
HAL Id: hal-02179172
https://hal.science/hal-02179172

Submitted on 10 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Longitudinal Analysis of Bug Handling Across Eclipse
Releases

Zeinab Abou Khalil, Eleni Constantinou, Tom Mens, Laurence Duchien,
Clément Quinton

To cite this version:
Zeinab Abou Khalil, Eleni Constantinou, Tom Mens, Laurence Duchien, Clément Quinton. A Longitu-
dinal Analysis of Bug Handling Across Eclipse Releases. ICSME 2019 - 35th IEEE International Con-
ference on Software Maintenance and Evolution, Sep 2019, Cleveland, United States. �hal-02179172�

https://hal.science/hal-02179172
https://hal.archives-ouvertes.fr

A Longitudinal Analysis of Bug Handling
Across Eclipse Releases

Zeinab Abou Khalil∗§, Eleni Constantinou∗, Tom Mens∗, Laurence Duchien§, Clément Quinton§
{zeinab.aboukhalil, eleni.constantinou,tom.mens}@umons.ac.be

{laurence.duchien, clement.quinton}@univ-lille.fr
∗ University of Mons, Belgium

§ University of Lille & Inria Lille, France

Abstract—Large open source software projects, like
Eclipse, follow a continuous software development pro-
cess, with a regular release cycle. During each re-
lease, new bugs are reported, triaged and resolved.
Previous studies have focused on various aspects of
bug fixing, such as bug triaging, bug prediction, and
bug process analysis. Most studies, however, do not
distinguish between what happens before and after each
scheduled release. We are also unaware of studies that
compare bug fixing activities across different project
releases. This paper presents an empirical analysis of
the bug handling process of Eclipse over a 15-year
period, considering 138K bug reports from Bugzilla,
including 16 annual Eclipse releases and two quarterly
releases in 2018. We compare the bug resolution rate,
the fixing rate, the bug triaging time and the fixing time
before and after each release date, and we study the
possible impact of “release pressure”. Among others,
our results reveal that Eclipse bug handling activity is
improving over time, with an important decrease in the
number of reported bugs before releases, an increase
in the bug fixing rate and an increasingly balanced bug
handling workload before and after releases. The recent
transition from an annual to a quarterly release cycle
continued to improve the bug handling process.

I. Introduction
In continuous software engineering, every major software
release provides a significant amount of new or modified
functionality compared to the previous release. Developers
strive to resolve as many bugs as possible in current and
upcoming releases. Unfortunately, not all bugs can be
resolved and fixed before the release deadline. In order to
address the most important bugs for each release, a bug
handling process is followed, relying on dedicated collab-
orative bug tracking tools such as Bugzilla. Researchers
have investigated different factors in the bug handling
process that may affect bug triaging and fixing time,
and provided models for predicting and estimating this
time [1]–[10]. They also studied techniques to improve the
process of bug fixing [11], [12], bug triaging [13]–[15], or
assigning developers to bug reports [16]–[21].
The research community has investigated several aspects
of pre- and post-release bugs. The number and rate of re-
solved and fixed bugs are important indicators of software
quality [22]. Rapid release policies might affect bug han-
dling quality, since releases are delivered more often, and

the community may have less time to address unresolved
bugs. Khomh et al. [23], [24] analyzed Mozilla Firefox to
study the effect of switching to a rapid release cycle on
the speed and proportion of bugs being fixed. Interviews
with Mozilla developers revealed that the success of such
a new release policy on bug handling depends on the prior
preparation to adapt to this policy [24]. In the second half
of 2018, Eclipse has also transitioned from an annual to a
quarterly (13-week) release cycle. It therefore becomes rel-
evant to investigate how this change has affected Eclipse’s
recent bug handling activity.
In this paper, we study the bug history of 18 major releases
of the Eclipse core projects over a 15-year lifetime. In
particular, we investigate: 1) how the bug handling time
differs before and after an upcoming scheduled release; and
2) if and how the switch to a quarterly release cycle affects
the bug handling process. To do so, we rely on four mea-
surements to quantify bug handling: triaging and fixing
time, and resolution and fixing rate. Our investigation is
guided by four research questions:
RQ0 : How does the number of bugs differ before and
after each release? This exploratory question provides
an initial understanding of the magnitude of bug-related
activity for each Eclipse release in the period before the
release is scheduled and the period afterwards.
RQ1 : How do the bug resolution and fixing rates
evolve over releases, and how do they differ before
and after each release? We intuitively expect that
Eclipse maintainers handle bugs more intensively in the
period before than after the upcoming release date, as
they strive to resolve and fix as many bugs as possible
in the upcoming release. Moreover, to assess the bug
handling process improvement over time, we study the bug
resolution and fixing rates and check whether or not they
are increasing across releases.
RQ2 : How do the bug triaging and fixing time differ
before and after each release? We assume that intense
bug handling activity before an upcoming release leads to
faster bug triaging and fixing times than after the release.
We thus investigate the differences between the two time
periods in terms of days elapsed to triage and fix bugs.
RQ3 : How do the bug triaging and fixing time
change when approaching a release deadline? Based

on 40 interviews, Murphy-Hill et al. [25] observed that
developers become more conservative in their changes to
avoid the risk of introducing new bugs, and focus more on
bug fixing activities as the release deadline approaches.
Similarly, we assume that for Eclipse, bugs are triaged
and fixed faster closer to a release deadline, due to the
increased pressure to resolve as many bugs as possible for
the upcoming release. We also assume that in the light
of an upcoming release, the triaging and fixing time of
bugs of the current release will increase, since developers
may prefer to focus on bugs of the upcoming release rather
than on the ones of the current, already published, release.
To this end, we empirically compare the differences in
bug triaging and fixing time of the current and upcoming
release in function of the upcoming release deadline.
The research questions are analyzed for three ranges of
Eclipse releases: 1) the 3.x release series; 2) all 4.x releases
following an annual release cycle; and 3) all 4.x releases
following a quarterly release cycle. We report and discuss
the findings for each release range so as to identify the
changes in the bug handling process throughout Eclipse’s
history, as well as the effect of switching from an annual
to a quarterly release cycle.

II. Related Work
A. Bug fixing in short release cycles
Khomh et al. [23] empirically studied the effect of rapid
releases on software quality for Mozilla Firefox. They
quantified quality in terms of runtime failures, presence
of bugs and outdatedness of used releases. Related to our
work, they compared the number of reported, fixed and
unconfirmed bugs and the fixing time during both the
testing period, i.e., the time between the first alpha version
and the release, and the post-release period. They showed
that less bugs are fixed during the testing period and that
bugs are fixed faster under a rapid release model. In a
follow-up work [24], the authors reported that, although
post-release bugs are fixed faster in a shorter release cycle,
a smaller proportion of bugs are fixed compared to the
traditional release model. Interviews conducted with six
Mozilla employees revealed that they can be “less effective
at triaging bugs with rapid release” and that more beta
testers using the rapid releases can generate more bugs.
Da Costa et al. [26] studied the impact of Mozilla’s rapid
release cycles on the integration delay of addressed issues.
They showed that compared to the traditional release
model, the rapid release model does not integrate ad-
dressed issues more quickly into consumer-visible releases.
They also found that the issues are triaged and fixed faster
in rapid releases. They extended their work in [27] where
they reported that issue triaging time is not significantly
different among the traditional and rapid releases.

B. Bug triaging
Saha et al. [1] extracted code change metrics, such as
the number of changed files, to identify the reasons for

delays in bug fixes and to improve the overall bug fixing
process in four Eclipse projects: JDT, CDT, Plug-in Devel-
opment Environment (PDE), and Platform. Their results
showed that a significant number of long-lived bugs could
be reduced through careful triaging and prioritization if
developers would be able to predict their severity, change
effort and change impact in advance.
Zhang et al. [8] studied factors affecting delays incurred
by developers in bug fixing time. They analyzed three
Eclipse projects: Mylyn, Platform and PDE. They found
that metrics such as severity, operating system, description
of the issue and comments are likely to impact the delay
in starting to address and resolve the issue.
Hooimeijer and Weimer [7] presented the correlation be-
tween bug triaging time and the reputation of a bug
reporter. They designed a model that uses bug report
fields, such as bug severity and submitter’s reputation, to
predict whether a bug report will be triaged within a given
amount of time in the Mozilla Firefox project.

C. Bug fixing time prediction and estimation
Panjer [3] carried out a case study on Eclipse projects, and
showed that the most influential factors affecting bug fix-
ing time are found in initial bug properties (e.g., severity,
product, component, and version), and post submission
information (e.g., comments).
Giger et al. [4] found that the assigned developer, bug
reporter and month when the bug was reported have
the strongest influence on the bug fixing time in Eclipse,
Mozilla, and Gnome. Marks et al. [5] studied different
features of a bug report in relation to bug fixing time using
bug repository data from Mozilla and Eclipse. The most
influential factors on bug fixing time were bug location
and bug reporting time.
Zou et al. [28] investigated the characteristics of bug
fixing rate and studied the impact of a reporter’s different
contribution behaviors to the bug fixing rate in Eclipse and
Mozilla. Among others, they observed an increase in fixing
rate over the years for both projects. On the other hand
the observed rates were not high, especially for Mozilla.
All these studies are valuable in understanding the overall
bug fixing process, factors affecting bug fixing time, bug
fixing time estimation and triaging automation. In our
work, we focus on the bug triaging and fixing time, and
on bug resolution and fixing rate. We are not aware of any
study comparing these metrics before and after the release
is delivered, and how they evolve over successive releases.

III. Experimental Setup
This section presents our experimental design, the selected
case study, the data extraction process and the metrics
that will be used to answer the research questions. The
datasets and scripts generated for the current study are
publicly available in a replication package [29].

A. Selected Case Study
We selected Eclipse as a case study because it: 1) is a large
and mature project that has had a sufficiently long release
history with associated bug reporting activity 2) has been
widely studied in previous software evolution research [30],
[31] and in research about bug fixing in particular [3], [6];
and 3) is a popular open source project that has a stable
development community and a regular release process.
Eclipse relies on the Bugzilla bug tracking platform [32]
to manage and keep track of its bugs, allowing devel-
opers to effectively manage all concerns of the bug life
cycle. The Eclipse community separates its development
between the core Eclipse projects and its plugins. We
focus only on bugs related to the core of Eclipse, as the
bug handling activity for plugins can be affected by the
absence of factors such as continuous bug monitoring and
continuity of the plugin development. The core of Eclipse
is composed of the projects Platform, JDT, e4, Incubator,
Equinox and PDE [33]. e4 is an incubator for community
exploration of future technologies of Eclipse and uses a
different versioning scheme than the other projects; we
therefore excluded it from our analysis. Since our focus is
on the relation between bug reports and the official Eclipse
releases, we also excluded Incubator because the few (49)
bugs reported for this project do not provide a version
of the Eclipse release, i.e., all bugs provide an unspecified
version.
Our analysis of Eclipse starts from version 3.0, which is the
first release coordinated and shipped by the independent
Eclipse Foundation; previous releases were coordinated
and controlled by IBM. Since release 3.0 in June 2004
until release 4.8 in June 2018, Eclipse followed an an-
nual “simultaneous release” scheme1 where a new release
was delivered every year in June. In June 2012, Eclipse
switched from the 3.x series to the 4.x series, highlighted
by a “dual” release of 3.8 and 4.2 that were maintained in
parallel2.
Each annual release since 3.3 until 4.5 was followed by
two “service releases” in September and February, respec-
tively. Releases 4.6 and 4.7 had three “update releases”
in September, December and March. Since release 4.9,
Eclipse has switched to a new quarterly release policy (i.e.,
every 13 weeks) without intermediate update releases.

B. Bug Tracker Data
Our empirical analysis is based on bug report data ex-
tracted from Bugzilla for each Eclipse release. A typical
bug report contains a variety of fields, such as the descrip-
tion, product, component, status, reporter, fixer, severity,
version, target milestone, and operating system. Each bug
report is accompanied by a history containing all events

1This terminology is used by the Eclipse foundation to reflect a
coordinated release effort including the Eclipse Platform and other
Eclipse projects. See https://wiki.eclipse.org/Simultaneous Release.

2https://www.eclipse.org/eclipse/development/plans/eclipse
project plan 4 2.xml

NEW
148,911

138,444

CLOSED
11,988

RESOLVED
120,573

ASSIGNED
58,311

VERIFIED
31,356

REOPENED
12,864

FIXED
DUPLICATE
INVALID
WORKSFORME
NOT_ECLIPSE
MOVED
WONTFIX

881

7,589
30,013

11,093

674

2,674

7,671

75,521

7,631

50,334
37,115

Fig. 1: The life-cycle of Eclipse bug reports.

that occurred during the bug’s life cycle (e.g., bug reporter
and creation time, change of resolution and status field of
a bug, assigned developer, etc.).
All these aspects play a role in the bug handling process.
Using the Disco process mining tool [34] we extracted the
bug handling process based on the 138,445 bug reports in
our dataset; the process to acquire this dataset is explained
in detail in Section III-C. The results are shown in Fig. 1.
Typically, a bug gets introduced as NEW and then either
becomes CLOSED (5.5%) or ASSIGNED to a developer who
becomes responsible for its resolution (36.9%).
It is important to note that many bugs get RESOLVED with-
out ever being ASSIGNED (54.3%). The resolution status of
a RESOLVED bug may contain different possible values. In
the majority of the cases (55.3%), the status will be FIXED
(i.e., the bug has been resolved by fixing it). However,
many bugs get resolved by marking them as DUPLICATE
(18.6% of the cases) or as WORKSFORME (implying that the
bug cannot be reproduced by the assignee, corresponding
to 10.1% of the cases). Other resolution statuses are
INVALID (7.4%), WONTFIX (7.2%), NOT ECLIPSE (1.4%)
and MOVED (0.01%). Less than 1 out of 3 bug reports ever
reach the VERIFIED state after they have been RESOLVED
(28%). Hence, one should not rely on this state to carry
out empirical analyses about bug handling.

C. Data Processing
To extract the Eclipse bug reports and the respective bug
histories we used the Bugzilla API3. Since we focus on the
core of Eclipse, we only considered bug reports for which
the product field was tagged as Platform, JDT, Equinox
or PDE. We initially extracted 205,031 bugs for these
projects and excluded 27,799 bugs that were marked as
enhancement in the severity field, since feature enhance-
ments are considered to be new functionality requests
rather than bugs [35].
In a next step we filtered bugs based on the version field.
As the goal of this work is to study the bug resolution pro-
cess in relation to each Eclipse release, we only considered
those bug reports whose version field value corresponds to
an actual Eclipse release ranging between 3.0 and 4.10. To
this end, we excluded 3,237 bugs with unspecified version
field and 32,985 bugs corresponding to versions smaller

3https://bugzilla.readthedocs.io/en/latest/api/core/v1/
bug.html#search-bugs

https://wiki.eclipse.org/Simultaneous_ Release
https://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_4_2.xml
https://www.eclipse.org/eclipse/development/plans/eclipse_project_plan_4_2.xml
https://bugzilla.readthedocs.io/en/latest/api/core/v1/bug.html#search-bugs
https://bugzilla.readthedocs.io/en/latest/api/core/v1/bug.html#search-bugs

than 3.0 or larger than 4.10. We did not consider release
4.11 because at the time of analysis (March 2019) the full
dataset was not yet available for extraction.
We restricted ourselves to values that actually correspond
to valid Eclipse releases; e.g., the valid version values of
the 4.7 release found in our dataset were 4.7, 4.7.1, 4.7.1a,
4.7.2, 4.7.3 and 4.7.0 Oxygen. From the remaining bugs, we
excluded 2,565 bugs that corresponded to versions that are
not listed in the official releases of Eclipse, i.e., 3.9, 3.10,
4.0 and 4.1. Our final dataset (including releases 3.0→3.8,
4.2→4.10) consists of 138,445 bug reports.
For the remainder of the analysis, we partitioned all
reported bugs into groups according to their major re-
lease number as we focus on the major Eclipse releases.
For example, group 4.7 contains all reported bugs whose
version field prefix is 4.7. For the specific case of the “dual
release” of Eclipse 3.8 and 4.2 (that both have the same
release date), a single group, 3.8/4.2 was created.
The aforementioned processing steps mitigate several
threats that could bias the results of our study. Additional
factors that can bias our results are explained by Tu et
al. [36]. The misuse of issue tracking data may threaten
the validity of findings because the values of issue fields
(severity, priority, component, version, etc.) often change
over time. They recommend researchers that rely on such
data to have a full understanding of their application
scenarios, the origin and change of the data, and the
influential issue fields to manage data leakage risks.
In the context of our work, we examined the threats
related to the bug report fields version, resolved, fixed,
and assignee. The version field is used to indicate the
version(s) affected by the bug report and usually contains
the numbers or names of the releases. Examining the
bugs that changed the version field during the bug fixing
cycle, we found 4,063 bugs that were reaffected to different
releases throughout their history, out of which 3,621 bugs
that were reaffected to different major releases. We handle
such bugs by considering them only for the last major
release they affected as including the same bugs in multiple
releases would bias the results for our pre-release analyses.
From these bugs, only 98 (out of 109,367 resolved bugs)
are resolved in multiple major Eclipse releases, thus the
impact on our analyses is minimal.
A reported bug is marked as resolved and the resolution
date is tracked by locating in the bug history a modifica-
tion of the status field to the value RESOLVED. Similarly,
a resolved bug is marked as fixed and the fixing date
is tracked by locating the presence of the last FIXED
status in the bug history. If the resolved status is modified
multiple times, the last date that the bug was marked as
RESOLVED will be registered. We opt for this strategy as the
presence of multiple resolutions of the same bug implies
that resolutions prior to the last one were not satisfactory.
A reported bug is marked as assigned and the assign-
ment date is tracked by checking for the presence of the
ASSIGNED value in the status field of the bug history.

In case of multiple reassignments, we rely on the first
recorded assignment date, reflecting the moment when the
bug was triaged for the first time. The Eclipse commu-
nity has also been assigning bugs using an alternative
process since 20094: it is possible to use an “assigned
to” task without using the status field. This assign-
ment method always assigns bugs to an email address in
the form [component name]-triaged@eclipse.org. We
identified and marked as assigned 4,811 bugs correspond-
ing to this case.

D. Proposed Bug Handling Metrics
We introduce the notation Breport to refer to the set of
all reported bugs that we considered for our analysis.
Similarly, Bassign refers to the subset of all assigned bugs,
Bresolve to all resolved bugs, and Bfix to all fixed bugs. A
superscript notation allows to restrain these sets to bugs
targeting a specific release. For example, B4.7

resolve contains
all resolved bugs for which the version field refers to 4.7.
Since our empirical analysis aims to relate bug handling
activity to release dates, we need to compare the dates
corresponding to specific activities against these release
dates. To do so, we define the following functions:
• Dreport : Breport → Date returns the creation date of

a bug report.
• Dassign : Bassign → Date returns the first date the

bug report status field has been set to ASSIGNED.
• Dresolve : Bresolve → Date returns the last date the

bug report status field has been set to RESOLVED.
• Dfix : Bfix → Date returns the last date the bug

report status field has been set to RESOLVED with value
FIXED for the resolution field.

Using these functions, we define bug triaging time and
bug fixing time as:

∀b ∈ Bassign : Ttriage(b) = Dassign(b)−Dreport(b)

∀b ∈ Bfix : Tfix(b) = Dfix(b)−Dreport(b)

Let d =]d1, d2] be a date range. We define bug resolution
rate ResRate as the proportion of reported bugs that have
been resolved in the considered date range. We also define
two different fixing rate metrics. FixRatereport, taken
from [24], computes the ratio of fixed over reported bugs.
It relies on an implicit assumption that all reported bugs
will eventually reach the RESOLVED status at some point
in their lifecycle. This is not always the case based on our
process mining results (Fig. 1) and the observations of [37]:
many bugs are CLOSED without ever reaching RESOLVED
status. We therefore define a variant metric FixRateresolve
as the ratio of fixed over resolved bugs:

ResRate(d) =
|Bresolve(d)|
|Breport(d)|

FixRatereport(d) =
|Bfix(d)|
|Breport(d)|

FixRateresolve(d) =
|Bfix(d)|
|Bresolve(d)|

4https://wiki.eclipse.org/Platform UI/Bug Triage

https://wiki.eclipse.org/Platform_UI/Bug_Triage

Example. The following example illustrates these three
metrics. Suppose 30 bugs are reported during date range
d, of which 20 bugs are resolved and 12 of those resolved
bugs are actually fixed. Then resolution rate is ResRate =
20
30 = 0.66, and fixing rates are FixRatereport = 12

30 = 0.4
and FixRateresolve = 12

20 = 0.6.

E. Separation before and after Eclipse releases
Let R = {3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8/4.2,
4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9. 4.10} be the ordered set
of considered Eclipse releases. We define the following
functions:
• date: R→ Date returns the date of a given release
• prev: R/{3.0} → R returns its previous release
• next: R/{4.10} → R returns its next release

Given a release r ∈ R, we focus our analysis on only those
bugs that target this release, based on the value of
their version field in the bug report. We study the period
before and after the release by restricting the date range
to the dates between two successive releases. For example,
by bugs reported after release r = 4.5 we mean all bugs
targeting that release, and being created in the date range
[date(4.5),date(4.6)[. Similarly, the period before release
4.5 considers the date range [date(4.4),date(4.5)[.
We introduce a shorthand notation for the fixing and
resolution rates before and after each release. For example,
the resolution rates before and after a release r are defined
as follows, restricting to only those bugs targeting r:

ResRatebefore(r) = ResRate([date(prev(r)),date(r)[)
ResRateafter(r) = ResRate([date(r),date(next(r))[)

We similarly restrict Breport, Bfix, Bassign and Bresolve. For
example,

Bbefore
report(r) = {b ∈ Br

report | Dreport(b) ∈ [date(prev(r)),date(r)[}
Bafter

report(r) = {b ∈ Br
report | Dreport(b) ∈ [date(r),date(next(r))[}

F. Preliminary Analysis
For each considered release, we computed the number
of reported, resolved, fixed and assigned bugs targeting
this release, without any restriction on the date range.
Fig. 2 shows these statistics and reveals that the number
of reported bugs targeting a given release (blue line)
is monotonically decreasing all along the 3.x range of
releases. Starting from release 3.8/4.2, the number of
bug reports appears to become stable. For the quarterly
releases starting from 4.9, the numbers decrease again.
Fig. 3 shows the corresponding evolution of ResRate,
FixRatereport and FixRateresolve. We observe a decreas-
ing resolution rate all along the Eclipse releases, while
FixRateresolve is increasing and FixRatereport tends to be
stable across releases. For the 3.x release range, ResRate
decreases from 0.96 to 0.64, while FixRateresolve increases
from 0.50 to 0.76. Starting from release 3.6, FixRateresolve
is consistently higher than ResRate. We assume that this
change in behaviour has to do with the practice of “resolv-
ing” a bug by giving it the LATER or REMIND status in the

3.0 (2004-06)

3.1 (2005-06)

3.2 (2006-06)

3.3 (2007-06)

3.4 (2008-06)

3.5 (2009-06)

3.6 (2010-06)

3.7 (2011-06)

3.8/4.2 (2012-06)

4.3 (2013-06)

4.4 (2014-06)

4.5 (2015-06)

4.6 (2016-06)

4.7 (2017-06)

4.8 (2018-06)

4.9 (2018-09)

4.10 (2018-12)

releases

0

5000

10000

15000

20000

25000

of

 b
ug

s

reported
resolved
fixed
assigned

Fig. 2: Number of bugs targeting a specific release. The vertical
dashed lines indicate the switch from Eclipse 3.x to 4.x, and
from an annual to a quarterly cycle after 4.8.

3.0 (2004-06)

3.1 (2005-06)

3.2 (2006-06)

3.3 (2007-06)

3.4 (2008-06)

3.5 (2009-06)

3.6 (2010-06)

3.7 (2011-06)

3.8/4.2 (2012-06)

4.3 (2013-06)

4.4 (2014-06)

4.5 (2015-06)

4.6 (2016-06)

4.7 (2017-06)

4.8 (2018-06)

4.9 (2018-09)

4.10 (2018-12)

releases

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

ResRate
FixRate_resolve
FixRate_report

Fig. 3: Resolution and fixing rates per targeted Eclipse release.

resolution field, corresponding to the desire to postpone
the bug resolution.5 This practice was fairly common early
on in the 3.x release range, but gradually declined and
is no longer used since release 3.6 (red vertical line).
By analyzing the delays of a follow-up resolution of the
REMIND/LATER bugs (3479 bugs), we found that most
of them lingered for more than 3 years before getting their
final resolution.
For the 4.x annual release range we observe a stability in
the rates up until release 4.5, after which ResRate contin-
ues to decrease and FixRateresolve continues to increase.
We assume that this change is caused by the introduction
of an Automated Error Reporting Client (called AERI)6

since June 2015 (yellow vertical line).
Fig. 4 compares the number of bugs reported before and
after each release: | Bbefore

report(r) | and | Bafter
report(r) |. As

for Fig. 2 we observe a monotonic decrease in number
of reported bugs for the 3.x release range, with a ratio
|Bafter

report(r)|
|Bbefore

report(r)| between 0.38 and 0.66. This ratio increases to
the range from 0.75 to 1.07 for the 4.x release with the
exception of release 4.8 and 4.10. The exception for 4.8 is
possibly caused by the quarterly release policy starting at
4.9 and for 4.10 because it is newly released.

5See https://www.eclipsezone.com/eclipse/forums/t83053.html
6See https://www.eclipse.org/community/eclipse newsletter/

2016/july/article3.php

https://www.eclipsezone.com/eclipse/forums/t83053.html
https://www.eclipse.org/community/eclipse_newsletter/2016/july/article3.php
https://www.eclipse.org/community/eclipse_newsletter/2016/july/article3.php

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
3.8/4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

releases

0

2500

5000

7500

10000

12500

15000

17500

of
 b

ug
s

after_release
before_release

Fig. 4: Reported bugs before and after each release.

IV. Results
This section reports quantitative evidence for the research
questions. All statistical hypothesis tests use a significance
level α = 0.05, rejecting the null hypothesis for p < 0.05.
When computing the effect size we use Cliff’s delta [38],
[39], and interpret the results using [40].

RQ0 How does the number of bugs differ before and
after each release?
Fig. 5 shows, before and after each release, the monthly
evolution (i.e., consecutive 30-day time periods) of the
number of reported, assigned, resolved and fixed bugs,
respectively, aggregated per release series as the sum of
bugs. For the 3.x series, we generally observe an important
increasing trend during the first eleven months before the
release date, followed by a decreasing trend starting from
one month before the upcoming release deadline (probably
due to imminent deadline pressure) until the date of the
next release. For the 4.x series, the results are similar, but
much less pronounced.
To test the difference between the number of bugs before
and after the release we use a Wilcoxon rank sum test that
replaces the Mann–Whitney U test when the observations

10 5 0 5 10
months before/after release

0
2
4
6
8

10
12

re

po
rte

d
bu

gs
 (t

ho
us

an
ds

)

3.x
4.x quarterly
4.x yearly

(a) number of reported bugs

10 5 0 5 10
months before/after release

0
2
4
6
8

10
12

as

sig
ne

d
bu

gs
 (t

ho
us

an
ds

)

3.x
4.x quarterly
4.x yearly

(b) number of assigned bugs

10 5 0 5 10
months before/after release

0
2
4
6
8

10
12

re

so
lv

ed
 b

ug
s (

th
ou

sa
nd

s)

3.x
4.x quarterly
4.x yearly

(c) number of resolved bugs

10 5 0 5 10
months before/after release

0
2
4
6
8

10
12

fix

ed
 b

ug
s (

th
ou

sa
nd

s)

3.x
4.x quarterly
4.x yearly

(d) number of fixed bugs

Fig. 5: Monthly evolution of the number of bugs before/after
a release, aggregated by release series (y-axis is measured in
thousands of bugs).

are paired. The test makes no assumptions about the
distributions, making it appropriate for our analyses since
the values in our dataset are not normally distributed.
The null hypothesis H0 states that the distribution of the
monthly number of bugs before the release is not different
from the respective distribution after the release. H0 could
be rejected with large effect size for the populations of
reported (p = 0.006, d = 0.61), assigned (p = 0.006, d =
0.61) and fixed (p = 0.011, d = 0.56) bugs, respectively,
but only for the 3.x release series. For the population of
resolved bugs for the 3.x release series we could not reject
H0. For the 4.x series of annual and quarterly releases, we
could not reject H0 except for the number of reported bugs
for the annual releases, but the effect size is medium.

For Eclipse 3.x releases, more bugs are reported,
assigned and fixed before the upcoming release than
after the release, indicating that more effort is spent
for handling bugs before the upcoming release. For
Eclipse 4.x no difference is observed, suggesting an
increasingly balanced bug handling workload before
and after the release date.

RQ1 How do the bug resolution and fixing rates
evolve over releases, and how do they differ before
and after each release?
First, we compute the resolution rate before and after each
release date. Fig. 6a shows a decreasing trend of ResRate
(y-axis) over the different releases (x-axis). A linear re-
gression analysis confirms this trend for ResRatebefore
(R2 = 0.785) and ResRateafter (R2 = 0.863).
Using a Wilcoxon rank sum test we verified the null
hypothesis H01r that there is no statistical difference
between the resolution rates before and after the release.
We could not reject H01r (p = 0.85), i.e., the resolution
rates before and after each release are similar. This is
visually confirmed starting from release 3.5. The reason
of decreasing resolution rates specifically after release 3.5
is that the Eclipse community has decided in 2007 to stop
using the resolution statuses LATER and REMIND as they
gave rise to bugs that remained unresolved for too long7.
For the 4.x series, the resolution rates before and after
fluctuate somewhere between 0.4 and 0.6. This signifies
that around 1 out of 2 bugs do not get resolved.

The resolution rate tends to decrease over releases,
but there is no significant difference in resolution rate
before and after each release. One out of two bugs
does not get resolved in the 4.x release range.

Next, we compute the fixing rates (FixRatereport and
FixRateresolve) before and after each release date. Fig. 6b
shows that the fixing rates before each release (horizontal

7https://bugs.eclipse.org/bugs/show bug.cgi?id=157642

https://bugs.eclipse.org/bugs/show_bug.cgi?id=157642

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
3.8

/4.
2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1

0

releases

0.0

0.2

0.4

0.6

0.8

1.0
ra

te
 o

f R
ES

O
LV

ED
 b

ug
s

ResRate_before
ResRate_after

(a) Resolution rate evolution

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7
3.8

/4.
2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.1

0

releases

0.0

0.2

0.4

0.6

0.8

1.0

ra
te

 o
f F

IX
ED

 b
ug

s

FixRate_resolve_before
FixRate_resolve_after
FixRate_report_before
FixRate_report_after

(b) Fixing rate evolution

Fig. 6: Evolution of the resolution and fixing rate before and
after each release. (The red vertical line corresponds to the
introduction of the AERI error reporting tool.)

red lines) are higher than the fixing rates after the release
(blue lines). Using the Wilcoxon rank sum we test the
null hypothesis H01f that there is no statistically signif-
icant difference between fixing rates before and after a
release. H0f

1 was rejected for FixRatereport (p = 6× 10−5)
with large effect size (d = 0.8). H0f

1 was rejected for
FixRateresolve (p = 0.02) with medium effect size (d =
0.47). This shows that the bug fixing rate before the release
date is higher than after that date.
It is interesting to note the difference in behaviour between
FixRatereport and FixRateresolve. Consistent with what we
already saw in Fig. 3, FixRatereport remains stable over
time and FixRateresolve increases over time. A linear regres-
sion analysis confirms this positive trend for FixRatebefore

resolve
(R2 = 0.816) and FixRateafter

resolve (R2 = 0.899). As in
Fig. 3 we observe that FixRateresolve is improving faster
since release 4.5, probably because of the introduction and
continued use of the AERI error reporting tool.

The fixing rate before a release is higher than after
a release. The rate of fixed bugs over resolved bugs
is increasing over time. The introduction of an au-
tomatic error reporting tool coincides with a further
improvement of bug fixing rate.

0 100 200 300
delay (days)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

release 3.2
Reported before release
Reported after release

0 100 200 300
delay (days)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

release 3.4
Reported before release
Reported after release

0 100 200 300
delay (days)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

release 4.3
Reported before release
Reported after release

0 100 200 300
delay (days)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

release 4.4
Reported before release
Reported after release

0 100 200 300
delay (days)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

release 4.7
Reported before release
Reported after release

0 100 200 300
delay (days)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y

release 4.9
Reported before release
Reported after release

Fig. 7: Kaplan-Meier survival curve with 95% confidence in-
terval (indicated by the shaded areas) for triaging time before
and after each release.

RQ2 How do the bug triaging and fixing time differ
before and after each release?
For each release, we compute the bug triaging time
Ttriage(b) for each assigned bug b before and after the
release date. Triaging time before a release is computed for
bugs targeting that release that are reported and assigned
in the date range [date(prev(r)),date(r)[, while after the
release we use the range [date(r),date(next(r))[. Similarly,
we calculated the bug fixing time before and after each
release for bugs targeting that release that are reported
and fixed in the respective date ranges.
For both time measurements, we use the technique of
survival analysis [41] to model the expected time duration
until the occurrence of an event of interest. In the triaging
case, the event of interest is bug assignment and the
duration to the event is computed from the creation date
of the bug until the first assignment date. In the fixing
case, the event of interest is a bug being fixed and the
duration to this event is calculated from the creation date
of the bug until the last fix date.
Triaging time results: Fig. 7 shows a selection of Kaplan-
Meier survival curves for specific releases, together with
their confidence intervals, before and after the release
date.8 We generally observe that triaging time before a
release tends to be lower than triaging time after that
release. We also observe that the difference between the
survival curves tends to decrease over successive releases;

8The full set of survival curves can be found in [29]

Eclipse 3.x Eclipse 4.x (annual) Eclipse 4.x (quarterly)
rel. H0t

2 H0f
2 rel. H0t

2 H0f
2 rel. H0t

2 H0f
2

3.0 R R 3.8/4.2 R R 4.9 – –
3.1 R R 4.3 R – 4.10 – R
3.2 R R 4.4 – R
3.3 R R 4.5 R R
3.4 – R 4.6 R –
3.5 R R 4.7 – R
3.6 R R 4.8 – –
3.7 R R

TABLE I: Logrank test for difference between the survival
distributions of triaging time (resp. fixing time) before and
after each release. R indicates that H0 is rejected.

for some releases, like 4.7, the difference is very low or
absent. To statistically confirm the difference in triaging
time before and after each release, we use a logrank
test [42]. The null hypothesis H0t

2 states that there is no
difference between the triaging time survival distributions
before and after a release. Table I reports for which releases
H0t

2 can be rejected. We can reject H0t
2 for all releases

except 3.4, 4.4, and from 4.7 till 4.10. Especially for the
latest releases, including all quarterly releases, we cannot
observe any statistically significant difference.
Fixing time results: The survival curves for bug fixing
time (not shown due to lack of space) reveal that for the
3.x release range and most of the annual 4.x releases, it
takes less time to fix a bug before compared to after a
release. With a statistical logrank test we verify hypothesis
H0f

2 that there is no difference between the fixing time
survival distributions before and after a release. We cannot
reject H0f

2 for releases 4.3, 4.6, 4.8 and 4.9. The difference
between 4.9 and 4.10 is explained by the shorter timespan
of bugs in release 4.10 as it is the newest release in our
dataset; this explains why bugs appear to be fixed faster
for 4.10 after the release.

Bugs tend to get triaged and fixed faster before a
release than after it. The transition from an annual
to a quarterly release policy appears to have been
beneficial, since no statistical difference in triaging
time can be observed before and after such releases.

RQ3 How do the bug triaging and fixing time change
when approaching a release deadline?
For each release, we compute triaging time Ttriage(b) for
each bug b, by analyzing the population of reported bugs
that were actually ASSIGNED in a particular date range.
We compute bug fixing time Tfix(b) in a similar way for
FIXED bugs. We group our results in two date ranges based
on when the assignment or fixing took place: 1) during
the first 9 months after the current release (henceforth
called early period) and 2) during the last 3 months before
the next release (henceforth called pressure period). We
consider the period of 9 months after the current release
for quarterly releases because the development teams start
early working on the releases following the next release.

Release 4.10 is excluded from this analysis as its activity
duration is not sufficient to perform the experiment.
Firstly, we investigate the bug activity of the current and
next release for the pressure period (blue boxes in Fig. 8).
We visually observe that during the pressure period, bugs
for the next release are triaged (left column) and fixed
(right column) faster than for the current release. This can
be explained by an increasing deadline pressure, requiring
developers to prioritise the bugs of the next release and
triage and fix them fast to deliver the release with fewer
bugs. Mann-Whitney U tests (see Table II) confirm that
the null hypothesis H0t

3a, stating that the time to triage
bugs of the current and next new release is not different
from in the pressure period, can be rejected for all releases
except 4.8. We found a negligible effect size for release 4.4,
a small effect for 8 releases, medium for release 4.5 and
large for 4 releases. Similarly, we confirm that the null
hypothesis H0f

3a, i.e., the time to fix bugs of the current
and next new release is the same in the pressure period,
can be rejected for all releases (see Table II). We found
a small effect size for release 4.8, medium for releases
3.8/4.2, 4.6 and 4.9, and large for 11 releases.
Secondly, for both the current and the next release, we
investigate the differences in triaging and fixing time
between the early period (red boxes in Fig. 8) and the
pressure period (blue boxes).
For the current release, we observe that the triaging and
fixing are longer in the pressure period than in the early
period. These results indicate that bugs triaged and fixed
in the pressure period have been open for a long time and
that developers tend to triage many bugs that had lived for

current next
Approaching release 3.3

10
0

10
1

10
2

10
3

Tr
ia

gi
ng

 d
ur

at
io

n
in

 d
ay

s

1-9 months 10-12 months

current next
Approaching release 3.3

10
1

10
2

10
3

Fi
xi

ng
 d

ur
at

io
n

in
 d

ay
s

1-9 months 10-12 months

current next
Approaching release 4.7

10
1

10
2

10
3

Tr
ia

gi
ng

 d
ur

at
io

n
in

 d
ay

s

1-9 months 10-12 months

current next
Approaching release 4.7

10
0

10
1

10
2

10
3

Fi
xi

ng
 d

ur
at

io
n

in
 d

ay
s

1-9 months 10-12 months

current next
Approaching release 4.9

10
1

10
2

10
3

Tr
ia

gi
ng

 d
ur

at
io

n
in

 d
ay

s

1-9 months 10-12 months

current next
Approaching release 4.9

10
1

10
2

10
3

Fi
xi

ng
 d

ur
at

io
n

in
 d

ay
s

1-9 months 10-12 months

Fig. 8: Triaging time distributions (left figures) and fixing time
distributions (right) when approaching next release.

triaging fixing
rel. H0t

3a H0t
3b H0t

3c H0f
3a H0f

3b
H0f

3c

Eclipse 3.x
3.1 S S N L L N
3.2 L M N L M S
3.3 L L S L L N
3.4 S S – L M N
3.5 S – – L S N
3.6 S S N L L N
3.7 L M N L M N

Eclipse 4.x (annual)
3.8/4.2 L M – M S N

4.3 S N – L M N
4.4 N - N L M S
4.5 M S N L M N
4.6 S N – M S N
4.7 S S – L M –
4.8 – – N S S –

Eclipse 4.x (quarterly)
4.9 S S – M S L

TABLE II: Mann-Whitney U test for triaging and fixing
time when approaching a release deadline. Whenever a signif-
icant difference is found, cell values summarize the effect size:
N(egligible), S(mall), M(edium), L(arge); – indicates that H0
could not be rejected.

a long time in the current release before releasing the next
one. Mann-Whitney U tests (see Table II) confirm that the
null hypothesis H0t

3b, stating that the triaging time of the
current release in the early period is not different from the
pressure period, can be rejected for all releases except 3.5,
4.4 and 4.8. We found a negligible effect size for 4.3 and 4.6,
a small effect for 6 releases, medium for 3 releases and large
for release 3.3. The respective results for the fixing time
show that the null hypothesis H0f

3b can be rejected for all
releases. The effect sizes range between small and large.
Therefore, for most releases, bugs of the current release
took longer to triage or fix during the pressure period
compared to the early period.
For the next release, we do not observe a difference
between the triaging time of the bugs in the pressure
period and early period. Bugs for the next release tend to
be triaged in the same way regardless of the considered
period. Developers try to triage these bugs as soon as
possible. Mann-Whitney U tests (Table II) confirmed that
the null hypothesis H0t

3c, stating that triaging time of the
next release in the early period is not different from in the
pressure period, can be rejected for the 3.x series except
for 3.4 and 3.5. We cannot reject H0t

3c for any of the 4.x
releases except for 4.4, 4.5 and 4.8. Even for those releases
where H0t

3c can be rejected, the effect size is negligible
or small (for 3.3). This implies that there is little or no
difference between the triaging time of the next release in
the early period and in the pressure period.
For the fixing time, we visually observed a longer time
during the pressure period. The null hypothesis H0f

3c,
stating that bug fixing time of the next release in the
early period is not different from in the pressure period,

can be rejected for all releases except 4.7 and 4.8. For all
the releases where H0f

3c can be rejected, the effect size is
negligible except for 3.2, 4.4 and 4.9. This implies that,
with the exception of those releases, there is very little
difference in the time to fix bugs of the next release during
the early period than during the pressure period.

Bug triaging time increases as the next release is
approaching. It takes less time to triage and fix
bugs during the pressure period of the next release
compared to the current release. Bugs of the current
release that are triaged and fixed in the pressure
period have been open for longer compared to the
respective ones in the early period. The fact that the
next release is approaching does not affect the triaging
and fixing time of bugs for the next release.

V. Discussion
Changes in the bug fixing process can have a direct impact
on the efficiency of bug handling activity. As we have
shown in Section III-F and RQ1 in Section IV, the Eclipse
community stopped using resolution statuses indicating
that the bug still needed futher processing (LATER or
REMIND status). This decision naturally caused a decrease
in the resolution rate, but the fixing rate increased. The
introduction of an Automated Error Reporting client
(AERI) was also considered as beneficial by the Eclipse
community. AERI facilitates reporting errors as users do
not need to create Bugzilla entries; such entries are han-
dled by the Eclipse community based on the reports they
receive. In turn, users can provide comments with their
reports which are helpful when fixing bugs; according to an
AERI report [43] commented reports are more than twice
as likely to be fixed compared to the ones without a user
comment. Similarly, our empirical analysis has confirmed
the positive effects of AERI on the bug fixing rate.
The bug fixing rate has been studied by Zou et al. [28] who
analysed the characteristics of bug fixing rates in Eclipse
and Mozilla. They measured bug fixing rate, defined as
the number of fixed over closed bugs, at a yearly basis
from 2001 to 2014, and found that the rate increased from
0.49 to 0.77 for Eclipse and 0.32 to 0.72 for Mozilla. They
took into account all issues in all Eclipse projects (not only
the Eclipse core) without distinguishing between real bugs
and enhancements. For the fixing rate they considered only
closed bugs, while we found many Eclipse bugs to be FIXED
without ever being CLOSED (see Fig. 1). While we measured
the fixing rate of real bugs in the Eclipse core at a release
basis, our results align with their reported fixing rates (see
Fig. 3). They found that the overall fixing rate of Mozilla
(0.44) is much lower than Eclipse (0.66) and report that
more bugs tend to be invalid for Mozilla than for Eclipse.
Khomh et al. [23], [24] studied bug handling activity in
Mozilla Firefox. They analysed two years of bug activity,
whereas we performed a longer study considering 15 years

of bug activity for Eclipse. Khomh et al. reported that the
transition to a rapid release cycle for Mozilla Firefox has
led to shorter bug fixing time, but less bugs are triaged and
fixed in a timely fashion. Our results for Eclipse partially
align as we also found less bugs to be triaged and fixed.
In contrast to Firefox, however, we observed that the
fixing rate for Eclipse has improved after transitioning to
shorter release cycles (see Section III-F). A possible reason
for this difference is that developers from the Firefox
community stated that they were not given enough time
to prepare for the transition to smaller release cycles [24],
whereas the Eclipse community has been working towards
this transition for over a year [44] and has started to
introduce intermediate (quarterly) “update” releases since
Eclipse 4.6 in 2016. Our results highlight the importance
of well preparing the transition from a traditional to
a rapid release policy so as the community to become
more effective in bug handling activities. Other projects
can benefit from the lessons learned about how both
Firefox and Eclipse carried out such a transition. While
preparing a release, various nightly and integration builds
are made available to developers only for testing purposes.
However, milestone and release candidates are intended for
adoption and testing by users before the scheduled annual
release [45]. This might explain the high number of reports
before an official release.
Our results show that developers focus more on triaging
and fixing bugs of the next release than ones impacting
users in the current release. Moreover, bugs of the current
release that are triaged in the pressure period have been
open for a long time. This can happen because long-lived
and possibly complex bugs are planned to be fixed for the
next release. The severity of a reported bug is a critical
factor in deciding how soon it needs to be fixed [46].

VI. Threats to Validity
Threats to construct validity in our study concern the
bug assignment identification and multiple instances of
an activity. We minimized the first threat by identifying
bug assignments based on both the status and existing
practices (see Section III-C). We mitigated the second
threat by considering the date of the first assignment, and
the date of the last resolution and fixing activities.
A threat to internal validity is that our empirical anal-
ysis relies on Bugzilla bug reports. We mitigate this
threat by verifying that all Eclipse bugs are managed in
Bugzilla; even the bugs submitted using AERI are stored
in Bugzilla. Another threat stems from bugs not being
tagged with a valid release; we excluded such bugs as it is
not feasible to properly address such cases. Finally, bugs
can be tagged with different major versions throughout
their history; we quantified the possible bias from such
cases and found that only 98 bugs can affect our analysis;
the bias they introduce is insufficient to alter our findings.
Regarding external validity, we cannot generalize our re-
sults as we only analyzed a single case study of Eclipse.

While the followed methodology is applicable to other sys-
tems, the obtained findings are not generalizable. Smaller
and less mature projects are likely to reveal other evolu-
tionary characteristics in their bug fixing behavior. Even
for Eclipse itself, the findings are only based on the
core projects that have a large number of bugs and an
active developer community. The findings may differ for
smaller and/or peripheral projects within Eclipse that
have smaller communities.
We mitigate threats to reliability validity by providing a
publicly available replication package [29] and a detailed
description of the followed methodology in Section III.

VII. Conclusion
We conducted an empirical study of the bug handling
activity in the Eclipse core projects over a 15-year lifetime.
We analysed 16 annual and two quarterly releases, allow-
ing us to study the transition to a rapid release cycle in
autumn 2018. We evaluated the evolution of bug triaging
time, bug fixing time, bug resolution rate and bug fixing
rate. We compared these metrics before and after each
release date and between release ranges.
Over time, the number of reported bugs per release is
decreasing, suggesting that Eclipse and its bug handling
process are mature and of high quality. More bugs are
reported, assigned and fixed before each release deadline
than after it. This difference is becoming smaller with
newer releases, mostly because there are less reported bugs
before each rapid release.
While the bug resolution rate is decreasing over time to
rather low values, the fixing rate is becoming very high
(close to or above 90%). This improved efficiency seems to
be due to a combination of a well-managed bug handling
policy and the recent introduction (in June 2015) of an
automated error reporting tool.
When approaching a release deadline, effort is shifting
from bug triaging to fixing, and priority is given to fixing
bugs of the next release as opposed to handling bugs of
the current release.
Overall, we did not observe any negative effect of the
transition from an annual to a quarterly release cycle. On
the contrary, some observed differences in triaging and
fixing times, and rates before and after releases are no
longer present.
Based on our analysis, we believe that Eclipse is handling
its bug activity very well and has benefited from the
transition to a rapid release cycle. It remains to be seen if
even faster release cycles will continue to yield benefits or
on the contrary will have negative consequences.

Acknowledgment
This research was partially supported by the FNRS and
FWO under the Excellence of Science project 30446992
SECO-ASSIST, the FRQ-FNRS collaborative research
project R.60.04.18.F SECO-Health and Région Hauts-de-
France.

References
[1] R. K. Saha, S. Khurshid, and D. E. Perry, “Understanding the

triaging and fixing processes of long lived bugs,” Information
and software technology, vol. 65, pp. 114–128, 2015.

[2] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How
long will it take to fix this bug?,” in International Workshop on
Mining Software Repositories, IEEE, 2007.

[3] L. D. Panjer, “Predicting Eclipse bug lifetimes,” in International
Workshop on Mining Software Repositories, p. 29, IEEE Com-
puter Society, 2007.

[4] E. Giger, M. Pinzger, and H. Gall, “Predicting the fix time of
bugs,” in International Workshop on Recommendation Systems
for Software Engineering, pp. 52–56, ACM, 2010.

[5] L. Marks, Y. Zou, and A. E. Hassan, “Studying the fix-time for
bugs in large open source projects,” in International Conference
on Predictive Models in Software Engineering, ACM, 2011.

[6] A. Kumar and A. Gupta, “Evolution of developer social net-
work and its impact on bug fixing process,” in India Software
Engineering Conference, pp. 63–72, ACM, 2013.

[7] P. Hooimeijer and W. Weimer, “Modeling bug report quality,” in
International Conference on Automated Software Engineering
(ASE), pp. 34–43, ACM, 2007.

[8] F. Zhang, F. Khomh, Y. Zou, and A. E. Hassan, “An empirical
study on factors impacting bug fixing time,” in Working Con-
ference on Reverse Engineering, pp. 225–234, IEEE, 2012.

[9] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effective bug triage
based on historical bug-fix information,” in International Sym-
posium on Software Reliability Engineering (ISSRE), pp. 122–
132, IEEE, 2014.

[10] H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time:
an empirical study of commercial software projects,” in Interna-
tional Conference on Software Engineering (ICSE), pp. 1042–
1051, IEEE Press, 2013.

[11] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru,
“An empirical analysis of bug reports and bug fixing in open
source Android apps,” in European Conference on Software
Maintenance and Reengineering (CSMR), pp. 133–143, March
2013.

[12] M. Gupta, “Improving software maintenance using process min-
ing and predictive analytics,” in International Conference on
Software Maintenance and Evolution, pp. 681–686, IEEE, 2017.

[13] G. Jeong, S. Kim, and T. Zimmermann, “Improving bug triage
with bug tossing graphs,” in Joint European Software Engineer-
ing Conference and ACM SIGSOFT Symposium Foundations of
Software Engineering (ESEC/FSE), pp. 111–120, ACM, 2009.

[14] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou, Z. Luo, and X. Wu,
“Towards effective bug triage with software data reduction tech-
niques,” IEEE transactions on knowledge and data engineering,
vol. 27, no. 1, pp. 264–280, 2015.

[15] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo, “Automatic
bug triage using semi-supervised text classification,” in Inter-
national Conference on Software Engineering and Knowledge
Engineering (SEKE), pp. 209–214, 2010.

[16] J. Anvik, “Automating bug report assignment,” in International
Conference on Software Engineering, ICSE ’06, pp. 937–940,
ACM, 2006.

[17] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this
bug?,” in International Conference on Software Engineering
(ICSE), pp. 361–370, ACM, 2006.

[18] G. Canfora and L. Cerulo, “Supporting change request assign-
ment in open source development,” in ACM Symposium on
Applied Computing (SAC), pp. 1767–1772, ACM, 2006.

[19] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “Why so
complicated? Simple term filtering and weighting for location-
based bug report assignment recommendation,” in Working
Conference on Mining Software Repositories (MSR), pp. 2–11,
IEEE, 2013.

[20] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer
recommendation for bug resolution,” in Working Conference on
Reverse Engineering (WCRE), pp. 72–81, IEEE, 2013.

[21] X. Xia, D. Lo, X. Wang, and B. Zhou, “Dual analysis for
recommending developers to resolve bugs,” Journal of Software:
Evolution and Process, vol. 27, no. 3, pp. 195–220, 2015.

[22] D. Spinellis, G. Gousios, V. Karakoidas, P. Louridas, P. J.
Adams, I. Samoladas, and I. Stamelos, “Evaluating the quality
of open source software,” Electronic Notes in Theoretical Com-
puter Science, vol. 233, pp. 5–28, 2009.

[23] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams, “Do faster
releases improve software quality? An empirical case study
of Mozilla Firefox,” in IEEE Working Conf. Mining Software
Repositories (MSR), pp. 179–188, June 2012.

[24] F. Khomh, B. Adams, T. Dhaliwal, and Y. Zou, “Understanding
the impact of rapid releases on software quality,” Empirical
Software Engineering, vol. 20, pp. 336–373, Apr 2015.

[25] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan,
“The design of bug fixes,” in Proceedings of the 2013 Interna-
tional Conference on Software Engineering, pp. 332–341, IEEE
Press, 2013.

[26] D. A. da Costa, S. McIntosh, U. Kulesza, and A. E. Hassan,
“The impact of switching to a rapid release cycle on the integra-
tion delay of addressed issues - An empirical study of the Mozilla
Firefox project,” in Working Conference on Mining Software
Repositories (MSR), pp. 374–385, IEEE, 2016.

[27] D. A. da Costa, S. McIntosh, C. Treude, U. Kulesza, and A. E.
Hassan, “The impact of rapid release cycles on the integration
delay of fixed issues,” Empirical Software Engineering, pp. 1–70,
2018.

[28] W. Zou, X. Xia, W. Zhang, Z. Chen, and D. Lo, “An empirical
study of bug fixing rate,” in Computer Software and Applica-
tions Conference (COMPSAC), pp. 254–263, IEEE, 2015.

[29] Z. A. Khalil, E. Constantino, and T. Mens, “A longitudinal anal-
ysis of bug handling across eclipse releases.” https://zenodo.org/
record/3246948, june 2019.

[30] T. Mens, J. Fernandez-Ramil, and S. Degrandsart, “The evo-
lution of Eclipse,” in International Conference on Software
Maintenance, pp. 386–395, Sep. 2008.

[31] J. Businge, A. Serebrenik, and M. van den Brand, “Survival
of Eclipse third-party plug-ins,” in International Conference on
Software Maintenance (ICSM), pp. 368–377, IEEE, Sep. 2012.

[32] “Eclipse bugzilla repository.” https://bugs.eclipse.org.
[33] “Eclipse.” https://wiki.eclipse.org/Simultaneous Release.
[34] “Disco process mining tool.” https://fluxicon.com/disco/.
[35] R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry, “Are

these bugs really “normal”?,” in Working Conference on Mining
Software Repositories (MSR), vol. s, pp. 258–268, May 2015.

[36] F. Tu, J. Zhu, Q. Zheng, and M. Zhou, “Be careful of when: an
empirical study on time-related misuse of issue tracking data,”
in Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE),
pp. 307–318, ACM, 2018.

[37] B. Luijten, J. Visser, and A. Zaidman, “Assessment of issue
handling efficiency,” in 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), pp. 94–97, IEEE,
2010.

[38] N. Cliff, “Dominance statistics: Ordinal analyses to answer
ordinal questions,” Psychological Bulletin, vol. 114, pp. 4994–
509, November 1993.

[39] M. Hess and J. Kromrey, “Robust confidence intervals for ef-
fect sizes: A comparative study of Cohen’s d and Cliff’s delta
under non-normality and heterogeneous variances,” American
Educational Research Association, 2004.

[40] M. R. Hess and J. D. Kromrey, “Robust confidence intervals for
effect sizes: A comparative study of Cohen’s d and Cliff’s delta
under non-normality and heterogeneous variances,” in annual
meeting of the American Educational Research Association,
2004.

[41] O. Aalen, O. Borgan, and H. Gjessing, Survival and event
history analysis: a process point of view. Springer Science &
Business Media, 2008.

[42] J. M. Bland and D. G. Altman, “The logrank test,” BMJ,
vol. 328, no. 7447, p. 1073, 2004.

[43] A. Sewe, “One year of automated error reporting.”
https://www.eclipse.org/community/eclipse newsletter/
2016/july/article3.php, July 2016.

[44] “Eclipse transition to smaller release cycles.” https:
//www.eclipse.org/lists/eclipse.org-planning-council/
msg02927.html.

https://zenodo.org/record/3246948
https://zenodo.org/record/3246948
https://bugs.eclipse.org
https://wiki.eclipse.org/Simultaneous_ Release
https://fluxicon.com/disco/
https://www.eclipse.org/community/eclipse_newsletter/2016/july/article3.php
https://www.eclipse.org/community/eclipse_newsletter/2016/july/article3.php
https://www.eclipse.org/lists/eclipse.org-planning-council/msg02927.html
https://www.eclipse.org/lists/eclipse.org-planning-council/msg02927.html
https://www.eclipse.org/lists/eclipse.org-planning-council/msg02927.html

[45] “Eclipse development process.” https://www.eclipse.org/
projects/dev process/.

[46] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Pre-
dicting the severity of a reported bug,” in 2010 7th IEEE
Working Conference on Mining Software Repositories (MSR
2010), pp. 1–10, IEEE, 2010.

https://www.eclipse.org/projects/dev_process/
https://www.eclipse.org/projects/dev_process/

	Introduction
	Related Work
	Bug fixing in short release cycles
	Bug triaging
	Bug fixing time prediction and estimation

	Experimental Setup
	Selected Case Study
	Bug Tracker Data
	Data Processing
	Proposed Bug Handling Metrics
	Separation before and after Eclipse releases
	Preliminary Analysis

	Results
	Discussion
	Threats to Validity
	Conclusion
	References

