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ADJOINT-BASED ADAPTIVE MODEL AND DISCRETIZATION
FOR HYPERBOLIC SYSTEMS WITH RELAXATION∗

DYLAN DRONNIER† AND FLORENT RENAC‡

Abstract. In this work, we use an adjoint-weighted residuals method for the derivation of an a
posteriori model and discretization error estimators in the approximation of solutions to hyperbolic
systems with stiff relaxation source terms and multiscale relaxation rates. These systems are parts of
a hierarchy of models where the solution reaches different equilibrium states associated to different
relaxation mechanisms. The discretization is based on a discontinuous Galerkin method which allows
to account for the local regularity of the solution during the discretization adaptation. The error
estimators are then used to design an adaptive model and discretization procedure which selects lo-
cally the model, the mesh, and the order of the approximation and balances both error components.
Coupling conditions at interfaces between different models are imposed through local Riemann prob-
lems to ensure the transfer of information. The reliability of the present hpm-adaptation procedure
is assessed on different test cases involving a Jin–Xin relaxation system with multiscale relaxation
rates, and results are compared with standard hp-adaptation.
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1. Introduction. We are interested in the numerical simulation of physical sys-
tems described by hyperbolic conservation laws with stiff relaxation source terms.
These source terms modelize the evolution of variables toward different equilibrium
states through a cascade of mechanisms. Let us quote, for instance, the modeling of
two-phase flows that may involve different models [30]. The two-fluid, two-velocity,
two-pressure diphasic model of Baer and Nunziato [5] treats each phase as a separate
fluid with its own density, pressure, and velocity. Assuming thermal and mechani-
cal equilibrium, one may consider drift-flux models which consist in two-fluid, one-
temperature, one-pressure models [2]. Assuming kinematic equilibrium, one obtains
the homogeneous (i.e., one-fluid) relaxation model, and further assuming thermody-
namic equilibrium, one obtains the homogeneous equilibrium model [4]. This defines
a hierarchy of models which may be selected by their corresponding characteristic re-
laxation time scales, and practical applications may involve heterogeneous time scales
which differ by several orders of magnitude. The finer model being also the more
complex one, it is legitimate to select the adapted model in regions of the flow where
corresponding equilibria are achieved to lower the cost of the global simulation. This
motivates the model adaptation under consideration in this work.

The different models will be separated by thin interfaces where the transfer of
information should be modelized. This coupling strategy may require the numerical
treatment at the interfaces of sharp relaxation layers with steep gradients of the
solution, thus imposing a cumbersome resolution. In this work, the coupling will be
based on the solution of a Riemann problem that allows the capture of the relaxation
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layers and avoids their numerical resolution. We refer the reader to [3, 4, 12, 1] and
references therein for a discussion on the different theoretical and numerical techniques
of coupling through interfaces.

Using a model whose complexity is adapted to the local physical scales would
allow a compromise between accuracy and complexity of the model. Such a strategy
may be based on local error estimates and has been used in many different appli-
cations [10, 36, 35, 41, 8, 32, 14, 17]. Further allowing the local adaptation of the
problem discretization would improve its flexibility and efficiency [9]. In this work,
we restrict our analysis to steady-state problems and propose to derive local a poste-
riori estimators of both model and discretization errors on a user-defined function of
interest based on the solution of an adjoint problem. Such technique provides reliable
a posteriori error bounds and allows to compare both sources of error and to balance
them, constituting a key advantage of the present method. The adjoint solution is
used in the estimator as a weight on the residuals and gives information of the local
sensitivity of the function of interest to the discretization and modelization. The error
estimator is then split between local contributions to discretization and model errors
where the former corresponds to the classical adjoint-weighted residuals [7, 24], while
the latter consists in testing the coarse solution in the fine model.

The method may be seen as an extension to hyperbolic systems with relaxation
of the work in [9] about Poisson and convection-diffusion-reaction equations. In [9],
the finer models are obtained by additional terms in the equations which allow the
use of a same functional space. However, in the present context the size of the state
variable vector may differ between relaxation models of different complexity, which
introduces some difficulty in the construction of the error estimators because the
function spaces differ. We circumvent this difficulty by including the equilibrium
states in the functional space through an additional constraint in the Lagrangian
functional and thus use a unique framework for the derivation of the error estimators.

The error estimators are then used to propose an adaptation algorithm. Given
an output functional J(u) which depends on the solution of the fine problem, u,
the estimators provide local contributions to the error on J . The algorithm looks
for an approximate solution uhm resulting from local adaptations of both model and
discretization in the whole domain. It aims at balancing both components of the error
and lowering the error on J under a given tolerance

(1.1) |J(uhm)− J(u)| ≤ TOL|J(uhm)|,

where 0 < TOL� 1 denotes the prescribed tolerance. Typical examples of functionals
include global forces coefficients of a body in a fluid flow [24]. In the context of
two-phase flows, this quantity could be either induced loads in propulsion systems or
efficiency of cryotechnic rocket engines [33].

Let us stress that these techniques require strong regularity assumptions on the
primal and dual solutions [7, 19, 36, 9]. The adjoint analysis of hyperbolic systems with
discontinuous solutions indeed results in problems with systems of linear equations
with discontinuous coefficients which are not well posed in general. The analysis must
include the linearization of the jump relations across the discontinuity [31], which
leads to a so-called interior boundary condition for the adjoint variables as shown in
[42] in the context of scalar equations. In the case of systems of conservation laws,
this interior boundary condition has been derived formally through stationary shocks
of the compressible quasi–one-dimensional Euler equations [18]. This condition is
also satisfied at the discrete level provided that the primal and dual solutions are
vanishing viscosity limits of regularized problems [40]. We also refer the reader to
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[23, sections 4 and 5] and the recent survey [26, section 4] and references therein for a
discussion on the well-posedness of the dual problem in the presence of discontinuity of
the primal solution and to [24, 23, 26, 38, 16] for numerical evidence of the sharpness
and efficiency of the error indicators.

Using a Riemann problem for the coupling of different systems may also lead
to nonsmooth physical solution across the coupling interface. We thus include the
coupling condition as an additional constraint in the adjoint analysis which allows to
linearize the systems separately where the solution is smooth. Moreover, the analysis
assumes differentiability of the Riemann problem. This thus excludes coupling con-
ditions, leading to a characteristic interface where a nonlinear wave of the solution of
the Riemann problem separating discontinuous solutions has zero velocity and thus
corresponds to the coupling interface.

The space discretization is based on a discontinuous Galerkin (DG) method
[39, 29] which constitutes a high-order finite element method well suited to local
adaptation [24, 28]. The method indeed allows to adapt either the mesh size (h-
adaptation) or the approximation order of the discretization (p-adaptation) according
to the local regularity of the solution. The present method thus consists in a so-called
hpm-adaptation algorithm. The Riemann problem at coupling interfaces is also used
to design a well-balanced scheme that preserves equilibrium solutions, i.e., stationary
solutions satisfying the coupling conditions. Without loss of generality, we introduce
the method for a hierarchy of two one-dimensional systems: the fine model and its
associated equilibrium model. We use the approach based on the works of [13] and
[21] (see Appendix A for details) using the solution of a local Riemann problem for
the coupling of both models. Results are illustrated with a prototype defined from
the framework of Jin–Xin relaxation models [27] where the corresponding equilibrium
model is a nonlinear scalar equation. Numerical experiments will also be presented
for this prototype.

The paper is organized as follows. Section 2 presents the different model prob-
lems and their discretizations. Subsection 2.1 introduces the hyperbolic systems with
relaxation under consideration. The coupling of models through the solution of a
Riemann problem is then defined in subsection 2.2, a prototype is introduced in sub-
section 2.3, while the space discretization with a DG method of the different systems
at steady state is described in subsection 2.4. In section 4, we derive the representa-
tion of model and discretization errors based on the adjoint problem associated to the
equilibrium model introduced in section 3. The adaptation algorithm is presented in
section 5 and is assessed by numerical experiments in section 6. Concluding remarks
about this work are given in section 7.

2. Model problem and approximation.

2.1. Hyperbolic systems with relaxation. Let Ω = (0, L) be an open interval
of R, and consider the following one-dimensional hyperbolic system:

(2.1) ∂tu + ∂xf(u) = 1
ε(x)s(u) in Ω× R+.

The state vector u : Ω × R+ 3 (x, t) 7→ u(x, t) ∈ A ⊂ Rn belongs to the convex
set A of admissible states. The flux function f and the source term s, from A to Rn,
are supposed to be smooth. The source term modelizes some relaxation mechanisms,
and ε(·) > 0 represents a local characteristic relaxation time that may vary in different
regions of the domain. We consider the case where these mechanisms depend only on
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local values of the state vector. The system is closed by the initial condition,

(2.2) u(x, 0) = u0(x) ∀x ∈ Ω,

together with appropriate boundary conditions,

u(0+, t) ∈ {w ∈ A : w =Wr(0
+; b0,uR) ∀uR ∈ A}, ∀t > 0,(2.3a)

u(L−, t) ∈ {w ∈ A : w =Wr(0
−; uL,bL) ∀uL ∈ A}, ∀t > 0.(2.3b)

Here b0 and bL are constant data in A, and Wr(·; ·, ·), where the subscript r
stands for relaxation, denotes the solution of the Riemann problem associated to (2.1)
in homogeneous form with the two last arguments as left and right initial data. We
assume that the data are compatible with the existence and uniqueness of a steady-
state solution to (2.1). We refer the reader to [15] or [20] for an in-depth discussion
on admissible boundary conditions which is beyond the scope of the present study.

The problem defined by (2.1)–(2.3) is referred to as the fine model. Our goal is
to compute its steady state. However, the computation might be expensive when the
dimension of the state vector n is large. One way to lower its complexity is to consider
a reduced model which corresponds to the limit of (2.1) when equilibrium is reached
through relaxation mechanisms.

Following the framework of Chen, Levermore, and Liu [11] (see also [32]), we
consider systems (2.1) of the form

(2.4)

{
∂tv + ∂xfv(u) = 0,
∂tw + ∂xfw(u) = 1

ε(x) (weq(v)−w)
in Ω× R+,

where u = (v,w)> with v and w in suitable subsets of Rn−k and Rk and f(u) =(
fv(u), fw(u)

)>
with similar dimensions. The Jacobians of the flux and source terms

in (2.1) may be written as

(2.5) f ′(u) =

(
∂vfv ∂wfv
∂vfw ∂wfw

)
, s′(u) =

(
0 0

w′eq(v) −In−k

)
.

The states u satisfying s(u) = 0, i.e., w = weq(v), are called equilibrium states,
and we denote by M := {u ∈ A : s(u) = 0} the equilibrium manifold. We assume
that M can be parametrized by v and weq maps v to the unique weq(v) such that
ueq(v) belongs to M with

(2.6) ueq(v) :=

(
v

weq(v)

)
.

In the limit of instantaneous relaxation ε → 0+, (2.1) tends formally to the
equilibrium model:

(2.7)

{
∂tv + ∂xfv

(
v,weq(v)

)
= 0,

w = weq(v)
in Ω× R+.

The adaptation method introduced in section 5 will be based on a partition of the
domain Ω into a relaxation region Ωr where the fine model holds and an equilibrium
region Ωe where the equilibrium model is applied for the global modelization of the
problem. The regions satisfy

(2.8) Ω = Ωr ∪ Ωe, Ωr ∩ Ωe = ∅,
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and the underlying problem will be referred to as the adapted problem in the following.
The different models are separated by thin interfaces where the transfer of information
should be ensured through coupling conditions. This will be done in the next section
by solving a local Riemann problem centered on the coupling interface.

2.2. The Riemann problem for coupling different models. We consider
the Riemann problem defined by systems (2.4) and (2.7) in homogeneous form as-
sociated to a piecewise constant initial condition and temporarily set Ω = R, Ωr =
(−∞, 0), and Ωe = (0,∞). Let uL, uR in A be two state vectors with s(uR) = 0.
The Riemann problem consists of finding u = (v,w)> in A solution of{

∂tv + ∂xfv(v,w) = 0,
∂tw + ∂xfw(v,w) = 0,

x < 0, t > 0,(2.9a) {
∂tv + ∂xfv(v,w) = 0,

w = weq(v),
x > 0, t > 0,(2.9b)

together with the initial data,

(2.10) u(x, 0) = uL(x), x < 0, and v(x, 0) = vR(x), x > 0,

and suitable conditions at x = 0, referred to as the coupling condition and addressed
later on. Introducing the orthogonal projection Πv : u = (v,w)> 7→ v, we look for a
function We

r : R×A×ΠvA → A such that

u(x, t) =We
r

(
x
t ; uL,vR

)
, x ∈ R, t > 0.

We assume that the Riemann problem is consistent with the coupling condition:

(2.11)
u(0−, t) =We

r

(
0−; u(0−, t),v(0+, t)

)
,

v(0+, t) = ΠvWe
r

(
0+; u(0−, t),v(0+, t)

)
, t > 0,

where u(0−, t) and v(0+, t) are the left and right traces of the exact solution to the
coupling problems (2.9) and (2.10). This property is important, as it allows the
existence of steady-state solutions. We stress that from (2.9) the coupling conditions
must satisfy the conservation of v, and the Riemann problem is assumed to share this
property.

In the same way, byWr
e

(
x
t ; vL,uR

)
we denote the solution of the Riemann prob-

lem where the models are inverted: Ωr = (0,∞) and Ωe = (−∞, 0). In the following,
we further assume thatWe

r (0±; ·, ·) andWr
e (0±; ·, ·) are smooth functions of their two

last arguments (see Example 2), which in particular excludes conditions of character-
istic coupling interfaces. Alternative approaches may be based on the approximation
of the coupling conditions through the use of numerical fluxes as suggested in [1].

2.3. A Jin–Xin relaxation model as prototype. Throughout this work, we
will consider an example derived from the relaxation models introduced by Jin and
Xin in [27]. It is defined by the semilinear hyperbolic relaxation model:

(2.12)

{
∂tv + ∂xw = 0,

∂tw + a2∂xv = 1
ε(x) (f(v)− w) ,

where f : R → R is a smooth function. The characteristic variables associated
to (2.12) in homogeneous form are w ± av with speeds ±a, a > 0, satisfying the
subcharacteristic condition

(2.13) a > |f ′(v)|
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for all the states v under consideration. We define the interval I = (vm, vM ) defined
by I := { v ∈ R : |f ′(v)| < a }, and the admissible space A is a subset of I×f(I). The
equilibrium model corresponding to (2.12) when ε goes to 0 is the nonlinear scalar
conservation law with f(v) as physical flux [34, 27].

We are now interested in v and w solutions of the adapted problem
(2.14){

∂tv + ∂xw = 0,
∂tw + a2∂xv = 1

ε (f(v)− w)
in Ωr × R+,

{
∂tv + ∂xf(v) = 0,

w = f(v)
in Ωe × R+,

together with coupling conditions at the interface. We follow the work of [13] and
let Ωr = (0, xc) and Ωe = (xc, L) for the sake of illustration. At steady state, w
is continuous through the interface, whereas a boundary layer may appear for the v
variable. The coupling conditions leading to a well-posed problem read [13]

(2.15) w(x−c , t) = f
(
v(x+

c , t)
)
, v(x−c , t)

BLN
= v(x+

c , t) ∀t > 0,

where the second equality holds in the sense of Bardos–Leroux–Nédélec (BLN) [6]:
(2.16)(

f(v(x+
c , t))− f(g)

)(
v(x+

c , t)− v(x−c , t)
)
≤ 0 ∀t > 0, ∀g ∈ bv(x−c , t), v(x+

c , t)e.

In this work, we are interested in stationary solutions associated to boundary
conditions

(2.17) v(0+, t) = b0 ∈ I, v(L−, t) = bL ∈ I.

The existence and uniqueness of the entropy solution to the Cauchy problem
(2.14)–(2.16) on R have been proved in [13] under further assumptions, while station-
ary solutions to the coupled problem (2.14)–(2.17) have been characterized in [21],
where the Riemann problem has been solved for a convex flux f (in Appendix A we
consider the case of a general flux and propose a numerical method for its resolution).
In particular, the Riemann problem is proved to be consistent in the sense of (2.11):
stationary solutions to the above coupled problem such that (2.15) holds satisfy

(2.18) u(x−c ) =We
r

(
0−; u(x−c ), v(x+

c )
)
, v(x+

c ) = ΠvWe
r

(
0+; u(x−c ), v(x+

c )
)
.

2.4. Space discretization. We use a DG method for the space discretization of
the different problems under consideration at steady state. We first describe the space
discretization of the fine problem in subsection 2.4.1 and then extend the method to
the adapted one in subsection 2.4.2.

2.4.1. Space discretization of the fine problem. Let Ωh = ∪κ∈Ωh
κ be a

partition of the domain Ω = (0, L) into N elements κ. We set x0 = 0, xN = L and the
set of interior interfaces of the mesh Ih := {x1, . . . , xN−1}, where x0 < x1 < · · · < xN .
Let p : Ωh → N be a function that maps each cell of the mesh to a natural number.
The DG method looks for approximate solutions in the broken polynomial space

(2.19) Vh :=
{

vh ∈
(
L∞(Ω)

)n
: vh|κ ∈

(
Pp(κ)(κ)

)n ∀κ ∈ Ωh

}
,

where Pp(κ)(κ) is the space of polynomial functions of degree at most p(κ) on κ.
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Fig. 1. Mesh of the adapted problem: model partition (2.8), interfaces, coupling interfaces,
related Riemann problems (see subsection 2.2), and left and right traces at interfaces.

The discretization of the fine problem is obtained by multiplying (2.1) at steady
state by a test function in Vh and integrating by parts over each cell. A numerical
flux is used at the interface between two cells. We thus look for a function uh in Vh
such that

(2.20) Rh(uh;ψh) = 0 ∀ψh ∈ Vh
with the semilinear form (i.e., linear in all arguments after the semicolon)

(2.21)

Rh(uh;ψh)

:= −
∫

Ωh

f(uh) · ∂hxψh +
1

ε(x)
s(uh) ·ψh dx+

∑
x∈Ih

Φr(u
−
h ,u

+
h ) · JψhKx

− f
(
Wr(0

+; b0,uh(0+))
)
·ψh(0+) + f

(
Wr(0

−; uh(L−),bL)
)
·ψh(L−),

where b0 and bL are boundary data from (2.3). The broken derivative and jump
operator are defined by (∂hxψh)κ = ∂x(ψh)κ and JψhKx = ψh(x−)−ψh(x+), respec-
tively, where ψh(x−) and ψh(x+) denote the left and right traces of ψh at x (see
Figure 1).

The numerical flux Φr(u
−
h ,u

+
h ) is assumed to be a smooth function of the left and

right traces of the numerical solution at interface, u∓h = uh(x∓) and to be consistent
with the physical flux:

(2.22) Φr(u,u) = f(u) ∀u ∈ A.

2.4.2. Space discretization of the adapted problem. Henceforth, each el-
ement is associated to a model through a mapping m : Ωh → {fine; equilibrium}.
Therefore, the flux function, the source term, and the dimension of the state vector
depend on the model m(κ) applied to the current cell κ. The numerical flux between
two cells with the fine model is Φr. At interfaces between two cells with the equilib-
rium model we use a smooth numerical flux Φe consistent with the physical flux in
(2.7):

(2.23) Φe(v,v) = fv
(
ueq(v)

)
∀v ∈ ΠvA.

The numerical flux between two adjacent cells κ1 and κ2 of different kinds,
m(κ1) 6= m(κ2), will be defined from the solution of the Riemann problem intro-
duced in subsection 2.2. We split Ih into four different sets (see also Figure 1):
Ih = γe ∪ γr ∪ γer ∪ γre with
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γr: set of points between two cells where the fine model is applied;
γe: set of points between two cells where the equilibrium model is applied;
γer : set of points such that the fine model is applied in the left cell and the

equilibrium model in the right one;
γre : set of points such that the equilibrium model is applied in the left cell and

the fine model in the right one.
Then, the discrete coupled problem reads find uhm in Vh such that

(2.24) Rhm(uhm;ψh) = 0 ∀ψh ∈ Vh.

Using the domain partition (2.8) and setting ψh = (ψvh,ψ
w
h )>, the space residuals

read
(2.25)
Rhm(uhm;ψh)

:= −
∫

Ωr

f(uhm) · ∂hxψh +
1

ε(x)
s(uhm) ·ψh dx

−
∫

Ωe

fv(ueq(vhm)) · ∂hxψ
v
h +

(
weq(vhm)−whm

)
·ψwh dx

+
∑
x∈γr

Φr(u
−
hm,u

+
hm) · JψhKx +

∑
x∈γe

Φe(v
−
hm,v

+
hm) · JψvhKx

+
∑
x∈γe

r

f
(
We
r (0−; u−hm,v

+
hm)

)
·ψh(x−)− fv

(
We
r (0+; u−hm,v

+
hm)

)
·ψvh(x+)

+
∑
x∈γr

e

fv
(
Wr
e (0−; v−hm,u

+
hm)

)
·ψvh(x−)− f

(
Wr
e (0+; v−hm,u

+
hm)

)
·ψh(x+)

− f
(
Wr(0

+; b0,uhm(0+))
)
·ψh(0+) + fv

(
We(0

−; vhm(L−),ΠvbL))
)
·ψvh(L−),

where We(·; ·, ·) stands for the solution of the Riemann problem associated to the
equilibrium model in (2.7). Note that the equilibrium state w = weq(v) is imposed
weakly in (2.24) (see the second line of (2.25)) and thus will be added as a constraint
in the Lagrangian functional for the derivation of error estimators in section 3. This
allows the use of the same function space (2.19) for both fine and adapted problems
since the vector of degrees of freedom (DOFs) has the same size as in the fine problem
in Ωe with whm being the projection of weq(vhm) onto the function space (2.19). This
technical trick is important, as it allows the derivation of the error representation in
section 4.

For the sake of illustration, the fine model is applied in the first cell and the
equilibrium model in the last one. We stress that the uniqueness of the solutions to
the direct and adjoint problems may depend on boundary conditions and must be
considered in each situation.

3. Adjoint problems. We recall the framework of adjoint-based error analysis
for target functional in subsection 3.1. Then, we derive the formal adjoint equations
to the fine and adapted problems in subsection 3.2 which will be used in section 4 for
the derivation of the error estimators.

3.1. Lagrange functionals and assumptions. As indicated in the introduc-
tion, we are interested in the rigorous estimation of some Fréchet-differentiable func-
tion J(u) of the steady-state solution to problem (2.3)–(2.4). In the following, we
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consider functions the form

(3.1) J(u) =

∫
Ω

j(u, x) dx, j(u, x) =

{
j(u) if x ∈ Ωr,
j(ueq(v)) if x ∈ Ωe,

where j(·) is smooth. An example of functional is given in section 6.
J may be estimated from uh in Vh the solution to the discrete fine problem

(2.20). To lower the cost of the simulation, we are here interested in approximating
this function from uhm in Vh the solution to the discrete adapted problem (2.24)
where either the fine or the equilibrium problem is used locally in different regions
of the domain Ω. This will be achieved through the use of adaptation algorithms in
section 5 based on adjoint a posteriori error bounds derived in section 4.

We underline that it is here customary to assume that the DG function space
satisfies Vh ⊂ V (see, e.g., [24, 26, 16, 25] or [22, section 5]), where V denotes the
space that contains the exact primal and dual solutions and will be defined in section 5.
We further assume that (2.20) is consistent meaning that u satisfies

(3.2) Rh(u;ψ) = 0 ∀ψ ∈ V,

which requires the consistency of the numerical flux (2.22); see, e.g., [25].
It is useful for the derivation of the error estimates in section 4 to also consider

the solution um in V of the formal adapted problem defined by the fine model (2.4) in
Ωr and the equilibrium model (2.6) and (2.7) in Ωe, together with given boundary and
coupling conditions. Likewise, by zm we denote the adjoint solution to the adapted
problem in strong form, which will be defined in subsection 3.2 by (3.8) in Ωr, (3.9)
in Ωe, and (3.11) at coupling interfaces, together with adapted boundary conditions
from (3.7) and (3.10).

The discrete problem (2.24) is also assumed to be consistent:

(3.3) Rhm(um;ψ) = 0 ∀ψ ∈ V.

We now introduce the following Lagrangian functionals:

Lh(uh; zh) := J(uh)−Rh(uh; zh),(3.4a)

Lhm(uhm; zhm) := J(uhm)−Rhm(uhm; zhm),(3.4b)

where the adjoint variables play the role of Lagrange multipliers associated to the
constraints (2.20) and (2.24) [7, 19]. The derivative in the (ϕh,ψh) direction, for
instance, for Lh, reads [36]

L ′h
(
(uh, zh); (ϕh,ψh)

)
:= lim

θ→0+

Lh(uh + θϕh; zh + θψh)−Lh(uh; zh)

θ

= J ′(uh;ϕh)−R′h(uh;ϕh, zh)−Rh(uh;ψh).

Stationary points of the Lagrangians in (3.4) correspond to solutions of the asso-
ciated direct and adjoint problems. The different adjoint problems associated to the
function of interest are defined as follows:

zh ∈ Vh : R′h(uh;ϕh, zh) = J ′(uh;ϕh) ∀ϕh ∈ Vh,(3.5a)

zhm ∈ Vh : R′hm(uhm;ϕh, zhm) = J ′(uhm;ϕh) ∀ϕh ∈ Vh.(3.5b)

3.2. Formal adjoint equations. We now derive the formal adjoint equations
associated to the fine and adapted problems which will be used in the adjoint consis-
tency analysis in subsection 4.1.
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3.2.1. Fine problem. We first assume that the fine model is applied in the full
domain: Ωe = ∅ and Ωr = Ω. Multiplying the constraint (2.1) at steady state with the
Lagrange multiplier z, integrating by parts over Ω, the Lagrangian functional reads

L (u; z) =

∫
Ω

j(u) + f(u)∂xz +
1

ε
s(u)z dx+ z(0+)f

(
u(0+)

)
− z(L−)f

(
u(L−)

)
.

Linearizing L about u in the direction ϕ gives

L ′(u;ϕ, z) =

∫
Ω

[
j′(u) + f ′(u)>∂xz +

1

ε
s′(u)>z

]
·ϕ dx

+
[
f ′
(
u(0+)

)>
z(0+)

]
·ϕ(0+)−

[
f ′
(
u(L−)

)>
z(L−)

]
·ϕ(L−),

which leads to the formal fine adjoint equation

(3.6) f ′(u)>∂xz +
1

ε(x)
s′(u)>z = −j′(u) in Ω.

Imposing the boundary conditions (2.3) implies formally
(3.7)

∂u

(
f
(
Wr(0

+; b0,u(0+))
) )>

z(0+) = 0, ∂u

(
f
(
Wr(0

−; u(L−),bL)
))>

z(L−) = 0,

where we have used the short notations ∂u(f(W(u))) = f ′(W(u))W ′(u) for the deriva-
tion of composite functions.

Using the notations in (2.5), we rewrite (3.6) as

∂vf>v ∂xz
v + ∂vf>w ∂xz

w +
1

ε
w′eq(v)>zw = −∂vj(u),(3.8a)

∂wf>v ∂xz
v + ∂wf>w ∂xz

w − 1

ε
zw = −∂wj(u).(3.8b)

3.2.2. Adapted problem. Multiplying (3.8b) by w′eq(v)> to the right, sum-
ming with (3.8a) to eliminate zw, and letting ε→ 0+, one obtains

(3.9) ∂v

(
fv
(
ueq(v)

))>
∂xz

v = −∂v
(
j
(
ueq(v)

))
, zw = 0,

which corresponds to the adjoint equations to the equilibrium model (2.7), thus show-
ing that in the limit ε→ 0+, the adjoint equations to the fine problem should tend to
the adjoint equations to the equilibrium model. This accounts for the choice of same
spaces for both fine and adapted adjoint solutions. Likewise, boundary conditions
now read

∂v

(
fv
(
ueq

(
We(0

+; Πvb0,v(0+))
)) )>

zv(0
+) = 0,(3.10a)

∂v

(
fv

(
ueq

(
We(0

−; v(L−),ΠvbL)
)))>

zv(L
−) = 0.(3.10b)

Finally, the adjoint solution to the adapted problem satisfies the following condi-
tions at coupling interfaces (see notations in subsection 2.4.2):

∂vf
(
u(x−)

)>
z(x−) = ∂vfv

(
ueq(v(x+))

)>
zv(x+), ∂wf

(
u(x−)

)>
z(x−)

= 0 ∀x ∈ γer ,(3.11a)

∂vfv
(
ueq(v(x−))

)>
zv(x−) = ∂vf

(
u(x+)

)>
z(x+), ∂wf

(
u(x+)

)>
z(x+)

= 0 ∀x ∈ γre ,(3.11b)
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where specific coupling conditions have to be included together with specific boundary
conditions at the domain boundaries.

Example 1 (Jin–Xin relaxation). Here, we revisit the example (2.14)–(2.17) of the
adapted problem based on the Jin–Xin relaxation system and its equilibrium scalar
equation. Using the above procedure, the formal adjoint equations to the steady-state
problem read

(3.12)

{
∂xz

v − 1
εz
w = −∂wj(v, w),

a2∂xz
w + 1

εf
′(v)zw = −∂vj(v, w),

x ∈ Ωr,{
f ′(v)∂xz

v = −∂vj
(
v, weq(v)

)
,

zw = 0,
x ∈ Ωe,

together with the boundary condition at x = 0 and coupling conditions at xc in γer ,

(3.13) zv(0+) = 0, f ′
(
v(x+

c )
)(
zv(x−c )− zv(x+

c )
)

= 0, zw(x−c ) = 0,

which impose continuity of the adjoint solution at the coupling interface when
f ′(v(x+

c )) is nonzero and may be compared to the interior boundary condition at
noncharacteristic stationary shocks [18].

4. Representation of the modeling and discretization errors. In subsec-
tion 4.1, we first prove adjoint consistency of the fine and adapated adjoint problems.
These results are then used in subsection 4.2 for the derivation of adjoint-based rep-
resentations of the error J(u) − J(uhm) on a given functional. The main result is
Theorem 5, which provides local a posteriori estimators of both modeling and dis-
cretization errors.

4.1. Adjoint consistency analysis. Lemma 1 states the adjoint consistency
of the discrete fine problem, while Lemma 2 states consistency of the discrete adapted
problem. An illustration for Lemma 2 is then given in Example 2.

Lemma 1. Assume that the numerical flux Φr is consistent, (2.22), and differen-
tiable. Then, the discrete fine adjoint problem (3.5a) is consistent with the continuous
fine adjoint problem:

(4.1) R′h(u;ϕ, z) = J ′(u;ϕ) ∀ϕ ∈ V.

Proof. The derivative of the discrete residual (2.21) reads

R′h(u;ϕ, z) := −
∫

Ωh

[f ′(u)ϕ] · ∂hxz +
1

ε
[s′(u)ϕ] · z dx

+
∑
x∈Ih

[
∂1Φr(u

−,u+)ϕ− + ∂2Φr(u
−,u+)ϕ+

]
· JzKx

+
[
∂u

(
f
(
Wr(0

+; b0,u(0+))
) )
ϕ(0+)

]
· z(0+)

−
[
∂u

(
f
(
Wr(0

−; u(L−),bL)
) )
ϕ(L−)

]
· z(L−),

where ∂1 and ∂2 denote the partial derivatives with respect to the first and second
arguments, respectively. By regularity of the adjoint variable, we get JzKx = 0. Then,
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using (3.6) and (3.7) we obtain

R′h(u;ϕ, z) =

∫
Ω

j′(u) ·ϕ dx = J ′(u;ϕ),

which completes the proof.

Lemma 2. Assume that the numerical fluxes Φr and Φe are consistent and dif-
ferentiable, (2.22) and (2.23), and that the coupling numerical flux is consistent and
differentiable, (2.11); then the discrete adapted adjoint problem (2.24) and (2.25) is
consistent with the continuous adapted adjoint problem (3.5b):

(4.2) R′hm(um;ϕ, zm) = J ′(um;ϕ) ∀ϕ ∈ V.

Proof. The adjoint consistency in the fine domain has been proved in Lemma 1,
and the adjoint consistency in the equilibrium domain relies on the same techniques.
It remains to show that the contributions from the coupling interfaces vanish. Let

Cer(uhm;ψh) :=
∑
x∈γe

r

f
(
We
r (0−; u−hm,v

+
hm)

)
·ψh(x−)− fv

(
We
r (0+; u−hm,v

+
hm)

)
·ψvh(x+)

be the contributions from interfaces γer to (2.25). Its counterpart Cre from interfaces
in γre is defined in a similar way and leads to the same conclusion. Linearizing the
above terms, we get

Ce
′

r (uhm;ϕh, zhm) =
∑
x∈γe

r

[
∂u

(
f
(
We
r (0−; u−hm,v

+
hm)

) )
ϕh(x−)

]
· zhm(x−)

−
[
∂v

(
fv
(
We
r (0+; u−hm,v

+
hm)

) )
ϕvh(x+)

]
· zvhm(x+)

=
∑
x∈γe

r

ϕh(x−)>∂u

(
f
(
We
r (0−; u−hm,v

+
hm)

) )>
zhm(x−)

−ϕvh(x+)>∂v

(
fv
(
We
r (0+; u−hm,v

+
hm)

) )>
zvhm(x+)

=
∑
x∈γe

r

ϕvh(x−)>∂v

(
f
(
We
r (0−; u−hm,v

+
hm)

) )>
zhm(x−)

+ϕwh (x−)>∂w

(
f
(
We
r (0−; u−hm,v

+
hm)

) )>
zhm(x−)

−ϕvh(x+)>∂v

(
fv
(
We
r (0+; u−hm,v

+
hm)

) )>
zvhm(x+),

where the two last steps follow from manipulations of matrix-vector products. Sub-
stituting the exact direct and adjoint solutions and using consistency of the Riemann
problem (2.11), we get

Ce
′

r (um;ϕ, zm) =
∑
x∈γe

r

(
ϕv(x−)>∂vf

(
u(0−)

)>
+ϕw(x−)>∂wf

(
u(0−)

)>)
zm(x−)

− ϕv(x+)>∂vfv
(
ueq(v(0+))

)> · zvm(x+),

which indeed vanishes from (3.11a).
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Example 2 (Jin–Xin relaxation). We consider the discretization (2.25) of the Jin–
Xin problem (2.14)–(2.17):

Rhm(uhm;ψh)

= −
∫ xc

0

f(uhm) · ∂hxψh + 1
ε (f(vhm)− whm)ψwh dx+

∑
x∈γr

Φr(u
−
hm,u

+
hm) · JψhKx

−
∫ L

xc

f(vhm)∂hxψ
v
h +

(
f(vhm)− whm

)
ψwh dx+

∑
x∈γe

Φe(v
−
hm, v

+
hm)JψvhKx

+ f
(
vhm(x+

c )
)
ψvh(x−c ) + a2vhm(x−c )ψwh (x−c )− f

(
vhm(x+

c )
)
ψvh(x+

c )

−whm(0+)ψvh(0+)− a2b0ψ
w
h (0+) + f(bL)ψvh(L−),

where uhm(x±c ) =We
r (0±; u−hm, v

+
hm), and we have applied the first condition in (2.15)

and the boundary conditions (2.17). Using the above procedures, it may be easily
shown that the above discretization is differentiable, consistent, and adjoint consistent.

4.2. A posteriori error analysis. Let us consider the two errors:

(4.3) εhm := u− uhm, em := z− zm,

which correspond to the error on the solution to the discrete direct adapted problem
and the model error on the solution to the adjoint problem, respectively.

In Theorem 5, we establish the representation of the discretization and model
errors on the function of interest. This estimate is based on Lemmas 3 and 4, also
derived in previous works [9, 36], which provide estimators that are third-order and
second-order accurate in εhm, respectively, but require the computation of z the formal
adjoint solution to the fine problem. Theorem 5 is a quadratic error estimate in em
and εhm that only involves zm the formal adjoint solution to the adapted problem.

Lemma 3. Let u and z in V be the solutions to the continuous fine direct and
adjoint problems, respectively. Then, under the assumptions of Lemma 2 the solution
uhm to (2.24) satisfies
(4.4)

J(u)− J(uhm) = −Rh(uhm;ψh) +
1

2
L ′h
(
(uhm;ψh); (εhm, z−ψh)

)
+O(‖εhm‖3V ),

for all ψh in Vh with ‖·‖V a norm on V and
(4.5)
L ′h
(
(uhm;ψh); (εhm, z−ψh)

)
= J ′(uhm; εhm)−R′h(uhm; εhm,ψh)−Rh(uhm, z−ψh).

Proof. Let ψh in Vh; from (3.2) we get

J(u)− J(uhm) = J(u)− J(uhm)−Rh(u; z)

= J(u)−Rh(u; z)− J(uhm) +Rh(uhm;ψh)−Rh(uhm;ψh)

= Lh(u; z)−Lh(uhm;ψh)−Rh(uhm;ψh).

Then, using the trapezoidal rule gives

Lh(u; z)−Lh(uhm;ψh)

= Lh(uhm + εhm;ψh + z−ψh)−Lh(uhm;ψh)

=
1

2

[
L ′h
(
(u; z); (εhm, z−ψh)

)
+ L ′h

(
(uhm;ψh); (εhm, z−ψh)

)]
+

∫ 1

0

L ′′′
(

[uhm + s εhm,ψh + s (z−ψh)] ; r̂, r̂, r̂
)
s(1− s) ds,
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where r̂ = (εhm, z−ψh). Using consistency of the direct and adjoint problems, (3.2)
and (4.1), together with Vh ⊂ V , we get

L ′h((u; z); (εhm, z−ψh)) = J ′(u; εhm)−R′h(u; εhm, z)−Rh(u; z−ψh) = 0,

which completes the proof.

Lemma 4. Let u and z in V be the solutions to the continuous fine direct and
adjoint problems, respectively. Then, under the assumptions of Lemma 2 the solution
uhm to (2.24) satisfies

(4.6) J(u)− J(uhm) = −Rh(uhm, z) +O(‖εhm‖2V ).

Proof. Let ψh ∈ Vh; by consistency of the direct problem (3.2), the last term in
(4.5) reads

Rh(uhm; z−ψh) = Rh(uhm; z−ψh)−Rh(u; z−ψh)

= −
(
Rh(uhm + εhm; z−ψh)−Rh(uhm; z−ψh)

)
= −R′h(uhm; εhm, z−ψh)−∆R1,(4.7)

where we have applied the midpoint rule in the last step with

∆R1 =

∫ 1

0

R′′h(uhm + s εhm; εhm, εhm, z−ψh)(1− s) ds.

Again, by consistency (4.1) the two first terms in the right-hand side of (4.5)
become

J ′(uhm; εhm)−R′h(uhm; εhm,ψh) =J ′(uhm; εhm)−R′h(uhm; εhm,ψh)

−
(
J ′(u; εhm)−R′h(u; εhm, z)

)
=− (J ′(uhm + εhm; εhm)− J ′(uhm; εhm))

+R′h(uhm; εhm, z−ψh)

+R′h(uhm + εhm; εhm, z)−R′h(uhm; εhm, z)

=−∆J +R′h(uhm; εhm, z−ψh) + ∆R2,

where

∆J =

∫ 1

0

J ′′(uhm+sεhm; εhm, εhm) ds, ∆R2 =

∫ 1

0

R′′h(uhm+sεhm; εhm, εhm, z) ds.

We use the above results to evaluate (4.5),

L ′h
(
(uhm;ψh); (εhm, z−ψh)

)
= 2R′h(uhm; εhm, z−ψh) + ∆R2 + ∆R1 −∆J

= −2Rh(uhm; z−ψh) + ∆R2 −∆R1 −∆J,

from (4.7), and conclude by inserting the result into the estimate (4.4) in Lemma 3.

Theorem 5. Let u in V be the solution to the continuous direct fine problem and
zm in V the solution of the continuous adjoint adapted problem. Then, under the
assumptions of Lemma 2 the solution uhm to (2.24) satisfies

J(u)− J(uhm) =−Rh(uhm; zm) +O(‖εhm‖V ‖em‖V , ‖εhm‖
2
V ),(4.8a)

'−Rh(uhm;ψh)−Rh(uhm; zm −ψh) ∀ψh ∈ Vh.(4.8b)
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Proof. We start from the previous estimate (4.6) and the definitions of the errors
(4.3). Using the consistency of the direct problem (3.2), we get

Rh(uhm; z) = Rh(uhm; zm) +Rh(uhm; em)

= Rh(uhm; zm) +Rh(uhm; em)−Rh(u; em)

= Rh(uhm; zm) +Rh(uhm; em)−Rh(uhm + εhm; em)

= Rh(uhm; zm)−
∫ 1

0

R′h(uhm + s εhm; εhm, em) ds,

and we conclude by linearity of Rh(uhm; ·).

4.3. Comments on Theorem 5. The estimate (4.8) only requires the contin-
uous adjoint solution to the adapted problem, and we will use usual arguments for
its approximation in section 5. The first term in (4.8b) represents the model error
and has no contributions in regions where the fine solution is used, while the second
term represents the discretization error. Indeed, assume first that we consider the fine
model only, uhm = uh and zm = z; then by consistency (4.8) becomes

(4.9) J(u)− J(uh) ' −Rh(uh; z−ψh),

which constitutes the usual adjoint-based discretization error representation [7, 24].
Now, assume that we consider only modeling approximation uhm = um; (4.8) becomes

J(u)− J(um) ' −Rh(um; zm) = −
(
Rh(um; zm)−Rhm(um; zm)

)
,

from (3.3), which constitutes the equivalent of the adjoint-based model error repre-
sentation in [9] for hyperbolic systems with relaxation.

Finally, note that the error representation in Theorem 5 is second-order accurate
only if the discretization and model errors are balanced, which will constitute the aim
of the adaptation algorithm described in section 5.

5. hpm-adaptation. In this section, we describe the adaptation algorithm based
on the error representation (4.8) derived in the previous section. The error represen-
tation involves zm in V the adjoint solution to the continuous adapted problem and
is based on the assumption Vh ⊂ V . The solution zm is usually approximated by ẑhm
in a discrete space V̂h ⊃ Vh obtained by subdividing the mesh or increasing the local
polynomial degree of the numerical solution [24]:

(5.1) R′hm(uhm;ϕh, ẑhm) = J ′(uhm;ϕh) ∀ϕh ∈ V̂h.

Substituting zm for ẑhm into (4.8) and using a triangle inequality, we introduce
the local error estimators as follows:

(5.2) |J(u)− J(uhm)| .
∑
κ∈Ωh

ηhκ
(
uhm; ẑhm

)
+ ηmκ

(
uhm; ẑhm

)
,

where ηhκ and ηmκ are the elementwise discretization and modeling error estimators,
respectively. Setting ψh = πhẑhm into (4.8) with πh : V̂h → Vh the orthogonal
projector onto Vh, we have
(5.3)
ηhκ
(
uhm; ẑhm

)
= |Rh(uhm; 1κ(ẑhm−πhẑhm))|, ηmκ

(
uhm; ẑhm

)
= |Rh(uhm; 1κπhẑhm)|,

where 1κ denotes the indicator function of κ.
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Remark 6. Though ηhκ relies on usual techniques [7, 24], ηmκ is not standard. Let
κ = (a, b) in Ωh, and consider the following situations for the sake of illustration:

• if κ ∈ Ωr, ∂κ ∩ γre = ∂κ ∩ γer = ∅, then the fine model is applied so

ηmκ
(
uhm; ẑhm

)
= 0;

• if κ ∈ Ωe, ∂κ ∩ γre = ∂κ ∩ γer = ∅, then uhm = ueq(vhm) and

ηmκ
(
uhm; ẑhm

)
= −

∫
κ

fw(uhm) · dxẑwhmdx+
[
Φw
r (u−hm,u

+
hm) · ẑwhm

]x=b−

x=a+
;

• if κ ∈ Ωr, b ∈ γer , and ∂κ ∩ γre = ∅, then uhm(b+) = ueq(vhm(b+)) and

ηmκ
(
uhm; ẑhm

)
=
(
Φr(u

−
hm,u

+
hm)− f

(
We
r (0−; u−hm,v

+
hm)

))
x=b
· ẑhm(b−);

• if κ ∈ Ωe, a ∈ γer , and ∂κ ∩ γre = ∅, then uhm(a+) = ueq(vhm(a+)) and

ηmκ
(
uhm; ẑhm

)
= −

∫
κ

fw(uhm) · dxẑwhmdx+ Φw
r

(
uhm(b−),uhm(b+)

)
· ẑwhm(b−)

−Φr

(
uhm(a−),uhm(a+)

)
· ẑhm(a+)

+ fv
(
We
r (0+; u−hm,v

+
hm)

)
x=a
· ẑvhm(a+).

The refinement algorithm is based on the local estimators (5.3). We start with an
initial mesh Ωh, an initial degree function p : Ωh → N, and a model map m : Ωh →
{fine; equilibrium}. Algorithm 1 describes the main steps of the adaptation process.
The main loop 3 aims at driving the error in J to the required tolerance (1.1). This is
achieved by locally adapting the mesh, the polynomial degree, and the model through
Algorithm 2.

Algorithm 1 hpm-adaptation.

1: Set ERR� 1
2: ∀κ ∈ Ωh, η

m
κ ← 0, ηhκ ← 0

3: while ERR > TOL× J(uhm) do
4: compute uhm from (2.24) and ẑhm from (5.1)
5: compute ERR =

∑
κ∈Ωh

ηmκ
(
uhm; ẑhm

)
+ ηhκ

(
uhm; ẑhm

)
from (5.3)

6: adapt Vh with Algorithm 2
7: end while
8: return uhm and J(uhm)

The adaptation procedure in Algorithm 2 consists in refining a fixed fraction of the
total number of mesh elements and constitutes a very crude algorithm that may be re-
placed by any other more sophisticated technique. The present work rather focuses on
the reliability and sharpness of the error estimators in the context of hpm-adaptation
of hyperbolic systems with relaxation. Local discretization and model errors are first
compared, which allows to select the refinement process so as to balance both error
components. In the case of a discretization refinement, either the polynomial degree is
increased or the mesh is subdivided according to the local smoothness of the solution.
In this work, the smoothness of um is evaluated through the decay of the coefficients
of its approximation uhm in the basis of Legendre polynomials. In the case of a model
refinement, the sets of coupling interfaces γer and γre separating different models in
the space residuals (2.25) are updated before a new cycle.
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Algorithm 2 adapt Vh.

1: Set Ωrefh ⊂ Ωh with largest estimators ηhκ + ηmκ
2: for κ ∈ Ωrefh do
3: if ηhκ > ηmκ then
4: if uhm is smooth on κ then
5: p(κ)← p(κ) + 1
6: else
7: split κ into two cells
8: end if
9: else

10: m(κ)← fine
11: end if
12: end for

6. Numerical experiments. In this section, we perform some numerical sim-
ulations of the Jin–Xin model (2.12). The Rusanov flux is used as numerical flux
at internal faces. We apply the adaptation procedure introduced in section 5 with
different physical fluxes f and based on the error estimators (5.2) and (5.3). For all
the simulations, we aim at evaluating the functional (3.1) with j(u) = 1

2 (v − bL)2

and a tolerance TOL = 10−12 in (1.1). The efficiency of the present method is com-
pared to results from an hp-adaptation algorithm with local error estimators derived
from (4.9). Starting from a uniform mesh with a first-order approximation and an
equilibrium (resp., fine) model for the hpm-adaptation (resp., hp-adaptation), a fixed
fraction of 25% of the mesh elements is selected for refinement at each step for both
adaptations (step 1 of Algorithm 2).

As a validation of the error estimates, we first consider a linear flux, f(v) = −v,
and impose a discontinuous relaxation rate: ε(x) = 1 if x < 2 and ε(x) = 1/1000
if x > 2. This configuration leads to the existence of an interface layer of small
extent at the right of the discontinuity. The evolution of the error on J and of the
error representation (4.8b) during the adaptation process are given in Figure 2 and
are compared to results from hp-adaptation. We observe that including the model
adaptivity lowers the number of DOFs for a given accuracy, while (4.8b) is seen to
constitute a fair and efficient estimate of the true error. Figure 2 also indicates that
(4.8b) is quadratic with respect to the L2-norm of the error on the solution as stated
in Theorem 5, which in turn confirms that the discretization and model errors are
balanced (see the order of approximation of the remainder in (4.8a)).

We now consider the nonlinear Burgers’ flux, f(v) = v2

2 , with a uniform relax-
ation rate: ε ≡ 20. The results are depicted in Figures 3 and 4. Again, we observe
similar trends and confirm the better efficiency of the hpm-adaptation compared to
the hp-adaptation. For the sake of comparison, we provide results obtained with m-
adaptation only on a grid refined at the left boundary with a fourth-order discretiza-
tion. The efficiency of m-adaptation is strongly dependent on the space discretization
and thus requires a priori knowledge of the flow features, which represents a drawback
compared to hpm-adaptation techniques.

The final solution of the hpm-adaptation process is given in Figure 4, where we see
that the boundary and coupling conditions of the adjoint problem (3.13) are satisfied
in a weak sense. In particular, the adjoint solution is continuous across the interface
between different models. The equilibrium model is used on the left part of the domain
during the adaptation process where the solution is indeed close to equilibrium. We
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Fig. 2. Linear flux with discontinuous ε. Evolution of the error (1.1) and error estimators
(4.8b): (left) at each adaptation step compared to hp-adaptation; (right) with respect to the error
on the solution.
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Fig. 3. Burgers’ flux with uniform ε. Evolution of the error (1.1) and error estimators (4.8b):
(left) at each adaptation step compared to hp-adaptation; (right) with respect to the error on the
solution.

also observe a good resolution of the interface layer leading to hp refinement due to
the presence of steep gradients of the solution.

Finally, we consider Burgers’ flux with a discontinuous characteristic relaxation
rate: ε(x) = 1 if x < 2 and ε(x) = 1/100 if x > 2. The results are depicted
in Figure 5, and the final hpm-solution is shown in Figure 6 and leads to similar
observations. The grid used for the m-adaptation is refined at the discontinuity in
ε, x = 2. Note that across the interface layer at x = 2, f ′(v) changes sign so the
interface becomes characteristic and the second condition in (3.13) no longer imposes
the continuity of zv as observed in Figure 6.

7. Concluding remarks. In this work, a posteriori estimators of the modeling
and discretization errors are derived in the context of the discretization with a DG
method of steady hyperbolic systems with stiff relaxation source terms. We consider
a hierarchy of models where the fine model may tend toward an equilibrium model
through relaxation mechanisms modelized by the source terms. The estimators rely
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gray (resp., white) zones indicate that the fine (resp., equilibrium) model is used.
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Fig. 5. Burgers’ flux with discontinuous ε. Evolution of the error (1.1) and error estimators
(4.8b): (left) at each adaptation step compared to hp-adaptation; (right) with respect to the error
on the solution.
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Fig. 6. Burgers’ flux with discontinuous ε. Final direct (left) and adjoint (right) solutions of
the hpm-adaptation. In each element κ, the dots correspond to the values at pκ + 1 points, while the
gray (resp., white) zones indicate that the fine (resp., equilibrium) model is used.

on an adjoint-based representation of both components of the error associated to a
given functional of interest.

An adaptation algorithm is then proposed which aims at balancing both com-
ponents of the error and tailoring the error on the functional of interest under a
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prescribed tolerance. The local model refinement is performed by using the adapted
model according to the associated error level. At interfaces of domains with different
models, coupling conditions are applied through the solution of a Riemann problem
in order to model the transfer of information. The positions of the interfaces are set
by the respective positions of the models and may move during the adaptation. The
discretization refinement is based on either an increase of the local order of the DG
scheme or a local mesh subdivision according to a local indicator of the smoothness
of the solution.

The present adaptation method has been successfully applied to the simulation
of steady solution of a Jin–Xin relaxation system. Numerical experiments highlight
the relevance of hpm-adaptation and sharpness of the error estimators as well as an
improvement of the usual hp-adaptation by reducing the total number of DOFs of the
discrete problem for a same error level. Future work will consider the application of
this technique to a hierarchy of two-phase flow models.

Appendix A. The solution of the Riemann problemWe
r (·; ·, ·) associated to the

coupling problem (2.14) has been solved in [21] when the flux function f is convex.
We propose here a method for its resolution for a C1 flux function. A similar result
stands for Wr

e and may be easily deduced from the results below.
By uL = (vL, wL)> we denote the state variable on x < 0 at t = 0 and vR the

initial state variable on x > 0 and further define

u− = (v−, w−)> :=We
r (0−; uL, vR), u+ = (v+, w+)> :=We

r (0+; uL, vR),

where w+ = f(v+) and (2.15) gives w− = w+ = f(v+). Then, a contact wave of
speed −a separates the states uL and u− in the left region. The Rankine–Hugoniot
condition gives

avL + wL = av− + w−,

and v+ should be the right limit of the half Riemann problem (for x > 0, t > 0)
defined by

(A.1) ∂tv + ∂xf(v) = 0, v(0, t)
BLN

= v−, v(x, 0) = vR.

We denote W 1
2
(xt ; v−, vR) the solution to (A.1) and W(xt ; v−, vR) the solution to

the customary Riemann problem

∂tv + ∂xf(v) = 0, ∀x > 0, t > 0, v(x, t = 0) =

{
v− if x < 0,
vR if x > 0.

Since the states v− and vR are constant, the solution to (A.1) has an extension
as an entropy solution of the customary Riemann problem [20]:

W 1
2
(ξ; v−, vR) =W(ξ; v−, vR) ∀ξ > 0

and is thus easily solved for scalar equations [37]:

f
(
W 1

2
(0+; v−, vR)

)
=

 min
v−≤θ≤vR

f(θ) if v− ≤ vR,

max
vR≤θ≤v−

f(θ) if vR < v−.

We then have the following result.
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Theorem 7. For data vL, wL, and vR in U defined in (A.3), the coupling Rie-
mann problem has a unique entropy solution:

We
r (ξ; uL, vR) =


uL, ξ < −a,
(v−, f (W(0+; v−, vR)))

>
, −a < ξ < 0,(

W(ξ; v−, vR), f
(
W(ξ; v−, vR)

))>
, 0 < ξ,

where v− is the unique solution to the equation

(A.2) v− = vL +
wL − f

(
W(0+; v−, vR)

)
a

.

Proof. Consider the function

g : I 3 v 7→ g(v) = a(v − vL)− wL + f
(
W(0+; v, vR)

)
.

Thus, v− is the solution to the equation g(v) = 0. As g is strictly increasing according
to the subcharacteristic condition (2.13), if v− exists, it is unique. To guarantee the
existence we should have g(vm) < 0 and g(vM ) > 0, where vm and vM have been
defined in subsection 2.3:

g(vm) < 0 ⇐⇒ wL > a(vm − vL) + inf
vm≤θ≤vR

f(θ) =: Hm(vL, vR),

g(vM ) > 0 ⇐⇒ wL < a(vM − vL) + sup
vR≤θ≤vM

f(θ) =: HM (vL, vR).

It defines the set of admissible states to where (vL, wL, vR) should belong:

(A.3) U := {(vL, wL, vR) ∈ I × f(I)× I : Hm(vL, vR) < wL < HM (vL, vR)} .

From the mean value theorem and (2.13), we establish that

f(vm)− f(vL) < a(vL − vm), f(vL)− f(vM ) < a(vM − vL),

so that Hm(vL, vR) < f(vL) < HM (vL, vR) and U is nonempty. Note that if inf f(I) =
f(vm) and sup f(I) = f(vM ), then U is simply I × f(I)× I.

The solution of the Riemann problem is then obtained by solving (A.2) for v−

with a root-finding algorithm.
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