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A Novel Smoothed Norm Ratio for Sparse Signal Restoration Application to Mass Spectrometry

We propose a new smoothed p-Over-q norm ratio for sparse signal reconstruction. A trust-region Variable Metric Forward-Backward is proposed to solve efficiently the resulting non-convex minimization problem. Numerical experiments in the context of mass spectrometry (MS) illustrate the benefits of the novel penalty.

I. PROBLEM STATEMENT

We consider the linear observation model y = H H Hx + n where y = (ym) 1≤m≤M ∈ R M represents the degraded measurements related to the original signal x = (xn) 1≤n≤N ∈ R N through the observation matrix H H H ∈ R M ×N and some additive acquisition noise n ∈ R M . In this work, we focus on the inverse problem aiming at recovering signal x from y and H H H, under the assumption that the sought signal is sparse, i.e., has few non-zero entries. An efficient strategy is to employ a penalized approach, which defines an estimate x ∈ R N of x as the solution of the following constrained minimization problem

minimize x∈S Ψ(x) with S = {x ∈ R N | H H Hx -y ≤ ξ}. (1)
Function Ψ : R N →]0, +∞] is a regularization function used to enforce sparsity on the solution. Moreover, ξ > 0 is a parameter depending on the noise characteristics. The choice of the regularization function Ψ is important to reach satisfactory results.

II. PROPOSED APPROACH

The 1 norm has probably been the most frequently used regularizer for sparse signal restoration. Special cases of quasi-norm ratios have also served as sparse penalities, for instance the 1/ 2 ratio [START_REF] Repetti | Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed 1 / 2 Regularization[END_REF] or 4/ 2 [START_REF] Wiggins | Minimum entropy deconvolution[END_REF], with the advantage of limiting scale biases. In this work, we propose a new Smoothed p-Over-q (SPOQ) penalty defined as:

(∀x ∈ R N ) Ψ(x) = log ( p p,α (x) + β p ) 1/p q,η (x) , (2) 
where p ∈ ]0, 2[ and q ∈ [2, +∞[. We denote by p,α and q,η the smoothed versions of p and q norms respectively given by p,α(x) = N n=1

x 2 n + α 2 p/2 -α p 1/p and q,η (x) =

η q + N n=1 |xn| q 1/q for every x ∈ R N and (α, η) ∈]0, +∞[ 2 .
In (2), the parameter β ∈ ]0, +∞[ is introduced to account for the fact that the log function is not defined at 0.

The SPOQ penalty is non-convex, which makes problem (1) challenging. It can however be shown that it is Lipschitz-differentiable on R N . Moreover, we established that Ψ presents a local majorization property. Let us define Bq,ρ

= {x ∈ R N | N n=1 |xn| q ≥ ρ q }. Then, for every (x, x ) ∈ B 2 q,ρ , Ψ(x) ≤ Ψ(x ) + ∇Ψ(x ) (x -x ) + 1 2 (x - x ) A A Aq,ρ(x )(x -x ) where, for every x ∈ Bq,ρ, A A Aq,ρ(x) = 1 p p,α(x) + β p Diag (x 2 n + α 2 ) p/2-1 1≤n≤N + q -1 (η q + ρ q ) 2/q IN .
We thus propose to solve (1) using the novel trust-region Variable Metric Forward Backward algorithm described below. It can be viewed as an extension of [START_REF] Chouzenoux | Variable Metric Forward-Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function[END_REF], where a trust-region strategy has been introduced in order to keep the iterates inside the sets fulfilling the majorization.

x0 ∈ R N , B ∈ N * , θ ∈]0, 1[, (γ k ) k∈N ∈]0, 2[ For k = 0, 1, . . . :               For i = 1, . . . , B :           If i = 1, ρ k,1 = N n=1 |x n,k | q . If i ∈ {2, . . . , B -1}, ρ k,i = θρ k,i-1 . Else ρ k,B = 0. Construct A A A k,i = A A Aq,ρ k,i (x k ) z k,i = P A A A k,i ,S x k -γ k (A A A k,i ) -1 ∇Ψ(x k ) If z k,i ∈ Bq,ρ k,i : Stop loop x k+1 = z k,i
Hereabove, P A A A,S denotes the projection onto S in the metric induced by A A A [START_REF] Chouzenoux | Variable Metric Forward-Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function[END_REF]. In this case, this projection cannot be explicitly expressed. We thus propose to compute it using the dual forward backward method [START_REF] Abboud | Dual block-coordinate forward-backward algorithm with application to deconvolution and deinterlacing of video sequences[END_REF]. Under mild assumptions, we proved that (x k ) k∈N converges to a critical point of Problem (1).

III. APPLICATION TO MASS SPECTROMETRY DATA ANALYSIS

We illustrate the usefulness of our proposed SPOQ penalty in the context of mass spectrometry (MS) data processing. MS is a fundamental technology of analytical chemistry widely used in structural biology [START_REF] Heaney | Mass spectrometry in medicine: a technology for the future?[END_REF], chemistry [START_REF] Sodal | The medical mass spectrometer[END_REF], pharmaceutical analysis [START_REF] Mira | Liquid chromatographytandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples[END_REF], clinical drug development [START_REF] James | Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry[END_REF], etc. We have recently proposed a dictionary-based approach in [START_REF] Cherni | Fast Dictionary-Based Approach for Mass Spectrometry Data Analysis[END_REF] for proteins characterization in MS data. This method aimed at solving Problem [START_REF] Repetti | Euclid in a Taxicab: Sparse Blind Deconvolution with Smoothed 1 / 2 Regularization[END_REF] where Ψ is the 1 norm. We propose here to follow the same dictionary-based approach and to compare the results obtained by solving (1) using various choices of Ψ, namely the proposed SPOQ penalty for given p and q, the 1 norm, and the Cauchy and Welsh non-convex penalties [START_REF] Chouzenoux | A Majorize-Minimize Subspace Approach for l2-l0 Image Regularization[END_REF].

Two synthetic signals A and B, with size N = 1000 and sparsity degree P are tested (Fig. 1 (top)). The associated MS spectra y are built with H H H being the MS averagine dictionary [START_REF] Senko | Collisional activation of large multiply charged ions using Fourier transform mass spectrometry[END_REF], and n a zeromean Gaussian noise with standard deviation 10 -2 (Fig. 1 (bottom)). Tab. I displays the means and standard deviations, on 10 noise realizations, for three metrics: SNR= 20 log 10 ( x / xx ), TSNR defined as the SNR computed only on the support of the sought sparse signal, and sparsity, i.e. the number of entries of the restored signals greater (in absolute value) than a given threshold (here, 10 -4 ). We can observe that SPOQ is superior to the three other penalties with respect to all metrics. In particular, p = 0.25 and q = 2 seem to provide an optimal choice in terms of estimation accuracy. 
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 1 Figure 1. Original sparse signals and associated MS spectra for dataset A (left, N = 1000, P = 48) and dataset B (right, N = 1000, P = 94) (top: synthetic data, bottom: noisy MS spectra).

  ). Table I MEANS/STDS OF SNR, TRUNCATED SNR AND SPARSITY LEVEL OF THE RESTORED SIGNALS. COMPUTED ON 10 NOISE REALIZATIONS FOR DATASETS A AND B AND VARIOUS PENALTIES.

			P	0.25 / 2 0.5 / 2 1 / 2	1	Cauchy Welsh
		SNR	48	46.28	41.91 40.91 43.16 42.84 27.54
				0.497	0.436 0.910 0.654 0.572 0.461
	Signal A	TSNR 48	46.55 0.571	47.71 46.24 43.94 43.53 29.12 1.136 1.660 0.679 0.532 0.501
		Sparsity 48	49	129	365	80	883	259
				1.32	11.85 10.13	9.46	10.57	8.08
		SNR	94	45.56	42.74 41.31 43.02 42.71 30.99
				0.538	1.266 1.298 1.260 1.194 0.488
	Signal B	TSNR 94	47.26 0.639	46.88 45.11 44.17 43.68 33.39 1.495 1.654 1.138 0.961 0.507
		Sparsity 94	111	216	410	165	952	342
				3.54	12.43 11.03 17.41	6.66	11.72
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