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Abstract—Parallelization is an important paradigm for solving
massive optimization problems. Understanding how to fully
benefit form the aggregated computing power and what makes
a parallel strategy successful is a difficult issue. In this study, we
propose a simple parallel iterative tabu search (PITS) and study
its effectiveness with respect to different experimental settings.
Using the quadratic assignment problem (QAP) as a case study,
we first consider different small- and medium-size instances from
the literature and then tackle a large-size instance that was rarely
considered due the its inherent solving difficulty. In particular, we
show that a balance between the number of function evaluations
each parallel process is allowed to perform before resuming the
search is a critical issue to obtain an improved quality.

Index Terms—Big Optimization, Iterative tabu search,
Quadratic assignment problem.

I. INTRODUCTION

Optimization problems underlying different application do-
mains are becoming more and more difficult to solve, with
the size of the underlying data increasing continuously. In this
context, there is evidence that the optimization community
is more and more considering the solving of large-scale
optimization problems [1], [2]. Despite their high efficiency,
state-of-art evolutionary algorithms and metaheuristics [3] are
still facing a number of challenges to find a good solution in
a reasonable amount of time.

One of the natural way to tackle large-scale problem in-
stances is to benefit from parallel computing facilities and to
explore strategies to set up parallel solving procedures [4].
However, understanding how to fully take advantage form
the aggregated computing power and what makes a parallel
strategy successful is a difficult issue, in particular when
tackling large-size problem instances.

In this paper, we consider the Quadratic Assignment Prob-
lem (QAP) as a case study for setting and analyzing parallel
solving techniques. The QAP was first introduced by Koop-
mans and Beckmann [5] to model a facility location problem.
It can be described as the problem of assigning a set of
facilities to a set of locations with given distance and flow
between locations and facilities, respectively. The objective is
to assign the facilities to locations in such a way that the sum

of the products between flows and distances is minimized.
More formally, the problem can be stated as follows:

min
p∈P

z(p) =
n∑

i=1

n∑
j=1

fijdp(i)p(j) (1)

where f and d are the flow and distance matrices respectively,
p ∈ P represents a solution where pi is the location assigned
to facility i and P is the set of all n vector permutations.
The objective is to minimize z(p), which is the total cost
assignment for the permutation p.

It is well-known that the size of the considered QAP
instances significantly increases the difficulty of the solving
procedure, even when considering heuristic and stochastic
search procedures such as metaheuristics and evolutionary
algorithms. Therefore, the QAP is a good candidate for
studying the effectiveness of using a parallel search approach.
In this work, we investigate the parallelization of an efficient
sequential metaheuristic to solve QAP, called Ro-Ts [6]. Our
primary goal is to study the behavior of this metaheuristic in
a parallel context as a first step toward the setting of highly
effective algorithms for solving large-scale instances.

In general, we are tempted to say that increasing the number
of processes, keeping the same number of evaluations for
each process, is enough to improve the performance of an
algorithm. This is not always obvious and it depends on
the structure of the instances as well as the behavior of the
algorithm that can change in the parallel context. For the case
of large-scale instances, we wish to study in particular the
impact of two parameters. The first parameter is the number of
processes run in parallel, and the second one is the sequential
load to be performed by each process.

The rest of the paper is organized as follows. In Section II,
we review some of the best-known parallel and sequential
approaches to solve the QAP. In Section III, we describe the
design of a parallel metaheuristics based on a master-worker
architecture. In Section IV, we conduct an experimental anal-
ysis using small and medium instances, as well as one large
problem instance from the literature. Finally, in section V, we
conclude the paper and we propose some perspectives.



II. BACKGROUND

The QAP can be considered as one of the hardest combi-
natorial problems in theory and practice.

This problem was introduced in [5] and later studied in
an extensive manner. In particular, different tabu search ap-
proaches were proposed, e.g., [6]–[8].

One of the first efficient approach to solve the QAP is the
robust tabu search (Ro-Ts) proposed by Taillard [6], where
it is shown how to reduce the complexity of computing a
fitness value of neighboring solutions using an incremental
evaluation procedure. Many other works are based on Ro-Ts
to solve the QAP, e.g., [7]–[9]. James et al. [7] proposed two
categories of Tabu Search (TS) extending Ro-Ts. The first one
is a continuous diversification process coupling a perturbation
mechanism with TS. The second one is a discontinuous
diversification TS process where a new starting solution is
used to replace the current working solution in TS trajectory.
In [9], a cooperative parallel tabu search algorithm for the
QAP is introduced which is based on exchanging information
throughout the execution of the algorithm. Later, Benlic et al.
[8] proposed an Iterated Local Search (ILS) with a breakout
strategy based on the history of the search. According to the
evolution of the search, the ILS selects a perturbation degree,
among a range of available ones, in order to better escape local
optima.

One of the most important parallel work on QAP was
proposed in [10]. In fact, a Parallel Multi-start Tabu Search
is proposed with respect to the CUDA platform. Good quality
solutions are obtained, however only the instances of Skorin-
Kapov [12] are considered, and the biggest instance size
tackled there-in is n = 100, which is still a medium scale.
In [13], a parallel hybrid algorithm is composed of three
steps. The first step is the generation. It consists in using a
parallel Genetic Algorithm (GA) based on the island model.
Each process represents an island and all the nodes execute
a GA in parallel. The second step is a diversification. This
diversification method is applied to all solutions. Finally, the
global best solution obtained with the first two steps is used
as a starting solution for the Ro-Ts. In [14], a cooperative
variant of Iterative Tabu Search (ITS) is proposed. Each
process performs an ITS in which a Ro-Ts is executed at each
generation. After each iteration, each process sends its current
solution, obtained by the Ro-Ts, to a neighboring process.
Then, a distance is computed between the current solution and
the solution received from the neighbor process. This distance
is based on the similarity between the two solutions (the same
facilities assigned to the same locations). According to this
distance, the algorithm takes the decision to apply a known
diversification strategy, to perturb randomly the solution or to
generate a new random solution.

III. PARALLEL ITERATIVE TABU SEARCH

For this work, we propose a simple Parallel Iterative
Tabu Search (PITS) based on the state-of-the-art sequen-
tial Ro-Ts [6]. A defined number of processes (NbrPro)
is launched. Each process executes an ITS. This number

is important because it fixes the parallel deployment of the
algorithm. This number can not be increased infinitely since
it depends closely on the physical limit of the architecture
on which it is executed. For this reason, it is important to
effectively exploit the potential of each process.

Each ITS is a succession of Ro-Ts. The number of Ro-Ts
calls represents the global iterations (Giterations). One of our
motivations for using this algorithm is its efficiency on the
QAP. Moreover, like all TS, the Ro-Ts is able to escape from
local optima. For a good management of the parallelization,
we want to control the sequential load to be executed by
each process. For this reason, having a parameter such as the
number of iterations performed by the Ro-Ts (TSiterations)
is essential. We also would like to vary this parameter in order
to find the right balance between the processes.

At each global iteration, a Ro-Ts is performed from dif-
ferent starting solutions. It is done for all the processes.
A cooperation mechanism to exchange information between
the different processes is used. The objective is to find a
good starting solution to improve the global solution. In this
approach, after each Ro-Ts, the current process sends the
best solution to the master process. The master process select
the global best solution. It sends the global best solution to
all the processes. Each process receives the information and
executes a random perturbation on the received global best
solution. Only a part of the solution is changed. This allows
the algorithm to keep a good structure for the next Ro-Ts.
Many works from the literature, such as [7], [9], show that
using the structure of the best solution found by the search can
lead to a promising region of the search space. The random
perturbation is considered as a diversification after each Ro-Ts
to escape from stagnation and to explore new regions of the
search space.

As you can note, in our algorithm design, two parameters
are important. The first one is, how many processes the
algorithm is going to use. It can be handled through NbrPro.
The second one is how long time the execution will take
for each process. It can be handled through the TSiterations
parameter. In this work, we have based our experiment on
these two parameters to see the effect of the parallel design
setting.

The choice to have multiple parallel ITS is motivated by
many distributed architectures using parallel CPU (Central
Processing Unit) that we can have in several computing grids.
CPUs are powerful for doing sequential calculations. This
is well adapted to the multiple iterations that are executed
by the ITS. Obviously, if our intention was to use another
architectures such as the Graphic Processing Unit (GPU),
we would have made a different choice like parallelizing the
evaluations in order to take advantage of the GPUs power in
the calculation.

Algorithm 1 is the pseudo-code of the PITS. Figure 1
illustrates the general flow of the algorithm. More information
about the Ro-Ts can be found in [6].



Algorithm 1 The general PITS algorithm
1: Input: perturb: % perturbation; cost: cost of the current

solution; Fcost: best cost found; solution: current solu-
tion; LBsolution: local best solution found; GBsolution:
Global best solution found between all the processes; Nbr-
Pro: Number of parallel processes executed; TSiterations:
Number of the Ro-Ts iterations; Giterations: Number of
global PITS iterations.

2: for all P in NbrPro do
3: Initialization of the random solution
4: for i = 0 to Giterations do
5: /* Sequential Ro-Ts framework*/
6: for i = 0 to TSiterations do
7: Ro-Ts iteration /* see algorithm 2 */
8: end for
9: /* End of the Ro-Ts framework*/

10: if cost < Fcost then
11: /* improvement */
12: Fcost = cost;
13: Update the LBsolution with solution;
14: end if
15: if P is the master process then
16: Receives all the LBsolution from the other pro-

cesses
17: Select the GBsolution between all the LBsolution

processes;
18: Sends the GBsolution to all the processes;
19: else
20: Sends the LBsolution to the master process;
21: end if
22: Receives the GBsolution from the master process
23: Random Perturbation of GBsolution;
24: Update a new solution to start a new global iteration;
25: end for
26: end for

Algorithm 2 One TSiteration of the Ro-Ts
1: Input: cost: cost of the current solution; solution: current

solution; Fsolution: best solution found; Tcost: best cost
found inside the TS; Tsolution: best solution found inside
the TS;

2: if movement is tabu but meets all aspiration criteria or is
not tabu and is a new Tcost then

3: Store the best permutation indexes that meet all condi-
tions;

4: end if
5: Update tabu list;
6: Update solution;
7: if the cost is better than the Tcost then
8: Update the Tsolution with solution;
9: end if

10: Update the delta matrix of the move costs;

Fig. 1. PITS algorithm

IV. EXPERIMENTAL ANALYSIS

A. Experimental setup

In our experimentation, the algorithm is written in C/C++.
It is compiled on Grid’5000 [15] with a parallel Intel Xeon
E5-2630 v4, 10 cores/CPU, 256GB RAM, 2x279GB HDD,
10Gbps ethernet.

The proposed algorithm is experimented on benchmark in-
stances from the QAPLIB (http://www.seas.upenn.edu/qaplib/
inst.html) [16] and instances from (http://mistic.heig-vd.ch/
taillard/problemes.dir/qap.dir/qap.html) [17]. The size of the
considered instances ranges between 40 and 343. All the
results are expressed as a percentage deviation from the Best
Known Solution (BKS).

deviation =
(solution−BKS)× 100

BKS
(2)

The QAPLIB archive contains 136 instances that can be
classified into four types:
• Real life instances (Type 1);
• Unstructured randomly generated instances based on a

uniform distribution (Type 2);
• Randomly generated instances similar to real life in-

stances (Type 3);
• Instances in which distances are based on the Manhattan

distance on a grid (Type 4);
For each instance, 20 independent executions are performed

and the average performance is considered. We shall focus
on the percentage deviation in our comparison, although the
execution time is also provided for completeness.

B. Results on small- and medium-size instances

The aim of this experiment is to confirm the efficiency of
PITS algorithm against works from the literature. We start with
a comparison on well-known small- and medium-size QAP
instances. Two competitive algorithms from the literature have
been chosen for this comparison.
• Cooperative parallel tabu search (CPTS) [9];
• Population-based iterated local search (PILS) [11].



TABLE I
PARAMETERS OF THE FIRST EXPERIMENTS

Parameter Value
NbrPro 20

TSiterations 100× n
Giterations 100

percentage of perturbation 20%

TABLE II
RESULTS

Instances BKS PITS CPTS PILS
deviation CPUt(min) deviation CPUt(min) deviation CPUt(min)

tai40a 3139370 0.216(0) 0.53 0.148(1) 3.5 0.280(0) 12.0
tai50a 4938796 0.486(0) 1.04 0.440(0) 10.3 0.663(0) 11.2
tai60a 7205962 0.532(0) 1.81 0.476(0) 26.4 0.820(0) 7.4
tai80a 13515450 0.662(0) 4.36 0.691(0) 94.8 0.927(0) 12.7
tai100a 21052466 0.597(0) 8.67 0.589(0) 261.2 1.027(0) 9.8

Average 0.499(0) 3.28 0.469(1) 79.24 0.743(0) 10.62

CPTS is a parallel algorithm using the number of calls to
the objective function as a stopping criteria. This number is
fixed to 10000× n× n calls. For PILS, which is a sequential
algorithm, the stopping criteria is fixed by the execution time
(1 200 seconds for instance size less or equal to 100). Both
proposals stop the algorithm as soon as the BKS is reached.

The focus of this comparison is solution quality. We use
only 5 well-known benchmark instances from the QAPLIB
(Type 2), which are the most difficult to solve. The other
instances form the QAPLIB are easy to solve for our algorithm
and the algorithms from the literature. The instance size ranges
between 40 and 100.

This experiments use the parameters reported in Table I.
Let us remind that NbrPro is the number of processes, TSit-
erations is the number of iterations executed by each Ro-Ts,
Giterations is the number of Ro-Ts calls and the percentage
of perturbation is the percentage of the solution that changes
randomly with respect to the global best solution. For example,
for an instance of size 100, 20 assignments of the global best
solution will be modified randomly.

For this first experiments, we did our best to be as fair
as possible when comparing PITS with the CPTS algorithm.
The number of objective function calls is set to 200 000 × n
(20 processes×100Giterations× (100×n)TSiterations).
For CPTS, it is fixed to 10000 × n × n, which is always
more than the number of calls that we use for our algorithm.
Indeed, for n = 20, we use the same number of calls as
CPTS. It means that from a size of 20, our algorithm uses
less budget. Indeed, the smallest instance size considered in
this paper is 40.

Table II reports the obtained results from all algorithms.
The CPU time (CPUt) is computed in minutes. It represents
the average CPU time from 20 independent runs. The number
in brackets with the deviation is the number of runs where the
algorithm reached the BKS.

For the experiments of Table II, the best global average
is obtained by the CPTS [9] algorithm with 0.469%. It is
followed by PITS with a very close average results of 0.499%.

Notice that the proposed PITS obtains better results than the
PILS algorithm [11]. Of course, the execution time depends
on the architecture used, but it is important to note that our
algorithm has a time average of 3.28 minutes, against 79.24
minutes for CPTS.

These preliminary experiments show that our proposed
PITS algorithm is able to obtain almost the same global
performances (CPTS outperforms PITS with only 0.03% for
the average of the 5 instances) in less budget in terms of CPU
time and number of objective function calls.

The experimental results show the efficiency of our algo-
rithm. Indeed, PITS obtains a good performance (less than
0.5% deviation from the BKS) for this reference benchmark.

C. Case study: large-size instance tai343e01

In the rest of the paper, we analyze our proposal using one
large instance called tai343e01, from (http://mistic.heig-vd.
ch/taillardproblemes.dir/qap.dir/qap.html). In order to give an
idea about its complexity, let us mention that the number of
constraints for this instance is 61 202. To our knowledge, only
[18] and [19] attempted to solve this instance in the past.
In these two works, few results about tai343e01 are actually
reported. It is considered as very hard to solve, even for
metaheuristics.

The first result is reported in [18], where the deviation from
the BKS is 18%. In [19], several algorithms are compared
and the best result from 20 independents trials is given. The
algorithms used in the comparison are: Ro-Ts [6], ILS-ES
[11], as well as two variants of the Hierarchical Iterated Local
Search (HILS(2) and HILS(3)). The best results are obtained
by HILS(3) with 0% deviation from the BKS (for the best
trial between the 20 independents run). The second variant
HILS(2) show a deviation of 59%, the ILS-ES 4% and the
Ro-Ts 34%.

The parameters from Table III are used in the following
experiment. The major contribution of our work is the setting
of the algorithm in a parallel context. As already explained
in section III, we focus our analysis on two parameters. The
variation of the processes number (NbrPro) and the variation
of the iteration number executed by Ro-Ts (TSiterations). To
better compare our results, we consider the work from [18]
where the sequential budget (in terms of number of function
evaluations) used for the Ro-Ts is 1 619 120. We use a parallel
design to get competitive results while remaining close from
the budget used in the literature. We decided to choose our
settings so that we could have a budget close to the literature
as well as larger and smaller budgets, in order to analyze the
impact.

Figure 2 shows the average deviation of form 20 indepen-
dent runs using 20 parallel processes. At each global iteration,
the deviation of the best global solution is reported. A number
of 100 Ro-Ts are iterated with 1 500 iterations for each one
of them.

Our algorithm gets an average deviation of 14.21% from
the BKS solution (as shown in Figure 2) and a best trial of
11.61% (best solution between 20 independents executions).



TABLE III
PARAMETERS OF THE LARGE SCALE EXPERIMENTS

Parameter Value
NbrPro {10, 20, 40}

TSterations {350, 750, 1500}
Giterations 100

percentage of perturbation 20%
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Fig. 2. Average deviation of 20 trials (20 processes and 1500 TSiterations)

The average execution time for the 20 runs is 24.17 minutes in
this case. The curve also shows the ability of the algorithm to
converge towards better solutions without notable stagnation.
The total budget used in this experimentation is 3 000 000
evaluations (1 500 TSiterations × 100 Ro-Ts × 20 processes).

It is important to notice that we have experimented the
same algorithm with the same parameters but without the
cooperation between the processes through the exchange of
the best global solution. The results obtained are much lower
than the results obtained by the version that uses the exchange.
Indeed, without the exchange we manage to obtain an average
deviation of 22.73% from the BKS. It gets a deviation of
21.28% for the best trial. It confirms that the cooperation with
the best global solution has a positive effect on the behavior
of our algorithm.

For the work of [18], using 1 619 120 sequential evaluations,
a deviation of 18% for the best trial is reported. For our
algorithm, we have a sequential budget of 150 000 evaluations
(1 500 TSiterations × 100 Ro-Ts). We can observe that with a
very little sequential budget (less than 10% of what it is used
in the literature) but with a multistart iterative Ro-Ts and an
effective exchange of the best solution, we get a better results
than the 18% found in [18]. This suggest that the strength of a
tabu search approach for this instance lies in the perturbation
step rather than in the iterative search. This also suggests that
for this large instance, we need much less iterations in each TS
in order to get good performance, which is an ideal framework
for parallelization.

TABLE IV
RESULTS SHOWING THE VARIATION OF ITERATIONS OR PROCESSES

NbrPro/TSiterations Budget Deviation CPUt(min)
10/350 350 000 17.22% 6.28
10/750 750 000 17.59% 12.48
10/1500 1 500 000 17.96% 24.11
20/350 700 000 15.11% 6.47
20/750 1 500 000 15.01% 12.52
20/1500 3 000 000 14.21% 24.17
40/350 1 400 000 12.19% 13.01
40/750 3 000 000 12.32% 25.89
40/1500 6 000 000 13.06% 49.69

In order to validate this hypothesis, two scenarios are
considered, the first one is the reduction of the number
of TSiterations from 1 500 to 750 and 350 iterations while
keeping the same number of processes (lower budget). The
number of processes can be 10 or 20 or 40 in our case. The
second experiment is to keep the same budget, but with a
different distribution (variation of the number of processes).
For example, the budget of 1 500 000 can be distributed with
(1 500 TSiterations × 100 Ro-Ts × 10 processes) or (750
TSiterations × 100 Ro-Ts × 20 processes).

Table IV shows the average deviation of our experiments for
the 20 independent runs. The CPU time (CPUt) is computed in
minutes. It represents the average time for the 20 independent
runs. Naturally, the execution time increases with the increase
of the number of iterations, because the sequential part is
more important. For example, for 20 processes and 750
TSitrations, the average time is 12.52 minutes. This average
increases to 24.17 minutes when we increase the number of
TSiterations to 1 500. On the other hand, if we keep the same
number of TSiteration and we increase the number of parallel
processes, the average time remains constant. For example,
for a TSiteration of 350, using 10 processes or 20 processes
gives the same average time of 6 minutes. We can observe
that this does not remain true when we use 40 processes.
This is simply due to a physical limitation of the architecture,
because we actually only have 20 completely parallel CPUs
at our disposal for the experiments. In this case, the last 20
processes are forced to wait for the first 20 processus, which
has the effect of doubling the execution time. If we had 40
CPUs completely parallel we could have obtained exactly the
same results in twice less time. If we take into account only
the quality of the solutions, two main informations can be
extracted from this table.

1) Impact of the number of iterations: Firstly, when
fixing the same number of processes and varying the number
of iterations, we do not observe any significant change in
performance, even with a much larger budget. Indeed, whether
it is for 10, 20 or 40 processes, we almost have the same
deviation even with a twice same budget.

From Figure 3, we can observe the evolution of the average
deviation (for 20 independents runs) through the algorithm
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Fig. 3. Impact of increasing the number of iterations

progress. For 10 and 40 processes, increasing the number of
TSiterations from 350 to 1 500 does not improve quality. The
only change that can be noted (but which remains very small
and cannot be distinguished on the figure) is when using 20
processes. In this case, doubling the budget from 1 500 000 to
3 000 000 evaluations brings an improvement of 0.8% in the
average deviation.

Our conclusion is confirmed in Figure 4, showing the best
solution obtained by each algorithm setting after 10, 20, 50 and
100 global iterations (Giterations). We want to see if, at any
moment of the execution, one of the configuration takes the
advantage. All we can say is that for all the reported results,
none of the configurations take the advantage, considering the
same number of processes.

These results suggest that increasing the number of it-
erations in the TS does not help the search process while
increasing the overall number of evaluations. Moreover, for
an equivalent budget, the experiments show that it is more
beneficial to set a smaller number of iterations. For example,
for a budget of 1 500 000 evaluations, it is more beneficial to
have 20 processes with 750 iterations each (which gives an
average deviation of 15.01%) than 10 processes with 1500
iterations each (which gives an average deviation of 17.96%)

2) Impact of the number of processes: The second main
finding from Table IV is the behavior of the algorithm when
using the same number of iterations and varying the number of
processes. Increasing the number of processes has obviously
the effect of increasing the overall budget. Nevertheless, unlike
the first case, this increase leads to a clear improvement
of performance. Indeed, if we consider a setting with 750
TSiterations, doubling the budget from 1 500 000 (20 processes
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Fig. 4. Impact of increasing the number of iteration – details.

and 750 TSiterations) to 3 000 000 (40 processes and 750
TSiterations) allows us to improve the average deviation by
2.69% (from 15.01% to 12.32%).

Figure 5 clearly shows that scaling the number of processes
has then a positive impact on the results. The use of 40
parallel processes, with the same budget for each process,
improves significantly the average deviation. This is confirmed
in Figure 6 showing the obtained deviation at different steps
of the search process (i.e., using different termination criteria).
Through this figure, we can observe the best solution obtained
by each algorithm setting after 10, 20, 50 and 100 global
iterations (Giterations). If we consider the case of the 350
iterations (left column), the use of 40 processes outperforms
the use of 20 and 10 processes for all the iterations level (10,
20, 50 and 100) that can be seen in Figure 6. This results
means that the increase of the budget with the increase of the
number of processes is beneficial.

D. Discussion

In this work, we propose a very simple parallel model to
solve QAP, with a particular focus on the tai343e01 instance.
The landscape of this instance seems to need a very small num-
ber of iterations (few intensification search). Indeed, increasing
the budget has no impact, unless we increase the number of
processes. Through this point, we try to show that, in the
parallelization, it is essential to find the good distribution, so
that the search process becomes more efficient.

Generally speaking, in the literature, the use of paralleliza-
tion is focused on maximizing the budget without worrying
about the landscape and how to distribute this budget.

A good instance for parallelization is an instance that can be
solved efficiently when we maximize the number of processes
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Fig. 6. Impact of the variation in the number of processes.

TABLE V
20 TRIALS FOR THE TAI343E01 INSTANCE (40 PROCESSES/350

ITERATIONS)

Instance(20 trials) PITS
Deviation times(min)

tai343e01-1 10.82 12.82
tai343e01-2 12.75 13.09
tai343e01-3 11.15 13.03
tai343e01-4 14.80 13.04
tai343e01-5 14.58 12.98
tai343e01-6 11.38 13.00
tai343e01-7 10.64 13.04
tai343e01-8 12.93 13.03
tai343e01-9 11.93 13.05
tai343e01-10 8.78 13.00
tai343e01-11 12.90 12.96
tai343e01-12 12.58 12.98
tai343e01-13 12.57 13.02
tai343e01-14 13.45 13.05
tai343e01-15 13.41 13.06
tai343e01-16 12.93 13.01
tai343e01-17 12.38 13.01
tai343e01-18 11.01 13.02
tai343e01-19 12.93 12.95
tai343e01-20 9.67 13.02

and minimize the execution time on each process. This is the
case of instances that need many search from multiple starting
solutions such as the instance tai343e01.

The best results we could get are with 350 iterations ×
100 Ro-Ts × 40 processes (a total budget of 1 400 000).
The average deviation from the BKS on 20 independent
executions is 12.19% and we obtain a deviation of 8.78%
for the best attempt in only 13 minutes. These results outper-
form the deviation obtained in the literature with the Ro-Ts
algorithm [18] using a smallest budget (1 400 000 evaluations
against 1 619 120 for [18]).

Table V shows the average deviation as well as the cal-
culated time in minutes for the 20 independent executions
of our best configuration (350 iterations × 100 Ro-Ts × 40
processes).

The results obtained in this paper are easily exploitable
and interesting on hybrid genetic algorithms. Indeed, each
process can represent an individual of the population. The
random perturbation can be replaced by a crossover between
the best solution found in the population and the best local
solution of each process. The hybridization of the algorithm
can be done thanks to the tabu search proposed in this work.
Moreover, the analysis shows that in the case of the instance
studied in this article, it is beneficial to increase the number of
processes that can execute a small number of iterations. This
configuration can be very effective in the context of a hybrid
genetic algorithm.

Another obvious use of this paper results, is the improve-
ment of the existing evolutionary algorithm. For example, in
the case of [13], it is possible to improve the last part of their
algorithm with the parallelization of the tabu search applied
to the best individual obtained by their genetic algorithm.



V. CONCLUSIONS AND PERSPECTIVES

In this work, we have presented and experimented a parallel
approach for QAP. This approach demonstrates efficient results
on the set of benchmark instances experimented. We evaluated
our approach on 5 benchmark instances from the QAPLIB, and
we showed that the algorithm was able to obtain competitive
results compared against several variants from the literature.
We also analyzed the tai343e01 instance from [17]. This
analysis represents the main motivation for this work.

In summary, two main contributions are proposed in this
work. The first one is to propose a parallel variant of the Ro-
Ts, able of performing well on small- to medium-size instances
as well as on large-size instances, simply by changing a few set
of parameters. The second, and most important contribution,
is a deeper analysis of a large-size instance for the well known
QAP, in order to find the right distribution of the budget in
the parallel context.

In future works, there are several possible ways to extend
this work. One possibility is to experiment the impact of other
potential solution exchange strategies through the creation of a
set of local optima produced by the parallel processes, and by
choosing one of them following a particular strategy. Another
possibility is to study the landscape of the other large-size
instances in order to propose a good tuning to solve these
instances and to see if they share a similar landscape topology.
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[11] T. Stützle, Iterated local search for the quadratic assignment problem,
European Journal of Operational Research 174, pp. 1519-1539, 2006.

[12] J.S. Kapov, Tabu search applied to the quadratic assignment problem,
ORSA Journal on Computing, 2(1) pp.33-45, 1990.

[13] U. Tosun, On the performance of parallel hybrid algorithms for the
solution of the quadratic assignment problem, Engineering Applications
of Artificial Intelligence 39, pp 267-278, 2015.

[14] O. Abdelkafi, L. Idoumghar, J. Lepagnot, Comparison of two diversi-
fication methods to solve the quadratic assignment problem, Procedia
Computer Science 51, pp 2703-2707, 2015.

[15] R.B. et al, Grid’5000: A large scale and highly reconfigurable experi-
mental grid testbed, IJHPCA 20(4), pp 481-494, 2006.

[16] R.E. Burkard, S.E Karisch, F. Rendl, QAPLIB - A quadratic assignment
problem library, journal of global optimization Volume: 10 Issue: 4, pp.
391-403, Jun 1997.

[17] Z. Drezner, P. M. Hahn, E.D. Taillard, Recent Advances for the
Quadratic Assignment Problem With Special Emphasis on Instances that
are Difficult for Meta-Heuristic Methods, Annals of Operations research
139, pp 65-94, 2005.

[18] Z. Drezner, P. M. Hahn, E.D. Taillard, Recent Advances for the
Quadratic Assignment Problem With Special Emphasis on Instances that
are Difficult for Meta-Heuristic Methods, Annals of Operations research
139, pp 65-94, 2005.
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