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Abstract

The (directed) proper connection number of a given (di)graph G is the least
number of colors needed to edge-color G such that there exists a properly
colored (di)path between every two vertices in G. There also exist vertex-
coloring versions of the proper connection number in (di)graphs. We initiate
the study of the complexity of computing the proper connection number and
(two variants of) the proper vertex connection number, in undirected and
directed graphs, respectively. First we disprove some conjectures of Mag-
nant et al. (2016) on characterizing strong digraphs with directed proper
connection number at most two. In particular, we prove that deciding
whether a given digraph has directed proper connection number at most
two is NP-complete. Furthermore, we show that there are infinitely many
such digraphs without an even-length dicycle. To the best of our knowledge,
the proper vertex connection number of digraphs has not been studied be-
fore. We initiate the study of proper vertex connectivity in digraphs and we
prove similar results as for the arc version. Finally, on a more positive side we
present polynomial-time recognition algorithms for bounded-treewidth graphs
and bipartite graphs with proper connection number at most two.

Keywords: proper connection; directed graphs; even dicycles;
NP-complete.

1. Introduction

There is a broad literature on frequency assignment problems in radio
networks and their modeling by colorings problems on (di)graphs [11, 12,

1Results of this paper were partially presented at the LAGOS’17 conference [19].
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23]. We study a relaxed invariant, introduced by Borozan et al. [7], where
we only impose for every two vertices u, v to have a properly edge-colored
(di)path from u to v – the (di)graph itself may not be properly edge-colored.
The latter concept is sometimes called proper connectivity. We motivate the
study of proper connectivity next.

Motivation. Properly colored paths have applications in many fields like
genetics [16–18], social sciences [14], radio communication [31], etc. We
present a concrete application of proper connectivity related to wireless net-
works [31]. Indeed in any network the natural requirement is to have all the
parties connected and the goal is to maximize throughput. In wireless and
communication networks, it is sometimes impossible to transmit a signal
directly between, say, two communication towers A and B. Thus, the signal
should go through some other towers. In order to maximize throughput,
it is desirable to avoid interference by ensuring that the incoming and the
outgoing signal from a tower should be on a different frequency. Suppose
that we assign a vertex to each signal tower, an edge between two vertices
if the corresponding signal towers are directly connected by a signal and a
color to each edge corresponding to the frequency used for the communi-
cation. Then, the number of frequencies needed to assign the connections
between towers so that there is always a path avoiding interference between
each pair of towers is precisely the proper connection number of the corre-
sponding graph.

Another application of proper connectivity is password sharing, where
we aim at exchanging information between, say, secret agencies, while not
repeating the same password for any two consecutive communications.

Related work. The proper connection number in undirected graphs was
first defined in [7] by Borozan et al. In the same paper, the authors relate
the proper connection number with the graph connectivity. Since then the
problem was intensively studied from the combinatorial point of view [2,
7, 13, 22, 27–30, 32, 34]. In particular, bounds on the proper connection
number of random graphs and bipartite graphs have been proved in [22]
and [7, 26, 27], respectively. Relationships between the proper connection
number and domination number can be found in [32]. Many generalizations
of proper connectivity have been proposed [2, 7, 27, 33]. For instance, in
this paper, we also study some notions of proper vertex connection, i.e.,
vertex-coloring versions of the proper connection number (see [13, 30]). More
recently, Magnant et al. studied the directed proper connection number for
digraphs [34]. They proved that this number is always at most three and
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they asked to characterize the digraphs with directed proper connection
number at most two. In particular, they conjectured that all such digraphs
must contain an even dicycle. For more details, see the following surveys on
the proper connection number: [3, 31] and Chapter 16 of [4]. Nevertheless,
no complexity results have been proved for this problem so far. Our goal is
to fill in this gap in the literature, as discussed in Sections 3-5.

The proper connection number is related to the rainbow connection num-
ber, defined in [11]. The rainbow connection number of a given graph G is
the least number of colors needed to edge-color G such that there exists a
rainbow path (i.e., a path with all its edges colored with a distinct color)
between every two vertices in G. Since computing the rainbow connection
number is NP-hard and not FPT for any fixed k ≥ 2 [1, 9] it is natural to
study the complexity of computing the proper connection number – which
can be seen as a relaxed variant of rainbow connectivity.

Our results. In this paper we study the complexity of computing the
(directed) proper connection number of a given (di)graph. This gives two
parameters to study, that are denoted by pc(G) for undirected graphs G and
−→pc(D) for directed graphs D. We also study two variants of the proper vertex
connection number, that are denoted by pvc(G) and vpc(G) for undirected
graphs G; −→pvc(D) and −→vpc(G) for directed graphs D. We will explain the
slight difference between these two concepts of proper vertex connectivity
in Section 2.

In Section 3, we study first the computational complexity of computing
−→pc(D) for a given digraph D. In [34] Magnant et al. prove that −→pc(D)≤ 3
for every strong digraph D. We prove here that deciding whether −→pc(D)≤ 2
is NP-complete (Theorem 1). Furthermore, we disprove a conjecture of
Magnant et al. from [34], claiming that if D is a strong digraph without
an even dicycle, then −→pc(D)= 3. Indeed we show, via an exhaustive search
using a computer program, that D7, the only strongly biconnected graph
without an even dicycle, has a properly connected 2-coloring. Based on the
coloring of D7, we construct an infinite family of digraphs without an even
dicycles that also have properly connected 2-colorings (Proposition 3).

Next, in Section 4, we turn our attention to the computational complex-
ity of computing −→pvc(D) and −→vpc(D) for a given digraph D. To the best of
our knowledge, the concept of directed proper vertex connectivity has not
been studied before. We initiate the study of two proper vertex connec-
tion numbers for digraphs and we prove that every strong digraph admits
a properly connected 3-coloring (Theorem 4). However, deciding whether
−→pvc(D)≤ 2, resp. whether −→vpc(D)≤ 2, is also NP-complete (Theorem 6). Al-
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though the proofs of Theorems 1 and 6 are similar, none of the two results
is implied by the other. Furthermore, we stress that in contrast with our
results for digraphs, we have pvc(G)≤vpc(G)≤ 2 for any undirected graph G
and both parameters can be trivially computed in polynomial time [13, 30].

Finally, in Section 5, we study the proper connection number of undi-
rected graphs. This parameter is much more difficult to understand than the
proper vertex connection numbers – though it has been extensively studied
in the literature. We propose advances in the study of proper connectivity
by presenting some tractable cases. In particular, Borozan et al. [7] show
that any tree with proper connection number two is a path. We extend
their result and prove that for some graph classes generalizing the trees,
namely graphs with bounded treewidth and bipartite graphs, we can decide
in polynomial time if the proper connection number is less than or equal
to two. Our result for bipartite graphs is especially interesting since pc(G)
for bipartite graphs has been extensively studied in the literature and sev-
eral sufficient conditions have been given for these graphs to have proper
connection number equal to two [7, 10, 20, 26, 27]. We use in our proof
the concept of bridge-block tree introduced by Tarjan [40]. We remark that
independently from this work, Melville and Goddard also characterized bi-
partite graphs with proper connection number two [37].

The complexity of deciding whether pc(G)≤ 2 for general graphs is left
as an interesting open question.

2. Preliminaries

We follow notations and terminology from [4, 6]. We only consider finite
connected graphs and finite strong digraphs in the following. We write
[u = x0, x1, . . . , xl = v] for an uv-(di)path.

Given a graph G = (V,E), an k-edge-coloring is a function c : E →
{1, . . . , k}. Such a coloring of G (and by extension, the edge-colored graph
Gc itself) is called proper if every two incident edges differ in colors. The
coloring c (and by extension, the edge-colored graph Gc) is called properly
connected if there exists a properly colored path between every two vertices.
The proper connection number of G, denoted pc(G), is the least number of
colors needed to find a properly connected edge-coloring of G.

Similarly, given a digraph D = (V,A), an k-arc-coloring is a function c :
A→ {1, . . . , k}. Such a coloring (and by extension, the arc-colored digraph
Dc itself) is called proper if every two incident arcs differ in colors. The
coloring c (and by extension, the arc-colored digraph Dc) is called properly
connected if there exists a properly colored dipath from any vertex to any
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other vertex. The directed proper connection number of D, denoted −→pc(D),
is the least number of colors needed to find a properly connected arc-coloring
of D.

These notions were adapted to vertex-colorings. Specifically, given a
(di)graph G = (V,E), an k-coloring is a function c : V → {1, . . . , k}. Such a
coloring (and by extension, the vertex-colored graph Gc) is called proper if
every two adjacent vertices differ in colors. We define two different notions
of proper vertex connectivity:

• Most authors call a coloring c (and by extension, Gc) properly ver-
tex connected if, from any vertex to any other vertex, there exists a
(di)path whose any two internal adjacent vertices differ in color (e.g.,
see [30]). The (directed) proper vertex connection number of G, de-
noted pvc(G) (or −→pvc(G) if G is a digraph), is the least number of
colors needed to find a properly vertex connected coloring of G.

• Alternatively, say that a coloring c (a vertex-colored graph Gc, resp.)
is vertex properly connected if, from any vertex to any other vertex,
there exists a properly colored (di)path [13]. The (directed) vertex
proper connection number of G, denoted vpc(G) (or −→vpc(G) if G is a
digraph), is the least number of colors needed to find a vertex properly
connected coloring of G.

In order to better understand the difference between pvc(G) and vpc(G), let
us consider a graph G with diameter two. Since any shortest-path in G has
at most one internal vertex, we have that every 1-coloring is properly vertex
connected, and so, pvc(G)= 1. However, vpc(G)≥ 2 for any graph G with
at least two vertices.

Remark 1. Deciding whether pc(G)≤ k is in NP, Indeed, as a certificate
for yes-instances, it suffices to give a properly connected k-edge-coloring and,
for every pair u, v of vertices, a properly colored uv-path. Overall, we need to

specify

(
n

2

)
paths, each path having length at most n− 1. So, this is indeed

a polynomial-size certificate. Furthermore, the correctness of this certificate
can be checked in polynomial time, as follows. For every pair u, v of vertices,
we check whether the corresponding path in the certificate is proper; since
the coloring is also part of our certificate, this verification phase can be done
in time linear in the size of the path. Overall, we can check whether this
certificate is correct in time linear in its size, and so, in time polynomial in
the order of the input graph G.
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We can prove similarly that deciding whether −→pc(D)≤ k (resp., pvc(G)≤
k, −→pvc(D)≤ k, vpc(G)≤ k, −→vpc(D)≤ k) is in NP.

It is open whether given a (di)graph G and a (vertex or edge) coloring
c, we can check in polynomial time whether c is properly connected.

3. Directed proper connection number

This section is devoted to the complexity of computing −→pc(D) for a given
digraph D. In Section 3.1, we prove that the corresponding decision prob-
lem is NP-complete. This further motivates the study of (polynomial-time
computable) sufficient conditions for keeping this parameter as small as pos-
sible. In Section 3.2 we disprove a conjecture from [34]: namely, we show
that there are infinitely many digraphs D such that −→pc(D) = 2 and D has
no even dicycle.

3.1. NP-hardness

As proved in [34], for every (strong) digraph D that is not a complete
symmetric digraph we have −→pc(D)∈ {2, 3}. Therefore, computing −→pc(D)
is equivalent to deciding whether −→pc(D)≤ 2. In order to prove that this
decision problem is NP-hard, we reduce Positive NAE-SAT (Problem 1),
which is a well-known variation of the Boolean Satisfiability problem and
known to be NP-complete by Schaefer’s dichotomy theorem [38], to it.

Problem 1 (Positive NAE-SAT).

Input: A propositional formula Φ in conjunctive normal form, with un-
negated variables.

Question: Does there exist a truth assignment satisfying Φ in which no
clause has all its literals valued 1 ?

Theorem 1. Deciding whether −→pc(D)≤ 2 for a given digraph D is NP-
complete.

Proof. The problem is in NP (cf. Remark 1). In order to prove the NP-
hardness, let Φ be an arbitrary formula in conjunctive normal form, with
unnegated variables. The incidence graph of Φ is a bipartite graph BΦ, with
one partite set being the m clauses C1, . . . , Cm of Φ and the other partite set
being the n variables x1, . . . , xn that are contained in at least one clause; for
every 1 ≤ j ≤ m, there exists an edge between Cj and every variable xi that
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is contained in Cj . In what follows is a a description of the transformation of
BΦ to a digraph DΦ such that −→pc(DΦ) = 2 if and only if Φ is a yes-instance
of Positive NAE-SAT. We illustrate the reduction in Figure 1.

Cj

xi1

xi2

xi3
αj

βj

γj

δj

β′j

α′j

δ′j

γ′j

(a) Gadget representing the clause Cj = xi1
∨

xi2
∨ xi3

.

Cj1

Cj2

Cj3

xi yi
T

F

(b) Gadget representing the variable xi

(contained in the clauses Cj1
, Cj2

, Cj3
).

x1
. . .

xi
. . .

xn

y1
. . .

yi
. . .

yn

TF

F ′T ′

C1

. . .
Cj

. . .
Cm

(c) Truth gadget.

Figure 1: The reduction.

Clause gadget. (see Fig. 1a). Let 1 ≤ j ≤ m be fixed. We replace every edge
{Cj , xi} in BΦ by an arc (Cj , xi) (oriented from Cj to xi). Furthermore,
we add eight vertices αj , βj , γj , δj and α′j , β

′
j , γ
′
j , δ
′
j such that: the triples

[Cj , αj , βj , Cj ] and [Cj , γj , δj , Cj ] induce dicycles of length three, while the
4-tuples [αj , βj , α

′
j , β
′
j .αj ] and [γj , δj , γ

′
j , δ
′
j , γj ] induce dicycles of length four.

Our construction will ensure that there is no other arc incident to either
αj , βj , γj , δj or α′j , β

′
j , γ
′
j , δ
′
j . Note that it will imply that the only αjδj-dipath

is [αj , βj , Cj , γj , δj ], and similarly the only γjβj-dipath is [γj , δj , Cj , αj , βj ].
Hence, in order to obtain proper dipaths with two colors, we need to color
the arcs (Cj , αj), (βj , Cj) and (γj , δj) with the same color and to color the
arcs (αj , βj), (Cj , γj) and (δj , Cj) with the other color.
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Variable gadget. (see Fig. 1b). We add two vertices F and T , along with an
arc (F, T ). We show later how to use these two vertices in order to obtain a
truth assignment satisfying Φ. Let 1 ≤ i ≤ n be fixed. We add a vertex yi,
along with an arc (xi, yi) and two more arcs (yi, F ) and (yi, T ).

Our construction will ensure that yi is the only out-neighbour of xi.
This will imply that any dipath ending at xi can be made longer only by
passing through the arc (xi, yi). The color of this arc (xi, yi) will intuitively
represent the truth assignment of the variable xi.

Truth gadget. (see Fig. 1c). We add two vertices T ′, F ′ such that [F, T, F ′, T ′, F ]
induces a dicycle of length four. Finally, for every 1 ≤ i ≤ n we add the arcs
(T ′, xi) and (F ′, xi), and for every 1 ≤ j ≤ m, we add the arcs (T ′, Cj) and
(F ′, Cj).

Observe that by construction, for every vertex v ∈ V (DΦ)\{T ′, F ′}, any
vF ′-dipath (any vT ′-dipath) must pass through the arc (T, F ′) (the dipath
[T, F ′, T ′]). The color of this arc (T, F ′) will intuitively represent the value
“True”. Furthermore, the arcs (T ′, xi) and (F ′, xi), for every 1 ≤ i ≤ n,
and the arcs (T ′, Cj) and (F ′, Cj), for every 1 ≤ j ≤ m, are added to the
construction simply to ensure the existence of a properly connected arc-
coloring of DΦ if Φ is a yes-instance of Positive NAE-SAT (this will be
made more precise in the following).

The resulting digraph Dφ can be constructed from Φ in O(

m∑
j=1

|Cj |)-time,

that is linear in the size of the formula. In what follows, we prove −→pc(DΦ) = 2
if and only if Φ is a yes-instance of Positive NAE-SAT. Since Positive
NAE-SAT is NP-complete, it proves the theorem.

In one direction, assume −→pc(DΦ) = 2. We call Blue and Red the two
colors used in a properly connected arc-coloring of DΦ. Without loss of
generality, the arc (T, F ′) is colored Blue. Furthermore, recall that by con-
struction, for every 1 ≤ j ≤ m, the three arcs (Cj , αj), (βj , Cj) and (γj , δj)
must have the same color, while the three arcs (αj , βj), (Cj , γj) and (δj , Cj)
must have the other color (otherwise, the arc-coloring could not be properly
connected). By symmetry, let us assume that (Cj , αj), (βj , Cj) and (γj , δj)
are colored Red (and so, (αj , βj), (Cj , γj) and (δj , Cj) are colored Blue).

We claim that there must exist a variable xi contained in Cj such that
the arc (xi, yi) is colored Red. Indeed, we have on one hand that any βjT -
dipath must start with a subdipath [βj , Cj , xi, yi], for some xi contained in
Cj . In particular, since the arc-coloring is assumed to be properly connected
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there must exist a proper βjT -dipath, and so, there must exist a dipath
[βj , Cj , xi, yi] that is proper. Since on the other hand, the arc (βj , Cj) is
colored Red, therefore the arc (xi, yi) in this proper dipath must be also
colored Red. In the same way (up to replacing βj by δj), there must exist
a variable xi contained in Cj such that the arc (xi, yi) is colored Blue.
Therefore, by assigning 1 to all the variables xi such the arc (xi, yi) is colored
Blue, and by assigning 0 to all the remaining variables (variables xi′ such
the arc (xi′ , yi′) is colored Red), one obtains a truth assignment satisfying
Φ in which no clause has all its literals valued 1. This implies that Φ is a
yes-instance of Positive NAE-SAT.

C1

C2

x1

x2

x3

x4

y1

y2

y3

y4

T

F

F ′

T ′

Figure 2: A properly connected arc-coloring of DΦ, with Φ = (x1∨x2∨x3) ∧ (x2∨
x3 ∨ x4). For ease of readability, the arcs (T ′, xi) and (F ′, xi), for every 1 ≤ i ≤ n,
and the arcs (T ′, Cj) and (F ′, Cj), for every 1 ≤ j ≤ m, are not drawn.

In the other direction, assume that Φ is a yes-instance of Positive
NAE-SAT. Let us consider a truth assignment satisfying Φ in which no
clause has all its literals valued 1. We color the arcs of DΦ as follows (see
Figure 2 for an illustration).

• For every 1 ≤ i ≤ n, the arc (xi, yi) is colored Blue if the variable xi
is valued 1, and it is colored Red otherwise. Furthermore, the arcs
(yi, T ) and (F ′, xi) are both colored Red while the arcs (yi, F ) and
(T ′, xi) are both colored Blue.

• For every 1 ≤ j ≤ m, the arcs (Cj , αj), and (βj , Cj) are colored
Red and the arcs (Cj , γj) and (δj , Cj) are colored Blue. The arcs
(αj , βj), (α′j , β

′
j), (δj , γ

′
j) and (δ′j , γj) are colored Blue, whereas the

arcs (βj , α
′
j), (β′j , αj), (γj , δj) and (γ′j , δ

′
j) are colored Red. Further-

more, for every variable xi contained in Cj , the arc (Cj , xi) is colored
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Red if xi is valued 1 and it is colored Blue otherwise. The arcs (T ′, Cj)
and (F ′, Cj) are colored Blue and Red, respectively.

• Finally, the arcs (F, T ) and (F ′, T ′) are both colored Red, while the
arcs (T, F ′) and (T ′, F ) are both colored Blue.

Let us prove that the resulting arc-coloring of DΦ is properly connected. In
order to do so, we first notice that all the dipaths in the following collection
P− (ending in T ) are proper:

• [F ′, T ′, F, T ];

• [α′j , β
′
j , αj , βj , Cj , xi, yi, F, T ], if xi is contained in Cj and valued

0;

• [γ′j , δ
′
j , γj , δj , Cj , xi, yi, T ], if xi is contained in Cj and valued 1.

Similarly, we notice that all the dipaths in the following collection P+ (start-
ing in T ) are proper:

• [T, F ′, T ′, F ];

• [T, F ′, Cj , γj , δj , γ
′
j , δ
′
j ] and [T, F ′, T ′, Cj , αj , βj , α

′
j , β
′
j ], for every 1 ≤

j ≤ m;

• [T, F ′, xi, yi] with xi being valued 1;

• [T, F ′, T ′, xi, yi] with xi being valued 0.

Let us finally prove that for every u, v ∈ V (DΦ), there exists a proper uv-
dipath. We consider three different cases.

1. If some dipath of P−∪P+ contains a uv-subdipath then the statement
holds true.

2. Otherwise, if there exist a proper uT -dipath (subdipath of a dipath in
P−) and a proper Tv-dipath (subdipath of a dipath in P+) that only
intersect in T , then we claim that the statement is also true. Indeed,
both proper dipaths can be merged into one since by construction,
every proper uT -dipath ends with an arc colored Red whereas every
proper Tv-dipath starts with an arc colored Blue.

3. Furthermore, it can be checked that any two vertices u, v fall in one of
the two above cases, unless u, v ∈ {αj , βj , γj , δj , Cj , α′j , β′j , γ′j , δ′j} for
some 1 ≤ j ≤ m. In this case, there is a proper uv-dipath that is a
subdipath of either: [α′j , β

′
j , αj , βj , Cj , γj , δj , γ

′
j , δ
′
j ];
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or [γ′j , δ
′
j , γj , δj , Cj , αj , βj , α

′
j , β
′
j ];

or of one of the two dicycles [αj , βj , α
′
j , β
′
j , αj ] or [γj , δj , γ

′
j , δ
′
j , γj ].

So, a path also exists in this final case.

3.2. Strong digraphs without an even dicycle

In [34], Magnant et al. conjecture that if D is a strong digraph without
an even dicycle, then −→pc(D) = 3. In the light of our hardness result of
Theorem 1, it is even more interesting to study their conjecture since graphs
without an even dicycle can be recognized in polynomial time [36]. However,
we disprove the conjecture and we construct an infinite collection of digraphs
that disprove their claim.

For that, we first consider the case of strongly biconnected digraphs.
There is only one strongly biconnected digraph without an even dicycle
(up to an isomorphism), namely the digraph D7 from Figure 3a [35]. The
following Lemma can be deduced from the (properly connected) arc-coloring
indicated in Figure 3b.

1

2

34

5

6

7

(a) D7.

1

2

34

5

6

7

(b) A proper coloring
with 2 colors for D7.

Figure 3: Digraph D7.

Lemma 2. −→pc(D7) = 2. Moreover, there exists a properly connected arc-
coloring with the property that both outgoing arcs from vertex 3 and both
ingoing arcs to vertex 5 have the same color c1. Furthermore, both ingoing
arcs to vertex 3 and both outgoing arcs from vertex 5 have the same color
c2, with c1 6= c2.

Observe that there exist at least two such colorings (as stated in Lemma 2)
since we can always exchange the colors of all the arcs while keeping the
property to be properly connected.
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Furthermore, based on Lemma 2, we can construct infinitely many other
counterexamples to the conjecture in [34]. In order to do that, let H1, H2 be
two digraphs and v1, v2 two fixed vertices from H1 and H2, respectively. We
denote by (H1, v1)� (H2, v2) the digraph obtained from the union of graphs
H1 and H2 by identifying vertices v1 and v2. We recursively define an infinite
family (SDn)n∈N≥1

of strong digraphs and fix a vertex vn in every digraph
SDn as follows, starting from D7 and using vertices x1 = 3 and x2 = 5 from
Lemma 2.

1. SD1 = D7; we fix in SD1 vertex v1 = x2;

2. SDn = (SDn−1, vn−1)� (D7, x1) and we set vn = x2.

Proposition 3. For every n ≥ 1, SDn is a strong digraph without an even
dicycle having −→pc(SDn) = 2. Moreover, there is a properly connected arc-
coloring of SDn with two colors c1 6= c2 where all ingoing arcs to vn have
color c1 and all outgoing arcs from vn have color c2.

Proof. We prove the result by induction on n. If n = 1, then the result
follows from Lemma 2. Otherwise n ≥ 2 and we assume for our induction
hypothesis that SDn−1 has the stated properties. By construction, SDn is
a strong digraph. Furthermore, it has no even dicycle since every dicycle of
SDn is either contained in SDn−1 or in D7.

Finally, by the induction hypothesis, there exists a (properly connected)
2-arc coloring of SDn−1 with two colors Red and Blue such that all ingoing
arcs to vn−1 are colored Red, and all outgoing arcs from vn−1 are colored
Blue. By Lemma 2, there exists a (properly connected) 2-arc coloring of
D7 such that both outgoing arcs from x1 and both ingoing arcs in x2 are
colored Blue and all ougoing arcs from vn = x2 and ingoing arcs in x1 are
colored Red (Figure 4).

x2

vn−1 = x1;
SDn−1

Figure 4: A proper coloring for SDn

Since E(SDn) = E(SDn−1) ∪̇ E(D7), the two colorings of SDn−1 and
D7 determine an arc-coloring of SDn. To prove that this coloring is properly
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connected it suffices to consider pairs of vertices u, v with u ∈ V (SDn−1) and
v ∈ V (D7) and to prove that there exist a proper uv-dipath and a proper vu-
dipath. Indeed, since the coloring restricted to SDn−1 is properly connected,
there exists a proper uvn−1-dipath P in SDn−1. Similarly, there exists
a proper x1v-dipath Q in D7. By merging these two dipaths identifying
vn−1 = x1 we obtain an uv-dipath in SDn. The obtained dipath is proper
since the ingoing arc to vn−1 in P has color Red and the outgoing arc from
x1 contained in Q has color Blue. Note that by using a similar argument, we
can obtain a proper vu-dipath. Therefore, this coloring of SDn is properly
connected and vn = x2 verifies the stated properties.

4. (Directed) vertex proper connection number

In this section, we initiate the study of the (directed) proper vertex
connection number and the (directed) vertex proper connection number in
(di)graphs.

Since pvc(G) ≤ vpc(G) for any graph G, and in the same way −→pvc(D) ≤
−→vpc(D) for any digraph D, we mostly focus on the (directed) vertex proper
connection number. We observed that this number must be at least two
for graphs with more than one vertex. The bound is tight for undirected
graphs: indeed, every connected graph has a spanning tree, and we can
choose its two partite sets as our two color classes2. However, the vertex
proper connection number is more difficult to study in directed graphs than
in undirected graphs.

We prove in Section 4.1 that for every strong digraph D, −→pvc(D) ≤
−→vpc(D) ≤ 3. Next, we prove that computing −→pvc(D), resp. −→vpc(D), for a
given digraph D is NP-hard (Section 4.2). Interestingly, we so obtain similar
results for the directed vertex proper connection number and the directed
proper vertex connection number as for the directed proper connection num-
ber in digraphs.

4.1. Upper-bound

In what follows is a proof for an upper bound on the vertex proper
connection number of a digraph. Unlike the proof for the arc version from
[34], our proof is not based on the existence of an ear decomposition of a
strong digraph.

2For the proper vertex connection number, we have pvc(G) = min{diam(G)− 1, 2} for
any graph G.

13



Theorem 4. If D is a strong digraph, then we have −→pvc(D) ≤ −→vpc(D) ≤ 3.

Proof. The inequality −→pvc(D) ≤ −→vpc(D) is trivial. In what follows, we prove
−→vpc(D) ≤ 3. We will proceed by induction on the number of vertices in D.
If D is a strong digraph with at most three vertices, then any coloring for
which all vertices have different colors is properly connected, hence −→vpc(D)
≤ 3. Otherwise let n ≥ 4. Assume by induction hypothesis that for every
strong digraph with n − 1 vertices, there exists a vertex-coloring with at
most 3 colors that is properly connected. Let D be a strong digraph with n
vertices. It suffices to prove that D has a spanning strong digraph D′ with
−→vpc(D′) ≤ 3.

In particular, let D′ be a minimally strong spanning digraph of D (i.e.,
the removal of any arc in D′ leaves a smaller spanning digraph which is not
strong). Since D′ is minimally strong, it has a vertex with in-degree and
out-degree equal to 1 [21]. Let v be such a vertex, with u and w being its
unique in-neighbor and out-neighbor, respectively. We remove v from D′

and we add an arc from u to w if this arc is not already present. Clearly, the
resulting digraph D′′ is still strong and it has order n− 1. Furthermore by
induction hypothesis, −→vpc(D′′) ≤ 3. Consider such a (properly connected)
coloring for D′′. We can obtain from this coloring a properly connected
coloring for D′ as follows. We color all vertices of D′ \ v as in D′′, then
finally we color v with any color that is not already used for u nor w. Hence
−→vpc(D) ≤ −→vpc(D′) ≤ 3.

4.2. NP-completeness

Since, by Theorem 4, we have 2 ≤ −→vpc(D) ≤ 3 for every (strong) digraph
D, one important problem is to decide whether −→vpc(D) = 2. We show
that this decision problem is in fact NP-hard by reducing it from 3-SAT
(Theorem 6). Our hardness result also holds for the directed proper vertex
connection number, due to the following lemma:

Lemma 5. Computing −→vpc(D) for a given strong digraph D can be reduced
in polynomial-time to computing −→pvc(D′) for some other strong digraph D′.

Proof. Let D = (V,A) be an arbitrary strong digraph. Consider the strong
digraph D′ obtained from D by adding, for any v ∈ V , a new vertex v′ and
the two arcs (v, v′) and (v′, v). We claim that −→pvc(D′) = −→vpc(D), that will
prove the lemma.

In one direction, assume −→vpc(D) = k and let c be a corresponding (vertex
properly connected) k-coloring. We extend c to a k-coloring c′ of D′, simply
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by coloring v′ with c(v). For every u, v ∈ V , let x ∈ {u, u′} and y ∈ {v, v′}
be arbitrary. By construction any uv-dipath P in D is a subdipath of some
xy-dipath P ′ in D′. Furthermore, all the internal vertices of P ′ are contained
in P . Since by the hypothesis, at least one such path P must be proper, c′

is properly vertex connected, and so, −→pvc(D′) ≤ −→vpc(D).
In the other direction, assume −→pvc(D′) = k and let c′ be a corresponding

(properly vertex connected) k-coloring. Let c be the restriction of c′ to D.
By construction, for every u, v ∈ V , we have that the internal vertices on
any u′v′-dipath must induce a uv-dipath P in D. Since c′ is properly vertex
connected (by the hypothesis), there is an u′v′-dipath whose internal vertices
induce a proper dipath P from u to v. Hence, c is vertex properly connected,
and so, −→vpc(D) ≤ −→pvc(D′).

We are now ready to prove the main result of this section.

Theorem 6. Deciding whether −→vpc(D) = 2, resp. whether −→pvc(D) = 2, for
a given digraph D is NP-complete.

Proof. Both problems are in NP (cf. Remark 1). Furthermore, by Lemma 5,
it suffices to prove the result for −→vpc(D). As in the proof of Theorem 1, let Φ
be an arbitrary formula in 3-conjunctive normal form and BΦ the incidence
graph of Φ. Assume that there is no clause in Φ containing both a variable
and its negation. Next we describe the transformation of the incidence graph
BΦ to a digraph DΦ such that −→vpc(DΦ) = 2 if and only if Φ is a yes-instance
of 3-SAT. This will prove the NP-hardness, and so, the result.

yi

αi βixi xi

δi γi

C ′j1 Cj1 C ′j2 Cj2 C ′j3 Cj3

(a) Gadget representing the variable
xi (xi is contained in the clauses
Cj1 , Cj2 and xi in Cj3).

xi1 xi2 xi3

C ′j Cj

(b) Gadget represent-
ing the clause Cj =
xi1 ∨ xi2 ∨ xi3 .

F

y1

. . .
yi

. . .
yn

C ′1
. . .

C ′j
. . .
C ′m

(c) Truth gadget.

Figure 5: The reduction.
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Variable gadget. (see Fig. 5a). Let 1 ≤ i ≤ n be fixed. We add a vertex xi
corresponding to the negation of variable xi. Furthermore, we add four new
vertices: αi, βi, γi, δi and the necessary arcs such that [xi, αi, βi, xi, γi, δi, xi]
is a dicycle. This dicycle is used to ensure that the vertices xi and xi have
different colors in any vertex properly connected 2-coloring of DΦ. We also
add a vertex yi, along with the arcs (xi, yi), (xi, yi).

Clause gadget. (see Fig. 5b). Let 1 ≤ j ≤ m be fixed. We replace every
edge {Cj , xi} in BΦ by an arc (Cj , li) (directed from Cj to li), where li is
the literal corresponding to variable xi contained in clause Cj (li is either
xi or xi). Furthermore we add a new vertex C ′j , an arc from this vertex
to Cj and arcs from C ′j to all the out-neighbors of Cj , that is to all the
literals contained in clause Cj . Thus, the vertex C ′j can reach the dicycle
corresponding to xi through dipaths [C ′j , li] or [C ′j , Cj , li]. Our construction
will ensure that (C ′j , Cj) is the only in-arc for Cj . Therefore, the vertices Cj
and C ′j must have distinct colors in any vertex properly connected coloring
of DΦ. In particular, at least one of these two above C ′jli-dipaths must be
proper.

Truth gadget. (see Fig. 5c). We add a new vertex F . For every 1 ≤ j ≤ m
we add an arc (F,C ′j). In the same way, for every 1 ≤ i ≤ n we add an arc
(yi, F ).

For every 1 ≤ j ≤ m, note that since we have that [F,C ′j , Cj ] is the only
FCj-dipath, the vertices F and Cj must have the same color in any vertex
properly connected 2-coloring of DΦ. In particular, there must be, in such
a coloring, an out-neighbor of Cj with a different color than F , that will
correspond to a literal li ∈ Cj valued by ”True”.

Furthermore for every 1 ≤ i ≤ n, the vertices yi together with the dicycle
containing the vertices xi and xi will ensure that if any of the two vertices
xi or xi can be reached from a vertex corresponding to a clause by a proper
dipath, then F can be reached.

The digraph DΦ can be constructed from Φ in O(m)-time, hence linear
in the number of clauses. Next we prove that −→vpc(DΦ) = 2 if and only if Φ
is a yes-instance of 3-SAT.

First assume −→vpc(DΦ) = 2. Consider such a (vertex properly connected)
coloring c of DΦ with two colors, which we will call Blue and Red. W.l.o.g.
assume that c(F ) = Red. On the one hand, let 1 ≤ j ≤ m be fixed. Since the
only FCj-dipath is [F,C ′j , Cj ], we must have c(C ′j) = Blue and c(Cj) = Red.
In this situation, at least one of the outgoing arcs from Cj must have its
other end colored with Blue. The latter corresponds to a literal l in Cj . On
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the other hand, for every 1 ≤ i ≤ n, since [xi, αi, βi] and [αi, βi, xi] are the
only xiβi-dipath and αixi-dipath, respectively, we have that c(xi) 6= c(xi).
Then we can assign value 1 to all literals whose corresponding vertex has
color Blue, and value 0 to the other literals. Since every vertex Cj is adjacent
to a color Blue vertex, we obtain a truth assignment satisfying Φ.

Assume now that Φ is a yes-instance of 3-SAT. Consider a truth assign-
ment satisfying Φ. We define a coloring c for the vertices of DΦ as follows
(see Fig. 6).

• c(F ) = Red.

• For every 1 ≤ j ≤ m, c(Cj) = Red and c(C ′j) = Blue.

• c(yi) = Blue.
Furthermore if xi is true, then c(xi) = c(βi) = c(γi) = Blue and
c(xi) = c(δi) = c(αi) = Red.
Otherwise c(xi) = c(βi) = c(γi) = Red and c(xi) = c(δi) = c(αi) =
Blue.

F

y1 y2 y3

x1
α1 β1 x1

δ1
γ1

x2
α2 β2 x2

γ2δ2

x3
α3 β3 x3

γ3δ3

C ′1 C1 C ′2 C2

Figure 6: A vertex properly connected coloring of DΦ, with Φ = (x1 ∨ x2 ∨ x3) ∧
(x2 ∨ x3) corresponding to the truth assignment x1 = 0, x2 = 1, x3 = 1

We shall prove that c is properly connected. First note that there exists
a proper dipath from every vertex to F . More precisely the following dipaths
are proper:
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• [γi, δi, xi, αi, βi, xi, yi, F ] if xi is a variable valued 1;

• [αi, βi, xi, γi, δi, xi, yi, F ] if xi is a variable valued 0;

• [C ′j , Cj , xi, αi, βi, xi, yi, F ] if xi is valued 1 and is contained in Cj ;

• [C ′j , Cj , xi, γi, δi, xi, yi, F ] if xi is valued 1 and is contained in Cj ;

• [C ′j , xi, yi, F ] if xi is valued 0 and is contained in Cj ;

• [C ′j , xi, yi, F ] if xi is valued 0 and is contained in Cj .

Let us denote by P− this above collection of dipaths. Also, the following
dipaths from vertex F are proper:

• [F,C ′j , Cj , xi, αi, βi, xi, yi] and [F,C ′j , Cj , xi, αi, βi, xi, γi, δi] if xi is a
variable valued 1 in clause Cj ;

• [F,C ′j , Cj , xi, γi, δi, xi, yi] and [F,C ′j , Cj , xi, γi, δi, xi, αi, βi] if xi is val-
ued 1 and is contained in clause Cj ;

• [F,C ′j , xi, yi] and [F,C ′j , xi, αi, βi, xi, γi, δi] if xi is a variable valued 0
in clause Cj ;

• [F,C ′j , xi, yi] and [F,C ′j , xi, γi, δi, xi, αi, βi] if xi is valued 0 and is con-
tained in clause Cj .

Let us denote by P+ this above collection of dipaths.
We shall prove that for every two distinct (ordered) vertices u and v

there exists a proper dipath of which they are the respective head and tail.
This follows from the following case analysis.

1. If there exists a dipath in P− ∪ P+ that contains an uv-subdipath,
then we are done;

2. In the same way, we claim that we are also done if there exist a proper
uF -dipath (subdipath of a dipath in P−) and a proper Fv-dipath
(subdipath of a dipath in P+) that only intersect in F . Indeed, by
merging these two dipaths in F , we obtain a proper uv-dipath.

3. Furthermore, it can be checked that any two vertices u, v fall in one
of the two above cases, unless u and v are contained in a dicycle from
variables gadgets [xi, αi, βi, xi, γi, δi, xi]. In this case, since the above
dicycle is proper we are done.

Hence the coloring c is properly connected.
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Remark 2. It is not hard to see that for any digraph D, −→pvc(D) ≤ t if
and only if diam(D) ≤ t + 1 for t ∈ {0, 1}. Therefore, deciding whether
−→pvc(D)= 0, resp. whether −→pvc(D) = 1 can be done in polynomial time.

5. Proper connection number

The last section is devoted to partial results on the proper connection
number of graphs. The complexity of computing this parameter remains
open, but we propose advances in this direction by presenting some tractable
cases. In particular, we present graph classes, generalizing that of trees, in
which we can decide in polynomial time if the proper connection number of
a graph is two.

Bounded-treewidth graphs. We recall that a chordal graph is a graph with
no induced cycles of length at least four. A graph G has treewidth at most
k if there exists a supergraph of G that is chordal and has no clique of size
at least k + 2 [5]. In particular, trees are exactly the graphs of treewidth
one.

The MSO2 logic is a fragment of second-order logic where the second-
order quantification is limited to quantification over sets (i.e., quantifications
over binary relations is not allowed). The formulas that are written inMSO2

logic for graphs use individual variables u, v, e . . . to represent vertices and
edges, set variables X,Y, F, . . . to represent vertex-subsets and edge-subsets,
and atomic formulas such as set containment – denoted X ⊆ Y – and
incidence between a vertex and an edge – i.e., inc(v, e) is true if and only
if vertex v is an end of edge e. By Courcelle’s Theorem [15], every problem
expressible in MSO2 logic can be solved in linear-time on bounded-treewidth
graphs.

Lemma 7. If G = (V,E) has bounded treewidth, then it can be decided in
linear-time whether pc(G) ≤ 2.

Proof. By Courcelle’s Theorem [15], it suffices to prove that the problem
can be written as a formula in MSO2 logic. Such a formula can be obtained
from a slight variation of the corresponding formula for the Hamiltonian
Path problem. More precisely, pc(G) ≤ 2 if and only if there exists a
bipartition E0, E1 of the edge-set such that, for every u, v ∈ V , there is
some set of edges F that induces a connected subgraph, with the properties
that u, v ∈ V (G[F ]) and every vertex is incident to at most one edge in
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F ∩Ei for every i ∈ {0, 1}. The latter can be written as an MSO2 formula,
namely:

∃E0 ⊆ E,E1 ⊆ E · (∀u ∈ V, v ∈ V ∃F ⊆ E, VF ⊆ V · (
[∀x ∈ V x ∈ VF ⇐⇒ ∃e ∈ F · inc(x, e)]
∧[∀X,Y ⊆ VF X ∪ Y = VF =⇒ ∃e ∈ F, x ∈ X, y ∈ Y · inc(x, e) ∧ inc(y, e)]
∧[u, v ∈ VF ]

∧[∀x ∈ VF , e ∈ E0 ∩ F, e′ ∈ E0 ∩ F inc(x, e) ∧ inc(x, e′) =⇒ e = e′]

∧[∀x ∈ VF , e ∈ E1 ∩ F, e′ ∈ E1 ∩ F inc(x, e) ∧ inc(x, e′) =⇒ e = e′])).

The second line defines VF as the vertex-set of G[F ]. The third line ensures
that G[F ] is connected (i.e., for every bipartition of VF , there is an edge of
F with an end in each side). Finally, the two last lines ensure that every
vertex of VF can be incident to at most one edge of F ∩E0, resp. of F ∩E1.

We think that our approach can be generalized in order to prove that for
any bounded-treewidth graph G, and for any constant k, it can be decided
in linear-time whether pc(G) ≤ k. However, we leave open the complexity
of computing the proper connection number on bounded-treewidth graphs.

Bipartite graphs. The special case of bipartite graphs has been extensively
studied in the literature [7, 10, 20, 26, 27]. Several sufficient conditions
have been given for these graphs to have proper connection number equal
to two. Before concluding this section, we base on one of these conditions in
order to provide a complete characterization of bipartite graphs with proper
connection number two.

We introduce additional terminology. Let G = (V,E) be a connected
graph. We remind that a bridge of G is an edge e ∈ E such that G \ e =
(V,E \ {e}) is disconnected. A bridge-block of G is a connected component
of G \F = (V,E \F ), with F being the set of bridges of G. It is well-known
that if we take the bridge-blocks of G as vertices, and for every bridge
we add an edge between the two bridge-blocks that contain its ends, the
resulting graph is a tree, sometimes called the bridge-block tree of G, that is
linear-time computable [40].

Theorem 8. Let G = (V,E) be a connected bipartite graph. We have
pc(G)≤ 2 if and only if the bridge-block tree of G is a path. Furthermore, if
pc(G)≤ 2, then such a coloring can be computed in linear-time.

As a byproduct of Theorem 8, we retrieve a known characterization of
trees with proper connection number at most two.
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Corollary 9 ([7]). Let T be a tree. We have pc(T )≤ 2 if and only if T is a
path.

The remaining of the section is devoted to the proof of Theorem 8. There
are two main ingredients in the proof of Theorem 8 that will be stated in
Lemmas 10 and 11. For that we need to introduce additional notions. We
say that an edge-coloring of G has the strong property if, for every two
vertices u and v, there are at least two proper uv-paths (not necessarily
disjoint) with the two edges being incident to u (resp., to v) in these two
paths being of different colors.

Lemma 10 ([27]). If G is a connected bipartite bridgeless graph, then
pc(G)≤ 2. Furthermore, such a coloring can be produced with the strong
property.

The proof of Lemma 10 is constructive. However, the computational
complexity of this construction is not explicitly given in [27]. A careful
analysis shows that it can be done in linear time. Indeed, this construction
scans all the biconnected components of G exactly once; for every bicon-
nected component of G, we use an earlier construction of Borozan et al. for
biconnected bipartite graphs [7]. Since computing the biconnected compo-
nents of a given graph takes linear time [25], it suffices to prove that this
construction of Borozan et al. can be implemented to run in linear time for
every biconnected bipartite graph G. For the latter construction, we first
compute a minimal biconnected spanning subgraph H of G, then we scan all
the ears in an ear decomposition of H exactly once. Since both computing a
minimal biconnected spanning subgraph and computing an ear decomposi-
tion can be done in linear time (e.g., see [24, 39]), this construction can also
be implemented to run in linear time, hence the following remark holds.

Remark 3. The construction from Lemma 10 can be implemented in linear
time.

Hence, by Lemma 10, it remains to study bipartite graphs with bridges.
Furthermore, it has been proved in [2] that if a vertex in G is incident to
at least k bridges then pc(G)≥ k. So, we can deduce from this lower-bound
that there cannot be more than 2 bridges that are incident to every vertex.
However, the latter is not sufficient, even for bipartite graphs, in order to
ensure that pc(G) ≤ 2. The following stronger lower-bound can be seen as
a generalization of [8, Lemma 2.1].
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v0

v1 v2

u0
u1 u2

u3

Figure 7: A bipartite graph G with pc(G) = 3.

Lemma 11. Let G = (V,E) be a connected graph, B be a bridge-block of G
that is bipartite. If B is incident to at least three bridges then pc(G)≥ 3.

Proof. Suppose, for the sake of a contradiction, that c is a properly con-
nected 2-edge-coloring of G. Assume that {u0, v0}, {u1, v1}, {u2, v2} are
three bridges in G and u0, u1, u2 ∈ V (B) (possibly, ui = uj for some
i, j ∈ {0, 1, 2}). If, for i, j ∈ {0, 1, 2}, ui and uj are in the same par-
tite set of B, then any path connecting ui and uj in B is of even length.
Thus, since in any proper path with 2 colors the colors of the edges must
alternate, c({ui, vi}) 6= c({uj , vj}). This implies that not all vertices of
{u0, u1, u2} are in the same partite set. Similarly, if ui and uj are in differ-
ent partite sets, then any path connecting ui and uj in B is of odd length,
and so, c({ui, vi}) = c({uj , vj}). Without loss of generality, let u0 and u1

be in the same partite set, and hence u2 is in the other one. It follows,
c({u0, v0}) = c({u1, v1}) = c({u2, v2}) and c({u0, v0}) 6= c({u1, v1}), a con-
tradiction.

Proof of Theorem 8. On the one direction, assume that the bridge-block tree
of G is not a path. Edges in this tree are in a one-to-one correspondence
with bridges in G. So, there is a bridge-block of G that is incident to at
least three bridges. Since such a component must be bipartite (because G
is), it follows pc(G)≥ 3 by Lemma 11, a contradiction.

On the other direction, assume that the bridge-block tree of G is a path.
This gives us a linear ordering B0, B1, . . . , Bl of the bridge-blocks, that can
be computed in linear time [40].

We claim that for every 0 ≤ i ≤ l there exists a (linear-time computable)

coloring of G[
⋃
j≤i

V (Bj)] with the following two properties:
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1. G[
⋃
j≤i

V (Bj)] is properly connected;

2. the coloring restricted to Bi has the strong property.

We divide the proof in three cases.
Assume for the first base case i = 0. By Lemma 10 we have pc(B0)≤ 2

and such a coloring can be produced with the strong property. Recall that
such a coloring can be computed in O(|V (B0)|+ |E(B0)|)-time (see Remark
3). So, the claim is proved for this base case.

Consider now i = 1 for the second base case. Again, by Lemma 10, we
can color the edges of B0, resp. the edges of B1, with 2 colors, such that
B0, resp. B1, is properly connected and the coloring for every bridge-block
has the strong property. This takes O(|V (B0)∪V (B1)|+ |E(B0)∪E(B1)|)-
time (Remark 3). Then coloring the unique bridge between B0 and B1

arbitrarily results in having G[V (B0) ∪ V (B1)] properly connected. This
takes constant-time, and so, this proves the claim for this base case.

Finally, assume i > 1. Assume by induction hypothesis that the claim
holds for i− 1. In this situation let us call c the color of the unique bridge
between Bi−2 and Bi−1. We first color the edges of Bi with two colors so
that the coloring is properly connected and it has the strong property; such
a coloring is guaranteed to exist by Lemma 10, and it can be computed in
O(|V (Bi)|+ |E(Bi)|)-time. Then there are two subcases to be distinguished.
Either all the paths between the two bridges incident in Bi−1 have even
length, in which case we color the bridge between Bi−1 and Bi with a color
different than c. Or all these paths have odd length, in which case we color
the bridge between Bi−1 and Bi with color c. Note that it can be easily
checked in which case we are by looking for the end-vertices of the two
bridges that are on the same partite set of the bipartition of Bi. Overall,
since we can compute the two partite sets of Bi in O(|V (Bi)|+|E(Bi)|)-time,
we can also choose the color for the bridge between Bi−1 and Bi within the
same amount of time. In doing so, we extend the coloring in such a way

that G[
⋃
j≤i

V (Bj)] is properly connected. Therefore, the claim holds for i.

In particular, by taking i = l, we obtain that pc(G)≤ 2. Such a coloring

can be computed in O(
l∑

i=0

(|V (Bi)|+ |E(Bi)|))-time, that is linear in the size

of G since the bridge-block tree of G can be computed in linear time.
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6. Conclusions

We give the first known complexity results on proper connectivity, in
undirected graphs and in directed graphs. In particular, computing the di-
rected proper connection numbers of digraphs is NP-hard. Computing the
proper vertex connection number of undirected graphs (resp., their vertex
proper connection number) is trivial. The only remaining case is the proper
connection number of undirected graphs. We leave the complexity of com-
puting the proper connection number of a given graph as an interesting
open question. An intermediate problem will be to characterize the graphs
with proper connection number at most two. We also intend to study the
complexity of computing the proper connection number of bipartite graphs,
thereby generalizing the positive result of Theorem 8.
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