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Abstract

The multiplicative `q-regularization has been recently introduced in struc-

tural dynamics for solving force reconstruction problems. Practically, the

resolution of this regularization strategy requires the implementation of an

iterative procedure. To this end, an Iteratively Reweighted Least-Squares

algorithm has been originally implemented. The core idea of this algorithm

is to replace the direct resolution of the inverse problem by an equivalent

iterative procedure having an explicit and unique solution at each iteration.

However, the exploitation of this very general idea allows defining other It-

eratively Reweighted schemes. The present paper aims at comparing the

overall performances of three particular Iteratively Reweighted algorithms

for solving force reconstruction problems derived from a more general and

original iterative procedure. The numerical applications proposed in this

contribution highlight the ability of the considered algorithms in providing

consistent regularized solutions with respect to various parameters such as

the measurement noise level or the tolerance chosen to stop the iterative

process.
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1. Introduction

In structural dynamics, force identification problems are generally solved

using additive regularization strategies. The most popular approach is cer-

tainly the Tikhonov regularization (a.k.a. `2-regularization) [1–7]. Although

widely used, it is theoretically mainly applicable to the identification of rather

smooth excitation fields or excitation signals [8], which is not a desirable effect

when a localized source or an impulsive excitation signal have to be identified.

To remedy this problem, LASSO regularization (a.k.a. `1-regularization) has

been developed to promote the sparsity of the regularized solutions, while

keeping the inverse problem convex. For this particular reason, it has at-

tracted many attention in the recent years [9–12]. Aucejo has generalized

the previous approaches by introducing the `q-regularization in the context

of force reconstruction. One of the merits of this regularization strategy is

to allow the resolution of non-convex sparse optimization problems, while in-

cluding Tikhonov and LASSO regularization as special cases [13]. However,

all the procedures described above consider a global a priori on the sources

to identify, meaning that poor reconstructions can be obtained, in situations

where a structure excited by several sources having different spatial distribu-

tions, because the a priori, encoded in the regularization term, has to reflect

a compromise between contradictory distributions. A possible solution to

this issue has been proposed by Aucejo and De Smet to take advantage of

prior local information available on the sources to identify [14]. Practically,
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this approach consists in defining several identification regions for which a

local `q-regularization term is set. Although they have proved their efficiency,

all these techniques requires a proper tuning of the regularization parame-

ter, since it conditions the quality of the identified solution. That is why,

several automatic selection methods have been developed, such as the Mo-

rozov’s discrepancy principle [15], the Generalized Cross Validation [16], the

Unbiased Predictive Risk Estimator [17], the Bayesian estimator [18, 19] or

the L-curve principle [20]. It can be noted that the aforementioned methods

generally requires intensive computations, since they are based either on the

calculation of the root of some equation, the minimization of some functional

or the determination of the maximum curvature of a certain curve. For this

particular reason, Aucejo and De Smet have recently developed the multi-

plicative `q-regularization for reconstructing mechanical sources [21]. This

regularization strategy, originally proposed by Van den Berg et al. [22], con-

sists in including the regularization term as a multiplicative constraint in the

formulation of the inverse problem, which alleviates the need for the prelim-

inary definition of any optimal regularization parameter. From a practical

standpoint, the multiplicative regularization is solved in an iterative manner

from an Iteratively Reweighted (IR) Least-Squares algorithm, a.k.a. IR`2

algorithm. The core idea of this algorithm is to replace the direct resolution

of the inverse problem by an equivalent iterative process having an explicit

and unique solution at each iteration by recasting the `q-regularization term

into a weighted `2-regularization term. However, the IR`2 algorithm is not

the sole Iteratively Reweighted procedure that can be implemented, since

IR`1 algorithms have been proposed by several researchers for solving sparse
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reconstruction problems [23–25]. As an example, Chartrand and Yin have

compared in Ref. [24] the performances of IR`2 and IR`1 algorithms. Because

the difference between the resulting regularized solutions is negligible, they

conclude that IR`2 is the better approach due to its computational simplicity.

In the present paper, an original and general IR`p algorithm is introduced

for solving the force identification problems. More specifically, it is intended

to compare the overall performances of the IR`p algorithm for three partic-

ular values of p. To properly highlight the main features of the proposed

approach, this article is divided into three parts. For the sake of complete-

ness, the multiplicative regularization proposed in Ref. [21] is first recalled

in section 2. Then, section 3 details the implementation of the proposed

IR`p algorithm. Finally, the overall performances of the IR`p algorithm is

illustrated numerically in section 4, where sparse and locally sparse sources

are reconstructed in the frequency domain. In particular, the numerical ap-

plications proposed in this contribution aims at comparing the ability of the

three particular algorithms, deriving from the IR`p scheme, in providing con-

sistent regularized solutions with respect to various parameters such as the

measurement noise level or the tolerance chosen to stop the iterative process.

From the conclusions resulting from the considered applications, a set of rec-

ommendation is proposed to properly define the main parameters of the IR`p

algorithm.
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2. Multiplicative regularization

Let us consider the practical situation where the vibration field X, mea-

sured over the surface of a structure, is caused by an unknown excitation field

F. If the structure is linear and time invariant, its dynamic behavior in the

frequency domain is completely determined by the transfer functions matrix

H, relating the vibration field X to the excitation field F at a particular

frequency, so that:

X = HF + N, (1)

where N is an additive noise accounting for measurement and modeling er-

rors.

Reconstructing excitation forces is far from an easy task, since the di-

rect inversion of the previous relation leads generally to inconsistent results,

because the identified solution is biased by the term H−1N. A classical

approach to circumvent this problem consists in including in the formula-

tion of the inverse problem some prior information on the forces to identify

[1, 14, 26]. To this end, we have recently proposed to apply the multiplicative

regularization, which is mathematically expressed as:

F̂ = argmin
F\{0}

F(X−HF) · R(F), (2)

where:

• F(X−HF) is the data-fidelity term which controls the a priori on the

noise corrupting the data [27–29].

• R(F) is the regularization term that encodes prior information on the

excitation field F [26, 30, 31].
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At this stage, it is clear that the quality of the reconstructed excitation

field is conditioned to the adequacy of the data-fidelity and regularization

terms with the actual noise and the actual source characteristics. Regarding

the definition of the data-fidelity term, it is classically assumed that the

vibration field X is corrupted by an additive Gaussian white noise. As a

result, the data-fidelity term can be defined such that [18, 32, 33]:

F(X−HF) = ‖X−HF‖22. (3)

It should be noted here that if the actual noise is additive but not strictly

Gaussian (e.g. impulsive noise), then previous data-fidelity term can be more

generally written as [13, 28]:

F(X−HF) = ‖X−HF‖ss, (4)

‖ • ‖s is the `s-norm or quasi-norm. The introduction of such a data-fidelity

term in the formulation of the regularization problem only leads to minor

changes (not described in this paper) in the algorithm described in section 3.

The definition of the regularization term requires more attention, since

it has to reflect one’s prior knowledge of the sources to identify. Generally,

forces, whose nature and locations are practically roughly known, can simul-

taneously excite a structure. That is why, it is supposed that the structure

is excited in R different regions by local excitation fields Fr of various types

(localized or distributed, for instance). This assumption allows expressing

the regularization term R(F) as a sum of local regularization terms, that is:

R(F) =
R∑

r=1

R(Fr), (5)
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where R(Fr) is the regularization term associated to the zone r.

In Ref. [14, 21], the local regularization terms are written:

R(Fr) = ‖LrFr‖qrqr , (6)

where qr is the norm parameter belonging to R+∗, while Lr is a smoothing

operator controlling the regularity of the solution in the zone r. Some exam-

ples of the structure of the smoothing operator can be found in Refs. [14, 34].

Finally, by introducing Eqs. (6) and (3) into Eq. (2), one obtains the

general expression of the proposed multiplicative regularization:

F̂ = argmin
F\{0}

‖X−HF‖22 ·
R∑

r=1

‖LrFr‖qrqr . (7)

3. IR`p algorithm

The resolution of the reconstruction problem defined by the multiplica-

tive regularization presented in section 2 requires the implementation of an

iterative procedure, since the solution of a reconstruction problem involving

`qr -norms has generally no closed-form expression.

In Ref. [21], the present multiplicative regularization is solved by an IR`2

algorithm. In this section, we propose to generalize this approach by deriving

an IR`p algorithm, which allows a greater resolution flexibility thanks to the

choice of the value of norm parameter p.
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3.1. General principle

The basic idea behind the proposed IR`p algorithm is to replace the di-

rect resolution of the minimization problem, given by Eq. (7), by an equiv-

alent iterative process obtained by recasting the `qr -regularization term into

a weighted `p, where p ∈ R+∗.

The direct application of this idea to the proposed regularization problem

leads to define the estimated force vector F̂
(k+1)

at iteration k+1 of the

iterative procedure as the solution of the following minimization problem:

F̂
(k+1)

= argmin
F\{0}

‖X−HF‖22 ·
R∑

r=1

∥∥∥W(k)
r

1/p
LrFr

∥∥∥p
p
, (8)

where W(k)
r is a local weighting definite positive diagonal matrix.

As classically done in IR-type algorithm, the weighting matrices W(k)
r are

defined such that:

W(k)
r = diag

[
w

(k)
r,1 , . . . , w

(k)
r,i , . . . , w

(k)
r,Nr

]
(9)

with:

w
(k)
r,i = max

(
ε(k)r ,

∣∣∣f (k)
i

∣∣∣)qr−p , (10)

where Nr is the number of identification points in the zone r, f (k)
i is the ith

component of the vector LrF̂
(k)

r and εr is a small real positive number acting

as a damping parameter. It allows avoiding infinite weights when
∣∣∣f (k)

i

∣∣∣→ 0

and qr < p. Practically, the damping parameter is automatically from the

cumulative histogram of
∣∣∣LrF̂

(k)

r

∣∣∣. More precisely, its value is chosen so that

5% of the values of
∣∣∣LrF̂

(k)

r

∣∣∣ are less than or equal to εr [13, 35].

8



For implementation convenience, Eq. (8) is expressed in a more compact

form by introducing two global matrices, W(k) and L, defined as follows:

W(k) = diag
(
W(k)

1 , . . . ,W(k)
R

)
and L = diag (L1, . . . ,LR) . (11)

These global matrices allow actually writing the minimization problem

given by Eq. (8) under the following generic form:

F̂
(k+1)

= argmin
F\{0}

‖X−HF‖22 ·
∥∥∥W(k)1/p LF

∥∥∥p
p
. (12)

The operational form of the previous minimization problem is obtained

by applying the first-order optimality condition. In doing so, it readily comes

that:

F̂
(k+1)

=
(
HHH + α(k+1) L

(k)H
Ω(k)L

(k)
)−1

HHX. (13)

where α(k+1) is the adaptive regularization parameter, defined such that:

α(k+1) =

∥∥∥X−HF̂
(k)
∥∥∥2
2∥∥∥L(k)

F̂
(k)
∥∥∥p
p

with L
(k)

= W(k)1/p L, (14)

while Ω(k) is a diagonal weighting matrix whose components ω(k)
i are given

by:

ω
(k)
i =

p

2
max

(
ε(k),

∣∣∣f̄ (k)
i

∣∣∣)p−2 , (15)

where f̄ (k)
i is the ith component of the vector L

(k)
F̂

(k)
and ε is the damping

parameter that allows avoiding infinite weights when
∣∣∣f̄ (k)

i

∣∣∣ → 0 and p < 2.

Its value is chosen so that 5% of the values of
∣∣∣L(k)

F̂
(k)
∣∣∣ are less than or equal

to ε(k).
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3.2. Choice of the initial guess and stopping criterion

The proposed resolution algorithm being iterative, the present section

aims at introducing the choices of the initial guess and the stopping criterion.

3.2.1. Choice of the initial guess

It is clear from section 2 that the proposed multiplicative formulation

is generally non-convex, meaning that the existence of a unique minimizer

is not guaranteed. Consequently, the choice of a good initial guess F̂
(0)

is

crucial for a successful reconstruction.

A good initial guess can be defined as a coarse solution of the problem,

easy to compute, but sufficiently close to the solution to ensure the conver-

gence of the iterative process. Such a requirement is fulfilled by the solution

of the standard Tikhonov-like regularization, that is:

F̂
(0)

=
(
HHH + α(0) LHL

)−1
HHX, (16)

where α(0) is a rough estimate of the converged value of the adaptive regular-

ization parameter or, equivalently, the value of the regularization parameter

λ picked by the L-curve method.

The parameter α(0) has to be ideally determined without using any se-

lection procedures or large computational efforts in order to preserve the

advantage of the multiplicative strategy. This task proves to be difficult in

practice, because the order of magnitude of the optimal regularization pa-

rameter is a priori unknown from the data only. To avoid using automatic

selection procedure, some heuristics can be used, as the one proposed in
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Ref. [21]. Another possibility originates from studies on `1-regularization

[36]. Practically, the initial adaptive regularization parameter is defined as a

fraction of regularization parameter above which the optimal solution of the

`1-regularization is the zero vector. From a series of numerical experiments,

its value has been chosen such that:

α(0) = 10−3
∥∥2HHX

∥∥
∞ . (17)

The influence of the heuristic procedure used for computing the initial

solution will be investigated in section 4.

3.2.2. Choice of the stopping criterion

The proposed IR`p algorithm offers a natural definition of the stopping

criterion, based on the relative variation of the adaptive regularization pa-

rameter between two successive iterations. In the present paper, the relative

variation δ of the adaptive regularization parameter is defined such that:

δ =

∣∣α(k+1) − α(k)
∣∣

α(k)
. (18)

As classically done in the literature, the iterative process is stopped when

the relative variation δ is less than or equal to some tolerance. The influence

of the tolerance chosen to stop the iterative process will be examined in

section 4.

3.3. Summary and comments

To clearly highlight each step of the proposed IR`p algorithm, an overview

of the resolution procedure is given in Fig. 1. From the analysis of this figure

and the theoretical derivation proposed in the previous section, several com-

ments can be made. First of all, the proposed IR`p algorithm includes the
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IRLS algorithm (p = 2) as a special case. Furthermore, when only one iden-

tification region is considered, the case q = p leads to the iterative procedure

that would be obtained by applying directly the first-order optimality con-

dition to Eq. (7), which is another example of IR algorithm. Consequently,

the IR`p can actually be considered as a generalization of a certain class of

IR algorithms.

Initialization: Compute α
(0) and F̂

(0)
, Set p and q

Compute W
(k) and Ω

(k)

Convergence ?

Yes

No

F̂

Compute α
(k+1) and F̂

(k+1)

Eqs. (16) and (17)

Eqs. (10) and (15)

Eqs. (13) and (14)

Eq. (18)

Figure 1: Overview of the IR`p algorithm

Furthermore, it is worth mentioning that the proposed IR`p can be di-

rectly applied to additive regularization strategies, since one just has to re-

place the adaptive regularization parameter α(k) by the regularization param-

eter λ(k). The only difficulty in this case is to properly estimate the optimal

value of the regularization parameter at each iteration. For the IR`2 algo-

rithm (i.e. IRLS algorithm), the regularization parameter can be estimated
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from existing automatic selection procedures. On the contrary, for the case

p 6= 2, this problem seems to remain an open issue.

Finally, one should notice that IR algorithms have attracted the attention

of the scientific community and remains an active research topic regarding,

in particular, the convergence and stability of such algorithms. To the best

of our knowledge, some theoretical results related to the convergence and

stability of IR`p algorithm can be found for p = 2 and p = 1 in Refs. [37–41].

For the case p ≥ 1, convergence results can be found in Ref. [40]. Unfor-

tunately, for p ≤ 1, it seems that no theoretical results demonstrating the

convergence of the IR`p algorithm currently exist and this question remains

an open issue. However, the results presented in section 4 show that the

proposed algorithm seems effective for solving force reconstruction problems.

4. Numerical applications

This section intends to investigate, through two frequency-domain ap-

plications, the behavior and the performances of the IR`p algorithm with

respect to several parameters of the problem such as the measurement noise

level, the considered initial solution or the tolerance used to judge the con-

vergence of the algorithm. In the present numerical applications, only the

reconstruction of the spatial distributions of sources associated to a harmonic

point force exciting the studied structures at a particular frequency is con-

sidered for p = {0.5, 1, 2}. This is not a limitation of the method, since

the force spectrum or history can be reconstructed for any value of p from

the proposed approach provided that the system matrix H is established

accordingly. Finally, it is also worth noting that all the reconstructions are
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performed outside resonance frequencies. Indeed, at resonance frequencies,

the resolution of the inverse problem is known to be extremely difficult. Be-

cause the system matrix is singular, the uniqueness of the solution is not

ensured and the identified solution is generally not satisfying whatever the

regularization approach used.

4.1. 1D structure

In the present application, the studied structure is a simply-supported

steel beam with dimensions 1 m×0.03 m×0.01 m excited by a harmonic unit

point force at 350 Hz. The coordinate of the point force, measured from the

left end of the beam, is x0 = 0.6 m.

In the following sections, the reconstructions are performed from the dis-

placement field of the simply-supported beamX computed at 350 Hz, assum-

ing a structural damping ratio of 0.01. To synthesize the measured vibration

field, two numerical steps have been implemented. First, a finite element

model of the beam made up with 20 plane beam elements has been used to

compute the exact displacement field. Then, a Gaussian white noise with a

prescribed SNR has been added to the exact data to simulate measurement

errors, related to the transducers quality. Regarding the transfer functions

matrix H of the system, it has been computed from a FE model of the

free-free beam by assuming that only bending motions are measurable. In

other words, the transfer functions matrix have been dynamically condensed

over the measurable dofs, meaning that the reconstruction problem is fully

determined. The main interest in using free boundary conditions to model

the dynamic behavior of the beam is to allow the identification of external

14



excitations acting on the structure as well as reaction forces at boundaries

[42].

To finalize the definition of the multiplicative regularization, it remains

to determine the number of identification regions and the value of the re-

lated norm parameters. The description of the mechanical problem suggests

that only one identification region needs to be defined. To properly choose

the value of the related norm parameter q, it should be noted that smooth

solutions are promoted for q = 2 [8, 42], while sparse excitation fields are

favored with q ≤ 1 [13, 14, 26, 43–47]. In the light of this observation, it is

reasonable to set q = 0.5, because the target excitation field has theoretically

only three non-zero components.

Furthermore, to quantify the accuracy of the identified solutions with re-

spect to the considered operating conditions, the relative error (RE) and the

peak error (PE) are evaluated. Formally, the relative error is a global indi-

cator of the reconstruction quality, which is formally defined by the relation:

RE =
‖Fref − F̂‖1
‖Fref‖1

. (19)

Contrary to the relative error, the peak error is a local indicator that allows

assessing the reconstruction quality of the point force amplitude. Mathemat-

ically, it is defined such that:

PE =
F̂p − F ref

p

F ref
p

, (20)

where F ref
p is the point force amplitude associated to the reference force vec-

tor Fref, while F̂p is the point force amplitude associated to the identified
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solution F̂.

Finally, in absence of contradictory information, the SNR is set to 35 dB,

the tolerance used for stopping the iterative is set to 10−4, while the initial

solution F̂
(0)

is computed from the initial adaptive regularization parameter

α(0) estimated using the heuristic procedure described in Ref. [21].

4.1.1. Sensitivity of the algorithm to the initial solution

In section 3.2.1, it has be noted that only the definition of the initial

adaptive parameter α(0) is required to initialize the algorithm, since the initial

force vector F̂
(0)

is computed accordingly from Eq. (16). In this context, it is

interesting to assess the behavior of the IR`p algorithm with respect to the

heuristics used the estimate the value of the initial adaptive regularization

parameter. In the following, H1 refers to the heuristic procedure described

in Ref. [21], while H2 designates the estimation provided by Eq. (17).

Fig. 2 presents the excitation fields reconstructed from the IR`p algorithm

for p = {0.5, 1, 2} depending on the heuristics used to estimate the initial

adaptive regularization parameter. The analysis of this figure suggests that

all the identified excitation fields are qualitatively in good agreement with the

reference one. This observation is confirmed by the results listed in Table 1.

The main conclusion of this study is that the both heuristics considered in

this paper can be indistinctly used for initializing the IR`p algorithm. Finally,

one has to mention that the same conclusions have been drawn for the 2D

structure presented in section 4.2. However, these results have not been

reproduced here for the sake of conciseness.
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Figure 2: Reconstructed force vector F̂ at 350 Hz with respect to the heuristic used to

estimate the initial adaptive regularization parameter α(0) – (a) H1 and (b) H2 – (—)

Reference, (−−) IR`2, (− · −) IR`1 and (· · · ) IR`0.5

Table 1: Performances of the IR`p algorithm with respect to the initial estimation of α(0)

– Nit: Number of iterations of the algorithm

Procedure Indicator IR`0.5 IR`1 IR`2

H1

PE (%) -2.49 -2.79 -2.47

RE (%) 1.33 1.91 1.20

Nit 16 19 9

H2

PE (%) -2.49 -2.69 -2.47

RE (%) 1.33 1.79 1.19

Nit 27 16 9
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4.1.2. Influence of the measurement noise level

After applying the IR`p algorithm for a relatively high SNR value, it is

legitimate to wonder whether the quality of the identified solutions remains

the same when the SNR gets lower whatever the value of p. To answer this

question, the IR`p is applied to vibration data having SNR equal to 15 dB,

25 dB and 35 dB. For this numerical experiment, α(0) is estimated from H1.

The results presented in Fig. 3 and listed in Table 2 shows that for high

and moderate SNRs, namely 35 dB and 25 dB respectively, the three consid-

ered IR algorithms perform equally. However, in case of low SNR, typically

15 dB, all the algorithms greatly underestimate the point force amplitude.

In this case, however, it should be noted that IR`0.5 and IR`1 give similar

reconstructions, while IR`2 exhibits a larger peak error. For the sake of com-

pleteness, the results obtained when α(0) is estimated from H2 are presented

in Appendix A. Our results suggest that the standard IR`2 algorithm is less

effective than the other IR algorithms considered when SNR gets lower for

reconstructing sparse excitation fields. As a side note, it should however be

noted that, below 10 dB, all the versions of all the IR algorithms considered

fail in providing consistent reconstruction, since the solution obtained is the

zero vector.

4.1.3. Influence of the choice of the convergence tolerance

In previous sections, all the reconstructions have been performed for a

tolerance set to 10−4. However, as any iterative procedure, the solution ac-

curacy is partly conditioned to the value of the tolerance used to stop the

iterations. For this reason, it is interesting to assess the performance of the
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Figure 3: Reconstructed force vector F̂ at 350 Hz from a vibration field having an SNR

equal to (a) 25 dB and (b) 15 dB – (—) Reference, (−−) IR`2, (− · −) IR`1 and (· · · )

IR`0.5

Table 2: Performances of the IR`p algorithm with respect to the measurement noise level

corrupting the data – Nit: Number of iterations of the algorithm initialized using H1

SNR (dB) Indicator IR`0.5 IR`1 IR`2

35

PE (%) -2.49 -2.79 -2.47

RE (%) 1.33 1.91 2.47

Nit 16 19 9

25

PE (%) -7.62 -7.69 -7.87

RE (%) 3.70 3.75 3.83

Nit 13 20 9

15

PE (%) -25.11 -25.55 -34.10

RE (%) 12.07 12.31 15.32

Nit 14 15 24
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IR`p algorithm with respect to the value of tolerance defined by the user.

Table 3 gathers the results obtained with the different IR algorithms for tol-

erance values ranging from 10−2 to 10−8 and α(0) estimated fromH1. It worth

noting here that the three considered IR algorithms give similar regularized

solutions whatever the value of the tolerance. However, it is important to

note that IR`1 is subject to convergence issues, as indicated by the number

of iterations made by the algorithm, which dramatically increases as the tol-

erance decreases. It should be noticed here that the convergence difficulty

of IR`1 observed in the case of a high SNR value (here 35 dB) disappears

when the SNR gets lower [see Appendix B]. All these results suggest to define

the tolerance so as to obtain a reasonable compromise between the solution

accuracy and the computational efficiency.

4.1.4. Recommendations

In the light of the previous results, the following recommendations can

be made to wisely use the IR`p algorithm:

1. Whatever the value of p, the proposed IR`p algorithm is almost insensi-

tive to the choice of the heuristics considered in this paper to estimate

the initial adaptive regularization parameter α(0). Consequently, it is

recommended to apply the procedure H2, since it is requires fewer op-

erations than H1 to obtain a reasonable initial adaptive regularization

parameter and is, de facto, computationally more effective.

2. When the target excitation field is sparse, one suggests to use the IR`p

algorithm for p ≤ 1, because it leads to more consistent reconstructions

in case of very noisy data.
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Table 3: Performances of the IR`p algorithm with respect to the tolerance fixed to stop

the iterative process – Nit: Number of iterations of the algorithm initialized using H1

Tolerance Indicator IR`0.5 IR`1 IR`2

10−2

PE (%) -2.49 -2.84 -2.47

RE (%) 1.33 1.98 1.20

Nit 14 11 8

10−4

PE (%) -2.49 -2.79 -2.47

RE (%) 1.33 1.91 1.20

Nit 16 19 9

10−6

PE (%) -2.49 -2.73 -2.47

RE (%) 1.33 1.93 1.20

Nit 18 195 10

10−8

PE (%) -2.49 -2.73 -2.47

RE (%) 1.33 1.93 1.20

Nit 21 200 11
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3. Our results suggest that a large tolerance can be used, but we are

prone to think that it is not a wise practice, especially when dealing

with non-convex inverse problems. Nevertheless, one suggest to set the

tolerance of the iterative process to 10−4 in order to define a reason-

able compromise between the solution accuracy and the computational

efficiency.

4.2. 2D structure

This second application aims at confirming the conclusions drawn in the

previous section and potentially review the proposed recommendations by

implementing the IR`p algorithm on a more complex case study. However,

to limit the size of the paper, the whole study carried out in the previous

section is not reproduced here. This application is actually focused on the

most critical points that allows completing the analysis of the IR`p algorithm.

4.2.1. Problem description

In the present application, one seeks to identify a harmonic point force of

unit amplitude acting at 350 Hz on a thin simply supported steel plate with

dimensions 0.6 m×0.4 m×0.005 m. The coordinates of the point force, mea-

sured from the lower left corner of the plate, are (x0, y0) = (0.42 m, 0.25 m).

Practically, this configuration allows studying the influence of the definition

of local regularization terms, since the present excitation field exhibits two

different spatial distributions over the structure, namely a smooth distribu-

tion of the reaction forces at boundaries and a singular distribution around

the location of the point force.

In this example, the reconstructions are performed from the velocity field
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X computed at 350 Hz, assuming a structural damping ratio equal to 0.01.

To properly simulate experimental measurements, the exact vibration dis-

placement field Xexact is first computed from a FE mesh of the plate made

up with 187 shell elements, assuming that only bending motions are measur-

able. Then, a Gaussian white noise, with a prescribed SNR is added to the

exact data to simulate measurement errors.

Finally, the transfer functions matrix H is computed, as in section 4.1,

from the FE model of the structure with free boundary conditions, assuming

that only normal velocities are measurable, meaning that the reconstruction

problem is fully determined.

4.2.2. Application

To numerically validate any force reconstruction strategy, it is first nec-

essary to define the reference force vector Fref that could serve as a proper

benchmark. This reference force vector is computed from the transfer func-

tions matrix H and the exact displacement field Xexact thanks to the follow-

ing relation:

Fref = H−1Xexact. (21)

As expected, the reference force vector at 350 Hz corresponds to the

description of the test case given in the very beginning of this section, since

it exhibits smooth reaction forces at boundaries of the plate as well as a unit

point force F0 at (x0, y0) = (0.42 m, 0.25 m).

Consequently, the analysis of the reference force vector suggests that two

identification regions can be defined: (i) a central region associated to the
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Figure 4: Reference force vector Fref at 350 Hz

shape parameter q1 and containing the point force only and (ii) a region asso-

ciated to the shape parameter q2 and corresponding to the boundaries of the

plate [see Fig. 5]. Given this partition of the structure and prior information

on the sources to identify associated to each region, it is reasonable to set

(q1, q2) = (0.5, 2) [8, 21].

Following the recommendations given in section 4.1.4, the proposed re-

constructions are performed using α(0) estimated from the heuristics H2 and

a tolerance set to 10−4. The first application we propose is the reconstruction

of the excitation field presented in Fig. 4 using a vibration field having a SNR

equal to 25 dB. Fig. 6 and Table 4 summarize the results obtained from the

IR`p algorithm. The analysis of theses results shows that the excitation fields

reconstructed from the three proposed IR algorithms are in a good agreement
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Figure 5: Definition of the identification regions - (◦) region 1 (Point force), (×) region 2

(Reaction forces) and (♦) location of the point force

with the reference one. In particular, it should be pointed out that IR`0.5

variant performs better for quantifying the point force amplitude. However,

it is not the better approach in this case to properly reconstruct the reaction

forces, since IR`1 and IR`2 provide better solutions in this case.

Table 4: Performances of the IR`p algorithm for a SNR equal to 25 dB – Nit: Number of

iterations of the algorithm

Indicator IR`0.5 IR`1 IR`2

PE (%) -4.33 -5.04 -5.10

RE (%) 24.18 19.05 19.02

Nit 11 12 11
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Figure 6: Reconstructed force vector F̂ at 350 Hz from IR`p algorithm for a SNR equal to

25 dB. (a) Surface plot – IR`2, (b) Surface plot – IR`1, (c) Surface plot – IR`0.5 and (d)

Section view at y0 = 0.25 m – (—) Reference, (−−) IR`2, (− · −) IR`1 and (· · · ) IR`0.5
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Perhaps more interesting is the behavior of the IR`p algorithm in case of

low SNR. Indeed, when the SNR is set to 15 dB, the three IR algorithms

behave rather differently as observed in Fig. 7 and Table 5. In the present

situation, only the IR`0.5 and IR`1 algorithms are able to identify the point

force quite satisfactorily, while all the IR algorithms provide a reasonable

reconstruction of the reaction forces. All in all, the global analysis of obtained

results suggests that the IR`1 provide the better compromise between the

quantification of the point force amplitude and the overall accuracy of the

reconstructed excitation field.

Table 5: Performances of the IR`p algorithm for a SNR equal to 15 dB – Nit: Number of

iterations of the algorithm

Indicator IR`0.5 IR`1 IR`2

PE (%) -9.25 -11.70 -99.99

RE (%) 30.39 26.33 34.93

Nit 21 31 15

Consequently, in the light of the results presented in this section, it seems

that the IR`p algorithm for p ≤ 1, and especially, p = 1, is the better

option, when the excitation field to identify is sparse or locally sparse. This

observation suggests that the choice of p is related to the overall distribution

of the excitation sources over the structure, i.e. mainly sparse or distributed.

5. Conclusion

In the present paper, a general and original IR`p algorithm has been intro-

duced to solve a force reconstruction problem formulated as a multiplicative
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Figure 7: Reconstructed force vector F̂ at 350 Hz from IR`p algorithm for a SNR equal to

15 dB. (a) Surface plot – IR`2, (b) Surface plot – IR`1, (c) Surface plot – IR`0.5 and (d)

Section view at y0 = 0.25 m – (—) Reference, (−−) IR`2, (− · −) IR`1 and (· · · ) IR`0.5
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regularization problem. The initial motivation of this work was to assess

the overall performances of this algorithm for three particular values of p,

namely 0.5, 1 and 2. The numerical applications, we have conducted in this

contribution, have given rise to a set of recommendations to define the main

parameters of the algorithm such as the tolerance used to stop the iterations

or the value of the parameter p given a priori information on the sources to

identify. In particular, it has been shown that the IR`p leads to consistent

reconstructions whatever the value of p chosen by the user when the SNR

of the vibration data is relatively high. In case of moderate or low SNR, it

is preferable to set p ≤ 1 when the excitation field to identify is sparse or

locally sparse, even though no formal proof of convergence is available yet in

this particular scenario. Finally, even though the proposed IR`p algorithm

has been derived in the context of the multiplicative regularization, it worth

noting that it can be directly applied to solve additive regularization prob-

lem, provided that an appropriate regularization parameter can be estimated

at each iteration of the algorithm.

Appendix A. Influence of the measurement noise level when choos-

ing α(0) from H2

In this appendix, we propose to the reader a presentation of the results

associated to the numerical experiments described in section 4, where the per-

formances of the IR`p algorithm with respect to the noise level is examined.

In particular, this appendix presents the results obtained when the initial

adaptive regularization parameter α(0) is estimated from H2. The compar-

ison of the results listed in Tables 2 and A.6 are very similar and confirm
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the conclusion drawn in section 4.1.1, stating that whatever the value of p,

the proposed IR`p algorithm is almost insensitive to the choice of the heuris-

tics considered in this paper to estimate the initial adaptive regularization

parameter α(0).

Table A.6: Performances of the IR`p algorithm with respect to the measurement noise

level corrupting the data when choosing α(0) from H2 – Nit: Number of iterations of the

algorithm

SNR (dB) Indicator IR`0.5 IR`1 IR`2

35

PE (%) -2.49 -2.69 -2.47

RE (%) 1.33 1.79 1.19

Nit 27 16 9

25

PE (%) -7.62 -7.70 -7.98

RE (%) 3.70 3.79 4.11

Nit 13 32 9

15

PE (%) -25.11 -25.55 -33.72

RE (%) 12.07 12.30 14.83

Nit 14 15 25

Appendix B. Influence of the convergence tolerance for SNR = 15

dB

This appendix provides the results related the influence of the value of the

tolerance defined by the user to stop the iterative process, when the vibration

data are corrupted by an additive Gaussian white noise having a SNR equal
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to 15 dB.

The results listed in Table B.7 are in line with those presented in Table 3.

The major noticeable difference lies in the number of iterations made by the

algorithm to reach the convergence. Indeed, while IR`1 exhibits convergence

issues for high SNR values, it is no more the case when the SNR gets lower.

Table B.7: Performances of the IR`p algorithm with respect to the tolerance fixed to stop

the iterative process for SNR = 15 dB – Nit: Number of iterations of the algorithm

Tolerance Indicator IR`0.5 IR`1 IR`2

10−2

PE (%) -2.49 -2.79 -2.47

RE (%) 1.33 1.91 1.20

Nit 10 11 8

10−4

PE (%) -25.11 -25.55 -34.10

RE (%) 12.07 12.31 15.32

Nit 14 15 24

10−6

PE (%) -25.11 -25.55 -34.15

RE (%) 12.07 12.31 15.33

Nit 17 19 43

10−8

PE (%) -25.11 -25.55 -34.15

RE (%) 12.07 12.31 15.33

Nit 31 23 62
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