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Abstract—Cloud infrastructures are generally over-
provisioned for handling load peaks and node failures.
However, the drawback of this approach is that a large
portion of data center resources remains unused. In this
paper, we propose a framework that leverages unused
resources of data centers, which are ephemeral by nature,
to run MapReduce jobs. Our approach allows: i) to run
efficiently Hadoop jobs on top of heterogeneous Cloud
resources, thanks to our data placement strategy, ii) to
predict accurately the volatility of ephemeral resources,
thanks to the quantile regression method, and iii) for avoiding
the interference between MapReduce jobs and co-resident
workloads, thanks to our reactive QoS controller. We have
extended Hadoop implementation with our framework and
evaluated it with three different data center workloads. The
experimental results show that our approach divides Hadoop
job execution time by up to 7 when compared to the standard
Hadoop implementation.

Keywords-cloud, scheduling, unused resources, ephemeral re-
sources, spare resources, data placement, big data, mapreduce,
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I. INTRODUCTION

Advances in technologies such as smart-phones and the
Internet of things led us to a data deluge. According to
recent estimations [?] by 2025 the amount of data generated
will be about 160 zettabytes. MapReduce [1] is a program-
ming model proposed by Google for processing such large
amounts of data while providing high performance and fault
tolerance. Hadoop [2] is an Open-source implementation of
MapReduce that runs across clusters of a large number of
computing nodes. Although processing massive data requires
a significant amount of computing resources, maintaining
such a large-enough dedicated infrastructures to process
multiple types of jobs is undoubtedly expensive.

Cloud computing provides on demand access to scalable,
elastic and reliable computing resources. Although these
features make Cloud infrastructures good candidates for
processing Hadoop workloads, a clear drawback is their
operation cost. Furthermore, Cloud computing data centers
are often over-provisioned in order to cope with workload
variations [3] and nodes failure. This over-provisioning
increases the Total Cost of Ownership (TCO) for Cloud
providers and results in a low average resource utilization. In
a previous study [4], authors shown that the average CPU
usage lies between 20% to 50% on several data centers.

Some studies proposed to reclaim these unused resources
and offer them at a cheaper price [5] to increase resource
utilization. This led to a benefit increase of 60% for Cloud
providers [3].

Therefore, a promising alternative for optimizing the cost
of processing data-intensive applications on Cloud infras-
tructures is to opportunistically exploit their allocated but
unused computing resources. In order to achieve that some
challenges must be tackled.

• Cloud heterogeneity: Hadoop is designed to run on
homogeneous and dedicated clusters of nodes, whereas
Cloud infrastructures are built upon heterogeneous re-
sources to avoid vendors lock-in effect and due to fre-
quent hardware updates. Running Hadoop on environ-
ments with different computing capacities may signifi-
cantly degrade its performance [6]. Hadoop distributes
data chunks uniformly across nodes and expects them to
run tasks with the same execution time. Thus, running
Hadoop in heterogeneous systems requires data chunks
to be reallocated to feed available computing slots. This
creates network traffic overhead, and therefore degrades
the system performance. Hence, Designing a resource-
aware placement strategy is a necessary feature that can
reduce subsequent chunk reallocation in order to avoid
degrading the overall performance of Hadoop jobs.

• Resources volatility: In Cloud systems, users are able
to unilaterally reserve, consume and release comput-
ing resources on-the-fly. As a consequence, exploiting
unused and ephemeral resources to run Hadoop jobs
raises some issues. First, Hadoop relies on replication to
provide reliable storage and fault tolerance. Relying on
resources that may be preempted at any time increases
the cost of maintaining replicas. Second, Hadoop does
not replicate intermediate results. If resources holding
these results are preempted, the resulting data vanishes
and its associated reduce task may stall and require
the re-execution of the initial map task. Clearly, the
way with which users claim their allocated resources
plays a fundamental role not only on the execution
time of a Hadoop job, but also on its termination.
Hence, it is necessary to have a precise estimation of
the unused resources to exploit them efficiently in order



to minimize the total cost of ownership and the cost of
processing Hadoop applications on the Cloud.

• Users SLA guarantee: When running Hadoop jobs
on allocated but unused resources, one should hedge
against violating SLA QoS guarantees for the users
having reserved those resources. This may be caused
either by bad interference between co-located users
and deployed Hadoop jobs or by sudden changes in
users behavior. Several studies have underlined that
co-located jobs may interfere and result in unwanted
performance glitches. This may be due to some hard-
ware, system mechanisms (e.g. SSD, CPU, memory) or
virtualization interference. On the other hand, in Cloud
systems the nature of workloads is highly heteroge-
neous and their intensity may significantly vary (i.e.,
abrupt grow or shrink) according to users behavior [7].
These unexpected changes makes prediction errors un-
avoidable. Thus, it is necessary to have the ability to
quickly allocate, react and adapt the unused resource
provisioning in a way to avoid degrading the QoS for
the users that have reserved those resources.

In this paper we try to tackle the aforementioned chal-
lenges in order to make it possible to exploit unused re-
sources on Cloud infrastructures in an opportunistic way to
process Hadoop data-intensive workloads.

Our approach relies on three mechanisms. i) a Data
placement planner to cope with cloud heterogeneity, ii) a
Forecasting builder to predict resource volatility, and iii) a
QoS controller to ensure users SLA guarantee by avoiding
interference. The data placement planner relies on the Fore-
casting builder and decides about the distribution of Hadoop
chunks to process according to resource availability. The
Forecasting builder relies on quantile regression and machine
learning algorithms to accurately predict the amount of
unused resources and their availability (volatility) to feed
the data placement planner. The QoS controller is used to
avoid Hadoop interference on users workloads of the Cloud
provider. It achieves that by increasing and decreasing the
allocated resources to Hadoop containers on-the-fly.

We evaluated our approach using traces of three months
of resources usage from three different data centers (i.e., two
private companies, and one university). We compared native
Hadoop job execution time with our solution. Our simulation
results show that Cuckoo improves Hadoop native job execu-
tion time between 500% and 700% on ephemeral resources.

The remainder of this paper is organized as follows.
Section II presents some background information. Then, we
describe our methodology in Section III. Section IV details
the experimental evaluation we have performed. Section V
presents some limitations of our approach. Section VI com-
pares our approach with some related works. Section VII
concludes the paper.

II. BACKGROUND

In this section, we introduce the key concepts of MapRe-
duce paradigm through its Hadoop implementation.

A. MapReduce programming model

MapReduce is a programming model, inspired by Lisp
programming language, and proposed for processing large
data sets, potentially using hundreds or thousands of dis-
tributed machines [1]. The MapReduce model hides complex
tasks, such as partitioning large data sets, scheduling and
executing programs across distributed computers, dealing
with failures, and handling inter-machine communication
from users. This is done with a simple abstraction based
on two phases, namely map and reduce. For each phase, the
user writes a specific function (i.e., one map and one reduce
function). The map function takes an input data set and
outputs a set of intermediate <key,value> pairs. After that,
the intermediate pairs are grouped by the same key. Then,
each set of values corresponding to a single key is forwarded
to the reduce function. Finally, each reduce function merges
the values trying to form a smaller set of values.

B. Hadoop framework architecture

Hadoop has a master/slave architecture organized into
two main layers. The first layer consists of a single master
node called Jobtracker and a set of slave nodes called Task-
trackers. The second layer consists of a master node called
NameNode and slave nodes called DataNodes. Tasktrackers
are in charge of executing map and reduce functions, while
DataNodes store chunks of input data. Users interact with a
Hadoop cluster by means of a ClientNode, which is used to
send the input data, map and reduce functions to the cluster.

Specifically, a Hadoop user sends its map and reduce
functions to ClientNode, which in turn, sends them the
Jobtracker. Concurrently, ClientNode fetches the block allo-
cation information (i.e., chunk-to-node mapping) from the
NameNode. Then, the ClientNode splits the input file into
even-sized data chunks and streams them to DataNodes,
which are randomly replicated across the cluster for fault-
tolerance. Hadoop runs map and reduce tasks simultane-
ously. Each task occupies one single processing slot, which
is released when the task is completed. When a Tasktracker
has an empty slot, it sends a hearbeat message to the
Jobtracker requesting a new task. The Jobtracker scheduler
keeps assigning new tasks to available Tasktrackers until all
the tasks are done. Hadoop scheduling algorithm favors data
locality and does not consider other factors such as system
load and fairness.

III. CUCKOO: A MECHANISM FOR EXPLOITING
EPHEMERAL AND HETEROGENEOUS CLOUD RESOURCES

Our main goal is to provide a framework that leverages
unused Cloud resources to run Hadoop jobs efficiently
without interfering with the co-located workloads.



Our proposed architecture consists of the following actors.
• Farmers: data center owners. Organizations that seek

to reduce their TCO by making unused computing
resources available to other users.

• Customers: two types: i) regular customers: organiza-
tions that buy regular Cloud resources from the oper-
ators, ii) ephemeral customers: organizations that want
to process data-intensive applications on the Cloud at a
lower cost. In this paper, we are more concerned with
the latter.

• Operators: organizations that are the interface between
farmers and customers. Their objective is to minimize
farmers TCO by offering unused resources to Cus-
tomers while insuring SLA 1.

A. The Cuckoo Framework Architecture Overview

The Cuckoo framework relies on three modules, each of
them addressing a specific challenge previously described
in Section I (i.e., resource volatility, heterogeneity, SLA
guarantees).

• Forecasting builder: This module predicts (as accurate
as possible) the future resource utilization at the host
level, and therefore the amount of unused resources
and their availability. The Forecasting builder considers
both CPU and memory as resources and its main goal
is to estimate the volatility of resources.

• Data placement planner: This module uses the predic-
tions of the Forecasting builder and applies a placement
strategy in order to distribute data chunks across the
cluster hosts. The Data placement planner solves the
heterogeneity of available resources by tuning data
chunks allocation according to CPU availability and
volatility.

• QoS controller: This module guarantees that running
Hadoop jobs of ephemeral customers do not interfere
with regular workloads of regular customers in order
to ensure the SLA. The QoS controller continuously
monitors the resource utilization to detect if regular
customers could be impacted by ephemeral customers.
If it is the case some corrective actions are triggered.
It also has a preventive mechanism that consists in
preserving a certain amount of unused resources to
absorb workload variation. To this amount of preserved
resources we refer to as safety margin.

Figure 1 presents both actors and modules and shows
how they interact among each other. The Customer starts by
submitting (1) a Hadoop job using the ClientNode. Then, the
JobTracker sends (2) a request to the Data placement plan-
ner to check if the Operator is able to provide enough re-
sources to process the job within a time window of 24 hours.
In order to verify that, Data placement planner retrieves

1One may note that the farmer and the operator role can be played by
the same organization

(3) the latest resource predictions, which are continuously
updated by the Forecasting builder module, and creates the
block allocation information, which maps chunks to nodes
for that specific job. After that, the JobTracker replies (4)
to the ClientNode with either an acceptance or a rejection
message depending on the amount of available resources.
Following, the ClientNode fetches (5) the block allocation
map and sends (6) the chunks to the DataNodes. Finally,
the QoS Controller monitors (7) the real-time utilization of
unused resources in order to adapt the amount of resources
allocated to containers that run TaskTracker nodes, in the
case of interference.

Figure 1. Overview of the Cuckoo architecture

B. Forecasting Builder

The objective of the Forecasting Builder module is to
estimate the future amount of used resources for each host.
By doing so, it can to estimate the available resources for
running Hadoop jobs.

State-of-the-art studies have discussed [8] how to select
the appropriate learning algorithm(s) to forecast time series
with learning algorithms such as Autoregressive (AR), In-
tegrated Moving Average (ARIMA) and other more com-
plex algorithms such as Recurrent Neural Network (RNN),
Support Vector Machine (SVM), Long short-term memory
(LSTM), Gradient Boosted Decision Trees (GBDT), and
Random Forest (RF). In a previous work [4] we have shown
that quantile regression is a relevant approach to reclaim
unused resources with SLA requirements. This work has
shown that quantile regression may increase the amount of
savings by up to 20% compared to traditional approaches.

Quantile regression provides the accuracy of machine
learning algorithms with the flexibility of quantiles. More-
over, quantiles make it possible to reason about the trade-
off between the amount of reclaimed unused resources and
the potential SLA violations. In our work, we chose to use
Gradient Boosting Decision Tree which gives the best trade-
off between prediction accuracy and training time in order to



forecast a 24-hour time window. We use quantile regression
to implement our forecasting builder module.

C. Data Placement Planner

The objective of the Data Placement Planner is to find
the best data block mapping in order to minimize the overall
execution time given the available resources by minimizing
data transfers. To achieve that, we use a modified version of
the Weighted-Round-Robin (WRR) algorithm. WRR is de-
signed to handle hosts with different processing capabilities
by assigning a different weight to each [9].

In our approach, the weight was calculated by taking into
account the predicted usage of resources and the processing
capability for each host, estimated in GFLOPS2 within a
time interval of 24 hours. Then, data chunks are distributed
proportionally to the weight assigned to each host. That is,
hosts with higher weight receive more data chunks to process
than hosts with lower values.

The safety margin value (described in Section III-D)
denoted by sm is also taken into account. This value is
used to remove the corresponding proportion of resources
from the pool of unused resources that is the input of the
Data Placement Planner. As mentioned before, the sm
value is used to absorb unpredictable workload behavior
and forecasting errors. For instance, if the forecast builder
estimates that 12 cores are used in a 32 cores machine, then
20 cores would be available during the next 24-hour time
window. If sm value is 10%, then 2 cores (from the 20
available) are removed from the the pool and only 18 cores
are considered.

The following algorithms describe i) the process of calcu-
lating the host weight (Algorithm 1), and ii) the data chunk
placement strategy (Algorithm 2).

Algorithm 1 Host Weight Calculation
1: function CALW(hostid, sm, ti, sp)
2: weight← 0
3: cap = getFlops(hostid)
4: predUsage = ForecastingBuilder(hostid, ti, sp)
5: for each load ∈ predUsage do
6: load += sm
7: if load < 100 then
8: weight += (cap− ((load/100) ∗ cap)) ∗ sp
9: end if

10: end for
11: return weight
12: end function

Calculating the host weight: : Algorithm 1 has four
input parameters: hostid, a safety margin (sm), time interval
(ti) and sampling period (sp). The parameter ti is the time
for which we calculate the weight. In our case, we used a ti

2Giga Floating Point Operations per Second

of 24 hours during which we measure hosts resources usage
with a sampling period (sp) of 3 minutes, thus 480 measures
every 24 hours.

First, we retrieve the maximum processing capacity (cap)
for the selected host getFlops(hostid) at line 3. Then,
we request the Forecasting Builder module to estimate the
available amount of resources (predUsage) for this host
ForecastingBuilder(hostid, ti, sp) at line 4. The
Forecasting Builder returns a set of ti/sp data prediction
points. Then, we iterate over these predUsage data points
to compute the weight of the selected host (lines 5–10).
For each predicted data point, we add the safety margin to
the predicted load (line 6). Then, if the total used load is
under 100 % (i.e., the host has some unused resources), the
weight is calculated by subtracting from the total processing
capacity of the host noted cap the predUsage and sm. We
then multiply the result by the specified sampling period
to integrate the duration (line 8). The higher the free CPU
resource and capacity, the higher the weight.

Data placement strategy: Algorithm 2 starts by com-
puting weights for each host using Algorithm 1. For each
job, first we initilize a matrix of Booleans for the chunk
mapping called blockAllocation at line 3 and we get the
chunk replication factor used by Hadoop with function
getReplication() at line 4. Second, for each chunk
of the job (lines 5–12), we retrieve the estimated processing
costs using getEstimatedTaskCost(chunkid) func-
tion at (line 6). In this work, we have used fixed costs (see
Section IV) but map or reduce tasks costs could be estimated
as proposed by [10]. Then, we select a host according to the
assigned weights (based on WRR) at line 8. The hosts with
higher weights are selected first. Next, we update the matrix
blockAllocation to indicate that the chunk (chunkid) has
been placed on the chosen host (hostid) at line 9. Finally, we
dynamically update the weight of the host by decreasing its
value according to the used resources (cost) and to updated
predictions (line 10). We repeat these three steps for the
default number of replicas (i.e., nbReplicas) initialized for
Hadoop (lines 7–12). If there is not enough resource for
processing a chunk, a rejection message is sent. When all
the chunks of all the jobs have been placed, we send the
allocation matrix blockAllocation to the NameNode (line 14)
and an acceptance message. Finally, the block allocation
matrix is retrieved by the ClientNode.

D. QoS Controller

The QoS controller implements a mechanism that reacts to
under estimation of the used resources from the Forecasting
builder (e.g.,. As discussed before, prediction errors may
exist due to an unexpected variation of the regular customers
workloads. The reactive policy of the QoS controller checks
if the regular customers workloads are using more than a
predefined threshold of the safety margin (tuned to 50% in
our experiments). In this case, the allocated resources for the



Algorithm 2 Data Placement Algorithm
1: weights = initWeights()
2: for each job ∈ JobTracker.all() do
3: blockAllocation[nbChunks, nbHosts] = false
4: nbReplicas = getReplication()
5: for each chunkid ∈ job.chunks do
6: cost = getEstimatedTaskCost(chunkid)
7: repeat
8: selectedH = selectHostid(hosts, weights)
9: blockAllocation[chunkid, selectedH] = true

10: weights[hostid] = updateW (selectedH, cost)
11: nbReplicas−−
12: until nbReplicas==0
13: end for
14: send(job, blockAllocation)
15: end for

ephemeral customers jobs must be reduced or completely
released.

The QoS controller manages both the CPU and memory
resources. In order to release resources the QoS controller
proceeds as follows. The CPU control is done by adjusting
dynamically the hard limits of the CPU cycles that a con-
tainer is able to consume. In this way, Hadoop jobs cannot
use more CPU than the amount of time set for the container.
As a consequence, the map or reduce tasks will be slowed
down without affecting regular customers workloads.

For the memory resource, Cuckoo has a more aggressive
strategy and it acts as a system memory killer. Cuckoo kills
proportionally the amount of map or reduce tasks necessary
to free the safety margin related to memory occupation.

In case of CPU and/or memory starvation (i.e., only the
safety margin resources are available) the container is killed.

IV. EXPERIMENTAL VALIDATION

This section describes the experiments conducted to val-
idate the efficiency of the Cuckoo framework.

A. Experimental Methodology

We will try to answer three research questions (RQ) in
order to tackle the 3 challenges mentionned in the section I
(i.e., resource heterogeneity and volatility and QoS guaran-
tee):

RQ1: What is the overall performance of Cuckoo com-
pared to native Hadoop implementation ?

RQ2: How does the forecasting builder accurately model
the volatility of resources ?

RQ3: What is the effectiveness of Cuckoo with regards
to the number of remote tasks?

We have conducted several experiments to evaluate our
solution. We used a 3-months production data set from three
different data centers and compared Cuckoo to standard
Hadoop implementation. In our evaluations, we used two

configurations related to the number of map tasks that is
514 and 640, corresponding to two different data sets of
40GB and 32GB respectively in a network of 50Mbps. In
both cases we used 40 reduced-tasks. The processing costs
for each Map and Reduce task is equal to 3100 FLOPS/Byte
and 6300 FLOPS/Byte for the map and 1000 FLOPS/Byte
for the reduce tasks.We set the chunk size to 64 MB and
configured Hadoop to host three replicas for each chunk
(default configuration) and each TaskTracker to run 20 slots
of map and reduce tasks. According to [11], usually each
task needs between 2 GB and 4 GB of memory which
means that for a machine with 48GB of memory the Hadoop
TaskTracker could run between 10 and 20 tasks in parallel.

The experimentation has three phases: i) infrastructure
initialization, ii) deployment, and iii) injection. The infras-
tructure initialization phase configures the physical machines
(i.e., speed, number of cores, memory), the network (i.e.,
topology, available bandwidth, latency) according to the
three data centers. Then, the deployment phase consists
in launching the Hadoop and Cuckoo modules (e.g., Job-
Tracker, DataNode, Data Placement Planner). Finally, the
injection phase consists in increasing and decreasing the
CPU and Memory load over time according to data centers
traces. The injection is done by replaying the traces from
three data centers. As we fixed the forecast window to 24
hours on three months, this gives 92 windows per host.

Our experiments were performed using Simgrid 3.20 sim-
ulation tool and a customized version of MRA++ MapRe-
duce [12] for handling the three phases.

B. Data sets
Each data set corresponds to a specific data center. The

largest data center is PC-2 (i.e., private company 2) with
27 hosts providing a total of 3552 GFLOP/s and 3.8TB of
RAM memory, followed by PC-1 and University. Table I
shows the overall capacity of all data centers.

Table I
TOTAL CAPACITY OF EACH DATA CENTER

Name Number of CPU RAM
Hosts [GFLOP/s] [TB]

PC-1 9 2208 1.2
PC-2 27 3552 3.8

University 10 1363 1.5

Moreover, these data centers are heterogeneous. The PC-
1 has six different configurations among its nine hosts, PC-
2 has 13 different configurations among its 27 hosts, and
finally the University data center has 6 different configura-
tions. The average resource utilization of each data center is
13% for PC-1, 4% for PC-2 and 6% for University. These
results motivated us toward reclaiming unused resources.

C. Experimental Results
We evaluated the overall execution time of a job according

to the safety margin value, the number of remote tasks and



the number of rescheduled tasks.
1) RQ1-Job Execution Time: To evaluate the benefits of

Cuckoo compared to Hadoop we compared the job execution
time according to different configuration of safety margin
(i.e., 0%, 5%, 10%, 15%, 20%, 25%, 30%).

Figure 2 shows the resulting job execution time. We ob-
serve that the minimum median completion time of Hadoop
is 417 minutes for PC-1, 336 minutes for PC-2 and 377
minutes for University. On the other hand, the best median
job completion time for Cuckoo is 57 minutes for PC-1, 49
minutes for PC-2 and 71 minutes for University with a safety
margin of 5%. The smaller dispersion and best completion
time was observed in the case of a 5% safety margin for
all data sets. Then, with a safety margin greater than 5%,
we notice that the job execution time increases. This is due
to the fact that by increasing the safety margin size it leads
to a decrease on the amount of reusable resources and thus
the slow down of the Hadoop jobs. In addition, we observed
that the best safety margin is the same regardless the data
set evaluated. This means that the prediction of the forecast
builder is accurate. Cuckoo is 7 times faster than native
Hadoop strategy for PC-1 and PC-2 and 5 times faster for
the University.

2) RQ2-Effetiveness of the Forecast builder: As men-
tioned in Section I, one way to increase data center utiliza-
tion is to reclaim unused resources to run ephemeral contain-
ers that are executing map or reduce tasks. However, such
containers could be evicted by the QoS Controller in case
of interference with the regular customers workloads (see
Section III-D). It means that the task should be relaunched
causing a resource waste. Figure 3 shows the number of
relaunched tasks for the three data sets with a safety margin
of 0%. The lower the number of relaunched tasks, the better
the volatility taken into account by the Forecast builder.

We observe that with the standard implementation of
Hadoop, more than 15% of the tasks were relaunched while
only less than 5% are in case of Cuckoo for the three data
sets (3 times less). This confirms that the our prediction
module helps Cuckoo to handle the volatility of resources
efficiently.

In Cuckoo, PC-2 has the higher percentage of relaunched
tasks with about 5% while the University the slower, with
less than 1%. This means that PC-2 is wasting more re-
sources when compared to University and PC-1. Moreover,
a high number of relaunched tasks may lead to remote tasks,
as explained in Section IV-C3.

3) RQ3- Effectiveness of Cuckoo and Remote Tasks: In
this experiment we evaluated the percentage of remote tasks
generated by Cuckoo and we compare it to the ones gener-
ated by Hadoop standard implementation. We have measured
data movement during the experiments (see Section IV-A). A
task becomes remote when a TaskTracker has an empty slot
and no more available local chunks. In this case, a chunk is
downloaded to be processed. In heterogeneous environments

this situation is more likely to happen. So, by estimating the
number of remote tasks we evaluate the ability of Cuckoo
to manage heterogeneity and volatility.

Figure 4 shows the percentage of remote tasks. One may
observe that Cuckoo outperforms standard Hadoop for all
data sets. In the case of PC-1, Cuckoo has reduced the
percentage of remote tasks by about 7 times, while in PC-2
and University by 6 and 19 times respectively. This confirms
that Cuckoo handles both heterogeneity and volatility of
resources effectively. As discussed in Section I, remote tasks
take longer to execute as compared to local tasks due to the
required data transfer time.

We also observe that PC-2 has more remote tasks. This
can be explained by the fact that PC-2 is the largest data
center with 27 hosts and since data chunks are distributed
across hosts, more data transfers are generated. So for
a given number of chunks to process, the higher is the
replication factor, the lower the number of data movements
are. In addition, the lower the number of hosts, the lower
data movements for a given replication factor.

We conclude that for all three tested datasets, Cuckoo
outperforms Hadoop in all the cases. This is explained
by the fact that our data placement and the predictive
provisioning strategies together make Cuckoo volatility and
heterogeneity aware, and therefore able to required less
remote and relaunched tasks, when compared to Haddop
standard implementation.

V. LIMITATIONS

There are some potential issues that may impact on the
results of this study. We will consider these issues in a future
work. In the following we highlight some of these issues.

• We did not consider memory, network and storage for
the data placement decisions. These variables may have
an impact on the overall performance.

• The Map/Reduce tasks are single-threaded and cannot
leverage the computing power of more than one core.

• The sampling period of the data center traces is 3 min-
utes which means that we cannot measure violations
with smaller time sampling.

• We did not consider how co-located application work-
loads may interfere on Map or Reduce tasks. We have
considered only a fixed capacity per host, while the
capacity may depend on all running applications [13]

VI. RELATED WORK

In this section, we discuss some studies that have already
explored MapReduce in dynamic and heterogeneous envi-
ronments.

Many studies have already shown that heterogeneity sig-
nificantly impacts Hadoop performance. In [14] authors
proposed to improve data locality by delaying the task
scheduling by a small amount of time for short jobs, which
significantly improved performance. In [6] authors proposed
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Figure 2. Job Execution Time for standard Hadoop and Cuckoo

Figure 3. Median Percentage Relaunched Tasks comparison between
Hadoop and Cuckoo

Figure 4. Median Percentage Remote tasks comparison between Hadoop
and Cuckoo

to prevent from incorrect execution of speculative tasks by
defining a fixed threshold in which the scheduler is able to
select tasks to speculate. Their approach have improved the
response time of MapReduce jobs by a factor of 2 in large
heterogeneous clusters. In both cases they have improved
execution time of jobs in heterogeneous environment. In
our case, we consider not only the heterogeneity but also
the volatility of nodes.

Some approaches considered the case of an open shared
system and proposed a placement strategy that dispatches
data chunks to hosts based on their availability rate [15]. The
drawback of such approaches is their assumption about the
inter-arrival time of interruptions to be independent and iden-
tically distributed across the system. There are some studies

that handled volatility in open systems by using a small set
of dedicated nodes in order to ensure the minimum amount
of resources required to execute MapReduce jobs [16].
In [17] authors considered the case of pervasive grids and
monitored nodes capacity (i.e., processors and memory)
to improve Hadoop scheduler decisions. Differently from
those previous work, our contribution targets environments
such as private Cloud data centers. In [18], authors have
investigated the use of volatile spot instances as accelerators
in public Clouds without considering any SLA constraints,
while in [19] a hybrid infrastructure (i.e., mix of Cloud and
volunteer computing) with up to 25% of unstable nodes is
used to continuously execute Hadoop jobs without loosing
performance.

Finally, some studies used a predictive approach to im-
prove data locality and Hadoop performance. In [20] authors
used a linear regression model to predict the execution time
of map tasks which is used to prefetch input data. Another
approach [21] used the Naive-Bayes-classifier method to
predict node availability and therefore improve Mapreduce
scheduler performance.

Our work improves state-of-the-art solutions by simulta-
neously considering both heterogeneity and volatility. Be-
sides that, our approach guarantees SLA without interfering
with other workloads sharing the same physical resources.

VII. CONCLUSION AND PERSPECTIVES

Data center resources are underused. They are heteroge-
neous and their usage is not balanced among hosts. We argue
in this paper that those resources could be used to process
Big data Hadoop application at a low cost. In order to do
so, several challenges need to be tackled: heterogeneity and
volatility of resources and isolation with regards to regular
customer workloads.

To tackle these issues, we have developed a heterogeneity
and volatility aware data-placement strategy called Cuckoo.
Volatility and heterogeneity are managed by our proposed
forecasting and resource-aware data placement strategies. In
addition, a QoS controller is used to avoid any interference
with regular workloads by means of a safety margin.



Our results show that Cuckoo outperforms standard
Hadoop implementation by a factor of 5 to 7, while avoiding
any interference with regular customer workloads.

As future work we plan to evaluate check-pointing fault-
tolerance techniques to avoid using reserved resources for
hosting intermediate data. Although we only used simula-
tions in this work, we plan to evaluate our strategies using a
testbed for experimental research, such as Grid5000. We are
also planning to use GPU and other processing elements.
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