
HAL Id: hal-02179309
https://hal.science/hal-02179309v1

Submitted on 16 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pre-conception maternal helminth infection transfers via
nursing long-lasting cellular immunity against helminths

to offspring
Matthew Darby, Alisha Chetty, Dunja Mrjden, Marion Rolot, Katherine L.
Smith, Claire Mackowiak, Delphine Sedda, Donald Nyangahu, Heather B

Jaspan, Kai-Michael Toellner, et al.

To cite this version:
Matthew Darby, Alisha Chetty, Dunja Mrjden, Marion Rolot, Katherine L. Smith, et al.. Pre-
conception maternal helminth infection transfers via nursing long-lasting cellular immunity against
helminths to offspring. Science Advances , 2019, 5 (5), pp.eaav3058. �10.1126/sciadv.aav3058�. �hal-
02179309�

https://hal.science/hal-02179309v1
https://hal.archives-ouvertes.fr


Darby et al., Sci. Adv. 2019; 5 : eaav3058     29 May 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

1 of 9

I M M U N O L O G Y

Pre-conception maternal helminth infection transfers 
via nursing long-lasting cellular immunity against 
helminths to offspring
Matthew G. Darby1*, Alisha Chetty1*, Dunja Mrjden1†, Marion Rolot2, Katherine Smith1,3, 
Claire Mackowiak4, Delphine Sedda4, Donald Nyangahu1, Heather Jaspan1,5, Kai-Michael Toellner6, 
Ari Waisman7, Valerie Quesniaux4, Bernhard Ryffel4, Adam F. Cunningham6,8*, Benjamin G. Dewals2*, 
Frank Brombacher1,9,10‡, William G. C. Horsnell1,8,4*‡

Maternal immune transfer is the most significant source of protection from early-life infection, but whether 
maternal transfer of immunity by nursing permanently alters offspring immunity is poorly understood. Here, we 
identify maternal immune imprinting of offspring nursed by mothers who had a pre-conception helminth infec-
tion. Nursing of pups by helminth-exposed mothers transferred protective cellular immunity to these offspring 
against helminth infection. Enhanced control of infection was not dependent on maternal antibody. Protection 
associated with systemic development of protective type 2 immunity in T helper 2 (TH2) impaired IL-4R−/− off-
spring. This maternally acquired immunity was maintained into maturity and required transfer (via nursing) to the 
offspring of maternally derived TH2-competent CD4 T cells. Our data therefore reveal that maternal exposure to a 
globally prevalent source of infection before pregnancy provides long-term nursing-acquired immune benefits to 
offspring mediated by maternally derived pathogen-experienced lymphocytes.

INTRODUCTION
Maternal transfer of immunity both in utero and via nursing pro-
vides critical sources of early-life immune education and protection 
from disease. Maternally acquired protection from infection is 
typically associated with a passive transfer to offspring of maternal 
innate opsonins and antibody, which provide a transient, but critical, 
early-life ability to counter pathogens (1, 2).

Nursing alone provides important protection to offspring against 
both infectious and noninfectious diseases (3, 4). While this protection 
is associated primarily with transfer of maternally derived antibody 
(5), other immunogenic components of breast milk such as cytokines 
and antigen can also influence offspring immunity (6). Epidemio-
logical and experimental evidence indicates that maternal immune 
transfer via nursing may also provide long-lasting pathogen-specific 
protection from infection, despite the short half-life of substances 
transferred via breast milk (7, 8). However, the mechanisms under-
lying any such long-term protection are not well defined, and 

the contribution from incorporation and maintenance of mater-
nal components by offspring has hitherto been relatively un-
addressed (9).

Helminth infections are an important cause of infection and dis-
ease and leave profound immunological footprints on a host (9, 10). 
These infections are extremely common and have important effects 
on multiple components of host immunity. Evidence supports the 
importance of parasite- host coevolution for optimal function and 
regulation of host immunity (11, 12). Helminth infections before and 
during pregnancy are known to have significant consequences 
for offspring. For example, maternal infection with the nematode 
Heligmosomoides polygyrus (Hp) provides high levels of nursing- 
acquired antibody that mediates protection to offspring against this 
infection (13). Maternal helminth infections also have bystander effects, 
either driving susceptibility to or protection from allergy depending 
on the progression of, in this case, a maternal Schistosoma mansoni 
infection (14).

Clinical studies also confirm the significant influence of maternal 
helminth exposure on a child’s immune system. For example, chil-
dren whose mothers were infected with helminths during pregnancy 
display populations of lymphocytes responsive to helminth anti-
gens (15); mothers infected with helminths during pregnancy can 
also confer protection to their children against eczema (16). The 
mechanisms underlying these maternally associated effects in off-
spring are, however, not well defined. As helminth exposure is a huge 
global coordinator of our immunological footprint, understanding this 
influence in the context of the maternal-offspring immunological 
relationship is important (9). This transgenerational immunological 
relationship is pivotal for our understanding of how early-life events 
influence lifelong ability to control disease.

In this study, we address how exposure to and resolution of a 
helminth infection before pregnancy influences offspring cellular 
immunity to this infection. To address this question, we developed 
mouse models of maternal helminth infection effects on offspring 
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control of infection. This approach allowed us to test how pre-conception 
maternal infection with the nematode Nippostrongylus brasiliensis 
(Nb) influenced offspring ability to control an Nb infection both 
early in life and when mature. Our model allowed us to identify (i) 
the critical importance of nursing in transfer of protective immunity, 
(ii) that offspring-acquired protection was cellular and not mediated 
by antibody, (iii) that protection could correct germline susceptibility 
to infection, (iv) that protection persisted into adulthood, and (v) 
that this protection was maintained in an allogeneic setting and (vi) 
required the dissemination via nursing of maternally derived T helper 
2 (TH2)–competent CD4 T cells throughout the body. Our findings 
therefore demonstrate that maternal transfer and offspring incor-
poration of nursing-derived pathogen-experienced lymphocytes can 
provide long-lasting immunity to infection.

RESULTS
Pre-conception Nb infection transfers protective immunity 
against Nb infection to offspring via nursing
To identify how exposure to and resolution of a helminth infection 
before pregnancy influenced offspring immunity, we modeled this 
scenario using the murine helminth parasite Nb. Here, female BALB/c 
mice were infected with Nb and then treated with an anti-helminth 
drug 7 days later. Two weeks after treatment, these female mice were 
mated with naïve males, and offspring immune responses were ana-
lyzed (Fig. 1A). Total cell numbers and CD4+ T cell numbers in the 
spleens of a 14-day-old offspring born to Nb-exposed mothers (NbM) 
and those born to naïve mothers (NvM) were similar (Fig. 1, B and C), 
but the numbers of activated effector CD4+ T cells in NbM offspring 
were raised when compared to NvM offspring (Fig. 1C).
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Fig. 1. Maternal helminth infection confers systemic protective immunity against Nb to pups via nursing. (A) Female BALB/c mice were infected with 500 × Nb L3 
and, 7 days PI, were cleared of Nb by a 5-day oral treatment with ivermectin; at day 21 PI, mice were mated and immunity in subsequent pups was established at various 
times after birth and/or Nb infection. (B) Total splenocyte cellularity in 14-day-old offspring. (C) Total numbers of CD+CD4+ T cells and activated T effector CD4 T cell 
populations (CD3+C0D4+CD44+CD62Llo) in 14-day-old offspring. (D) Intestinal worm burdens at day 5 PI of pups born to NvM or NbM mothers and infected with 250 × Nb L3 
when 14 days old. (E) NvM and NbM offspring anti-CD3 restimulated splenocyte IL-13 secretion, lung tissue homogenate levels of IL-13 and IL-13+CD3+CD4+ T cells/MST, 
and Nb-specific serum immunoglobulin G1 (IgG1) at day 5 after Nb infection. OD405nm, optical density at 405 nm. (F) Worm burdens of NvM and NbM offspring infected 
when 14 days old and euthanized at day 5 PI following fostering on NvM or NbM dams at 3 days old. (G) Worm burdens of NvM and NbM offspring infected when 14 days 
old and euthanized at day 5 PI following fostering on WT or IL-4R−/− NvM and NbM dams. (H) NvM pups fostered by either NvM or NbM anti-CD3 restimulated splenocyte 
IL-13 secretion, lung tissue homogenate levels of IL-13 and IL-13+CD3+CD4+ T cells/MST, and Nb-specific serum IgG1 at day 5 after Nb infection. All data are representative 
of a minimum of two experimental repeats. *P < 0.05, **P < 0.01, and ***P < 0.001.
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Increased T cell activation suggested that NbM offspring may 
acquire an enhanced ability to control Nb infection. We therefore 
tested whether NbM transferred an enhanced interleukin-4 receptor 
 (IL-4R)–driven type 2 immunity against Nb to their offspring. 
Reduced intestinal worm burdens were found at day 5 post-infection 
(PI) in 19-day-old NbM pups in comparison to NvM pups (Fig. 1D). 
In addition to raised anti-Nb immunoglobulin G1 (IgG1) in NbM 
pups (Fig. 1E), we also found enhanced levels of the TH2 cytokine 
IL-13 (essential for resolving Nb infection) in the lung, mediastinal 
lymph nodes (MST), and spleen, demonstrating that maternal 
transfer of immunity resulted in a systemic TH2 priming in NbM off-
spring reflective of acquired host-protective pulmonary TH2 immu-
nity to Nb (17).

We next investigated whether protection in NbM offspring was 
conferred in utero or via nursing. Here, we fostered 3-day-old pups 
born to NvM or NbM onto either NbM or NvM foster dams. Subse-
quent infection of fostered pups resulted in pups nursed by NbM 
mothers having reduced worm burdens 5 days PI and displaying 
early clearance of Nb by day 7 PI when compared to pups nursed on 
NvM (Fig. 1F). This protection was dependent on maternal TH2 
competency: Wild-type (WT) offspring nursed by IL-4R−/− NbM 
did not display reduced intestinal worm burdens when compared to 
WT offspring nursed by WT NbM (Fig. 1G). Analysis of nursing- 
dependent transfer of protection in pups born to WT NvM but 
nursed on WT NbM also revealed both elevated Nb-specific IgG1 
and systemically raised IL-13 levels associated with enhanced ma-
ternal transfer of protection from infection (Fig. 1H).

Nursing-derived protection is dependent on maternal B cells 
but not antibody
Nursing-derived protective immunity in offspring is often attributed 
to passive antibody transfer (18). Our findings also demonstrated 
associations between raised Nb-specific antibody in offspring and 
enhanced protection from Nb. Moreover, milk from NbM had 
higher Nb-specific IgG1 titers than milk from NvM (Fig. 2A). However, 
existing literature has shown that immunity to Nb is largely antibody 
independent (10, 19). Nevertheless, studies using other helminth 
infection models show that transfer of serum from infected mice to 
pups confers high levels of protection to offspring (13). In support 
of antibody being redundant in providing maternally derived 
protection in the case of Nb infection, we found that transfer of 
NbM serum to NvM pups did not lead to a significant reduction in 
worm burdens when compared to recipients of NvM serum (Fig. 2B). 
In addition, WT NvM pups were nursed on IgMi mice that have a 
functional B cell receptor but do not secrete antibody (20). Here, 
NvM pups nursed by IgMi NbM and WT NbM mothers showed 
equivalent reductions in worm burdens that were independent of 
Nb-specific IgG1 antibody titers in either the pups or mother 
(Fig. 2C). Together, these data show that transfer of maternally 
derived antibody is not essential to the transfer of protection against 
Nb to offspring.

While antibody is not directly important in immunity to Nb, B 
effector cell cytokine responses and antigen presentation have been 
shown to contribute to CD4 T cell–driven recall immunity to Nb in 
an IL-4R–dependent manner (10). We nursed WT NvM pups on 
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Fig. 2. Protection in NbM pups is maternal B cell dependent but not antibody dependent. (A) Nb-specific IgG1 levels in breast milk taken from the stomach of pups 
nursed by NvM or NbM. (B) Intestinal worm burdens at day 5 PI of NvM offspring infected at 14 days old with 250 × Nb L3 following intravenous administration of 150 l 
of heat-inactivated serum from either NvM or NbM. (C) Intestinal worm burdens and Nb-specific serum IgG1 levels at day 5 PI of NvM offspring infected at 14 days old with 
250 × Nb L3 after being fostered on either WT and IgMi NbM mice or WT and IgMi maternal Nb-specific serum IgG1 levels. (D) Three-day-old NvM pups were fostered on 
WT NvM/NbM or MT NvM/NbM dams. Pups were infected when 14 days old with 250 × Nb L3 and euthanized at day 5 PI. Offspring intestinal worm burden was analyzed, 
and MST IL-13+CD3+CD4+ T cells were quantified at day 5 PI. (E) Intestinal worm burdens at day 5 PI of NvM offspring infected at 14 days old with 250 × Nb L3 after being 
fostered on either WT or B cell–IL-4R–deficient (MB1creIL-4R−/lox) dams. All data are representative of a minimum of two experimental repeats. *P < 0.05 and **P < 0.01.
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WT and MT NvM and NbM dams and found that no protection was 
transferred to pups nursed by MT NbM dams (Fig. 2D). Associated 
with this reduced protection were significantly reduced CD4+IL-13+ 
populations in offspring nursed by MT NbM dams when compared 
to protected pups nursed by WT NbM (Fig. 2D). This effect was also 
dependent on maternal B cells being type 2 competent. Pups nursed on 
NbM dams deficient in IL-4R specifically on B cells (MB1creIL-4R−/lox) 
had significantly higher worm burdens than pups nursed by WT 
NbM mothers (Fig. 2E). These data show that a maternal B cell re-
sponse reflective of B effector cell–dependent activation of CD4 
T cells contributes to NbM dam–derived protection in nursed pups.

Transfer of protection from NbM is long term and associated 
with a systemic distribution of maternal TH2 CD4 T cells in 
the offspring
The systemic profile of raised TH2 CD4 T cell–associated immunity 
in NbM nursed pups when compared to NvM nursed pups is a 
striking effect on pup immunity. As milk contains significant pop-
ulations of immune cells, we hypothesized that these cells may be 
important contributors to this enhanced anti-Nb immunity in 
NbM-nursed offspring. This could be affected by transferred Nb- 

experienced maternal CD4 T cells systemically influencing offspring 
protection derived from NbM dams. Moreover, such a systemic effect 
on immune readouts of protection associated with CD4 T cells may 
also suggest that the effect could result in transfer of immune memory 
that could persist into adulthood in NbM foster pups. Direct input 
from passively transferred maternal antibody would be minimal in 
this adult setting, as transferred antibody eventually degrades after 
transfer (21). To identify such an effect, naïve Thy1.2 offspring were 
nursed on either NvM or NbM syngeneic Thy1.1 dams and infected 
with Nb at 6 to 8 weeks of age (Fig. 3A).

Intestinal worm burdens at day 5 PI were significantly reduced 
in offspring nursed by NbM dams compared to those nursed by NvM 
dams (Fig. 3B). This long-term maintenance of maternally acquired 
immunity is strongly associated with elevated numbers and proportions 
of both endogenous and maternally derived TH2-competent CD4 
T cells in both secondary and peripheral immune sites associated 
with adaptive immune protection against Nb infection (10, 17) in 
NbM offspring (Fig. 3, C to F, and fig. S1).

Significantly higher numbers of maternally derived Thy1.1 CD4 T cells 
were detected in both the lungs (Fig. 3C) and MST (fig. S1) of NbM 
dam–nursed offspring than in pups nursed by NvM dams. Significantly 
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more maternally derived cells were activated (CD4+CD44+CD62Llo) in 
NbM than NvM offspring (Fig. 3D). The NbM-derived populations 
of Thy1.1 CD4 T cells had higher levels of TH2 potential. Greater 
numbers of NbM dam–derived lung cells expressed the IL-33 receptor 
T1/ST2 (IL-33 signaling through this receptor can initiate type 2 
immunity) when compared to offspring nursed by NvM dams 
(Fig. 3E). Moreover, higher numbers of NbM dam–derived CD4+ 
T cells were also IL-13+ (Fig. 3F). This raised type 2 immune potential 
was also apparent in offspring’s endogenous CD4 T cells in the lung 
(Fig. 4, C to F) but not the MST (fig. S1). Therefore, a maternal 
pre-conception Nb infection enabled transfer via nursing to, and sys-
temic integration by, offspring of populations of Nb protective 
CD4+ T cells. In addition, the presence of these cells is also associated 
with raised endogenous type 2 protective immunity in the lungs of 
NbM offspring against Nb. However, pups nursed on mothers 
exposed to a single intestinally restricted helminth Hp for 17 days 
before pregnancy did not demonstrate raised populations of mater-
nally derived CD4+ T cells in the mesenteric lymph nodes or lung 
(fig. S2). This suggests that differences in the host-parasite relationship 
may influence the ability of the mother to transfer a protective CD4 
T cell response.

Therefore, NbM offspring acquired long-term protective maternal 
immunity that associated with a systemic dissemination of maternally 
derived TH2-competent CD4 T cells, which significantly enhanced 
both the overall and endogenous TH2 CD4 T cell compartment of 
the offspring.

Long-term protection is maintained in an allogeneic setting
To test whether our findings related to transfer of maternal CD4 
T cells were relevant in an outbred setting representative of typical 
maternal-offspring relationships, we nursed naïve C57BL/6 pups 
on either NvM or NbM BALB/c dams (Fig. 4A) and found that 6- to 
8-week-old NbM offspring had significantly reduced Nb burdens 
in the intestine when compared to NvM offspring (Fig. 4B). This 
is associated with increased numbers of maternally derived CD4 
T cells (CD3+CD4+H2Dd+) in the lung (fig. S3), albeit in reduced 

numbers when compared to those seen in a major histocompatibility 
complex (MHC)–matched setting (Fig. 3). In addition, as seen in an 
MHC-matched setting (Fig. 3), offspring protection in an outbred, 
MHC-mismatched setting is associated with a raised type 2 CD4 
T cell response. Here, NbM offspring displayed significantly increased 
levels of CD4 T cell activation, expression of ST2, and secretion of 
IL-13 (Fig. 4C). This effect was also found when NvM and NbM 
outbred BALB/c × C57BL/6 dams were bred and BALB/c pups were 
subsequently fostered by them (fig. S4).

Nursing-derived protection corrects susceptibility to Nb in 
IL-4R−/− pups
We tested whether transfer of maternally derived cells via nursing 
to pups could support a type 2 immune environment in the lung 
capable of controlling the parasite (22–24) in susceptible IL-4R−/− 
pups to Nb. Transfer of WT immune cells into IL-4R−/− mice has 
been shown to reverse significant immunological pathology (i.e., 
graft-versus-host disease) (25). Moreover, transfer of maternal 
immune cells into offspring has been shown by others to correct 
profound immune phenotypes, e.g., in transforming growth factor– 
(TGF−/−) offspring (26). We found that IL-4R−/− pups nursed on 
WT NbM showed significantly reduced worm burdens at day 5 PI 
when compared to IL-4R−/− pups nursed by WT NvM mothers 
(Fig. 5A). This protection in NbM IL-4R−/− pups correlated with 
systemically raised CD4 T cell–associated IL-13 responses when 
compared to NvM IL-4R−/− pups; specifically raised IL-13 in the 
lung and in CD4 T cells in the lung-draining lymph node along with 
increased secretion of IL-13 by anti-CD3 restimulated splenocytes 
(Fig. 5B).

Such a transfer of protection to IL-4R−/− offspring would require 
transfer of a range of lymphoid and myeloid cells to achieve this 
effect. Therefore, protection related to transfer of immune cells may 
not be restricted to transfer of CD4 T cells. Analysis of immune cell 
populations in breast milk revealed increased cell numbers of both 
lymphoid and myeloid cells in breast milk from NbM when com-
pared to NvM (Fig. 5C). This suggests that nursing by NbM could 
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confer protective immunity to IL-4R−/− offspring through the transfer 
of a range of not only CD4 T cells but also populations of myeloid 
effector cells, which, together, could coordinate an adaptive-like 
immunity against Nb in the IL-4R−/− lung.

Offsprings’ nursing-derived immunity against Nb is 
dependent on maternally derived type 2 T cells, and these 
cells are enriched in the milk of NbM mothers
Together, our data show that transfer of immunity to offspring was 
nursing dependent but not dependent on passive antibody acquisition. 
Protection is instead associated with a systemic alteration of offspring 
immunity related to maternal TH2 CD4 T cells penetrating organs 
throughout the body. The subsequent enhanced type 2 immune 
footprint left on the offspring is also associated with transfer of 
protection in an allogeneic setting. In support of this transfer of 
protection coming via CD4 T cells in the milk, we identified significantly 
raised numbers of maternal CD3+CD4+ T cells in NbM dam milk when 
compared to NvM (Fig. 6A). Moreover, these NbM CD3+CD4+ T cells 
showed increased numbers of type 2 competent CD3+CD4+ST2+ 
T cells (Fig. 6A). To establish whether transfer of protection was 
dependent on maternal CD4 T cells being type 2 competent, we 
nursed naïve WT offspring by NbM dams with disrupted IL-4R 
expression specifically in their T cell compartment (ilckCreIL-4R−/lox 
mice). Offspring nursed on NbM ilckCreIL-4R−/lox failed to show 
enhanced control of Nb, related to an impaired systemic ability to 
launch a raised IL-13 response after restimulation (Fig. 6B). These 
data show that type 2 competent maternal CD4 T cells are required 
for transfer of immunity to offspring and that these protective CD4 
T cells are enriched in NbM dam milk.

DISCUSSION
This study reveals that a pre-conception maternal Nb infection 
transfers a strong and long-lasting protective immunity against Nb 
infection to her offspring and that this protection was acquired 
solely through offspring nursing. This maternal imprinting via 
nursing was profound as demonstrated by its ability to correct 
genetic immune susceptibility to infection. Moreover, this protection 

from infection persisted into adulthood and was maintained even in 
an allogeneic setting.

Protection was not dependent on passive antibody transfer. This 
is in agreement with our own and others’ findings that antibody has 
minimal input in immunity to Nb (10, 19). This is not the case for 
other helminths such as Hp, where antibody contributes significantly 
to host immunity against the parasite (27, 28). It also highlights that 
maternally derived immunological influence in offspring from 
helminth infection will differ depending on the species; unlike Nb, 
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nursing-derived protection against Hp is dependent on antibody 
transfer (13). While our findings showed that antibody was not 
essential, we still found a requirement for maternal B cells in transfer 
of protection that related to offspring acquiring a type 2 CD4 T cell 
response. These findings show a maternally driven B effector–type 
response, which may be mediated via B cell–secreted cytokines and/or 
antigen presentation (10), driving the subsequent transfer of CD4 
T cell protection.

Transfer of protection to NbM offspring was dependent on a systemic 
increase in offspring of CD4 T cell populations with raised levels of 
canonical anti-helminth TH2 competency and thereby an enhanced 
immunological ability to resolve an Nb infection (10). The biological 
potential of this effect to transfer protection was highlighted by our 
demonstration that nursing by WT NbM transferred protection 
against Nb to IL-4R−/− offspring, which have a genetically impaired 
ability to launch type 2 immune responses. This protection was 
coincident with IL-4R−/− offspring having a heightened systemic 
TH2 competency. Typically, IL-4R−/− mice display an abrogated 
ability to secrete TH2 cytokines such as IL-13 (29); however, here, 
we found that IL-4R−/− offspring nursed by NbM are able to secrete 
IL-13 at levels up to fourfold higher than IL-4R−/− offspring nursed 
by NvM. Moreover, we found that populations of maternally derived 
myeloid cells known to affect pulmonary anti-Nb immunity were 
also present in high numbers in the breast milk. Therefore, the 
required complement of type 2 immune cells for driving pulmonary 
immunity to Nb could be acquired via nursing.

Others have also shown that maternal cell transfer occurs and 
can dramatically influence early-life immunity in different contexts, 
e.g., by reversing the immune pathology resulting from lack of TGF 
(26). However, studies addressing immune cell transfer via nursing 
have not demonstrated whether this effect confers long-term influence 
on offspring ability to control infection. Our data show that pathogen- 
experienced maternal T cells can systemically train offspring immunity. 
We show that the influence and penetration of these cells in offspring 
are not restricted to the digestive tract (the site of cell uptake) (30); 
these cells can also be found in (for example) the lung and spleen. 
As this TH2 CD4 T cell–associated enhanced control of infection 
was maintained in an allogeneic setting, our observations are applicable 
in an immune setting reflective of normal MHC diversity in humans. 
In this allogeneic setting, antigen presentation would be impaired 
between maternally derived cells and foster pup cells. Moreover, 
transferred cells are likely to be exposed to high levels of cytotoxic 
killing by foster pup cells, although, as outlined below, the tolerogenic 
environment promoted during gestation and nursing may abrogate 
the cytotoxicity. Together, these data suggest that transfer of protec-
tion may be affected by secreted factors (such as cytokines) derived 
from maternally transferred cells as well as interactions dependent 
on direct contact between maternal and offspring cells.

Understanding the maternal-offspring interface in the context of 
type 2 immunity is also important. In early life, the immune system 
shows an inherent type 2 immune bias (31) and an ability to suppress 
TH1 immunity (32). This elevated prenatal type 2 immunity appears 
to contribute to fetal allograft survival by impairing potential cyto-
toxic events against it (33). This tolerogenic effect may also pro-
vide a permissive window that promotes an extended survival of 
maternal cells that is sufficient to allow immunological imprint-
ing in the offspring to occur. In the neonate, the maintained TH2 
bias can also contribute to the coordination of early-life pulmonary 
development (34), possibly at a cost of enhanced risk of neonatal 

allergic disease developing (35). Our findings add an important fur-
ther dimension to this understanding of early-life TH2 bias: It may 
provide protection against helminth infection in early life.

Therefore, in this study, we demonstrate that maternal hel-
minth infection before pregnancy can provide offspring with the 
ability throughout life to launch a heightened protective cellular 
immune response against the parasite. This protection is not depen-
dent on antibody but is instead dependent on transfer of maternal 
type 2 competent cells. We show that maternal TH2-competent CD4 
T cells were enriched in the milk of NbM dams, dispersed systemi-
cally throughout the offspring, and provided an environment conducive 
to initiating an enhanced and long-term ability in the offspring to 
launch a protective immune response against subsequent helminth 
infection. Therefore, transfer to offspring of maternally derived 
pathogen-conditioned lymphocytes via nursing represents a novel 
transgenerational mechanism by which offspring may acquire early- 
life immunity that persists into adulthood, but how this maternal 
cellular transfer of immunity manifests itself in clinically relevant 
human and veterinary settings is not yet defined and represents a 
potentially significant new paradigm in our understanding of maternal 
transfer of immunity to offspring.

MATERIALS AND METHODS
Animal work
Mice used
The following BALB/c background mouse strains were used in 
the study: BALB/c (CD90.2), IL-4R−/− (described as IL4ratm1Fbb/
IL4ratm1Fbb), MT (B cell deficient), Thy1.1 (CD90.1), MB1creIL-4R−/lox 
[B cell–specific disruption of IL-4R expression (36)], and ilckcreIL-4R−/lox 
[CD4 T cell–specific disruption of IL-4R expression (37)]. C57BL/6 
background mouse strains used were C57BL/6 and IgMi (20). Mice 
were bred and housed in specific pathogen–free conditions at the 
Animal Unit of the University of Cape Town, South Africa. All 
experimental mice were used between 1 and 15 weeks of age with 
appropriate littermate controls of the same generation. Mice were 
euthanized by lethal halothane inhalation.
Ethics statement
All studies were carried out in accordance with protocol 012/054 or 
014/021 approved by the Faculty of Health Sciences Animal Ethics 
Committee from the University of Cape Town.
Mating and litter swaps
Female mice aged between 7 and 8 weeks were mated with male 
mice at one male per cage of two females over 2 weeks, after which 
the male was removed. Females gave birth approximately 21 days 
after fertilization, and the birth of pups was monitored daily to 
ensure age matching. A maximum of two mothers and eight pups 
per mother were housed per cage. In the long-term experiments, 
pups were weaned at 3 weeks of age, separated from their mothers, 
and housed by gender.
Infection with Nb
Adult mice (older than 6 weeks) were injected subcutaneously with 
500 × Nb L3 larvae. Pups were infected with a half-dose of 250 × Nb 
L3 larvae. To enumerate adult worms, mice were euthanized at various 
times PI, intestines were opened longitudinally and incubated in 
10 ml of saline for 3 hours at 37°C, and parasites were counted 
under a dissecting microscope.

The mice used (except IL-4R−/−) for infection experiments 
would naturally clear Nb at approximately 9 days PI, but to ensure 
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that all worms were expelled, mothers were treated with ivermectin 
(10 mg/ml) in their drinking water from days 7 to 14 after primary 
infection to clear the pathogen before mating.
Flow cytometry
Single-cell suspensions were prepared, and 1 × 106 cells were incubated 
in phosphate-buffered saline + 0.5% bovine serum albumin, 1% normal 
rat serum, and appropriate antibody cocktails. Cell populations were 
acquired and determined on a BD FACS Fortessa (Becton Dickinson). 
Cell populations were identified by the following antibody staining 
strategies: CD4 T cells: CD3+CD4+. CD4 T cells populations were 
additionally stratified into activated effector (CD44+CD62Llo), T1/ST2+ 
and Thy1.1+Thy1.2−, or Thy1.2+Thy1.1− T cell populations.

Intracellular cytokine staining was also carried out on T cells to 
determine IL-13 expression. Cells were resuspended in complete 
medium [Iscove's modified Dulbecco’s medium (IMDM; GIBCO/
Invitrogen, Carlsbad, CA) + 10% fetal calf serum (FCS), penicillin/
streptomycin] at 2.5 × 107/ml and stimulated with phorbol 12-myristate 
13-acetate/ionomycin (10 g/ml) and GolgiStop (as per the manu-
facturer’s protocol; BD Pharmingen) at 37°C for 4 hours. After 
restimulation, cells were surface-stained for CD3 and CD4 and then 
fixed and permeabilized with Cytofix/Cytoperm Plus (as per the 
manufacturer’s instructions; BD Pharmingen). Intracellular staining 
was performed by staining cells with IL-13 or appropriate control. 
All analyses were performed with FlowJo software.
Antibody ELISA
Relative antigen-specific serum antibody levels were determined by 
enzyme-linked immunosorbent assay (ELISA). Briefly, plates were 
coated with Nb somatic antigen (10 g/ml). Blood serum was added 
and incubated overnight before the commercially available alkaline 
phosphatase–conjugated secondary antibody for IgG1 (BD Pharmingen) 
was added. 4-p-Nitrophenol-phosphate was used to develop the 
reaction. Absorbance was read at  = 405 nm against a reference 
measurement of  = 490 nm using the SoftMax Pro software on a 
VersaMax microplate reader. Relative antigen-specific antibody 
levels were plotted as dilution graphs. Nb somatic antigen was 
generated by isolating the soluble fraction from homogenized Nb 
L3 larvae.
Milk preparation
A modified method of the one described by Cabinian et al. (30) was 
used to prepare milk for analysis of cell populations. The milk bolus 
was extracted from the stomachs of 10-day-old pups and conserved 
in complete medium (IMDM + 10% FCS, penicillin/streptomycin, 
Hepes). The bolus was passed through a 100-m cell strainer to 
generate a single-cell suspension, and the strainer was washed with 
0.17 M tris (pH 7.6) and 0.83% NH4Cl buffer. The cell suspension 
was centrifuged at 400g for 15 min. Pellets containing cells were 
washed a further three times in complete medium before further 
analysis.
Cytokine ELISA
Cytokine ELISAs were performed as previously described (38) 
using coating and biotinylated detection antibodies from R&D Systems. 
Streptavidin-conjugated horseradish peroxidase was used for 
detection with a commercially available substrate solution. Spleen 
cells were plated at 1 × 106 cells per well in 48-well plates precoated 
with anti-CD3 (20 g/ml) and restimulated for 72 hours before the 
supernatant was analyzed for cytokines. Homogenates of lung 
sections were prepared using a Polytron homogenizer, and the 
protein concentration of the soluble fraction of the lung samples was 
equalized before ELISA.

Statistics
The results are expressed as either individual mice/data points or 
group mean ± SD. P values and significances were determined 
using either the one-tailed Mann-Whitney t test or nonparametric 
one-way analysis of variance (ANOVA) (GraphPad Prism Software). 
Groups were judged to be significantly different if the P value was 
less than 0.05 (*P < 0.05, **P < 0.01, and ***P < 0.001).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/5/eaav3058/DC1
Fig. S1. Offspring acquire, via nursing, a population of maternally derived CD4 T cells with a 
heightened TH2 responsiveness following Nb infection.
Fig. S2. Offspring nursed on Hp-infected mothers do not demonstrate maternal cell transfer.
Fig. S3. Allogeneic NbM offspring have raised numbers of maternally derived lung CD4+ T cells 
following Nb infection.
Fig. S4. Offspring acquire, via nursing, persistent protection from Nb related to raised TH2 CD4+ 
T cell responses following Nb infection in an allogeneic setting.
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