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Abstract We are interested here in a theoretical and practical approach for
detecting atypical segments in a multi-state sequence. We prove in this article
that the segmentation approach through an underlying constrained Hidden
Markov Model (HMM) is equivalent to using the maximum scoring subse-
quence (also called local score), when the latter uses an appropriate rescaled
scoring function. This equivalence allows results from both HMM or local score
to be transposed into each other. We propose an adaptation of the standard
forward-backward algorithm which provides exact estimates of posterior prob-
abilities in a linear time. Additionally it can provide posterior probabilities on
the segment length and starting/ending indexes. We explain how this equiv-
alence allows one to manage ambiguous or uncertain sequence letters and to
construct relevant scoring functions. We illustrate our approach by considering
the TM-tendency scoring function.

Keywords Local score · maximum scoring subsequence · HMM · posterior
distribution · forward/backward · biological sequence analysis

1 Introduction

Since the development of biological sequence databases in the 80s, the ex-
traction of information from such an enormous amount of data has been the
subject of great interest. Considering the size of the data, sequence analysis
has been largely developed with both mathematical and computing challenges.
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Extracting information from biological sequences includes a large range of ar-
eas such as Markov models (Durbin et al., 1998), similarity (Pearson, 2013),
local pairwise or multiple alignments (Needleman and Wunsch, 1970; Smith
and Waterman, 1981; Altschul et al., 1990; Sievers et al., 2011), words counts
(Robin et al., 2005), segmentation (Keith, 2008; Devillers et al., 2011; Luong
et al., 2013), including statistical significance that is omnipresent in biological
sequence analysis (Karlin, 2005; Mitrophanov and Borodovsky, 2006).

In this context, it is often interesting to point out homogenous regions in
sequence data. For that purpose, two principal techniques are largely used:
Hidden Markov Models (HMMs) and Score-Based approaches.

HMMs: HMMs consist in two structures, an underlying model for un-
observed state defined on finite dimensional spaces and one for the observa-
tions. These models have been extensively used in biological sequence analysis
in a variety of problems in molecular biology such as pairwise and multiple
sequence alignments (Arribas-Gil et al., 2012), gene prediction (Munch and
Krogh, 2006; Krogh et al., 2001), classification (Won et al., 2007), and many
others. See Yoon (2009) for a tutorial review of HMMs and their applica-
tions where three types of HMMs are principally presented, profile-HMMs,
pair-HMMs, and context-sensitive models.

Note that HMM are usually very specific and adapted to the context of the
study and the kind of subsequence to be highlighted. For example, see Krogh
et al. (2001) for transmembrane helices research; or Borodovsky and McIninch
(1993) for a HMM modeling protein-coding gene. Note that there also exists
a large number of HMM variants to meet the needs of various applications
(see Yoon, 2009, for more explanation). Usually the Viterbi algorithm is used
(Viterbi, 1967) to find the most probable state sequence among all possible
ones conditional on the observed sequence and is then considered as determin-
istically correct. Patterns in the state sequence are then found by analyzing
this most probable sequence. In Aston and Martin (2007) the authors propose
a method based on forward and backward quantities (Durbin et al., 1998) to
compute distributions of pattern in the hidden state sequence of a HMM con-
ditional on the observed sequence which is more robust to the uncertainty of
the hidden state sequence.

Score-Based approaches: In biological sequence analysis, a real value
called score, and denoted by f , is assigned to each component of a sequence.
These scores reflect a physico-chemical property of the component which de-
pends on the studied context (Kyte and Doolittle, 1982; Dayhoff et al., 1978;
Zhao and London, 2006). The idea is to find regions of the sequence where the
cumulated score is significantly high. For that purpose, one possible approach
consists of scanning the sequence using sliding windows of a given length `
and calculating a cumulative score for each window. This leads to a graphical
representation where the maximal region of length ` can easily be observed.
While this approach is appealing for sequence analysis, its major drawback is
that it needs to make a choice on `.

The alternative to sliding windows, when there is no “natural” value for
`, is the local score. The local score (see Karlin and Altschul, 1990, or Eq. (1)
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in Section 2) is the maximal cumulative score that can be found over every
segment of any position and any length in the sequence. It corresponds to the
maximal level of the desired signal that can be locally found in a sequence. The
term of “local score” derives from the one of “score of local alignment” of two
sequences compared to the one of “global score alignment” used for example
in Waterman (1995). In his book, Waterman gathers the results available at
that time on the mathematical behavior of the local score of sequence align-
ment. Due to the complexity of the mathematical tool, first results stand on
the distribution of the local score for one sequence. This can bring confusion,
and this is also increased by the fact that the BLAST software (Basic Align-
ment Search Tool) used a generalization of the work of Karlin et al. for one
sequence to compute the distribution of the score of the maximum similarity
segments for sequence alignments. There also exists a researcher community
which uses the appellation “maximum scoring subsequence” as in Ruzzo and
Tompa (1999). In fact, from our point of view, the term of “maximal scoring
subsegment” should be more appropriate as one is interested in this context
in the contiguous part of the sequence. From now on we will use the term of
“local score” to refer to the maximal scoring subsegment of one sequence.

Basically, all sliding window approaches can be replaced by their local
score counterparts with several dramatic advantages: no window size to choose,
efficient dynamic programming algorithms, and many probabilistic/statistical
results (see below). If one knows the target length of the atypical regions to
be detected, it remains reasonable to use sliding windows. In some contexts,
sliding windows can seem to be a little bit easier to interpret graphically than
the cumulative score of the local score function. The definition of the local
score implies that the scoring functions used are composed of both positive and
negative scores. Indeed, if only positive scores are possible the whole sequence
will always achieve the maximal possible score without highlighting the local
region as expected.

Finally, scan statistics are also a largely used tool to extract atypical regions
in sequences. They are defined as the maximal cumulative occurrences of a
given event in sliding windows of fixed length: like for example the occurrence
of palindromes in a nucleic sequence ; or the number of CpG islands (see Takai
and Jones, 2002, 2003, for a scan statistic approach) (see Guéguen, 2005, for a
HMM approach). The sliding window approach uses a scoring function which
can have negative and/or positive scores whereas scan statistics are based on
counts of an observed event and thus scores are only positive, often modeled by
binomial or Poisson distributions. Scan statistic approaches has been largely
studied since J. Naus first published on the problem in the 1960s (Naus, 1982;
Glaz et al., 2001). See Chen and Glaz (2016) or Zhao and Glaz (2017) for
recent developments on the topic.

Our contribution

The main purpose of the present work is to establish a duality between a ge-
nerative constrained HMM framework and a Score-Based one. We prove that
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under specified hypotheses, HMMs and Score-Based approaches can in fact be
equivalent in the sense that they provide the same segmentation distributions.
This main result brings very interesting corollaries and applications using the
fact that results and or information from both approaches can be transferred to
the other: we demonstrate how we have derived several interesting probabilistic
results for the local score approach including scoring function rescaling; we
present how an adaptation of the forward and backward algorithm allows to
compute the full posterior distribution including location, length, etc. of local
score segments, based on a given sequence observation; how score ambiguity
or weighted observations can be considered. Supervised or unsupervised score
learning is also possible but will not take place in this article but in further
works focusing more on the statistical aspects of the problem.

Related work: In Aston and Martin (2007) the authors develop a com-
putational method allowing to obtain the distribution of patterns (in fact,
regular expressions) in the unobserved sequence of hidden states of a HMM
conditional to the observed sequence. The approach is based on deterministic
finite state automata and Markov chain embedding techniques combined with
the computation of the posterior hidden state distribution as a heterogeneous
Markov chain. The purpose of this interesting contribution is to study the
occurrence of patterns of interest (number, positions) in the hidden sequence
such as 0101010101 (example of pattern from Aston and Martin, 2007). The
problem they consider is therefore quite different from our objective of estab-
lishing the posterior distribution of atypical segment location.

In Wolfsheimer et al. (2012) the authors proposed a work for the classi-
cal pairwise alignment and pair HMMs. Our contribution can therefore be
considered as an extension of these previous results to the local score of one
sequence.

Outline of the paper: Section 2 is devoted to the local score with a state
of the art and the probabilization of the segmentation space using the Gibbs
measure. Section 3 is devoted to the generating model and the segmentation
corresponding to the hidden states of the underlying constrained HMM. The
complete connection between the use of the local score and the generating
model to highlight atypical segment in a given sequence is established in Sec-
tion 4. Section 5 presents different applications of the possibilities that the
equivalence can offer. Technical details including the Forward and Backward
quantities are given in Appendix A. Implementation of the main examples
can be found in Appendix B. Appendix C proposes a computation function to
rescale the scoring function.

2 Local score

2.1 State of art for the local score

The local score, usually noted Hn, of a random sequence of length n, has
been widely studied since its definition in the 1990s. The establishment of the
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distribution of the local score can be assessed in different contexts depending
on the average score E[f ] (negative, positive or equal to 0), the sequence length
n (short, medium or long sequences), and how the sequences are modeled (by
a sequence of independent and identically distributed variables –i.i.d.–) or
by a Markov chain). Each context uses very different mathematical tools to
establish results.

In Karlin and Altschul (1990) and Karlin and Dembo (1992) the authors
show that for a sequence of i.i.d. random variables, a scoring function with
a negative expected score function, E[f ] < 0, and possible positive scores,
P(f > 0) > 0, that the distribution of the local score has asymptotically a
Gumbel distribution. In practice, the sequence length n must be higher than
103 for this asymptotic approximation to be valid. An improvement of this
result is proposed in Mercier et al. (2003) taking into account additive and
correcting terms. In 2001 (see Mercier and Daudin, 2001), an exact method is
proposed using Markov chain theory, that allows to establish the exact p-value
of Hn in the i.i.d. model, whatever the average score is. In theory, the exact
method is applicable whatever the length n, but in practice it is accurate for
small sequences with n up to 103 for an acceptable computational time. In the
special case where E[f ] = 0, the authors of Daudin et al. (2003) demonstrate an
asymptotic behavior of the local score significance based on Brownian motion
theory. See Lagnoux et al. (2017) for a review and illustrations in the case of
i.i.d. sequences.

When the score sequence is assumed to be Markovian rather than i.i.d.,
there are fewer results. In Nuel (2006) and Hassenforder and Mercier (2007)
the authors established the exact distribution of the local score of a Markov
chain whatever the average score, but in practice, this result needs a maximal
sequence length of several hundreds of components. For the local score of
one Markov chain with a non-positive mean score, the convergence of the
distribution of the local score Hn to a Gumbel distribution is confirmed using
simulations (see Robelin, 2005; Guedj et al., 2006; Fariello et al., 2017) and
demonstrated for a random scoring function in Karlin and Dembo (1992). An
improvement of this last result is proposed in Grusea and Mercier (2020) for
a lattice scoring function.

Some research has been done on the length of the local score realization.
Motivated by sequence comparison, in Arratia and Waterman (1989), the au-
thors considered the longest segment of a random sequence X taking values
in {0; 1} with a proportion of 1 being larger than a given threshold. In a more
general context, assuming E[X] < 0 and P(X > 0) > 0, Dembo and Karlin
(1991a,b) proved an asymptotic behavior of the length of this optimal segment
when the length of the sequence goes to infinity. In another context, (Karlin
and Ost, 1988) established a classical extremal type limit law for the length
of common words among a set of random sequences. Reinert and Waterman
(2007) also gives a result on the distribution of the length of the longest exact
match between two random sequences. In Chabriac et al. (2014), using Brow-
nian motion theory, the authors established an asymptotic distribution on the
pair, local score and local score length.
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Statistical results on the location of local score segment are scarce. In
Lagnoux et al. (2015), the authors established that for very long sequences,
the local score is realized in the last Lindley excursion of the score sequence
(that is the sequence of the corresponding score of each component using a
given score scale (see Mercier and Daudin, 2001; Lagnoux et al., 2015, 2017, for
a more detailed definition)) with an asymptotic probability around 1/3. But
this last result is not accurate enough to know exactly where the local score
segment begins. In Lagnoux et al. (2019), an asymptotic density for the index
position of the local score in the sequence is exposed. These results, which are
based on Brownian motion theory, can be useful for sequence lengths larger
than 105.

Finally, let us point out that the algorithmic aspects of the problem also
attracted attention. See Altschul et al. (1990) for the well known BLAST
software or Needleman and Wunsch (1970); Smith and Waterman (1981) for
the original algorithms of pairwise global and local score research, or Ruzzo
and Tompa (1999).

2.2 Local score and segmentation

Let A = A1 . . . An ∈ An be a given sequence (typically, A = {A, C, G, T} for a
DNA sequence, or the set of the 20 amino acids for proteins) and f : A → R
be a scoring function. Let us define the local score (see Karlin and Altschul,
1990) of the sequence A based on the scoring function f as:

Hf (A)
def
= max

[i,j]

∑
k∈[i,j]

f(Ak) (1)

where [i, j] could possibly be empty (hence Hf (A) ≥ 0). Usually, the local
score is denoted Hn for a sequence of length n. We need in the sequel to focus
on the scoring function f used to compute the local score instead of the length
of the sequence, and we voluntary change here the notation.

Let us define a segmentation sequence S = S1S2 . . . Sn ∈ S
def
= {S ∈

{1, 2, 3}n, Si − Si−1 ∈ {0, 1} for i = 1, . . . , n} with S0 = 1 by convention.

Remark 1 We can define a bijection between the set S of segmentation and
the set of segments I = [i, j] with 1 6 i 6 j 6 n. For all S ∈ S, we can define I
to be the indices for which the segmentation values are equal to 2. Conversely,
for any interval (possibly empty) the associated segmentation takes value 1
before a segment of interest, 2 in the segment, and 3 after the segment.

In the following example, we take the segment I = [2, 4] for a length se-
quence n = 5 and we give the corresponding segmentation S. Notation as SI
(respectively IS) will be used in the sequel to indicate the corresponding seg-
mentation (resp. segment) of a given segment I (resp. segmentation S).

Index = 1 2 3 4 5
S = 1 2 2 2 3
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Extending our model to situations where there is more than one atypical seg-
ment is possible and this can be clearly seen as a great improvement for the
local score approach. In practice, this extension is quite straightforward since
we just have to expand the hidden space of Si (e.g. Si ∈ {1, 2, 3, 4, 5} for up to
two segments, the atypical states corresponding to Si = 2 or 4). The further
computational complexity would simply increase linearly with the number of
atypical segments. We chose to present the case standing on exactly one seg-
ment to make the presentation clearer. An application with several atypical
segments is presented in Lefebvre et al. (2020).

For any sequence A ∈ An and segmentation S ∈ S ⊂ {1, 2, 3}n, let us
define:

Hf (S|A)
def
=

n∑
i=1

1{Si=2}f(Ai) =
∑
i∈IS

f(Ai)

and we therefore have Hf (A) = maxS∈S Hf (S|A).

2.3 Gibbs Distribution

The local score focuses on the segment that realizes the maximum scoring
subsegment. But several segments can realize the local score. Moreover one bi-
ologist can also be interested in some suboptimal segments. If we consider that
the “energy” of each subsegment location is given by its associated scoring,
it is therefore natural to probabilize the segmentation space on the basis of
this “energy”. In statistical physics, this is classically achieved by introducing
a Gibbs’ (or Boltzman’s) distribution where the probability of a configuration
of the system is proportional to the energy in a log-scale. We hence propose

∀I = [i, j] ∈ I, P(f,T )
Gibbs(I|A) ∝ exp

(
1

T

j∑
k=i

f(Ak)

)
(2)

where
∑j
k=i f(Ak) is the subsegment scoring, the energy, and the parameter

T > 0 is called the temperature. Note that P(f,T )
Gibbs(I|A) tends towards a Dirac

distribution when T → 0, for which we recover the classical local score that
focuses only on the maximum scoring subsegment without considering the

suboptimal segments; and P(f,T )
Gibbs(I|A) tends towards a uniform distribution

when T →∞. The temperature T therefore is a contrast parameter.
To illustrate the Gibbs’ distribution on the segments, let us consider a

simulated sequence of length n = 40 taking its values over the four nucleotide
alphabet {A, C, G, T} and the following scoring function f(A) = f(C) = −2 and
f(G) = f(T) = +1. Figure 1 represents the probabilities of the 821 different
segments for different temperatures T = 0.1 (top left panel), T = 0.6 (top
right panel), T = 2 (bottom left panel) and T = 4 (bottom right panel). The
local score segment is highlighted in the top left panel as the only one with
non-negligible probability. In the top right panel, suboptimal segments start
appearing. For a larger T , the probability landscape becomes richer (bottom
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Fig. 1 Gibbs’ distributions of the 821 segments of a sequence of length n = 40 for different
temperatures: Top left panel with T = 0.1 ; Top right panel with T = 0.6 ; Bottom left
panel with T = 2 and bottom right with T = 4. Note the scale change of the x axis from
the top panels to the bottom panels.

panels with a change of x axis scale). The question is then to choose an adapted
T value to highlight interesting information of the whole sequence. Section 4
explains how to choose T in a canonical way under certain hypotheses.

3 Generating Model

Let us now consider an alternative formulation of the problem through a Hid-
den Markov Model. It implies an underlying generating model that allows
probabilities on the space of sequence segments.
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Let q0(·) and q1(·) be two multinomial distributions overA. For any A ∈ An
and S ∈ S ⊂ {1, 2, 3}n we define:

Pq0,q1HMM(A|S)
def
=

n∏
i=1

q0(Ai)
1{Si 6=2}q1(Ai)

1{Si=2} (3)

with P(Ai|Si 6= 2) = q0(Ai) and P(Ai|Si = 2) = q1(Ai) (q0 to generate Ai
when Si ∈ {1, 3} and q1 to generate Ai when Si = 2). When non-ambiguous,
we will drop “HMM” and “q0, q1” for the sake of simplification.

If we assume that all S ∈ S are equiprobable we can deduce from (3) the
probability of a segmentation conditional to the observed sequence as follows:

Pq0,q1HMM(S|A) =
1

Z
× Pq0,q1HMM(A|S) (4)

where the normalization factor Z is given by:

Z
def
=
∑
S∈S

Pq0,q1HMM(A|S) =
∑

S∈{1,2,3}n
1{S∈S}Pq0,q1HMM(A|S) (5)

This assumption seems reasonable as we do not have any prior information on
the atypical segment.

With such a uniform prior on the segmentation space S, it is clear that
the prior probability of having no atypical segment is proportional to 1 (S =
11 . . . 1 being the only sequence with no atypical segment) while the prior
probability of having one atypical segment is proportional to

(
n+1
2

)
(the cardi-

nal of S \ {11 . . . 1}). As a consequence, the model with a uniform prior on S
will always favor the presence of one atypical segment, even in the case where
there is none. In order to avoid this issue, it is necessary to account for the
number of configurations of both events in the prior distribution. See Section
A.2 for details.

One should note that the Markov chain defined by (A, S) is constrained.
Indeed, as we can see in the definition of the set S the transitions between the
states are given. It is a very simple HMM model with only three states but
because of this constraint inference differs from classical HMM inference by
few details (see Appendix A for more explanation).

Posterior probabilities

Inspired from classical HMM inference (see Rabiner, 1989; Durbin et al., 1998),
we adapted the so-called forward and backward quantities denoted by Fj(k)
and Bj(k) for j = 1, . . . , n and k ∈ {1, 2, 3} (see Appendix A.2 for definitions).
We can exploit the forward and backward quantities to compute quantities of
interest such as P(Sj = k|A) for 1 ≤ j ≤ n, P(Sj−1 = k, Sj = `|A) for
1 < j ≤ n.
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– P(Sj = k|A) is very interesting for j = n since it provides the posterior
probability of having zero or one segment generated by q1

P(no segment|A) = P(Sn = 1|A)

P(one segment|A) = P(Sn = 2 or 3|A) .

– P(Sj−1 = k, Sj = `|A) with k = 1 and ` = 2 (resp. k = 2 and ` =
3) corresponds to the posterior probability that the segment starts (resp.
ends) in position j > 1 (resp. j − 1) but we need to normalize by the
posterior probability of having a non-empty segment:

P(segment starts at time 1|A) =
P(S1 = 2|A)

P(Sn = 2 or 3|A)

P(segment starts at time j|A) =
P(Sj−1 = 1, Sj = 2|A)

P(Sn = 2 or 3|A)
for 1 < j ≤ n .

P(segment ends at time n|A) =
P(Sn = 2|A)

P(Sn = 2 or 3|A)

P(segment ends at time `|A) =
P(S` = 2, S`+1 = 3|A)

P(Sn = 2 or 3|A)
for 1 ≤ ` < n .

Different implementations are proposed in Appendix B depending on se-
quence length, short sequence (see Appendix B.1) or long sequences (see Ap-
pendix B.2). We also propose in Appendix B.3 an implementation to compute
the posterior probability that a segment has a given length. Illustration of the
computation of those quantities is given in Section 5.1.

4 Equivalence between the two probability distributions

Let us consider a sequence A ∈ An. Denote by MA the set of multinomial
distributions on A. Due to Remark 1 we use the notation Pf,1Gibbs(S|A) instead

of Pf,1Gibbs(I|A).

Theorem 1

∀(q0, q1) ∈M2
A, ∃! σ : A → R such as Pq0,q1HMM(S|A)

∀S∈S
= Pσ,1Gibbs(S|A)

and σ(a)
∀a∈A

= log
(
q1(a)
q0(a)

)
.

Proof Supposing the uniform distribution on S such as P(S) = 1/|S| for all
S ∈ S, we then have with Z defined in (5)

Pq0,q1HMM(S|A) =
1

Z
P(A|S) ∝ P(A|S)

P(A|S = 1 . . . 1)
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and

P(A|S)

P(A|S = 1 . . . 1)
=

∏n
i=1 q0(Ai)

1{Si 6=2}q1(Ai)
1{Si=2}∏n

i=1 q0(Ai)

=
∏

i,Si=2

q1(Ai)

q0(Ai)
= exp

 ∑
i,Si=2

log
q1(Ai)

q0(Ai)

 .

The function defined as σ(a)
∀a∈A

= log(q1(a)/q0(a)) verifies the hypothesis.

The unicity can be proved as follows. Let f : A → R such as P(S|A)
∀S∈S∝

exp
(∑

i,Si=2 f(Ai)
)

. Then ∀a ∈ A define the segmentation such as Si = 2

iff i = inf{1 ≤ j ≤ n : Aj = a}, Sj = 1 for 0 ≤ j ≤ i − 1 and Sj = 3 for
i + 1 ≤ j ≤ n + 1. Applying the hypothesis for those segmentations, we get

∀a ∈ A, exp
(

log q1(Ai)
q0(Ai)

)
= f(Ai) that leads to f = σ.

Theorem 2
∀q0 ∈MA and ∀f : A → R verifying

∑
a q0(a)f(a) < 0 and ∃a, f(a) > 0,

∃! T > 0 and q1 ∈MA, such that Pq0,q1HMM(S|A)
∀S∈S

= Pf,TGibbs(IS |A)

and q1(a)
∀a∈A

= q0(a) exp(f(a)/T ). We will call f/T the rescaled scoring func-
tion according to f .

Proof Let us consider the following Lemma.

Lemma 1 For any scoring function f : A → R and any background frequency
q0(·) the two following properties are equivalent:

i) ∃! ρ > 0,
∑
a q0(a) exp(ρf(a)) = 1

ii)
∑
a q0(a)f(a) < 0 and ∃a, f(a) > 0

Proof Consider g : [0,∞) → R with g(r) =
∑
a q0(a) exp(rf(a)) = Eq0 [erf ].

Using elementary analysis and an argument of convexity, the equivalence be-
tween the two assumptions is easy to prove.

Taking T = 1/ρ and q1 = q0 exp(f/T ) ∈MA leads easily to the result.

Remark 2 – The two hypotheses,
∑
a q0(a)f(a) < 0 and ∃a, f(a) > 0 are

classical in the context of local score studies (see Karlin and Altschul, 1990)
and are usually verified in practice using a classical data base composition
of amino acids and usual scoring scales (see http: // web. expasy. org/

protscales ).
– It can be shown using a similar proof as for Lemma 1 that σ defined in

Theorem 1 verifies
∑
a q0(a)f(a) < 0 and ∃a, f(a) > 0.

Theorem 1 leads to a corollary given in Subsection 5.2 that allows to com-
pute the scoring of ambiguous letters. An application of Theorem 1 allows also
to learn scoring functions from data. This last feature will be illustrated in a
forthcoming work. An example of application of Theorem 2 is proposed on
real proteins in Section 5.3.

http://web.expasy.org/protscales
http://web.expasy.org/protscales
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P (Si = 1|A) P (Si = 2|A) P (Si = 3|A)

i = 1 0.801 0.199 < 10−8

i = 2 0.699 0.266 0.035
i = 3 0455 0.489 0.056
i = 4 0.325 0.550 0.125
i = 5 0.266 0.463 0.271
i = 6 0.133 0.532 0.335
i = 7 0.072 0.455 0.473
i = 8 0.056 0.213 0.731
i = 9 0.035 0.128 0.838
i = 10 < 10−8 0.114 0.886

Table 1 Marginal posterior probabilities P(Si = k|A) for the three states k = 1, 2, 3 at each
index i = 1, . . . , n.

5 Applications

We present here four applications to illustrate the results in the previous sec-
tion. The computation of posterior probabilities on simulated sequences is
presented in Section 5.1. First we propose a toy example for a sequence of
several components. The question of a long sequence and possible overflows
in the computation is also illustrated and practical computation methods are
proposed. Section 5.2 presents how the HMM approach can allow one to com-
pute scoring functions for ambiguous letters. We illustrate in Section 5.3 how
the TM-tendency scoring function of Zhao and London can be rescaled in or-
der to give a better mathematical interpretability to the result allowing the
intuitive existence of a distribution of the component of the sequence in atyp-
ical state. Section 5.4 focuses on an illustration for the detection of sequences
with atypical segment.

5.1 Posterior probabilities on simulated sequences

5.1.1 A binary toy example

Here, we consider the sequence A = 1011011001 ∈ {0, 1}10 to illustrate the
computation. Appendix B presents computation details and implementation.
The simulated sequence length is only n = 10 for simplicity. The scoring
function has been chosen as follows: f(0) = −2 and f(1) = 1. Figure 2 (left
panel) represents the marginal probabilities of the sequence positions to be in
State 2 ; computation of posterior probabilities for starting and ending indices
is presented in the right panel. Table 5.1.1 gives the values of the marginal
posterior probabilities P(Si = k|A) for the three states k = 1, 2, 3 at each index
i = 1, . . . , n. See Appendix A.2 for the link between posterior probabilities
and the forward and backward quantities. As explained in Section A.2 we use
here the following initialization for the backward quantities: Bn(1) = 0 and
Bn(2) = Bn(3) = 1.
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Fig. 2 Toy example (A = {0, 1}, n = 10, A = 1011011001, with the following scoring func-
tion f : f(0) = −2 and f(1) = 1. Left panel: Marginal posterior distribution of segmentation
State 2. Right panel: Segment start/end posterior distribution .

5.1.2 A practical implementation for long sequence

When n grows large, we might face under or overflow issues (small real num-
bers rounded to 0.0 in floating point arithmetic, see also Appendix B.2 for
more details on the overflow issues). One way to overcome this problem is for
example to perform all computations in log-scale. We propose here another
way that consists of rescaling the forward and backward quantities so that
each of them sums one (see details in Appendix B.2).

For illustration we simulated a sequence length is n = 300 taking its values
in {1, 2, 3, 4} with q0 = (0.4, 0.2, 0.2, 0.2) and q1 = (0.2, 0.4, 0.3, 0.1). A true
segment is inserted in I = [100, 150]. The scoring function used corresponds
to the one of Theorem 1, σ = log(q0/q1) (and thus T = 1), that leads to:
σ(1) = −0.693, σ(2) = 0.693, σ(3) = 0.405, σ(4) = −0.693. Figure 3 represents
the marginal posterior probabilities of the sequence component to be in State
2, that is in the inserted segments, P(Sj = 2|A) = Fj(2)Bj(2)/Z. In this
figure, the inserted segment is clearly highlighted, and its position and length
seem correct. Computation of marginal posterior probabilities for starting and
ending indices of the inserted segment is presented in Figure 4 (left panel).
Finally, posterior length distribution of this segment is given in Figure 4 (right
panel).

Computation for a sequence length greater than 104 is also very fast since
the complexity is in O(n), and recovers correctly a small atypical segment of
length as small as 100 (data not shown). Figure 5 illustrates the computation
for n = 40000 and a true segment inserted in I = [10000, 11000].

5.2 IUPAC ambiguous DNA code

Theorem 1 implies that the score of ambiguous letters can be defined in a
canonical way.



14 Sabine Mercier, Grégory Nuel

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior probability that Xi is generated under q1 

Index

P
(S

i=
2 

| X
)

Fig. 3 Marginal posterior distribution of segmentation State 2 for the simple simulation
with n = 300 and I = [100, 150], q0 = (0.4, 0.2, 0.2, 0.2), q1 = (0.2, 0.4, 0.3, 0.1) and the
scoring function of Theorem 1 σ = log(q0/q1).

0 50 100 150 200 250 300

0.
00

0.
05

0.
10

0.
15

Posterior probabilities for starting and ending index of the segment

Index

pr
ob

ab
ili

ty

seg. starts in i
seg. ends in i

0 50 100 150 200 250 300

0.
00

0.
02

0.
04

0.
06

Probability of the length segment

Index

P
(L

=
i |

 L
>

0)

Fig. 4 Segment start/end posterior distribution (left panel) and length (right panel)
for the simple simulation with n = 300 and I = [100, 150], q0 = (0.4, 0.2, 0.2, 0.2),
q1 = (0.2, 0.4, 0.3, 0.1) and f = log(q0/q1).

0 10000 20000 30000 40000 50000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

M
ar

gi
na

l p
os

te
rio

r 
P

(S
i=

2|
X

=
x)

Real segment position

0 10000 20000 30000 40000 50000

0.
00

0.
05

0.
10

0.
15

index

P
os

te
rio

r 
pr

ob
ab

ili
ty

Start

End

Real segment position

Fig. 5 Long sequence example: Marginal posterior distribution of segmentation State 2
(left panel) and segment start/end posterior distribution (right panel).



Local Score and constrained HMM 15

Corollary 1 The duality between the generating model and the scoring func-
tion implies that for (a 6= b)

σ(a or b) = log

(
q1(a) + q1(b)

q0(a) + q0(b)

)
.

Proof Theorem 1 implies that σ(a or b) = log
(
q1(a or b)
q0(a or b)

)
= log

(
q1(a)+q1(b)
q0(a)+q0(b)

)
.

One can note that the score deduced from the generating model which allows
a mathematically correct interpretation is neither σ(a)+σ(b) nor q0(a)σ(a)+
q0(b)σ(b) as one would be likely to expect.

Let us consider the IUPAC ambiguous DNA code. If we start from a scor-
ing function f it would be reasonable to expect the local score approach
to be equivalent to some generating model, and hence to have P(S|A) ∝
exp(Hf (A|S)). Unfortunately, in general q1(a) = q0(a) exp(f(a)) does not de-
fine a probability distribution. However, thanks to Theorem 2, we know that
there exists a unique rescaling T so that

q1(a) = q0(a) exp(f(a)/T )

defines a probability distribution. And Corollary 1 defines a score for ambigu-
ous letters. Let us present a numerical illustration of these two results on the
IUPAC ambiguous DNA code. Let us consider the four nucleotides {A, C, G, T}
with the following scoring function f(A) = −2, f(C) = −1, f(G) = 0, f(T) = +1
and two different background distributions:

qU0 = (0.25, 0.25, 0.25, 0.25) and qGC0 = (0.1, 0.4, 0.4, 0.1) .

These two distributions verify the two hypothesis of a non-positive average
score and possible non-negative scores.

For qU0 = (0.25, 0.25, 0.25, 0.25), we get T = 1.13, and

σ(A) = −1.76, σ(C) = −0.88, σ(G) = 0, σ(T) = +0.88 .

For qGC0 = (0.1, 0.4, 0.4, 0.1), we get T = 0.61, and

σ(A) = −3.29, σ(C) = −1.65, σ(G) = 0, σ(T) = +1.65 .

Figure 6 represents the plot of the initial scoring values for the four nucleotides
versus the σ values for both background distributions qU0 and qGC0 . Table 2
gives how the corresponding scores should be for the four nucleotides and
the ambiguous components for each background distribution. For ambiguous
letters, we have for example σ(M) = σ(A or C) = −1.23 that greatly differs
from σ(A) + σ(C) = −1.76 + (−0.88) = −2.64.

Let us now consider the two following distributions q0 and q1 defined by:
q0(x) = 0.213 for x = A, C, G, T, q0(x) = 0.021 for x = M, R, W, S, Y, K, q0(x) =
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Fig. 6 Initial scoring values for the four nucleotides versus the σ values for both background
distributions qU0 (Uniform) and qGC0 (GC-rich).

0.004 for x = V, H, D, B and q0(N) = 0.006; and q1(x) = 0.056 for x = A, T,
q1(x) = 0.301 for x = C, G and

q1 = (0.009, 0.046, 0.022, 0.019, 0.034, 0.034, 0.007, 0.017, 0.033, 0.036, 0.029)

for M,R,W,S,Y, K, V, H, D, B, N. We deduce from Theorem 1 the scoring function
σ(x) = log(q1(x)/q0(x)) for x = A, C, G, T. We calculate σ for the other letters
using Corollary 1. We also consider another scoring function σ̃, equal to σ for
A, C, G, T and we calculate its value for the ambiguous letters using the following
way: for example σ̃(a or b) = σ(a) + σ(b). Figure 7 presents a comparison of
the two scoring functions and highlights that the scores can be quite different
for the ambiguous letters.

Moreover, we consider the usual approach of highlighting atypical segments
using local score approach and we propose here an experiment to illustrate the
impact of the scoring function choice for the ambiguous letters on the detec-
tion performance. We simulate 5000 sequences of length 100 in the IUPAC
alphabet under the upper distribution q0. We insert a segment of 20 letters
using the distribution q1. We calculate the local score for each sequence using
both scoring functions σ and σ̃ and we highlight the segment which realizes
the local score in both cases. Allowing an error of 3 (resp. 5) in the positions
of the beginning and the ending index position, the scoring function σ detects
10% (resp. 22%) of the correct inserted segments and σ̃ only detects 1% (resp.
3%) of them. Using the scores computed by the application of Corollary 1
for the ambiguous letters instead of the usual way brings a much better per-
formance. In this example, we can see that the sensitivity is not very good
(22%) even with the use of the appropriate scoring values for the ambiguous
letters. This can be explained by the fact that the two distributions may be
not discriminative enough to easily highlight the inserted segments.
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Table 2

IUPAC Code A C G T/U

Meaning A C G T

f -2 -1 0 +1
σ for qU0 −1.76 −0.88 0.00 0.88
σ for qGC0 −3.29 −1.65 0.00 1.65

IUPAC Code M R W S Y K

Meaning A or C A or G A or T C or G C or T G or T

σ for qU0 -1.23 -0.54 0.26 -0.35 0.34 0.54
σ for qGC0 -1.82 -0.21 0.96 -0.52 0.18 0.61

IUPAC Code V H D B N

Meaning no T no G no C no A A,C,G or T

σ for qU0 -0.64 0.00 0.18 0.24 0.00
σ for qGC0 -0.63 0.00 0.43 0.1 0.00
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Fig. 7 Scoring function (SF) σ using Theorem 1 for A, C, G, T and Corollary 1 for the am-
biguous letters. And σ̃ using Theorem 1 for A, C, G, T and the following usual approach
σ̃(a or b) = σ(a) + σ(b) for the other components.

Remark 3 Uncertainty ( e.g. in protein crystallisation, Next Generation Se-
quencing – NGS –), can also be taken into account. If uncertainty is expressed
with weights wa, wb > 0 for observations a and b, we can use the score:

log

(
waq1(a) + wbq1(b)

waq0(a) + wbq0(b)

)
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Table 3 Zhao and London TM-tendency scale (fZL) (see Zhao and London, 2006). Distri-
bution q0 (in %) for 56 TM proteins without their TM regions and Zhao and London score
rescaled (σZL) using q0 distribution.

A C D E F G H I K L

fZL 0.38 -0.30 -3.27 -2.90 1.98 -0.19 -1.44 1.97 -3.46 1.82
q0 5.489 2.539 5.472 5.604 3.380 6.103 2.624 5.384 4.923 10.049
σZL 0.128 -0.101 -1.102 -0.977 0.667 -0.064 -0.485 0.664 -1.166 0.613

M N P Q R S T V W Y

fZL 1.40 -1.62 -1.44 -1.84 -2.57 -0.53 -0.32 1.46 1.53 0.49
q0 1.970 5.367 5.814 3.855 5.716 8.903 6.055 5.726 1.159 3.862
σZL 0.472 -0.546 -0.485 -0.620 -0.866 -0.179 -0.108 0.492 0.516 0.165

to ensure the two probabilized spaces to be equivalent and the existence of a
distribution from which the components of the atypical segment are derived.
These scores are clearly different from waσ(a) +wbσ(b), which would typically
be used in the scoring system.

We can also define a canonical score for any weighted profile. Let w =
(wa)a∈A with wa > 0 be a profile, coming for example from a multiple align-
ment. Then

σ(w) = log

(∑
a waq1(a)∑
a waq0(a)

)
6=
∑
a

waσ(a) =
∑
a

wa log

(
q1(a)

q0(a)

)
.

5.3 Rescaling Zhao and London scale

This subsection illustrates how a given scoring function can induce the emission
probabilities of the generative model. Let us consider the TM-tendency scale
of Zhao and London (see Zhao and London, 2006), denoted by fZL and given
in Table 3. This score function is presented as a refined “hydrophobicity”-type
TM sequence prediction scale, that should approach the theoretical limit of
accuracy, and seems more accurate than the well-known Kyte and Doolittle
hydrophobic scale (see Kyte and Doolittle, 1982). Let us consider the 56 human
soluble and helical transmembrane (TM) proteins extracted from the protein
data base UniProtKB/Swiss-Prot (http://www.uniprot.org/uniprot with
request “name:“transmembrane protein” soluble helical AND reviewed:yes”).
Leaving aside the TM regions for each protein, and keeping only the non-TM
regions of the sequences, we derive the distribution q0 (see Table 3). We verify
that E[fZL] ' −0.50 < 0.

Using Theorem 2 we compute the parameter T ' 2.97 from which we
deduce σZL = fZL/T defined as the rescaled scoring function and given in
Table 3. Note that the rescaling does not affect the sign of the scores nor their
relative values of the initial scale thus an amino acid considered as hydrophobic
or hydrophilic is still considered as such.

http://www.uniprot.org/uniprot
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Fig. 8 Marginal posterior probability that Si in Sate 2 using the rescaled Zhao and London
score function.

Let us now consider sp|O15393|TMPS2 HUMAN, a supplementary human TM
protein with a transmembrane segment at positions 85 − 105. Let us apply
the generating model using the rescaled scoring function of Zhao and London.
Figure 8 gives the marginal posterior probabilities of being in State 2. The
upper probabilities are around ' 0.75 and correspond to the TM segment.
The start of the highlighted TM region is accurate and its end is very close
to the real one. Figure 9 gives segment start/end posterior probabilities (left
panel) and posterior probabilities for length (right panel). The length is rela-
tively accurate even if the probabilities are not very high : maximal posterior
probability for the segment starting index is found at index 84 (instead of 85),
maximal posterior probability for the segment ending index is found at index
106 (instead of 105), and maximal posterior probability for segment length is
found to be 23 (instead of 21). Those probabilities are computed as explained
in Section A.2 with the following initialization for the backward quantities
Bn(1) = 0 and Bn(2) = Bn(3) = 1.

Deriving q1(.) distribution from Zhao and London scoring function: Some
scoring functions exist which have been established by biologists with expe-
rimental design such as the one proposed in Zhao and London (2006). In-
tuitively, pointing out exceptional segment with scoring functions means that
such a segment has been a realization of a generating model different than the
one of background of the sequence. Given a scoring function f constructed
by empirical biologist’s experiments or which is well considered by biologists,
with a background distribution q0, allows one by Theorem 2 to compute T and
q1. The distribution q1 corresponds to the one under which atypical segments
are generated, and for which the two approaches, local score and HMM can be
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Table 4 Distribution, given in percentage, of TM segment deduced from the Zhao and
London TM-tendency scale (ZL) Zhao and London (2006).

A C D E F G H I K L

q1 6.239 2.295 1.818 2.109 6.587 5.724 1.615 10.457 1.534 18.556

M N P Q R S T V W Y

q1 3.158 3.109 3.579 2.074 2.404 7.447 5.436 9.365 1.941 4.555

combined. Using σZL = fZL/T to highlight atypical segments instead of the
previous one fZL assures the intuitive existence of a component distribution
in atypical regions. The distribution of TM segments related to the scoring
function of Zhao and London is given in Table 4.

Moreover, the knowledge of scoring functions, deduced from biological ex-
periments and well considered by biologists, and the application of Theorem 2
allow to propose a distribution of the atypical regions which could be difficult
to catch with insufficient data.

5.4 Detection of sequence with atypical segment

In this section, we use the following initialization for the backward quantities
Bn(1) = 1 and Bn(2) = Bn(3) = 1/

(
n+1
2

)
(see Section A.2). We simulate

under the distribution q0 = (0.4, 0.2, 0.2, 0.2), 103 sequences of different length
n taking values in {1, 2, 3, 4}. We also simulate 103 sequences of length n
under q0 distribution with an exchange segment of length ` simulated using the
distribution q1 = (0.2, 0.4, 0.3, 0.1). We consider the following three statistics:
i) the p-value of the local score P(Hn > h) with h the observed local score of the
sequence; ii) P(Sn 6= 1|A); iii) M(S2) = maxi=1,...,n+1 P(Si = 2). We compute
the local score value as defined in 1, using the scoring function σ of Theorem
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Table 5 AUROC of the three proposed statistics.

n 100 300 1000 1000 1000 5000 104

` 10 50 10 20 50 50 50

P(Hn > .) 0.760 0.984 0.588 0.769 0.963 0.909 0.924
P(Sn 6= 1) 0.776 0.990 0.597 0.773 0.973 0.923 0.937
M(S2) 0.756 0.984 0.569 0.750 0.965 0.911 0.929

1, and we use the exact method for independent and identically distributed
model (see Mercier and Daudin, 2001) to compute the corresponding p-values.

We can see on Figure 10 the distribution of the three statistics under H0

(no atypical segment) and H1 (one atypical segment of length ` = 50 – top
panel – and ` = 100 – bottom panel). For the p-value, we observe that p-values
under H0 are distributed uniformly on [0, 1] while they are close to 0 under
H1. For the maximum marginal probability of State 2, the distribution under
H0 has a peak around 0.25 while the distribution under H1 is concentrated
in the proximity of 1.0. Finally, our HMM-based Bayes factor (the probability
of having one atypical segment) is logically close to 0.0 under H0 and close
to 1.0 under H1. All three statistics clearly have a good discriminative power
(see Table 5 for the corresponding AUROC) with a slight numerical advan-
tage to the Bayes factor, but the latter also has the interest in providing an
easier interpretation and canonical choice of thresholding (e.g. using a natural
threshold of 0.5 for example).

We also compute the AUROC (see Xavier et al., 2011) for the three statis-
tics. The AUROC is a measure of the discriminative power of a statistic for
a binary response variable. An AUROC of 0.5 is pure noise, AUROC > 0.7
considered acceptable, AUROC > 0.9 considered excellent. The values are
gathered in Table 5. We can see in this table that the three statistics achieve
a similar performance with a little adventage for P(Sn 6= 1|A).

6 Conclusion

By considering the set of all possible segments and a Gibbs distribution on
this set, we also take into account suboptimal segments and not only on the
optimal segment which realizes the maximal score. This probabilization of the
segmentation space allows us to establish a duality between our constrained
HMM approach and the maximum scoring subsegment with a rescaled scoring
function. We prove that the scoring function to be used is unique, given a
studied context, in order to bring a mathematically correct interpretation and
a background distribution from which the highlighted segments derived. This
duality provides many potential opportunities.

The HMM approach allows a rapid (linear) implementation to extract the
usual information that is expected: the probability that the sequence contains
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Fig. 10 Box-plots of the three statistics: the p-value of the local score (P(Hn > .)), the
HMM approach (P(Sn 6= 1|A)) and the max(S2) statistic (maxi=1,...,n+1 P(Si = 2)) under
H0 (no atypical segment) and H1 (one atypical segment of length). Top panel: ` = 50 and
n = 1000; Bottom panel: ` = 100 and n = 1000).

an atypical segment; the probabilities for the position of the atypical segment
and other information on the length of the segment. The computation is easy
and fast even for very long sequences with lengths greater than 105 or more.

Biologists can adapt the classical scoring functions by rescaling them. That
way, the natural approach to test the presence of an atypical segment in a
sequence which deals with a natural alternative hypothesis defined as H1:
“There exists 1 ≤ i0 ≤ j0 ≤ n such as Ai0 , . . . , Aj0 are distributed with a
distribution q1 6= q0.” (with H0: “A1, . . . , An are q0 distributed”) is verified.

Moreover, this can be applied to sequences with an uncertain position
(which is often the case in the NGS era) for which a canonical score can be
derived from the original scoring function.
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For example, in Ruzzo and Tompa (1999) the authors propose an efficient
algorithm which allows in a linear time to find all the suboptimal segments in
a sequence. Using HMM for such a purpose seems quite a challenging problem,
whereas an adaptation to this Ruzzo and Tompa’s algorithm in our approach
can be considered and then transferred to the segmentation space.

The model we propose here assumes the presence of exactly one segment
of interest inserted in each sequence. But this must not be considered as a
limitation. Extending our constrained approach to K subsegments is quite
straightforward. This suggests that the local score might as well be extended
to K subsegments (for K = 2, a local score on 2 segments could be defined

by max06i6j<k6`6n

(∑j
m=i f(Am) +

∑j
r=i f(Ar)

)
). By exploiting the duality

of the two notions it is therefore easy to provide an efficient algorithm to
generalize such a local score.

In Lefebvre et al. (2020) an approach is proposed, based on the work de-
veloped in this present article, to learn by an unsupervised method a scoring
function with confidence interval. Another perspective of this work consists
in learning scoring functions: from a given set of sequences known for con-
taining atypical segments, the corresponding scoring function deduced from
the background and the atypical state distributions can be rapidly deduced
using a maximum likelihood computation (EM or direct optimization) both
allowing one to estimate the new scoring function but also establish confidence
intervals, hypothesis testing etc. If using the HMM method to learn a scoring
function is not new, a very interesting point of our method is that it can allow
inference and confidence intervals to be established. But these extensions are
left for further work.

Appendices

A Notations and results

A.1 Potentials

Let us define for k ∈ {1, 2, 3}, φ1(S1 = k|θ) def
= π(1, k)e(a1)1k=2 , equally denoted φ1(k|θ) or

φ1(k) to lighten the writing, and

φi(Si−1 = j, Si = k|θ) def
= π(j, k)e(ai)

1k=2 for i = 2, . . . , n

equally denoted φi(j, k|θ) or φi(j, k) to lighten the writing, with

e(a) =
q1(a)

q0(a)
or e(a) = exp

(
f(a)

T

)
or e(a) = exp(σ(a)) ,

π =

 1 1 0
0 1 1
0 0 1


and with θ = (q0, q1) or θ = (f, T ) depending on the chosen approach. With this potential,
we define:

Q(A = a|θ) def
=
∑
S

n∏
i=1

φi(Ci|θ) and Q(A = a, Si = k|θ) def
=

∑
S,Si=k

n∏
i=1

φi(Ci|θ)
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where S = (Si)1≤i≤n ∈ {1, 2, 3}n, C1 = {S1} and Ci = {Si−1, Si} for i = 2, . . . , n. In the
HMM case we have:

Q(A = a|θ) =

∑
S P(A = a, S|θ)∏n

i=1 q0(ai)
=

∑
S P(A = a|S; θ)× P(S)∏n

i=1 q0(ai)

with P(S) = 1{S1=1 or 2}

n∏
i=2

π(Si−1, Si)

Q(A = a|θ) =

∑
S∈S P(A = a|S; θ)∏n

i=1 q0(ai)
.

In the score case we have:

Q(A = a|θ) =
∑
S∈S

exp (H(S|A = a)) .

The given matrix Π is in fact not strictly speaking a probability transition matrix. We
voluntary omit to talk about an adding terminal “end” state in the hidden state space to
simplify the presentation. The matrix Π should have been

π =


0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5
0 0 0 1


and P(S1 = 1) = 0.5, P(S1 = 2) = 0.5, P(S1 = 3) = P (S1 = 4) = 0. This allows to
have equiprobability of the segmentation : for example P(S1 . . . S5 = 12223) = 0.55 and
P(S1 . . . S5 = 11122) = 0.55 whereas with Π with only 3 states and Π3 = (0, 0, 1) brings
P(S1 . . . S5 = 12223) = 0.54 and P(S1 . . . S5 = 11122) = 0.55 which are not equal. Omitting
the ending absorbing state simplifies the implementation and works as the same. In fact
equiprobability of the segmentation is not necessary to detect atypical segments but it
allows the connection to classical scoring approaches.

A.2 Forward and backward

Classical uses of forward and backward quantities correspond to HMM probabilities (see
Durbin et al., 1998). Here, we adapt the forward and backward definition using Bayesian
network potentials (see Koller and Friedman, 2009) as it allows us to take into account
constraints given in the transition π. Our forward and backward definition also verify suitable
recursions, slightly different from the ones classically used in HMM. The probabilities of
interest are recovered based on ratios.

Forward

We define F1
def
= φ1 and for i = 2, . . . , n: Fi(Si = k|θ) def

=
∑

S1:i−1,Si=k

∏i
u=1 φu(Cu|θ),

equally denoted Fi(k, θ) or Fi(k). We can easily prove by induction that:

Fi(k) =
∑
j

Fi−1(j)φi(j, k)

with our specific structure of π this gives:

Fi(1) = Fi−1(1), Fi(2) = (Fi−1(1) + Fi−1(2))× e(xi), Fi(3) = Fi−1(2) + Fi−1(3) .

The interesting thing is that:

Fn(Sn = k) = Q(Sn = k,A = a|θ) =
∑

S,Sn=k

n∏
i=1

φi(Ci|θ) hence
∑
k

Fn(k) = Q(A = a|θ)
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Backward

We can also define in a similar way the backward quantities: Bn
def
= 1 and for i = n, . . . , 2:

Bi−1(Si−1 = j|θ) def
=

∑
Si−1=j,Si:n

n∏
u=i

φu(Cu|θ)

equally denoted Bi(k). Again, by induction we easily get: Bi−1(j) =
∑

k φi(j, k)Bi(k). With
our specific structure of π this gives:

Bi−1(1) = Bi(1) +Bi(2)e(ai), Bi−1(2) = Bi(2)e(ai) +Bi(3), Bi−1(3) = Bi(3) .

We clearly have φ1(S1)B1(k) = Q(S1 = k,A = a|θ). But more interestingly we have:

Fi(k)Bi(k) = Q(Si = k,A = a|θ) and

Fi−1(j)φi(j, k)Bi(k) = Q(Si−1 = j, Si = k,A = a|θ) .
Probabilities of interest can be recovered by the fact that

P(Si = k|A = a, θ) =
Q(Si = k,A = a|θ)

Q(A = a|θ)
=

Fi(k)Bi(k)∑
` Fi(`)Bi(`)

.

These results correspond to the assumption that all segmentation are equiprobable. As
explained in Section 3, such hypothesis will favor the model with one atypical segment over
the one where there is none. Fortunately, this issue can easily be corrected for any prior τ ∈
[0, 1] of having an atypical segment by setting Bn(1) = (1−τ) and Bn(2) = Bn(3) = τ/

(n+1
2

)
at the beginning of the backward recursion. The posterior distribution of having an atypical
segment is then (Fn(2)Bn(2) + Fn(3)Bn(3))/(Fn(1)Bn(1) + Fn(2)Bn(2) + Fn(3)Bn(3)).
When working conditionally to the existence of an atypical segment which posterior location
or length must be computed, one simply uses Bn(1) = 0 and Bn(2) = Bn(3) = 1 to ensure
that the configuration with no atypical segment will not be considered.

A.3 Marginal posterior probabilities

We can also exploit the forward and backward quantities to compute the posterior proba-
bilities given in Section 3.We can easily obtain marginal distribution from the forward and
backward quantities but we have to decide conditioning to what. Indeed, if the backward
recursions are computed with Bn(1) = Bn(2) = Bn(3) = 1, we condition only on {A = a}. If
we use Bn(1) = 0 and Bn(2) = Bn(3) = 1 we condition on {A = a, Sn ∈ {2, 3}} which means
that S = 1, . . . , 1 is not possible anymore. It is typically the condition we need when comput-
ing marginal start/end segment distributions. Setting up Bn(1) = 0 and Bn(2) = Bn(3) = 1
(ie. “No atypical segment” impossible) we get with P(ev) =

∑
k Fn(k)×Bn(k):

P(segment starts at index 1) = P(S1 = 2) =
F1(2)×B1(2)

P(ev)

P(segment starts at index i) = P(Si−1 = 1, Si = 2)

=

∑
Si−1=1

Fi−1(Si−1 = 1)× φi(Si−1 = 1, Si = 2)×Bi(Si = 2)

P(ev)

=
Fi−1(1)× φi(1, 2)×Bi(2)

P(ev)

P(segment stops at index i) = P(Si = 2, Si+1 = 3) =
Fi(2)×

1︷ ︸︸ ︷
φi(2, 3)×Bi+1(3)

P(ev)

P(segment stops at index n) = P(Sn = 2) =
Fn(2)×

1︷ ︸︸ ︷
Bn(2)

P(ev)
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B Implementation: a simple binary toy example

Let us consider a binary sequence and a scoring function f(0) = −2 and f(1) = +1. The
following code lines in Appendix B.1 first rescale the scoring function (see Appendix C
for the rescaling function used). Then we compute the forward and backward quantities
from which marginal posterior probabilities are deduced: (P(Si = k))1≤i≤n for k = 1, 2, 3
; and also posterior probabilities for a segment to start or to end at a given index. A
practical implementation is given for large sequence length in appendix B.2. We also propose
an implementation in R language to compute posterior probabilities for the length of the
atypical segment in Appendix B.3.

B.1 Marginal posterior probabilities

1 f=c(-2,1)

2 x=c(1,0,1,1,0,1,1,0,0,1)

3 temp=scaling(f)$$temp

4 ev=exp(f[x+1]/temp)

5 # ev=q1[x+1]/q0[x+1]

6 # Forward

7 n=length(x)

8 Fw=matrix(nrow=n,ncol =3)

9 Fw[1,]=c(1.0,ev[1] ,0.0)

10 for (i in 2:n) {

11 Fw[i,1]=Fw[i-1,1]

12 Fw[i ,2]=(Fw[i-1 ,1]+Fw[i-1 ,2])*ev[i]

13 Fw[i,3]=Fw[i-1,2]+Fw[i-1 ,3]}

14 # Backward

15 Bk=matrix(nrow=n,ncol =3)

16 # Initialization for uniform prior on the segmentation space

17 # Bk[n,]=c(1.0 ,1.0 ,1.0)

18 # on the segmentation space with 0 vs 1 atypical segment

19 # Bk[n,]=c(1,1/choose(n+1,2),1/choose(n+1,2))

20 # on segmentation with one atypical segment

21 Bk[n,]=c(0.0 ,1.0 ,1.0)

22 for (i in n:2) {

23 Bk[i-1 ,1]=Bk[i,1]+ev[i]*Bk[i,2]

24 Bk[i-1 ,2]=ev[i]*Bk[i,2]+Bk[i,3]

25 Bk[i-1 ,3]=Bk[i,3]}

26 post_marginal=Fw*Bk/apply(Fw*Bk ,1,sum)

27 pev=sum(Fw[n,]*Bk[n,])

28 post.begin=rep(NA ,n)

29 post.start [1]=ev[1]*Bk[1,2]/pev

30 for (i in 2:n) post.start[i]=Fw[i-1,1]*ev[i]*Bk[i,2]/pev

31 post_end=rep(NA,n)

32 for (i in 1:(n-1)) post_end[i]=Fw[i,2]*Bk[i+1,3]/pev

33 post_end[n]=Fw[n,2]/pev

B.2 Practical implementation: forward and backward rescaling

When n grows large, we face underflow issues. Indeed, as we can see in the definitions of the
forward and backward quantities in Section A.2, the quantities stand on sums and products.
The number of sums and products to be computed depends on the length of the sequence.
In floating point arithmetic, a real number greater than A or less than 1/A (the value of
A > 0 depends on the system, typically A = 10320 with double precision in C language)
are set to Inf (overflow) or 0 (underflow). Since our forward and backward quantities can
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easily get out of this range (for example Fn(2) = 10−5000) we need a rescaling mechanism
thereafter provided.

One way to overcome this problem is to rescale the forward and backward quantities so
that each of them sums one.

F̃j(k) = Fj(k)/ exp(Lj) with Lj = log(
∑
k

Fj(k))
∑
k

F̃j(k) = 1

B̃j(k) = Bj(k)/ exp(Mj) with Mj = log(
∑
k

Bj(k))
∑
k

B̃j(k) = 1

1 f=c(-2,1)

2 N=100

3 eta =0.2

4 set.seed (42)

5 x=c(

6 sample (0:1, replace=TRUE ,size=N,prob=c(1-eta ,eta)),

7 sample (0:1, replace=TRUE ,size=2*N,prob=c(eta ,1-eta)),

8 sample (0:1, replace=TRUE ,size=N,prob=c(1-eta ,eta )))

9 temp=scaling(f)$temp

10 ev=exp(f[x+1]/temp)

11 # ev=q1[x+1]/q0[x+1] for an HMM approach

12 # Forward

13 n=length(x)

14 L=rep(NA ,n)

15 Fw=matrix(nrow=n,ncol =3)

16 Fw[1,]=c(1.0,ev[1] ,0.0)

17 # Normalization

18 tmp=sum(Fw[1,]); Fw[1,]=Fw[1,]/tmp; L[1]= log(tmp)

19 for (i in 2:n) {

20 Fw[i,1]=Fw[i-1,1]

21 Fw[i ,2]=(Fw[i-1 ,1]+Fw[i-1 ,2])*ev[i]

22 Fw[i,3]=Fw[i-1,2]+Fw[i-1,3]

23 # Normalization

24 tmp=sum(Fw[i,]); Fw[i,]=Fw[i,]/tmp; L[i]=L[i-1]+ log(tmp)

25 }

26 # Backward

27 M=rep(NA ,n)

28 Bk=matrix(nrow=n,ncol =3) # on a B j(k)=B[j,k] # init

29 Bk[n,]=c(0.0 ,1.0 ,1.0)

30 # Normalization

31 tmp=sum(Bk[n,]); Bk[n,]=Bk[n,]/tmp; M[n]=log(tmp)

32 for (i in n:2) {

33 Bk[i-1 ,1]=Bk[i,1]+ev[i]*Bk[i,2]

34 Bk[i-1 ,2]=ev[i]*Bk[i,2]+Bk[i,3]

35 Bk[i-1 ,3]=Bk[i,3]

36 # Normalization

37 tmp=sum(Bk[i-1 ,]); Bk[i-1,]=Bk[i-1,]/tmp; M[i-1]=M[i]+log(tmp) }

38 # verif

39 # log(apply(Fw*Bk ,1,sum))+L+M

40 post_marginal=Fw*Bk/apply(Fw*Bk ,1,sum)

41 lpev=L[n]+M[n]+log(sum(Fw[n,]*Bk[n,]))

42 post.start=rep(NA ,n)

43 post.start [1]=ev[1]*Bk[1,2]*exp(M[1]-lpev)

44 for (j in 2:n) post.start[j]=Fw[j-1,1]*ev[j]*Bk[j,2]*exp(L[j-1]+M[j]-lpev)

45 post_end=rep(NA,n)

46 for (j in 1:(n-1)) post_end[j]=Fw[j,2]*Bk[j+1,3]*exp(L[j]+M[j+1]-lpev)

47 post_end[n]=Fw[n,2]*exp(L[n]-lpev)
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B.3 Length of the atypical segment

The idea is to replace e(x) by e(x) × z where z is a univariate dummy variable. We hence
have: ∑

S

n∏
i=1

φi(Ci|θ) =
∑
k>0

(A = a,W = k|θ)zk

where W is the length of the atypical segment (W = 0 when there is no segment). Function
“Mono polyS4” can be given upon request

1 # Back to the simplest example

2 f=c(-2,1)

3 x=c(1,0,1,1,0,1,1,0,0,1)

4 temp=scaling(f)$\$$temp

5 ev=exp(f[x+1]/temp)

6 # ev=q1[x+1]/q0[x+1] for an HMM approach

7 max\deg =10

8 # Forward

9 z=mono(max\deg)

10 n=length(x)

11 Fw=array(lapply(rep(0,3*n),const ,degree=max\deg),dim=c(n,3))

12 Fw [1 ,1][[1]]= const (1.0,max\deg)

13 Fw [1 ,2][[1]]= ev[1]*z

14 Fw [1 ,3][[1]]= const (0.0,max\deg)

15 for (i in 2:n) {

16 Fw[i ,1][[1]]= Fw[i-1 ,1][[1]]

17 Fw[i ,2][[1]]=( Fw[i -1 ,1][[1]]+ Fw[i -1 ,2][[1]])*(ev[i]*z)

18 Fw[i ,3][[1]]= Fw[i -1 ,2][[1]]+ Fw[i -1 ,3][[1]]}

19 res=Reduce(’+’,Fw[n,])

20 length\dist=res@coef [-1]/sum(res@coef [-1])

C Rescaling function

1 scaling=function(score ,q0=NULL ,rho\int=c(1e-10,1e10),tol=1e-10)

2 {

3 logsumexp=function(l) {

4 i=which.max(l);

5 res=l[i]+ log1p(sum(exp(l[-i]-l[i])));

6 if (is.nan(res)) res=-Inf;

7 return(res);

8 }

9 if (is.null(q0)) q0=rep(1/length(score),length(score ))

10 test=c(sum(q0*score)<0,sum(score >0)>0)

11 if (sum(test)<2) stop("conditions are not valid")

12 # numerical optimization of the temperature

13 opt=NULL

14 while (is.null(opt)) {

15 try({opt=uniroot(f=function(rho) return(logsumexp(log(q0)+rho*score)),

16 rho\int ,tol=tol)},silent=TRUE)

17 rho\int [1]=10*rho\int [1]

18 }

19 rho=opt$root

20 temp=1/(opt$root)

21 q1=q0*exp(rho*score)
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22 cat(’q1=’, q1)

23 sigma=log(q1/q0)

24 # rbind(sigma ,log(q1/q0))

25 return(list(q0=q0 ,score=score ,temp=temp ,q1=q1 ,sigma=sigma))

26 }
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counting for linkage disequilibrium in genome scans for selection without individual geno-
types: the local score approach. Molecular Ecology, 2017.

Joseph Glaz, Joseph Naus, and Sylvan Wallenstein. ”Introduction”. Scan Statistics. Springer
Series in Statistics, 2001.

Simona Grusea and Sabine Mercier. Improvement on the distribution of maximal segmental
score in a Markovian sequence. Jour. Applied Prob., 57.1, 2020 2020.

Mickael Guedj, David Robelin, Mark Hoebeke, Marc Lamarine, Jérôme Wojcik, Gregory
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