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Abstract—We propose a new smoothed `p-Over-`q norm ratio for
sparse signal reconstruction. A trust-region Variable Metric Forward-
Backward is proposed to solve efficiently the resulting non-convex
minimization problem. Numerical experiments in the context of mass
spectrometry (MS) illustrate the benefits of the novel penalty.

I. PROBLEM STATEMENT

We consider the linear observation model y = HHHx + n where y =
(ym)1≤m≤M ∈ RM represents the degraded measurements related
to the original signal x = (xn)1≤n≤N ∈ RN through the observation
matrix HHH ∈ RM×N and some additive acquisition noise n ∈ RM .
In this work, we focus on the inverse problem aiming at recovering
signal x from y and HHH , under the assumption that the sought signal
is sparse, i.e., has few non-zero entries. An efficient strategy is to
employ a penalized approach, which defines an estimate x̂ ∈ RN of
x as the solution of the following constrained minimization problem

minimize
x∈S

Ψ(x) with S = {x ∈ RN | ‖HHHx− y‖ ≤ ξ}. (1)

Function Ψ: RN →]0,+∞] is a regularization function used to
enforce sparsity on the solution. Moreover, ξ > 0 is a parameter
depending on the noise characteristics. The choice of the regulariza-
tion function Ψ is important to reach satisfactory results.

II. PROPOSED APPROACH

The `1 norm has probably been the most frequently used regular-
izer for sparse signal restoration. Special cases of quasi-norm ratios
have also served as sparse penalities, for instance the `1/`2 ratio [1]
or `4/`2 [2], with the advantage of limiting scale biases. In this work,
we propose a new Smoothed p-Over-q (SPOQ) penalty defined as:

(∀x ∈ RN ) Ψ(x) = log

(
(`pp,α(x) + βp)1/p

`q,η(x)

)
, (2)

where p ∈ ]0, 2[ and q ∈ [2,+∞[. We denote by `p,α and
`q,η the smoothed versions of `p and `q norms respectively given

by `p,α(x) =
(∑N

n=1

((
x2n + α2

)p/2 − αp))1/p and `q,η(x) =(
ηq +

∑N
n=1 |xn|

q
)1/q

for every x ∈ RN and (α, η) ∈]0,+∞[2.
In (2), the parameter β ∈ ]0,+∞[ is introduced to account for the
fact that the log function is not defined at 0.

The SPOQ penalty is non-convex, which makes problem (1) chal-
lenging. It can however be shown that it is Lipschitz-differentiable on
RN . Moreover, we established that Ψ presents a local majorization
property. Let us define Bq,ρ = {x ∈ RN |

∑N
n=1 |xn|

q ≥ ρq}. Then,
for every (x, x′) ∈ B2

q,ρ, Ψ(x) ≤ Ψ(x′) +∇Ψ(x′)>(x− x′) + 1
2
(x−

x′)>AAAq,ρ(x′)(x− x′) where, for every x ∈ Bq,ρ,

AAAq,ρ(x) =
1

`pp,α(x) + βp
Diag

(
(x2n + α2)p/2−1)

1≤n≤N

+
q − 1

(ηq + ρq)2/q
IN .

We thus propose to solve (1) using the novel trust-region Variable
Metric Forward Backward algorithm described below. It can be
viewed as an extension of [3], where a trust-region strategy has been
introduced in order to keep the iterates inside the sets fulfilling the
majorization.

x0 ∈ RN , B ∈ N∗, θ ∈]0, 1[, (γk)k∈N ∈]0, 2[
For k = 0, 1, . . . :

For i = 1, . . . , B :
If i = 1, ρk,1 =

∑N
n=1 |xn,k|

q.
If i ∈ {2, . . . , B − 1}, ρk,i = θρk,i−1.
Else ρk,B = 0.
Construct AAAk,i = AAAq,ρk,i(xk)
zk,i = PAAAk,i,S

(
xk − γk(AAAk,i)

−1∇Ψ(xk)
)

If zk,i ∈ Bq,ρk,i : Stop loop
xk+1 = zk,i

Hereabove, PAAA,S denotes the projection onto S in the metric
induced by AAA [3]. In this case, this projection cannot be explicitly
expressed. We thus propose to compute it using the dual forward
backward method [4]. Under mild assumptions, we proved that
(xk)k∈N converges to a critical point of Problem (1).

III. APPLICATION TO MASS SPECTROMETRY DATA ANALYSIS

We illustrate the usefulness of our proposed SPOQ penalty in
the context of mass spectrometry (MS) data processing. MS is
a fundamental technology of analytical chemistry widely used in
structural biology [5], chemistry [6], pharmaceutical analysis [7],
clinical drug development [8], etc. We have recently proposed a
dictionary-based approach in [9] for proteins characterization in MS
data. This method aimed at solving Problem (1) where Ψ is the `1
norm. We propose here to follow the same dictionary-based approach
and to compare the results obtained by solving (1) using various
choices of Ψ, namely the proposed SPOQ penalty for given p and q,
the `1 norm, and the Cauchy and Welsh non-convex penalties [10].

Two synthetic signals A and B, with size N = 1000 and sparsity
degree P are tested (Fig. 1 (top)). The associated MS spectra y are
built with HHH being the MS averagine dictionary [11], and n a zero-
mean Gaussian noise with standard deviation 10−2 (Fig. 1 (bottom)).
Tab. I displays the means and standard deviations, on 10 noise
realizations, for three metrics: SNR= 20 log10(‖x‖/‖x− x̂‖), TSNR
defined as the SNR computed only on the support of the sought sparse
signal, and sparsity, i.e. the number of entries of the restored signals
greater (in absolute value) than a given threshold (here, 10−4). We
can observe that SPOQ is superior to the three other penalties with
respect to all metrics. In particular, p = 0.25 and q = 2 seem to
provide an optimal choice in terms of estimation accuracy.



0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

0 100 200 300 400 500 600 700 800 900 1000

0

100

200

300

0 100 200 300 400 500 600 700 800 900 1000

0

50

100

0 100 200 300 400 500 600 700 800 900 1000

0

50

100

Figure 1. Original sparse signals and associated MS spectra for dataset A (left, N = 1000, P = 48) and dataset B (right, N = 1000, P = 94) (top:
synthetic data, bottom: noisy MS spectra).

P `0.25/`2 `0.5/`2 `1/`2 `1 Cauchy Welsh

Si
gn

al
A

SNR 48
46.28 41.91 40.91 43.16 42.84 27.54

0.497 0.436 0.910 0.654 0.572 0.461

TSNR 48
46.55 47.71 46.24 43.94 43.53 29.12

0.571 1.136 1.660 0.679 0.532 0.501

Sparsity 48
49 129 365 80 883 259

1.32 11.85 10.13 9.46 10.57 8.08

Si
gn

al
B

SNR 94
45.56 42.74 41.31 43.02 42.71 30.99

0.538 1.266 1.298 1.260 1.194 0.488

TSNR 94
47.26 46.88 45.11 44.17 43.68 33.39

0.639 1.495 1.654 1.138 0.961 0.507

Sparsity 94
111 216 410 165 952 342

3.54 12.43 11.03 17.41 6.66 11.72

Table I
MEANS/STDS OF SNR, TRUNCATED SNR AND SPARSITY LEVEL OF THE

RESTORED SIGNALS. COMPUTED ON 10 NOISE REALIZATIONS FOR
DATASETS A AND B AND VARIOUS PENALTIES.
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