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Abstract We are interested here in theoretical and practical approach for
detecting atypical segments in a multi-state sequence. We prove in this article
that the segmentation approach through an underlying constrained Hidden
Markov Model (HMM) is equivalent to the local score approach when the
latter uses an appropriate rescaled scoring function. This equivalence allows
results from both, HMM or local score, to be transposed into each other. We
propose an adaptation of the standard forward-backward algorithm which pro-
vides exact estimates of posterior probabilities in a linear time. Additionally
it can provide posterior probabilities on the segment length and starting/end-
ing indexes. We explain how this equivalence allows to manage ambiguous
or uncertain sequence letters and to construct relevant scoring schemes. We
illustrate our approach by considering the TM-tendency scoring function.

Keywords Local score · HMM · posterior distribution, forward/backward,
biological sequence analysis

1 Introduction

Since the development of biological sequence databases in the 80s, the ex-
traction of information from such an enormous amount of data has been the
subject of great interest. Considering the size of the data, sequence analysis
has been largely developed with both mathematical and computing challenges.
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Extracting information from biological sequences includes a large range of ar-
eas such as Markov models (Durbin et al, 1998), similarity (Pearson, 2013),
local pairwise or multiple alignments (Needleman and Wunsch, 1970; Smith
and Waterman, 1981; Altschul et al, 1990; Sievers et al, 2011), words counts
(Robin et al, 2005), segmentation (Keith, 2008; Devillers et al, 2011; Luong
et al, 2013), including statistical significance that is omnipresent in biological
sequence analysis (Karlin, 2005; Mitrophanov and Borodovsky, 2006).

In this context, it is often interesting to point out homogenous regions in
sequence data. For that purpose, two principal techniques are largely used:
Hidden Markov Models (HMMs) and Score-Based approaches.

HMMs: these models have been extensively used in biological sequence
analysis in a variety of problems in molecular biology such as pairwise and mul-
tiple sequence alignments (Arribas-Gil et al, 2012), gene prediction (Munch
and Krogh, 2006; Krogh et al, 2001), classification (Won et al, 2007), and
many others. See Yoon (2009) for a tutorial review of HMMs and their applica-
tions where three types of HMMs are principally presented, the profile-HMMs,
pair-HMMs, and context-sensitive models. Note that HMM are very specific
and adapted to the context of the study and the kind of subsequence to be
highlighted. For example, see Krogh et al (2001) for transmembrane helices
research; or Borodovsky and J. (1993) for a HMM modeling protein-coding
gene. Note that there also exist a large number of HMM variants to meet the
needs of various applications (see Yoon (2009) for more explanation).

Score-Based approaches: Score-Based approaches have also been exten-
sively studied since J. Naus first published on the problem in the 1960s (Naus,
1982; Glaz et al, 2001). See Chen and Glaz (2016) or Zhao and Glaz (2017) for
recent developments for example. In biological sequence analysis, a real value
called score, and denoted by f , is assigned to each component of a sequence.
These scores reflect a physico-chemical property of the component which de-
pends on the studied context (Kyte and Doolittle, 1982; Dayhoff et al, 1978;
Zhao and London, 2006). The idea is to find regions of the sequence where the
cumulated score is significantly high. For that purpose, one possible approach
consists of scanning the sequence using sliding windows of a given length `
and calculating a cumulative score for each window. This leads to a graphical
representation where the maximal region of length ` can easily be observed.
While this approach is appealing for sequence analysis, its major drawback is
that it needs to make a choice on `.

The alternative to sliding windows, when there is no “natural” value for
`, is the local score. The local score, defined for the first time in 1990s (see
Karlin and Altschul, 1990, or Eq. (1) in Section 2), classically denoted Hn for
a sequence of length n, is the maximal cumulative score that can be found over
every segment of any position and any length in the sequence. It corresponds to
the maximal level of the desired signal that can be locally found in a sequence.
Basically, all sliding windows approaches can be replaced by their local score
counterparts with several dramatic advantages: no window size to choose, ef-
ficient dynamic programming algorithms, and many probabilistic/statistical
results (see below). It is most unfortunate that sliding window approaches are
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still nowadays often preferred in online software to local score in the context of
bioinformatics, see for example https://web.expasy.org/protscale/ (Gasteiger
et al, 2005).

In this paper we prove, that under specified hypotheses, HMMs and Score-
Based approaches are in fact equivalent in the sense that they provide the
same segmentation distributions. We present in detail the connections between
the both approaches. We shall then demonstrate how we have derived several
interesting probabilistic results for the local score approach, including scoring
function rescaling and posterior distribution of the segmentation space.

In Wolfsheimer et al (2012) the authors proposed a work for the classi-
cal pairwise alignment and pair HMMs. Our contribution can therefore be
considered as an extension of these previous results to the local score of one
sequence.

Our contribution

The main purpose of the present work is to establish the duality between a
generative constrained HMM framework and a Score-Based one verifying given
hypotheses. This main result brings very interesting corollaries and applica-
tions using the fact that results from both approaches can be transferred to the
other. We present here how an adaptation of the forward and backward algo-
rithm allows to compute the full posterior distribution (including localization,
length, etc.) of local score segments, based on a given sequence observation;
how score ambiguity or weighted observations can be considered; supervised
or unsupervised score learning are also possible but will not take place in this
article but in further works focusing more on the statistical aspects of the
problem.

Section 2 is devoted to the local score with a state of the art and a propo-
sition of a probabilization of the segmental space. Section 3 is devoted to the
generating model and the segmentation corresponding to the hidden states of
the underlying constrained HMM. The complete connection between the use
of the local score and the generating model to highlight atypical segment in
a given sequence is established in Section 4. Section 5 presents different ap-
plications of the possibilities that the equivalence can offer. Technical details
including the Forward and Backward quantities are given in Appendix A. Im-
plementation of the main examples can be found in Appendix B. Appendix C
proposes a computation function to rescale the scoring scheme.

2 Local score

2.1 State of art for the local score

The local score of random sequences has been widely studied since its defini-
tion in the 1990s. The establishment of the distribution of the local score can
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be assessed in different contexts depending on the average score E[f ] (neg-
ative, positive or equal to 0), the sequence length n (short, medium or long
sequences), and how the sequences are modeled (by a sequence of Independent
and Identically Distributed variables (i.i.d.) or by Markov chain). Each context
uses very different mathematical tools to establish results: Markov Chain the-
ory, suitable for relatively short sequences (Mercier and Daudin, 2001; Nuel,
2006; Hassenforder and Mercier, 2007); renewal theory for long sequences un-
der the critical assumption that E[f ] < 0) (Karlin and Dembo, 1992; Mercier
et al, 2003); Brownian motion theory for very long sequences and E[f ] = 0
(Daudin et al, 2003; Chabriac et al, 2014); or Chen-Stein Theory (Waterman
and Vingron, 1994; Hansen, 2006) when considering the local score of pairwise
comparison.

Many articles deal with the statistical significance of the local score. In
Karlin and Altschul (1990) and Karlin and Dembo (1992) the authors show
that for a sequence of i.i.d. random variables, a scoring function with a negative
expected score function, E[f ] < 0, and possible positive scores, P(f > 0) > 0,
that the distribution of the local score has asymptotically a Gumbel distri-
bution. In practice, the sequence length n must be higher than 103 for this
asymptotic approximation to be valid. An improvement of this result is pro-
posed in Mercier et al (2003) taking into account additive and correcting terms.
In 2001 (see Mercier and Daudin, 2001), an exact method is proposed using
Markov chain theory, that allows to establish the exact p-value of Hn in the
i.i.d. model, whatever the average score is. In theory, the exact method is
applicable whatever the length n, but in practice it is accurate for small se-
quences with n up to 103 for an acceptable computational time. In the special
case where E[f ] = 0, the authors of Daudin et al (2003) demonstrate an
asymptotic behavior of the local score significance based on Brownian motion
theory. See Lagnoux et al (2017) for a review and illustrations in the case of
i.i.d. sequences.

When the score sequence is assumed to be Markovian rather than i.i.d.,
there are fewer results. In Nuel (2006) and Hassenforder and Mercier (2007)
the authors established the exact distribution of the local score of a Markov
chain whatever the average score, but in practice, this result needs a maximal
sequence length of several hundreds of components. For the local score of
one Markov chain with a non positive mean score, the convergence of the
distribution of the local score Hn to a Gumbel distribution is confirmed using
simulations (see Robelin, 2005; Guedj et al, 2006; Fariello et al, 2017) and
demonstrated for a random scoring scheme in (Karlin and Dembo, 1992). An
improvement of this last result in proposed in Grusea and Mercier (2018).

Some research has been done on the length of the local score realization.
Motivated by sequence comparison, in Arratia and Waterman (1989), the au-
thors considered the longest segment of a random sequence of 0 and 1 with
a proportion of 1 being larger than a given threshold. Dembo and Karlin
(1991b,a) proved an asymptotic behavior of the length of this optimal seg-
ment when the length of the sequence goes to infinity and E[X] < 0 (with
X the random variable taking value in {0, 1}). In another context, (Karlin
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and Ost, 1988) established a classical extremal type limit law for the length
of common words among a set of random sequences. Reinert and Waterman
(2007) also gives a result on the distribution of the length of the longest exact
match between two random sequences. In Chabriac et al (2014), using Brow-
nian motion theory, the authors established an asymptotic distribution on the
pair, local score and local score length.

Statistical results on the localisation of local score segment are scarce. In
Lagnoux et al (2015), the authors established that for very long sequences,
the local score is realized in the last Lindley excursion of the score sequence
(that is the sequence of the corresponding score of each component using a
given score scale (see Mercier and Daudin, 2001; Lagnoux et al, 2015, 2017, for
a more detailed definition) with an asymptotic probability around 1/3. But
this last result is not precise enough to know exactly where the local score
segment begins. In Lagnoux et al (2018), an asymptotic density for the index
position of the local score in the sequence is exposed. These results based on
the Brownian motion theory can be useful for sequence length larger than 105.

Finally, let us point out that the algorithmic aspects of the problem also
attracted attention. See Altschul et al (1990) for the well known BLAST soft-
ware or Needleman and Wunsch (1970); Smith and Waterman (1981) for the
original algorithms of pairwise global and local score research, or Ruzzo and
Tompa (1999).

2.2 Local score and Segmentation

Let A = A1 . . . An ∈ An be a given sequence (typically, A = {A, C, G, T} for a
DNA sequence, or the set of the 20 amino acids for proteins) and f : A → R
be a scoring function. Let us define the local score (see Karlin and Altschul,
1990) as:

Hf (A)
def
= max

[i,j]

∑
k∈[i,j]

f(Ak) (1)

where [i, j] could possibly be empty (hence Hf (A) ≥ 0).

Let us define a segmentation sequence S = S1S2 . . . Sn ∈ S
def
= {S ∈

{1, 2, 3}n, Si − Si−1 ∈ {0, 1} for i = 1, . . . , n} with S0 = 1 by convention. We
can define a bijection between S and I ⊂ {1, . . . , n}. For all S ∈ S, we can
define I = IS ∈ I = {I = i, j : 1 ≤ i ≤ j ≤ n}, such IS = {i ∈ {1, . . . , n}, Si =
2}. Conversely, for any interval (possibly empty) I = [a, b] ⊂ {1, . . . , n}, ∃SI ∈
S such as: Sk = 1× 1k<a + 2× 1k∈[a,b] + 3× 1k>b. In the following example,
I = [2, 4] and n = 5.

Index = 1 2 3 4 5
S = 1 2 2 2 3
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For any sequence A ∈ An and segmentation S ∈ S ⊂ {1, 2, 3}n, let us
define:

Hf (S|A)
def
=

n∑
i=1

1{Si=2}f(Ai) =
∑
i∈IS

f(Ai)

and we therefore have Hf (A) = maxS∈S Hf (S|A).

2.3 Gibbs Distribution

The local score approach focuses on the segment that realizes the maximum
accumulated score. But several segments can realize the local score and more-
over biological approach can also be interested in the suboptimal segments.
Let consider all the different possible segments of the sequence. Let propose
the following Gibbs distribution on the space I of possible segmentations:

∀I = [i, j] ∈ I, P(f,T )
Gibbs(I|A) ∝ exp

(
1

T

j∑
k=i

f(Ak)

)
(2)

where the parameter T > 0 is called the temperature. Note that P(f,T )
Gibbs(I|A)

tends towards a Dirac distribution when T → 0, for which we recover the local
score approach that focus only on the segments that realizes the local score

without considering the suboptimal segments; and P(f,T )
Gibbs(I|A) tends towards a

uniform distribution when T →∞. The temperature T therefore is a contrast
parameter.

To illustrate the Gibbs distribution on the segments, let us consider a
simulated sequence of length n = 40 taking its values in the four nucleotide
alphabet {A, C, G, T} and the corresponding scores f(A) = f(C) = −2 and
f(G) = f(T) = +1. Figure 1 represents the probabilities of the 821 different
segments for different temperatures T = 0.1 (top left panel), T = 0.6 (top
right panel), T = 2 (bottom left panel) and T = 4 (bottom right panel). The
local score segment is highlighted in the top left panel as the only significant
segment. In top right panel, suboptimal segments appear. For a larger T ,
segments become more equiprobable (bottom panels with a change of x axis
scale). The question is then to chose an adapted T value to highlight interesting
information of the whole sequence. Section 4 explains how to choose T in a
canonical way under certain hypothesis.

3 Generating Model

Let us now consider an alternative formulation of the problem through a Hid-
den Markov Model. It implies an underlying generating model that allows
probabilities on the space of sequence segments.
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Fig. 1 Gibbs distributions of the 821 segments of a length n = 40 sequence for different
temperature : Top left panel with T = 0.1 ; Top right panel with T = 0.6 ; Bottom left
panel with T = 2 and bottom right with T = 4. Note the scale change of the x axis from
the top panels to the bottom panels.

Let q0(·) and q1(·) be two multinomial distributions overA. For any A ∈ An
and S ∈ S ⊂ {1, 2, 3}n we define:

Pq0,q1HMM(A|S)
def
=

n∏
i=1

q0(Ai)
1{Si 6=2}q1(Ai)

1{Si=2} (3)

with P(Ai|Si 6= 2) = q0(Ai) and P(Ai|Si = 2) = q1(Ai) (q0 to generate Ai
when Si ∈ {1, 3} and q1 to generate Ai when Si = 2).

If we assume that all S ∈ S are equiprobable then

Pq0,q1HMM(S|A) =
1

Z
× Pq0,q1HMM(A|S)
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where the normalization factor Z is given by:

Z
def
=
∑
S∈S

Pq0,q1HMM(A|S) =
∑

S∈{1,2,3}n
1{S∈S}Pq0,q1HMM(A|S) (4)

When non ambiguous, we will drop “HMM” and “q0, q1” for the sake of sim-
plification.

The Markov chain defined by (A, S) is constrained due to the definition of
the set S. It is a very simple HMM model with only three states that differs
from classical HMM. More details are given in Appendix A.

Posterior probabilities

Inspired from classical HMM inference (see Rabiner, 1989; Durbin et al, 1998),
we adapted the so-called forward and backward quantities noted Fj(k) and
Bj(k) for j = 1, . . . , n and k ∈ {1, 2, 3} (see Appendix A.2 for definitions). We
can also exploit the forward and backward quantities to compute quantities
of interest such as P(Sj = k|A) for 1 ≤ j ≤ n, P(Sj−1 = k, Sj = `|A) for
1 < j ≤ n.

– P(Sj = k|A) is very interesting in j = n since it provides the posterior
probability of having or not an empty segment generated by q1

P(no segment|A) = P(Sn = 1|A)

P(one segment|A) = P(Sn = 2 or 3|A) .

– P(Sj−1 = k, Sj = `|A) with k = 1 and ` = 2 (resp. k = 2 and ` =
3) corresponds to the posterior probability that the segment starts (resp.
ends) in position j > 1 (resp. j − 1) but we need to normalize by the
posterior probability of having a non-empty segment:

P(segment starts in 1|A) =
P(S1 = 2|A)

P(Sn = 2 or 3|A)

P(segment starts in j|A) =
P(Sj−1 = 1, Sj = 2|A)

P(Sn = 2 or 3|A)
for 1 < j ≤ n .

P(segment ends in n|A) =
P(Sn = 2|A)

P(Sn = 2 or 3|A)

P(segment ends in `|A) =
P(S` = 2, S`+1 = 3|A)

P(Sn = 2 or 3|A)
for 1 ≤ ` < n .

Different implementation are proposed in Appendix B depending on se-
quence length, short sequence (see Appendix B.1) or long sequences (see Ap-
pendix B.2). We also propose in Appendix B.3 an implementation to compute
the posterior probability that a segment have a given length. Illustration of
the computation of those quantities is given in Section 5.1.
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4 Equivalence between the two probability distributions

Let consider a component sequence A ∈ An. Let denoteMA the set of multi-
nomial distributions on A.

Theorem 1

∀(q0, q1) ∈M2
A, ∃! σ : A → R such as Pq0,q1HMM(S|A)

∀S∈S
= Pσ,1Gibbs(S|A)

and σ(a)
∀a∈A

= log
(
q1(a)
q0(a)

)
.

Proof Supposing the uniform distribution on S such that P(S) = 1/|S| for all
S ∈ S, we then have with Z defined in (4)

Pq0,q1HMM(S|A) =
1

Z
P(A|S) ∝ P(A|S)

P(A|S = 1 . . . 1)

and

P(A|S)

P(A|S = 1 . . . 1)
=

∏n
i=1 q0(Ai)

1{Si 6=2}q1(Ai)
1{Si=2}∏n

i=1 q0(Ai)

=
∏

i,Si=2

q1(Ai)

q0(Ai)
= exp

 ∑
i,Si=2

log
q1(Ai)

q0(Ai)

 .

The function defined as σ(a)
∀a∈A

= log(q1(a)/q0(a)) verifies the assumption.

The unicity can be proved as follows. Let f : A → R such as P(S|A)
∀S∈S∝

exp
(∑

i,Si=2 f(Ai)
)

. Then ∀a ∈ A define the segmentation such as Si = 2

iff i = inf{1 ≤ j ≤ n : Aj = a}, Sj = 1 for 0 ≤ j ≤ i − 1 and Sj = 3 for
i + 1 ≤ j ≤ n + 1. Applying the assumption for those segmentations, we get

∀a ∈ A, exp
(

log q1(Ai)
q0(Ai)

)
= f(Ai) that leads to f = σ.

Theorem 2
∀q0 ∈ MA and ∀f : A → R verifying (

∑
a q0(a)f(a) < 0) and (∃a, f(a) >

0),

∃! T > 0 and q1 ∈MA, such as Pq0,q1HMM(S|A)
∀S∈S

= Pf,TGibbs(IS |A)

and q1(a)
∀a∈A

= q0(a) exp(f(a)/T ).

Proof Let consider the following Lemma.

Lemma 1 For any scoring function f : A → R, any background frequency
q0(·) the two following properties are equivalent:

i) ∃!ρ > 0,
∑
a q0(a) exp(ρf(a)) = 1

ii)
∑
a q0(a)f(a) < 0 and ∃a, f(a) > 0
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Proof Let consider g : [0,∞[→ R with g(r) =
∑
a q0(a) exp(rf(a)) = Eq0 [erf ].

Using elementary analysis and an argument of convexity, the equivalence be-
tween the two assumptions is easy to prove.

Taking T = 1/ρ and q1 = q0 exp(f/T ) ∈MA leads easily to the result.

Remark 1 – The two assumptions,
∑
a q0(a)f(a) < 0 and ∃a, f(a) > 0 are

classical in the context of local score study (see Karlin and Altschul, 1990)
and are usually verified in practice using classical data base composition
of amino acids and usual scoring scales (see http: // web. expasy. org/

protscales ).
– It can be shown using a similar proof as for Lemma 1, that σ defined in

Theorem 1 verifies (
∑
a q0(a)f(a) < 0) and (∃a, f(a) > 0).

Theorem 1 leads to a corollary given in Subsection 5.2 that establishes
the adapted scores for ambiguous and uncertain components. An application
of Theorem 1 allows also to learn scoring function from data. This will be
illustrated in a forthcoming work.

An example of application of Theorem 2 is proposed on real proteins in
Section 5.3. In this example, we consider the TM-tendency scale proposed in
(see Zhao and London, 2006) and 56 human soluble and helical transmem-
brane (TM) proteins. This score function, proposed in 2006, is presented as a
refined “hydrophobicity”-type TM sequence prediction scale that should ap-
proach the theoretical limit of accuracy, and seems more accurate that the
well-known Kyte and Doolittle hydrophobic scale (see Kyte and Doolittle,
1982). We rescale it and compare the deduced scoring function to a more
recent hydrophobic scoring function.

5 Applications

Three applications are presented here to illustrate the results in the previous
section. Illustration of the computation of posterior probabilities on simulated
sequences is presented in Section 5.1. First we propose a toy example for a
sequence of several components. The question of long sequence and possible
overflows is also illustrated and practical computation methods are proposed.
Section 5.2 presents how the HMM approach can allow to compute adapted
scores for ambiguous components. We illustrate in Subsection 5.3 how the TM-
tendency scoring function of Zhao and London can be rescaled in order to make
the two probability spaces to be equivalent and to give a better mathematical
interpretability to the result.

5.1 Posterior probabilities on simulated sequences

5.1.1 A binary toy example

Here, we consider for simplification a sequence A = 1011011001 in {0, 1}10 to
illustrate the computation. Appendix B presents simulation details and imple-

http://web.expasy.org/protscales
http://web.expasy.org/protscales
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Fig. 2 Toy example (A = {0, 1}, n = 10, A = 1011011001, f(0) = −2 and f(1) = 1):
Marginal posterior distribution of segmentation State 2 (left panel) and Segment start/end
posterior distribution (right panel).

Table 1

P (Si = 1) P (Si = 2) P (Si = 3)

i = 1 0.801 0.199 < 10−8

i = 2 0.699 0.266 0.035
i = 3 0455 0.489 0.056
i = 4 0.325 0.550 0.125
i = 5 0.266 0.463 0.271
i = 6 0.133 0.532 0.335
i = 7 0.072 0.455 0.473
i = 8 0.056 0.213 0.731
i = 9 0.035 0.128 0.838
i = 10 < 10−8 0.114 0.886

mentation. The simulated sequence length is only n = 10 for simplicity. Score
scheme has been chosen as follows: f(0) = −2 and f(1) = 1. Figure 2 (left
panel) represents the probabilities of the sequence positions to be in State 2
; computation for posterior probabilities for starting and ending index is pre-
sented in the right panel. Table 1 give the values of the posterior probabilities
P(Si = k|X) for the three states k = 1, 2, 3 at each index i = 1, . . . , n. See
Appendix A.2 for the link between posterior probabilities and the forward and
backward quantities.

5.1.2 A practical implementation for long sequence

When n grows large, we might face underflow issues (small real number rounded
to 0.0 in floating point arithmetic). One way to overcome this problem is for
example to perform all computations in log-scale. We propose here another
way that consists in rescaling the forward and backward quantities such that
each of them sums to one (see details in Appendix B.2).

The simulated sequence length is n = 300 taking its values in {1, 2, 3, 4}
with q0 = (0.4, 0.2, 0.2, 0.2) and q1 = (0.2, 0.4, 0.3, 0.1). A true segment is
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for the simple simulation with n = 300 and I = [100, 150], q0 = (0.4, 0.2, 0.2, 0.2),
q1 = (0.2, 0.4, 0.3, 0.1) and f = log(q0/q1).

inserted in I = [100, 150]. The score scheme used corresponds to log(q0/q1)
that leads to: f(1) = −0.6931472, f(2) = 0.6931472, f(3) = 0.4054651, f(4) =
−0.6931472. Figure 3 represents the probabilities of the sequence component to
be in State 2, that is in the inserted segment, P(Sj = 2|X) = Fj(2)Bj(2)/Z. In
this figure, the inserted segment is clearly highlighted, and position and length
seem correct. Computation for posterior probabilities for starting and ending
index of the inserted segment is presented in Figure 4 (left panel). Finally,
posterior length distribution of this segment is given in Figure 4 (right panel).

Computation for sequence length greater than 104 are also very fast (the
complexity is in O(n)) and recover correctly small atypical segment of hundred
components. Figure 5 illustrates the computation for n = 40000 and a true
segment inserted in I = [10000, 11000].
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Fig. 5 Long sequence example: Marginal posterior distribution of segmentation State 2
(left panel) and Segment start/end posterior distribution (right panel).

5.2 IUPAC ambiguous DNA code

Theorem 1 implies that the score of ambiguous letters can be defined in a
canonical way.

Corollary 1 The duality between the generating model and the scoring func-
tion implies that for (a 6= b)

σ(a or b) = log

(
q1(a) + q1(b)

q0(a) + q0(b)

)
.

Proof Theorem 1 implies that σ(a or b) = log
(
q1(a or b)
q0(a or b)

)
= log

(
q1(a)+q1(b)
q0(a)+q0(b)

)
.

One can note that the score deduced from the generating model which allows
a mathematically correct interpretation is neither σ(a)+σ(b) nor q0(a)σ(a)+
q0(b)σ(b) as one would be likely to expect.

Let us consider the IUPAC ambiguous DNA code. If we start from a scor-
ing function f it would be reasonable to expect the local score approach
to be equivalent to some generating model, and hence to have P(S|A) ∝
exp(Hf (A|S)). Unfortunately, in general q1(a) = q0(a) exp(f(a)) does not
define a probability distribution. However, thanks to Theorem 2, we know
that, under assumption, there exists a unique rescaling T such that q1(a) =
q0(a) exp(f(a)/T ) defines a probability distribution. And Corollary 1 defines
score for ambiguous letters. Let us present a numerical illustration of these
two results on the IUPAC ambiguous DNA code. Let us consider the four
nucleotides {A, C, G, T} with the following corresponding scores f(A) = −2,
f(C) = −1, f(G) = 0, f(T) = +1 and two different background distributions
qU0 = (0.25, 0.25, 0.25, 0.25) and qGC0 = (0.1, 0.4, 0.4, 0.1). These two distribu-
tions verifies the two assumptions of a non positive average score and possible
non negative scores. Thanks to Theorem 2, we know that there exists a unique
rescaling T such that q1(a) = q0(a) exp(f(a)/T ) defines a probability distri-
bution. For qU0 = (0.25, 0.25, 0.25, 0.25), we get T = 1.13, and σ(A) = −1.76,



14 S. Mercier, G. Nuel

σ(C) = −0.88, σ(G) = 0, σ(T) = +0.88. For qGC0 = (0.1, 0.4, 0.4, 0.1), we get
T = 0.61, and σ(A) = −3.29, σ(C) = −1.65, σ(G) = 0, σ(T) = +1.65. Figure 6
represents the plot of the initial scoring values for the four nucleotides versus
the σ values for both background distributions qU0 and qGC0 . Table 2 gives how
should be the corresponding scores for the four nucleotides and the ambiguous
components for each background distribution. For ambiguous letters, we have
for example σ(M) = σ(A or C) = −1.23 6= −1.76 + (−0.88).

Moreover, considering the usual approach of highlighting atypical seg-
ments using local score approach, we simulate 5 · 103 sequences of 100 compo-
nents of the IUPAC alphabet under the following distribution q0(x) = 0.213
for x = A, C, G, T, q0(x) = 0.021 for x = M, R, W, S, Y, K, q0(x) = 0.004 for
x = V, H, D, B and q0(N) = 0.006. We insert a segment of 20 components
using q1(x) = 0.056 for x = A, T, q1(x) = 0.301 for x = C, G and q1 =
(0.009, 0.046, 0.022, 0.019, 0.034, 0.034, 0.007, 0.017, 0.033, 0.036, 0.029) for M,R,
W,S,Y, K, V, H, D, B, N. We deduce the scoring function σ(x) = log(q1(x)/q0(x))
for x = A, C, G, T and we calculate σ for the other components using Corollary
1. We also calculate the score σ̃ of the ambiguous letters using the following
way: for example σ̃(a or b) = σ(a)+σ(b). Figure 7 presents a comparison of the
two scoring functions and highlight that the scores can be quite different. We
calculate the local score of each sequence with both scoring function and we
highlight the segment which realizes the local score in both case. Allowing an
error of 3 (resp. 5) positions for the beginning and the ending index position,
the scoring function σ detect 10% (resp. 22%) of the correct inserted segments
and σ̃ only detect 1% (resp. 3%) of them. Figure 8 shows an example for one
sequence. In this example, the inserted segment is correctly detect by the local
score calculated with σ scoring function, but the segment realizing the local
score for σ̃ is not correct. We use the Lindley process defined as follows, U0 := 0
and Uk+1 := max(0, Uk+f(Ak)), and the fact that Hf (A) = max0≤k≤n Uk (see
(Mercier and Daudin (2001) for more explanation) to visualize the segments
realizing the two local scores.

Remark 2 Uncertainty ( e.g. in protein crystallisation, NGS), can also be
taken into account. If uncertainty is expressed with weights wa, wb > 0 for
observations a and b, we can use the score:

log

(
waq1(a) + wbq1(b)

waq0(a) + wbq0(b)

)
to ensure the two probabilized spaces to be equivalent and the existence of a
distribution from which the components of the atypical segment are derived.
These scores are clearly different from waσ(a) +wbσ(b), which would typically
be used in the scoring system.

We can also define a canonical score for any weighted profile. Let w =
(wa)a∈A with wa > 0 be a profile, coming for example from a multiple align-
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Table 2

IUPAC Code A C G T/U

Meaning A C G T

f -2 -1 0 +1
σ for qU0 −1.76 −0.88 0.00 0.88
σ for qGC0 −3.29 −1.65 0.00 1.65

IUPAC Code M R W S Y K

Meaning A or C A or G A or T C or G C or T G or T

σ for qU0 -1.23 -0.54 0.26 -0.35 0.34 0.54
σ for qGC0 -1.82 -0.21 0.96 -0.52 0.18 0.61

IUPAC Code V H D B N

Meaning no T no G no C no A anyone
σ for qU0 -0.64 0.00 0.18 0.24 0.00
σ for qGC0 -0.63 0.00 0.43 0.1 0.00

ment. Then

σ(w) = log

(∑
a waq1(a)∑
a waq0(a)

)
6=
∑
a

waσ(a) =
∑
a

wa log

(
q1(a)

q0(a)

)
.

5.3 Rescaling Zhao and London scale

This subsection illustrates how a given scoring scheme can induce the emis-
sion probabilities of the generative model. Let us consider the TM-tendency
scale of Zhao and London (see Zhao and London, 2006) given in Table 3.
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Table 3 Zhao and London TM-tendency scale (ZL) Zhao and London (2006). Distribution
q0 (in %) for 56 TM proteins without their TM regions and Zhao and London score rescaled
(ZLr) using q0 distribution.

A C D E F G H I K L

ZL 0.38 -0.30 -3.27 -2.90 1.98 -0.19 -1.44 1.97 -3.46 1.82
q0 5.489 2.539 5.472 5.604 3.380 6.103 2.624 5.384 4.923 10.049
ZLr 0.128 -0.101 -1.102 -0.977 0.667 -0.064 -0.485 0.664 -1.166 0.613

M N P Q R S T V W Y

ZL 1.40 -1.62 -1.44 -1.84 -2.57 -0.53 -0.32 1.46 1.53 0.49
q0 1.970 5.367 5.814 3.855 5.716 8.903 6.055 5.726 1.159 3.862
ZLr 0.472 -0.546 -0.485 -0.620 -0.866 -0.179 -0.108 0.492 0.516 0.165

Let us consider the 56 human soluble and helical transmembrane (TM) pro-
teins extracted from the protein data base UniProtKB/Swiss-Prot (http:
//www.uniprot.org/uniprot with request “name:“transmembrane protein”
soluble helical AND reviewed:yes”). Leaving aside the TM regions for each
protein, and keeping only the non TM regions of the sequences, we derive the
distribution q0 (see Table 3). We verify E[X] ' −0.50 < 0.

We find that T = 0.34 that leads to the rescaled scoring function in Table 3.
Note that the rescaling does not affect the sign of the scores nor their relative
values of the initial scale thus an amino acid considered as hydrophobic or
hydrophilic is still considered as such.

Let us now consider sp|O15393|TMPS2 HUMAN, a supplementary human TM
protein with a transmembrane segment at position 85-105. Let us apply the
generating model using the rescaled scoring function of Zhao and London.
Figure 9 gives the posterior probabilities that the components of the sequence
are in State 2. The upper probabilities are around ' 0.75 and correspond to
the TM segment. The start of the TM region is precise and its end is very
close to the real one. The probability that there exists a segment of a different
distribution than q0 is equal to 99.99%. Figure 10 gives segment start/end
posterior probabilities (left panel) and posterior probabilities for length (right
panel). The length is relatively accurate even if the probabilities is not very
high : maximal posterior probability for the segment starting index is found at
index 84 (instead of 85), maximal posterior probability for the segment ending
index is found at index 106 (instead of 105), and maximal posterior probability
for segment length is found to be 23 (instead of 21).

6 Conclusion

By considering the set of all possible segments and a Gibbs distribution on this
set, we also take into account suboptimal segments and not only on the optimal
segment which realizes the local score. This probabilization of the segmentation

http://www.uniprot.org/uniprot
http://www.uniprot.org/uniprot
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scores.

space allows us to establish a duality between the HMM approach and the
scoring function approach with a rescaled scoring function. We prove that the
scoring function to be used is unique, given a studied context, in order to bring
a mathematically correct interpretation and a background distribution from
which the highlighted segments derived. This duality provides many potential
opportunities.

The HMM approach allows a rapid (linear) implementation to extract the
usual information that is expected: can we say that there is an atypical segment
in the sequence and if yes, where is it ? This approach can also provide the
probability that the sequence contains an atypical segment, the probabilities
for the position of the atypical segment and other information, on the length of
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the segment. The computation are easy and fast even for very long sequences
with length greater than 105 or more.

Biologists can adapt the classical scoring schemes by rescaling them. By
that way, the natural approach to test the presence of an atypical segment in
a sequence which deals with a natural alternative hypothesis defined as H1:
“There exists 1 ≤ i0 ≤ j0 ≤ n such as Ai0 , . . . , Aj0 are distributed with a
distribution q1 6= q0.” (with H0: “A1, . . . , An are q0 distributed.”) is verified.

Moreover, this can be applied to sequences with uncertain position (which
is often the case in the New Generation Sequencing era) for which canonical
score can be derived from the original scoring scheme.

One important limitation of our model is that it is assuming the presence
of exactly one segment of interest inserted in each sequence. Extending our
model to situations where there is more than one atypical segment is possible
and this would clearly be a great improvement for the local score approach. In
practice, this extension is quite straightforward since we just have to expand
the hidden space of Si (e.g. Si ∈ {1, 2, 3, 4, 5} for up to two segments, the
atypical states corresponding to Si = 2 or 4). The computational complexity
would simply increase linearly with the number of atypical segments.

Another perspective of this work consists in learning scoring schemes: from
a given set of sequences known for containing atypical segments, the corre-
sponding scoring function deduced from the background and the atypical state
distributions can be rapidly deduced using maximum likelihood computation
(EM or direct optimization) both allowing to estimate the new scoring scheme
but also establish confidence intervals, hypothesis testing etc... Unsupervised
learning can also be considered. If using HMM method to learn scoring func-
tion is not new, a very interesting point of our method is that it can allow
inference and confidence intervals to be established. But these extensions are
left for further work.

Appendices

A Notations and results

A.1 Potentials

Let us define for k ∈ {1, 2, 3}, φ1(S1 = k|θ) def
= π(1, k)e(a1)1k=2 , equally denoted φ1(k|θ) or

φ1(k) to lighten the writing, and

φi(Si−1 = j, Si = k|θ) def
= π(j, k)e(ai)

1k=2 for i = 2, . . . , n

equally denoted φi(j, k|θ) or φi(j, k) to lighten the writing, with

e(a) =
q1(a)

q0(a)
or e(a) = exp

(
f(a)

T

)
or e(a) = exp(σ(a)) ,

π =

 1 1 0
0 1 1
0 0 1
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and with θ = (q0, q1) or θ = (f, T ) depending on the chosen approach. With this potential,
we define:

Q(A = a|θ) def
=
∑
S

n∏
i=1

φi(Ci|θ) and Q(A = a, Si = k|θ) def
=

∑
S,Si=k

n∏
i=1

φi(Ci|θ)

where S = (Si)1≤i≤n ∈ {1, 2, 3}n, C1 = {S1} and Ci = {Si−1, Si} for i = 2, . . . , n. In the
HMM case we have:

Q(A = a|θ) =

∑
S P(A = a, S|θ)∏n

i=1 q0(ai)
=

∑
S P(A = a|S; θ)× P(S)∏n

i=1 q0(ai)

with P(S) = 1{S1=1 or 2}

n∏
i=2

π(Si−1, Si)

Q(A = a|θ) =

∑
S∈S P(A = a|S; θ)∏n

i=1 q0(ai)
.

In the score case we have:

Q(A = a|θ) =
∑
S∈S

exp (H(S|A = a)) .

A.2 Forward and backward

Classical uses of forward and backward quantities correspond to HMM probabilities (see (see
Durbin et al, 1998)). Here, we adapt the forward and backward definition using Bayesian
network potentials as it allows us to take into account constraints given in the transition π.
Our forward and backward definition also verify suitable recursions, slightly different from
the ones classically used in HMM. The probabilities of interest are recovered based on ratios.

Forward

We define F1
def
= φ1 and for i = 2, . . . , n: Fi(k) := Fi(Si = k|θ) def

=
∑

S1:i−1,Si=k

∏i
u=1 φu(Cu|θ).

We can easily prove by induction that:

Fi(Si = k|θ) =
∑
j

Fi−1(Si−1 = j|θ)φi(Si−1 = j, Si = k|θ)

with our specific structure of π this gives:

Fi(1) = Fi−1(1), Fi(2) = (Fi−1(1) + Fi−1(2))× e(xi), Fi(3) = Fi−1(2) + Fi−1(3) .

The interesting thing is that:

Fn(Sn = k) = Q(Sn = k,A = a|θ) =
∑

S,Sn=k

n∏
i=1

φi(Ci|θ) hence
∑
k

Fn(k) = Q(A = a|θ)

Backward

We can also define in a similar way the backward quantities: Bn
def
= 1 and for i = n, . . . , 2:

Bi(k) := Bi−1(Si−1 = j|θ) def
=

∑
Si−1=j,Si:n

n∏
u=i

φu(Cu|θ)

Again, by induction we easily get: Bi−1(Si−1 = j|θ) =
∑

k φi(Si−1 = j, Si = k|θ)Bi(Si =
k|θ). With our specific structure of π this gives:

Bi−1(1) = Bi(1) +Bi(2)e(ai), Bi−1(2) = Bi(2)e(ai) +Bi(3), Bi−1(3) = Bi(3) .
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We clearly have φ1(S1)B1(S1 = k) = Q(S1 = k,A = a|θ). But more interestingly we have:

Fi(k)Bi(k) = Q(Si = k,A = a|θ) and

Fi−1(j)φi(j, k)Bi(k) = Q(Si−1 = j, Si = k,A = a|θ) .

Probabilities of interest can be recovered by the fact that

P(Si = k|A = a, θ) =
Q(Si = k,A = a|θ)

Q(A = a|θ)
=

Fi(k)Bi(k)∑
` Fi(`)Bi(`)

.

A.3 Marginal posterior probabilities

We can also exploit the forward and backward quantities to compute the posterior proba-
bilities given in Section 3. We can easily obtain marginal distribution from the forward and
backward quantities but we have to decide conditioning to what. Indeed, if the backward
recursions are computed with Bn(1) = Bn(2) = Bn(3) = 1, we condition only on {A = a}. If
we use Bn(1) = 0 and Bn(2) = Bn(3) = 1 we condition on {A = a, Sn ∈ {2, 3}} which means
that S = 1, . . . , 1 is not possible anymore. Its typically the condition we need when comput-
ing marginal start/end segment distributions. Setting up Bn(1) = 0 and Bn(2) = Bn(3) = 1
(ie. “No atypical segment” impossible) we get with P(ev) =

∑
k Fn(k)×Bn(k):

P(segment starts at index 1) = P(S1 = 2) =
F1(2)×B1(2)

P(ev)

P(segment starts at index i) = P(Si−1 = 1, Si = 2)

=

∑
Si−1=1

Fi−1(Si−1 = 1)× φi(Si−1 = 1, Si = 2)×Bi(Si = 2)

P(ev)

=
Fi−1(1)× φi(1, 2)×Bi(2)

P(ev)

P(segment stops at index i) = P(Si = 2, Si+1 = 3) =
Fi(2)×

1︷ ︸︸ ︷
φi(2, 3)×Bi+1(3)

P(ev)

P(segment stops at index n) = P(Sn = 2) =
Fn(2)×

1︷ ︸︸ ︷
Bn(2)

P(ev)

B Implementation: a simple binary toy example

Let us consider a binary sequence and a scoring function f(0) = −2 and f(1) = +1. The
following code lines in Appendix B.1 first rescale the scoring function (see Appendix C for
the rescaling function used). Then we compute the forward and backward quantities from
which marginal posterior probabilities are deduced: (P(Si = k))1≤i≤n for k = 1, 2, 3 ; and
also posterior probabilities for a segment to start or to end at a given index. A practical
implementation is given for large sequence length in appendix B.2. We also propose an
implementation to compute posterior probabilities for the length of the atypical segment in
Appendix B.3.

B.1 Marginal posterior probabilities
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1 f=c (−2 ,1)
2 x=c ( 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 )
3 temp=s c a l i n g ( f ) $temp
4 ev=exp ( f [ x+1]/temp )
5 # ev=q1 [ x+1]/q0 [ x+1]
6 # Forward
7 n=length ( x )
8 Fw=matrix ( nrow=n , nco l =3)
9 Fw[1 , ]= c ( 1 . 0 , ev [ 1 ] , 0 . 0 )

10 f o r ( i in 2 : n ) {
11 Fw[ i ,1 ]=Fw[ i −1 ,1]
12 Fw[ i , 2 ]=(Fw[ i −1 ,1]+Fw[ i −1 ,2 ]) ∗ev [ i ]
13 Fw[ i ,3 ]=Fw[ i −1 ,2]+Fw[ i −1 ,3]}
14 # Backward
15 Bk=matrix ( nrow=n , nco l =3) # i n i t
16 # Bk [ n , ]= c ( 1 . 0 , 1 . 0 , 1 . 0 )
17 Bk [ n , ]= c ( 0 . 0 , 1 . 0 , 1 . 0 ) # a l t e r n a t i v e Bk [ n , ] f o r exac t l y one segment
18 f o r ( i in n : 2 ) {
19 Bk [ i −1 ,1]=Bk [ i ,1 ]+ ev [ i ] ∗Bk [ i , 2 ]
20 Bk [ i −1 ,2]=ev [ i ] ∗Bk [ i ,2 ]+Bk [ i , 3 ]
21 Bk [ i −1 ,3]=Bk [ i , 3 ] }
22 post marginal=Fw∗Bk/ apply (Fw∗Bk, 1 , sum)
23 pev=sum(Fw[ n , ] ∗Bk [ n , ] )
24 post s t a r t=rep (NA, n)
25 post s t a r t [1 ]= ev [ 1 ] ∗Bk [ 1 , 2 ] /pev
26 f o r ( i in 2 : n ) post s t a r t [ i ]=Fw[ i −1 ,1]∗ev [ i ] ∗Bk [ i , 2 ] /pev
27 post end=rep (NA, n)
28 f o r ( i in 1 : ( n−1) ) post end [ i ]=Fw[ i , 2 ] ∗Bk [ i +1 ,3] /pev
29 post end [ n]=Fw[ n , 2 ] /pev

B.2 Practical implementation: forward and backward rescaling

When n grows large, we face underflow issues. One way to overcome this problem is to
rescale the forward and backward quantities such that each of them sums to one.

F̃j(k) = Fj(k)/ exp(Lj) with Lj = log(
∑
k

Fj(k))
∑
k

F̃j(k) = 1

B̃j(k) = Bj(k)/ exp(Mj) with Mj = log(
∑
k

Bj(k))
∑
k

B̃j(k) = 1

1 f=c (−2 ,1)
2 N=100
3 eta =0.2
4 s e t . seed (42)
5 x=c (
6 sample ( 0 : 1 , r e p l a c e=TRUE, s i z e=N, prob=c(1−eta , eta ) ) ,
7 sample ( 0 : 1 , r e p l a c e=TRUE, s i z e =2∗N, prob=c ( eta ,1− eta ) ) ,
8 sample ( 0 : 1 , r e p l a c e=TRUE, s i z e=N, prob=c(1−eta , eta ) ) )
9 temp=s c a l i n g ( f ) $temp

10 ev=exp ( f [ x+1]/temp )
11 # ev=q1 [ x+1]/q0 [ x+1] f o r an HMM approach
12 # Forward
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13 n=length ( x )
14 L=rep (NA, n)
15 Fw=matrix ( nrow=n , nco l =3)
16 Fw[1 , ]= c ( 1 . 0 , ev [ 1 ] , 0 . 0 )
17 # Normal izat ion
18 tmp=sum(Fw[ 1 , ] ) ; Fw[1 , ]=Fw[ 1 , ] /tmp ; L[1 ]= log (tmp)
19 f o r ( i in 2 : n ) {
20 Fw[ i ,1 ]=Fw[ i −1 ,1]
21 Fw[ i , 2 ]=(Fw[ i −1 ,1]+Fw[ i −1 ,2 ]) ∗ev [ i ]
22 Fw[ i ,3 ]=Fw[ i −1 ,2]+Fw[ i −1 ,3]
23 # Normal izat ion
24 tmp=sum(Fw[ i , ] ) ; Fw[ i , ]=Fw[ i , ] /tmp ; L [ i ]=L [ i−1]+ log (tmp)
25 }
26 # Backward
27 M=rep (NA, n)
28 Bk=matrix ( nrow=n , nco l =3) # on a B j ( k )=B[ j , k ] # i n i t
29 Bk [ n , ]= c ( 0 . 0 , 1 . 0 , 1 . 0 )
30 # Normal izat ion
31 tmp=sum(Bk [ n , ] ) ; Bk [ n , ]=Bk [ n , ] /tmp ; M[ n]= log (tmp)
32 f o r ( i in n : 2 ) {
33 Bk [ i −1 ,1]=Bk [ i ,1 ]+ ev [ i ] ∗Bk [ i , 2 ]
34 Bk [ i −1 ,2]=ev [ i ] ∗Bk [ i ,2 ]+Bk [ i , 3 ]
35 Bk [ i −1 ,3]=Bk [ i , 3 ]
36 # Normal izat ion
37 tmp=sum(Bk [ i −1 , ] ) ; Bk [ i −1,]=Bk [ i −1 ,] /tmp ; M[ i−1]=M[ i ]+ log (tmp) }
38 # v e r i f
39 # log ( apply (Fw∗Bk, 1 , sum) )+L+M
40 post marginal=Fw∗Bk/ apply (Fw∗Bk, 1 , sum)
41 lpev=L [ n]+M[ n]+ log (sum(Fw[ n , ] ∗Bk [ n , ] ) )
42 post s t a r t=rep (NA, n)
43 post s t a r t [1 ]= ev [ 1 ] ∗Bk [ 1 , 2 ] ∗exp (M[1]− lpev )
44 f o r ( j in 2 : n ) post s t a r t [ j ]=Fw[ j −1 ,1]∗ev [ j ] ∗Bk [ j , 2 ] ∗exp (L [ j−1]+M[

j ]− lpev )
45 post end=rep (NA, n)
46 f o r ( j in 1 : ( n−1) ) post end [ j ]=Fw[ j , 2 ] ∗Bk [ j +1 ,3]∗exp (L [ j ]+M[ j +1]−

lpev )
47 post end [ n]=Fw[ n , 2 ] ∗exp (L [ n]− lpev )

B.3 Length of the atypical segment

The idea is to replace e(x) by e(x) × z where z is a univariate dummy variable. We hence
have: ∑

S

n∏
i=1

φi(Ci|θ) =
∑
k>0

(A = a,W = k|θ)zk

where W is the length of the atypical segment (W = 0 when there is no segment). Function
“Mono polyS4” can be given upon request

1 # Back to the s imp l e s t example
2 f=c (−2 ,1)
3 x=c ( 1 , 0 , 1 , 1 , 0 , 1 , 1 , 0 , 0 , 1 )
4 temp=s c a l i n g ( f ) $\$$temp
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5 ev=exp ( f [ x+1]/temp )
6 # ev=q1 [ x+1]/q0 [ x+1] f o r an HMM approach
7 max\deg=10
8 # Forward
9 z=mono(max\deg )

10 n=length ( x )
11 Fw=array ( l app ly ( rep (0 ,3 ∗n) , const , degree=max\deg ) , dim=c (n , 3 ) )
12 Fw[ 1 , 1 ] [ [ 1 ] ] = const ( 1 . 0 ,max\deg )
13 Fw[ 1 , 2 ] [ [ 1 ] ] = ev [ 1 ] ∗z
14 Fw[ 1 , 3 ] [ [ 1 ] ] = const ( 0 . 0 ,max\deg )
15 f o r ( i in 2 : n ) {
16 Fw[ i , 1 ] [ [ 1 ] ] =Fw[ i − 1 , 1 ] [ [ 1 ] ]
17 Fw[ i , 2 ] [ [ 1 ] ] = ( Fw[ i −1 , 1 ] [ [ 1 ] ] +Fw[ i − 1 , 2 ] [ [ 1 ] ] ) ∗ ( ev [ i ] ∗z )
18 Fw[ i , 3 ] [ [ 1 ] ] =Fw[ i −1 , 2 ] [ [ 1 ] ] +Fw[ i − 1 , 3 ] [ [ 1 ] ] }
19 r e s=Reduce ( ’+’ ,Fw[ n , ] )
20 l ength \ d i s t=res@coe f [−1] /sum( res@coe f [−1])

C Rescaling function

1 s c a l i n g=func t i on ( score , q0=NULL, rho\ i n t=c (1 e−10 ,1 e10 ) , t o l=1e−10)
2 {
3 logsumexp=func t i on ( l ) {
4 i=which . max( l ) ;
5 r e s=l [ i ]+ log1p (sum( exp ( l [− i ]− l [ i ] ) ) ) ;
6 i f ( i s . nan ( r e s ) ) r e s=−I n f ;
7 r e turn ( r e s ) ;
8 }
9 i f ( i s . n u l l ( q0 ) ) q0=rep (1 / l ength ( s co r e ) , l ength ( s co r e ) )

10 t e s t=c (sum( q0∗ s c o r e )<0,sum( score >0)>0)
11 i f (sum( t e s t )<2) stop ( ” c o n d i t i o n s are not v a l i d − t ry changing

s co r e or q0” )
12 # numerica l opt imiza t i on o f the temperature
13 opt=NULL
14 whi le ( i s . n u l l ( opt ) ) {
15 t ry ({ opt=un i root ( f=func t i on ( rho ) re turn ( logsumexp ( log ( q0 )+rho∗

s co r e ) ) ,
16 rho\ int , t o l=t o l ) } , s i l e n t=TRUE)
17 rho\ i n t [1 ]=10 ∗ rho\ i n t [ 1 ]
18 }
19 rho=opt $\$$ root
20 temp=1/ ( opt $\$$ root )
21 q1=q0∗exp ( rho∗ s c o r e )
22 cat ( ’ q1=’ , q1 )
23 sigma=log ( q1/q0 )
24 # rbind ( sigma , l og ( q1/q0 ) )
25 r e turn ( l i s t ( q0=q0 , s co r e=score , temp=temp , q1=q1 , sigma=sigma ) )
26 }
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