manifold. First, it concerns the proposal of
new combination techniques of the biometric data and the secret (the steps 6,
7 and 8 of the proposed algorithm). Second, we could consider its extension to
multi-biometrics, where a first biometric modality along with the secret could
be used to generate the projection matrix, the latter serving to project the fea-
tures of the second modality. Last, this scheme can be used in real biometric
authentication applications in industry as the computation is very fast while
keeping a good privacy protection.
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Figure 10: Comparison between performance and robustness face to attacks for the proposed
method with different values for the parameter R. The FRR value is seen as a performance
indicator while the FARA value gives the probability of successful attack in the worst case.
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formance of studied systems for the
FVC2004 fingerprint database.
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(e) Robustness in function of the perfor-
mance of studied systems for the VEIN-
EGY vein print database.

Figure 11: Comparison between performance and robustness face to attacks for the proposed
method with different values for the parameter C. The FRR value is seen as a performance
indicator while the FARA value gives the probability of successful attack in the worst case.
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