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Abstract—The integration of new renewable energies sources
in the power system will stress the power system even more. To
assure save operation, the stability of the power system has to
be studied in detail. A well known feature in the power system
are the inter- and intra-area oscillations of generators. This work
investigates the origin and properties of this oscillations from a
fundamental point of view, applied to a realistic power system
test case.

I. INTRODUCTION

The power system is probably the worlds most complicated
human made system and of vital importance for modern
society. Stable operation of this system is required to ensure
safety and well being a large group of people. But this system
faces challenges due to climate change, as the default means of
producing energy have to change to renewable energies with
lower carbon footprints. This changes further complicate the
problems of stable operation. So, more than ever, the stability
of the power system has to be investigated and understood.
The power system consist of a large number of different,
coupled devices. The many different scales and complicated,
time dependent dynamics result in a very complex system. To
assess the interplay between the dissimilarity and the coupling
of the system, simplified power system models are often used.
The stability of this systems is usually investigated by finding
a synchronized solution [1] and investigating the transient
stability of this solutions after large perturbations [2], [3], [4].
Also, the small signal stability from small perturbations around
the operating point has to be taken into account [5].

An interesting property found in stability investigations are
the power system oscillations [6]. The fast intra-area oscilla-
tions describe the dynamics of neighboring generators, which
swing against each other. The intra-area oscillators are slower
and deal with large scale interactions of coherent regions of
generators. For large-scale control of the power system, these
clusters are often bundled to a aggregated generator and the
intra-area modes describe the oscillations between bundled
oscillators. Understanding the formation and properties of
these clusters and the coherent dynamics are thus vital for
the control and design of the power system. The objective
of this work is to investigate how the dynamical parameters
and topology of a generator network influences the spectral
properties and the eigenvectors, which are the basis for the
formation of coherent clusters.
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In this work, the spectral properties of a specific IEEE
test case are investigated. At first, modeling background and
theoretical results are introduced. Then, numerical experiments
on the test case are carried out. The main question is the
influence on the spectral properties of the parameters from
the system, mainly the generator properties and the topology
of the network. Also, the robustness of the spectrum under
parameter changes is investigated. In a last step, the existence
of coherency in the eigenvectors is investigated.

II. MODELING AND THEORY

In this section, the simplified power system model is intro-
duced. The chosen model is the structure preserving model
(SP-Model). The model is linearized and the mathematical
problem statement is explained. Also, a review of the known
analytical properties of the mathematical problem is given.

A. SP Model and quadratic eigenvalue problem

A common way to investigate fundamental properties of
power systems and the interplay between the topology, param-
eters and the system dynamics is to use simplified power sys-
tem models. Many aspects of complex power system models,
as the reactive power flow, load dynamics and active control
effects are ignored. The differential equations describing the
dynamics of the phases θi at the generator (VG) and load (VL)
nodes i are given by [7], [8], [9]:

Miθ̈i +Diθ̇i = ωi −
∑
j

aij sin (θi − θj) i ∈ V1 (1)

Diθ̇i = ωi −
∑
j

aij sin (θi − θj) i ∈ V2 (2)

With the inertia M , the damping D, the power input/output
ω and the adjacency matrix A with entries aij of the weighted
graph G, which is given in power system nomenclature as
aij = UiUj ImYij with the bus Voltages U and the nodal
admittance matrix of the network Y . For the remainder of this
work, the damping of the load nodes is assumed to be zero.
The resulting equations for the load nodes are thus purely
algebraic. The SP-Model was extensively used in the studies
linked in the introduction, especially for transient stability
studies. It is said to capture the dynamics of the first swing
of generators reasonably well. Usually, no external control is
used. The damping term Dθ̇ incorporates not only mechanical



damping, but also the rotor-stator flux effects and machine
specific controls.

For small perturbations around a fixed point, the small angle
approximations leads to the following linear system:

Mθ̈ +Dθ̇ + Lθ = ω (3)

With L being the Laplacian matrix of the Graph G. Depending
on the model, the diagonal matrices M and D have have
zero entries for the nodes i ∈ VG. The main interest is
the dynamical behavior of the generators, so the response-
free system with ω = 0 is considered. The solutions to this
equation can be found by solving the following quadratic
eigenvalue problem (QEP):

(
λ2M + λD + L

)
x = 0 (4)

In accordance to the eigenvalue problem, we call λk the
eigenvalues and xk the (right) eigenvector of the QEP. Due to
the quadratic nature of the problem, we have 2n solutions to
the quadratic eigenvalue problem. Using γ = [γ1 . . . γ2n] as a
vector of arbitrary constants related to the initial values of the
problem, the solution θ can then be calculated as [10]:

θ(t) =

2n∑
k

γkxk exp (λkt) (5)

From equation (5), coherency in the phases of the power
system can be defined. If, for a given mode λk, some com-
ponents of the eigenvector xk are (roughly) identical, this
modes will show similar response to a excitation of this mode.
As the eigenvectors of the quadratic eigenvalue problem are
generally complex, coherent behavior can be observed if the
complex phase and magnitude of eigenvector components are
similar. The quadratic (and higher order) eigenvalue problems
are usually calculated by using the companion form, where
the QEP with n× n matrices is transformed to a generalized
eigenvalue problem with 2n× 2n matrices [11].

B. Kron reduction

As previously mentioned, the assumption of undamped
loads results in algebraic equations for the load nodes. This
load nodes will thus not exhibit a dynamic response, but
change infinity fast. This can be used to simplify the systems
equations, by writing the Laplacian matrix L and the inertia
M in block form and solving the eigenvalue problem for the
M,L matrix pencil 1:(

LG LGL

LT
GL LL

)(
vG
vL

)
= λ2

(
MG 0
0 0

)(
vG
vL

)
The eigenvector for the load nodes can be removed by

inserting the second row of the matrix equation in the first
row, resulting in:

1For simplicity, the damping is ignored here, but the calculations are
identical for damped generators.

LGvG + LGLvL =LGvG − LGLL
−1
L LT

GLvG︸ ︷︷ ︸
=LredvG

= λ2MGvG

Which is identical to the Shur complement of the Laplacian
matrix with respect to the sub-matrix of load nodes. The
reduced Laplacian Lred is of size nG×nG. The reduced matrix
is still a Laplacian matrix [12].

This process is identical to the well known Kron reduc-
tion, where all load nodes are removed and the admittances
between the generators are augmented. This process results in
a complete graph. The underlying topological properties are
encoded in the changed edge-weights of the complete graph.
The other matrices of the QEP are now the submatrices MG

and DG, which are full diagonal sub matrices of the generator
machine properties.

C. Theoretical background

The main known properties of the quadratic eigenvalue
problem are discussed in [10]. For the reduced eigenvalue
problem stated here, the following properties of the QEP are
respected:

1) MG is non-singular - 2nG finite eigenvalues
2) MG, DG, Lred are real - eigenvalues are real or complex

conjugate pairs
3) MG hermitian and positive definite, DG and Lred posi-

tive semi-definite - The real parts of the eigenvalues are
non-positive

A fourth condition is known as the overdamped condition,
named after the related phenomenon in mechanical systems.
For this condition, MG and DG have to be symmetric and pos-
itive definite and Lred is positive semi-definite. Additionally,
γ (M,D,L) > 0, with γ given as:

γ (M,D,L) = min
‖x‖2=1

(
(x∗Dx)

2 − 4 (x∗Mx) (x∗Lx)
)

(6)

This requirement can be studied by a simple approximation
to the optimization problem. An upper γ ≥ γup bond for the
condition can be verified to be:

γup (M,D,L) = λ2D,min − 4λM,maxλL,max > 0 (7)

Here, λX,min/max is the smallest/largest eigenvalue of the
matrix X . Overdamped behavior can be archived by increasing
the damping coefficient of the generators or by lowering the
inertia or connectivity of the network.

III. NUMERICAL RESULTS

A. The IEEE 145 system

The objective of this work is to investigate how the param-
eters of the network and the generators influence the spectral
and coherent properties of the quadratic eigenvalue problem.
For this, a suitable test case and meaningful parameters have
to be found. While the nodal admittance matrix Y , the power
in- and outputs ω and the voltages Ui are known or can be
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Fig. 1. Spectrum of Laplacian Matrix L and reduced matrix Lred.

calculated by the default load-flow equations, the dynamic
parameters are not always well known. In this study, the
methods to calculate parameters found in [9], [5] are used. The
main test system is dynamic 50 generator test case (sometimes
called IEEE 145 system) [13]. It features 50 generators and has
145 buses. The system is mainly used for dynamical studies
and some generator data is known in literature.

B. The Laplacian spectrum

In figure 1, the spectrum λ(L) of the Laplacian matrix L is
shown, ranked by the absolute value. Not included is the zero
eigenvalue of the Laplacian matrix. It can be observed that the
first few eigenvalues are relatively small and increase slowly,
which is typical for Laplacian matrices of power systems.

Also included in Graph 1 is the spectrum of the Kron
reduced Laplacian Lred, as described in the theory. The re-
sulting reduced system is less complex (as it has less nodes).
The full system has a larger maximum ranked eigenvalue, but
for small ranked eigenvalues, the reduced spectrum is larger,
corresponding to a higher connectivity of the network.

C. Inertia

At first, the influence of the inertia in the spectrum is inves-
tigated. For that, the damping matrix is set to zero at first. To
assess how the parameter of the inertia (e.g. the dissimilarities
of the diagonal entries of M ) influence the spectrum, the
inertia M is perturbed to M ′ by α = (α1, . . . , αNG

), with
M ′ = diag (M1α1, . . . ,MNG

αNG
) and uniform distributed α

with α ∈ [0.5, 2.0]. Figure 2 shows the original spectrum and
spectra of 200 realizations with different Mi. It can be noted
that for smaller ranks, the differences in spectra are relatively
small. At the same time, the range of eigenvalues grows larger
for higher ranked eigenvalues.

The highest ranked eigenvalues are linked to intra-area
oscillations, where individual generators oscillate against each
other. This localized dynamics is stronger influenced by the
inertia, which is a local effect on a single node.

Fig. 2. Spectrum of eigenvalues of matrix pair (M,L) for IEEE 145 system
with randomly perturbed inertia M . The grey lines indicate perturbed spectra.

Fig. 3. Spectrum of eigenvalues of matrix pencil (M,D,L) for IEEE 145
system with randomly perturbed damping D. The grey lines indicate perturbed
spectra.

D. Damping

One major simplification up to this point is the fact that the
generators were undamped. Realistic generators are damped,
to reduce the instabilities caused by perturbations from their
operating point. Here, the interest is how this intrinsic damping
influences the spectra of power systems.

Similarly to the previous section, figure 3 shows the spectra
for different damping realizations around the original damp-
ing ratio D0. Additionally, spectra without any damping is
included. Here, the distribution of α is chosen larger as
α ∈ [0.25, 4.0]. Two observations are directly clear: even
though the random range is larger, the difference seems, for the
most part, to be smaller for different damping perturbations.
Also, the difference in the spectrum without damping and
the default damping parameter is very small. As before,
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Fig. 4. Normalized spectra for different damping factors α.

one can notice the difference for larger and smaller damped
eigenvalues. Larger damped eigenvalues seem more affected
by the localized parameters of D, while the lower ranked
eigenvalues are almost unchanged and more depended on the
structure of the underlying network.

The observations indicate that the spectrum is not at all
overdamped. From equation (7), one can estimate that over-
damped behavior would be reached if the eigenvector of D
is multiplied by a factor of αOD ≈ 1130. This is very far
from the assumed conditions in the power system and one can
assume that power systems are not overdamped. The spectra
for under- and overdamped behavior is shown in figure 4,
where the damping matrix D is calculated by D0α, with
different values for α. Again, it is clear that low to moderate
values of α does not change the spectrum significantly. For
very large α, the observations from the theory are observable.
The eigenvalues turn purely real and the gap between the first
n = 50 and last n eigenvalues is clearly present.

E. Sensitivity

The previous sections show that the introduction of inertia
and damping changes the results of the quadratic eigenvalue
problem, but the general shape of the spectra seems to be
dominated by the topology of the network. To answer which
parameter, damping or inertia, influences the system stronger,
the following experiment was carried out:

1) The spectra λ0(M0, D0, Lred) was calculated.
2) The diagonal matrices M0 and D0 were perturbed by

random, uniform distributed vectors rM and rD to Mi =
M0rM,i and Di = D0rD,i.

3) The spectra λMi (Mi, D0, Lred), λDi (M0, Di, Lred) and
λM,D
i (Mi, Di, Lred) were calculated for 200 different

realisations.
4) The average differences from (λi − λ0) and variances

were calculated for all cases of λi.
The resulting graphs are shown in figure 5. All perturbations

ri are uniform distributed 0.5 < ri < 1.5. From the figure,
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Fig. 5. Average spectral difference and variance of perturbed spectra for
perturbed M , D or both.

it appears that changing both M and D has a very similar
effect to only changing the inertia. Only changing the D has
a much smaller effect, as the variance and the difference to the
unperturbed values is much lower. While the behavior of the
individual ranks are not directly clear, especially the highest
ranked eigenvalue has the largest difference and variance, for
all considered eigenvalues.

Another tool to investigate the global sensitivity of matrices,
and in more general matrix pencils, are the pseudospectra [14],
which gives insights on the region in which eigenvalues change
under matrix perturbations with a certain strength. For the
power system used here, the pseudo-spectrum is given in figure
6. In this figure, the markers show the real- and imaginary-part
of the quadratic eigenvalue problem. The colors correspond to
a perturbation strength of the matrices M , D and L and the
perturbed eigenvalues will lie in a region corresponding to the
color.

From the pseudo-spectrum, it is clear that the eigenvalues
with a larger negative real part can be perturbed with weaker
perturbations. At the same time, changing this value will
not fundamentally alter the dynamics of the full system. The
more interesting eigenvalues are those with a small real part.
To perturb this eigenvalues, much larger perturbations are
necessary.

From this observations, the spectral properties seem to
depend mostly on the structure of the underlying network, with
the exception of the highest ranked eigenvalues. In general,
the inertia seems to have a bigger effect on the spectrum then
the damping and for small damping values, the damping can
be neglected. The next question is how do the parameters
influence the coherency, or the eigenvector structure of the
system.

IV. COHERENCY OBSERVATIONS

The general structure of the eigenvalues for all modes of
the given problem is shown in figure 7. The color indicates
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the magnitude of the eigenvector components for each mode.
For smaller modes, most nodes are active. Similar values can
be found for some bands in the first modes. At higher modes
(> 60), the dynamics are more isolated. Only a few nodes
oscillate at that mode at all.

On the graph, the phases and magnitudes of the eigenvector
components of the second smallest eigenvalue (called Fielder
vector) are shown in figure 8, where the color of the nodes
corresponds to the complex phase while the size of the nodes
is the complex magnitudes. To improve observability, only
edge-nodes with a edge weight2 over 0.5 are shown in this
figure. The isolated nodes without any connections are only
weakly connected to the rest of the system. Nodes with a

2The edge weight between two nodes is proportional to the inverse of the
admittance between the two nodes.

Fig. 8. Phase and magnitude of fourth ranked eigenvalue.

Fig. 9. Phase and magnitude of 38th ranked eigenvalue.

similar color and size will be coherent. Two observations are
interesting: The complex phases are all very close to ±π/2.
In the time response, this corresponds to a phase shift of π,
so both clusters oscillate anti-phasic. Also, most nodes are
in one, large cluster, with different magnitudes. Only a few
nodes, included in a small, interconnected region are anti-
phasic. Those have smaller magnitude, but the magnitudes are
not identical over all oscillators.

In contrast, the 38h eigenvector components are displayed in
figure 9. The magnitudes of a large number of nodes is almost
zero, meaning that the node does not react to excitations of
this mode. Some single nodes, especially larger blue circle,
dominate this mode. Coherency is almost not found, except
for the fact that many modes not oscillate at all.

The eigenvector properties can be investigated in a polar
projection, as shown in figure 10. As seen earlier, most
eigenvector components for the higher ranked eigenvalue are
centered around zero, indicating no oscillation in this modes.
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Single nodes have a large, individual share of the dynamics in
this mode. Fourth mode, the clustering of the most modes can
be observed at a small magnitude around 260 degrees. The
18th eigenvector has most modes active at small magnitudes,
centered around zero. The 38th mode has, as seen before, only
a few active nodes, while most modes are almost zero. Also,
noteworthy is the alignment of most eigenvalues around the
±π/2 axis (90◦ to 270◦). This corresponds to a low damping
value in the system, as the undamped system is a hermitian
generalized eigenvalue problem, where the eigenvectors will
be purely imaginary.

V. CONCLUSION

In this work, the influence of the inertia and damping on
the spectral properties of a linearized power system model
was investigated. It was shown that the damping has, for
physical relevant values, only small effect on the structure of
the eigenvalues. The influence of the local parameters is mostly
noted at the higher ranked eigenvalues, while the lower ranked
eigenvalues are dominated by the global properties of the
Laplacian matrix. Also, general questions of the robustness of
the structure of the spectrum was investigated, with the result
that the spectral properties are relatively robust for moderate
changes in the relevant parameters.

A theoretical explanation of slow coherency is given in [15].
There, the case of D = 0 was investigated analytically. It was
shown that a network which can be partitioned in q clusters,
which are weakly connected to each other, will show slow
coherency in the q slowest modes. In the reduced realistic
system as used in this work, the conditions for this theorem
are not directly observed. As this condition is only sufficient,
coherency can be observed in different systems as well.

In general, the structure of eigenvectors are a very difficult
mathematical topic and only little analytical results are known
to the authors. The most recent advance is proving an upper
bound for the number of nodal domains (regions where the
sign of the eigenvectors does not change) in homogeneous

graphs [16]. The extension to the quadratic eigenvalue problem
(and their complex nature) and to weighted, non-homogeneous
graphs is not directly possible.

Even though the system does not respect the theoretical
properties, the system shows coherent behavior, as shown in
the last section. Future work will focus on the structure of
the eigenvectors. While general theoretical results might be
impossible to get, the idea is to investigate the undamped sys-
tem (which simplifies the system from a QEP to a generalized
eigenvalue problem) of a homogeneous complete graph with
a general weight matrix M . The results will be perturbed
by including weights in the complete graph, which should
allow for insights of the structure of the eigenvectors of the
undamped system.
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