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NECESSARY CONDITIONS FOR LOCAL CONTROLLABILITY OF A
PARTICULAR CLASS OF SYSTEMS WITH TWO SCALAR CONTROLS

Laetitia Giraldi1, Pierre Lissy2, Clément Moreau2, 3 and
Jean-Baptiste Pomet1

Abstract. We consider control-affine systems with two scalar controls, such that one control vector
field vanishes at an equilibrium state. We state two necessary conditions for local controllability around
this equilibrium, involving the iterated Lie brackets of the system vector fields, with controls that are
either bounded, small in L∞ or small in W1,∞. These results are illustrated with several examples.

Résumé. On s’intéresse à des systèmes de contrôle affines à deux contrôles scalaires, tels que l’un des
champs de vecteurs associés aux contrôles s’annule en un état d’équilibre. On énonce deux conditions
nécessaires de contrôlabilité locale au voisinage de cet équilibre, faisant rentrer en jeu des crochets de
Lie itérés des champs de vecteurs du système, avec des contrôles pouvant être bornés, petits dans L∞

ou petits dans W1,∞. Ces résultats sont illustrés à travers plusieurs exemples.

2020 Mathematics Subject Classification. 34H05, 57R27, 93B05.

–.

1. Introduction
Let N be the set of nonnegative integers. Let n,m in N \ {0} and consider a control-affine system with m

controls:

ż = f0(z) +
m∑

k=1
uk(t) fk(z) , (1)

where z is the state in Rn, f0, . . . , fm are real analytic vector fields, and u = (u1, . . . , um), called the control,
is assumed to be an integrable function [0, T ] → Rm, for some T > 01. This defines a time-varying ordinary
differential equation and hence, for each choice of initial condition z(0), a unique solution t 7→ z(t) on [0, T ], or
a smaller interval [0, T ′) in case of finite time blow-up. This system is called controllable if, for any two points
z0 and z1 in the state space Rn, or possibly a subset of it, there exist a time T and an integrable control on
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[0, T ] such that the above-mentioned solution with z(0) = z0 satisfies z(T ) = z1. See textbooks like [1–4] for
further precisions on controllability. We are interested in local controllability around an equilibrium (zeq, ueq):

f0(zeq) +
m∑

k=1
ueq

k fk(zeq) = 0 . (2)

System (1) is locally controllable around (zeq, ueq) if the above mentioned property occurs for z0 and z1 in
arbitrarily small neighborhoods of zeq, with solutions that remain in arbitrarily small neighborhoods of zeq, in
arbitrarily small time T , and with a control that takes values in a fixed neighborhood of ueq or an arbitrarily
small neighborhood of ueq, or with a control that is arbitrarily close to the constant control t 7→ ueq in some
functional space. We detail in Section 2 these various notions of local controllability.

Some (now classical for some of them) sufficient conditions [5–7] and necessary conditions [7–12] are given
in the literature in terms of finite jets of the vector fields, more precisely these conditions allow one to decide
controllability or non-controllability based on the value of a finite number of Lie brackets at zeq. It is intriguing
that there is a significantly wide gap between the necessary and the sufficient conditions; as pointed out in [13],
it is even not clear whether or not, for a general system in this gap, local controllability depends on a finite jet
of the vector fields or not.

General sufficient conditions are available [7] for m larger than 1, but the literature on necessary conditions
focuses on systems with a single scalar control (m = 1). This paper is specifically concerned with control
systems with two scalar inputs, of the form

ż = f0(z) + u1 f1(z) + u2 f2(z) , (3)

where the real analytic vector fields f0, f1, f2 are such that f0 and f2 vanish at the equilibrium while f1 does
not:

f0(zeq) = 0, f2(zeq) = 0, f1(zeq) ̸= 0 . (4)
Such systems have two controls but the effect of one of them vanishes at the point of interest. In a sense, the
contribution of this paper is to study to what extent the second control helps controllability or, conversely, to
what extent obstructions to controllability of the single input system ż = f0(z) + u1 f1(z) carry over when the
second control u2 is turned on.

Studying this very situation stemmed out of previous work from the authors on the controllability of magnetic
micro-swimmers [14–16]. See these references for a description of these devices and their interest, for instance in
micro-robotics and biomedical applications. The corresponding control systems are particular cases of (3)-(4),
for which the authors have proved various controllability and non-controllability results. We believe that a more
general treatment of systems of type (3)-(4), beyond the case of magnetic micro-swimmers, is of interest to the
controllability problem in control theory. It is the purpose of the present paper.

The paper is structured as follows. Section 2 is devoted to precise definitions of various notions of local
controllability and to recalling known controllability conditions for single-input systems. Our two main results
are presented in Section 3. Section 4 illustrates the results with several examples. Section 5 is dedicated to the
proofs. Finally, conclusions as well as some perspectives on further research are provided in Section 6.

2. Problem statement

2.1. Various notions of local controllability
The following definition is taken from the textbook by Coron [3, Def. 3.2, p. 125]. B(z, η) stands for the

open ball with center z and radius η > 0, L∞ is the usual functional space, the choice of a norm in Rn and Rm

is immaterial.



TITLE WILL BE SET BY THE PUBLISHER 3

Definition 2.1 (STLC). The control system (1) is STLC at the equilibrium (zeq, ueq) if, for every ε > 0, there
exists η > 0 such that, for every z0, z1 in B(zeq, η), there exists a control u(·) in L∞([0, ε],Rm) such that the
solution z(·) : [0, ε] → Rn of the control system (1) satisfies z(0) = z0, z(ε) = z1, and

∥u− ueq∥L∞([0,ε],Rm) ⩽ ε .

Note that, following [3], the smallness of the time interval and of the controls are expressed via the same
ε. Other definitions, either with two independent small parameters ε1 and ε2 or some other relation between
them, are possible. In the proof of our Theorem 3.8, we need one of these alternative definitions and show that
it is equivalent to the above one; see Lemma 5.12, which we believe to be original, albeit simple.

STLC stands for small time locally controllable. Coron notes that it should rather be called small time
locally controllable with controls close to ueq. Historically, in the first classical papers on local controllability
(e.g. [6,17]), one fixes a bounded neighborhood of ueq in Rm and a system is locally controllable if, for any time
T , there is a neighborhood of zeq in which any two points may be joined in time T using controls with values in
the fixed bounded neighborhood of ueq, i.e. ∥u−ueq∥L∞([0,ε],Rm) was not required to be small but only bounded,
and even bounded by a number that was fixed from the definition of the system; this notion was the one initially
called STLC, while STLC in the sense of Definition 2.1 was rather called Small Time Local Controllability with
Small Controls [18] (small refers to the distance to ueq). That was a very natural terminology, but these terms
drifted, and Definition 2.1 now prevails. In the present paper, we define the notion of B-STLC (the prefix B
stands for bounded control):
Definition 2.2 (B-STLC). The control system (1) is B-STLC at (zeq, ueq) if there exists α > 0 such that, for
every ε > 0, there exists η > 0 such that, for every z0, z1 in B(zeq, η), there exists a control u(·) in L∞([0, ε],Rm)
such that the solution z(·) : [0, ε] → Rn of the control system (1) satisfies z(0) = z0, z(ε) = z1, and

∥u− ueq∥L∞([0,ε],Rm) ⩽ α.

This property is close to the “historical” STLC property mentioned above, the difference being that histor-
ically, a compact set was fixed a priori as a control constraint; forcing α = 1 would be in the same spirit. In
B-STLC, we leave α free, and it is consistent with the fact that characterisations are always in terms of the
(germs at the equilibrium of the) vector fields defining the system, and do not depend on the control constraints.
Remark 2.3. STLC implies B-STLC, choosing any α > 0.
Remark 2.4. For a given control system that is B-STLC, let α0 ≥ 0 be the infimum of the possible values of
α in Definition 2.2. In [14, 15], the authors defined a quantitative version of B-STLC and called such a system
“α0-STLC”, and also α-STLC for all α larger than α0. Clearly the system is STLC (in the sense of Definition
2.1) if and only if α0 = 0; hence STLC is also refered to as 0-STLC in [14, 15]. We shall not use this notion of
“α-STLC” outside of the present remark.

More recently, a new notion has been introduced by Beauchard and Marbach in [11, Definition 4]. The idea
is to ensure the smallness, not only of u−ueq, but also of some derivatives, by requiring its norm to be bounded
in Sobolev spaces. For I an interval and k a nonnegative integer, we recall that a function f : I → R belongs to
Wk,∞(I) if, for all p ∈ {0, . . . , k}, f (p) ∈ L∞(I). In this case, one can endow Wk,∞(I) with the following norm

∥f∥Wk,∞ = max
p∈{0,...k}

∥f (p)∥L∞(I),

that makes Wk,∞(I) a Banach space.
Definition 2.5 (Wk,∞-STLC). Let k ∈ N. The control system (1) is Wk,∞-STLC at (zeq, ueq) if, for every
ε > 0, there exists η > 0 such that, for every z0, z1 in B(zeq, η), there exists a control u(·) in Wk,∞([0, ε],Rm)
such that the solution z(·) : [0, ε] → Rn of the control system (1) satisfies z(0) = z0, z(ε) = z1, and

∥u− ueq∥Wk,∞([0,ε],Rm) ⩽ ε .
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Remark 2.6. Obviously, W0,∞-STLC is identical to STLC as introduced in Definition 2.1. When k > 0,
Wk,∞-STLC is stronger than STLC, because it requires the control to be sufficiently smooth (notably, it cannot
be discontinuous) and the Wk,∞ is stronger than the L∞ one.

Remark 2.7. Let us complement this discussion on the various notions of local controllability with a word
on additional definitions where the “smallness” assumptions are shifted from the control to the state. In a
recent paper, Boscain et al. [19] review and link several notions of local controllability, among which small-time
localized local controllability, where the control is taken in L∞, but without any boundedness assumption; the
state, one the other hand, is constrained to remain within an arbitrarily small neighbourhood of the equilibrium.
A similar definition appears in [11], but with controls taken in L1; the notion is then shown to be equivalent to
W−1,∞-STLC, which itself is an extension of Definition 2.5 where the W−1,∞ norm of u is naturally taken as
the L∞ norm of the function t 7→

∫ t

0 u.

2.2. Notions and notations
If f and g are real analytic vector fields, their Lie bracket is denoted by [f, g] (its definition is recalled at the

beginning of Section 5.1). The “ad” operator is defined by (adf)g = [f, g]. The usual notation adk
fg is defined

by induction with ad0
fg = g and adk

fg = [f, adk−1
f g] = [f, [f, · · · , [f, g], · · · ]]; given k ⩾ 1 vector fields f1, . . . , fk,

we use the following notation for iterated composition of adfi, where one must respect the order since these
operators do not commute: ( k∏

i=1
adfi

)
g = [f1, [f2, [f3, . . . [fk, g] . . . ]]] . (5)

The set of real analytic vector fields on Rn (or on an open neighborhood of the equilibrium under consid-
eration) is a Lie algebra over R, with multiplication given by the Lie bracket. Given a family of real analytic
vector fields F = {g1, . . . , gN }, we denote by Lie(F) the sub-algebra generated by these vector fields.

In order to correctly manipulate the Lie brackets of vector fields in F as algebraic objects, we then introduce
the set of indeterminate symbols F̂ = {ĝ1, . . . , ĝn} and we denote by L(F̂) the free Lie algebra of formal Lie
brackets generated by the elements of F̂ . The substitution of the symbols of F̂ with the associated vector fields
in F is a natural (and usually non injective) morphism between (F̂) and Lie(F).

This construction allows to unambiguously refer to the “order” of a Lie bracket as the number of elements in
F̂ constituting it, before mapping it to Lie(F) where it could very well be equal to another vector field resulting
from a formal bracket of different order. For instance, if g1 and g2 commute, [ĝ1, ĝ2] is a nonzero element of
order two of L(F̂), mapped to the zero vector field.

As such ambiguous statements do not play any important role in this paper, in the following, we will
consistently identify these two objects and therefore “drop the hats” even when dealing with formal Lie brackets,
implicitly referring to elements of L(F̂) wherever relevant – in particular, when counting the number of elements
in a given Lie bracket.

Finally, we will use some condensed notations for some Lie brackets between the vector fields f0, f1 and f2
defining the control systems (3) or (10) under examination: basically, fij stands for [fi, fj ], fijk for [fi, [fj , fk]],
fij,kl for [fij , fkl], and fij,klm for [fij , fklm], and we will specifically use the following ones:

f01 = [f0, f1], f21 = [f2, f1], (6)
f101 = [f1, [f0, f1]], f121 = [f1, [f2, f1]], (7)
f21,01 = [[f2, f1], [f0, f1]], (8)
fi1,jk1 = [[fi, f1], [fj , [fk, f1]]]. (9)
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2.3. Known results for single-input systems
In this section, we set m = 1 in (1) and consider single-input control-affine systems:

ż = f0(z) + u1(t)f1(z) , z ∈ Rn (10)

around the equilibrium (zeq, ueq) = (0, 0), i.e. we assume f0(0) = 0.

Definition 2.8. System (10) satisfies the Lie Algebra Rank Condition (LARC) at 0 if

{g(0), g ∈ Lie(f0, f1)} = Rn. (11)

It is well-known [20, 21] (see also [17, Proposition 6.2]) that, when dealing with analytic vector fields, the
LARC is necessary for any form of STLC, but not sufficient. Stronger assumptions on the structure of Lie
bracket spaces have to be made to obtain a sufficient condition. For k ∈ N, let Sk be the set of all iterated Lie
brackets of f0 and f1 in which f1 appears at most k times, and Sk the subspace of Rn spanned by the value at 0
of the elements of Sk evaluated at 0. The following is a translation of [17, Theorem 2.1], the main result in that
reference. As discussed between Definition 2.1 and Definition 2.2, STLC meant B-STLC at the time where [17]
was published, so that a faithful translation of [17, Theorem 2.1] should be about B-STLC. However, the reader
may check that the proof by Sussmann in [17] indeed yields small controls, and therefore proves STLC, not
only in [17]’s sense, but in our sense too, we therefore write a statement2 that is formally stronger than the one
in [17], but still correct and in the spirit of [17].

Proposition 2.9 ([17, Theorem 2.1, p. 688]). If System (10) satisfies the LARC at 0 and, for all k in N,

S2k+2 ⊂ S2k+1, (12)

then it is STLC.

Condition (12) fails if for some k ∈ N, some brackets in S2k+2, once evaluated at 0, do not belong to S2k+1.
These clearly prevent one from applying Proposition 2.9, but have no reason to be obstructions to controllability.
It is however the case of some very specific such brackets. For instance, the lowest-order possible bracket in S2
is f101 (defined in (7)); H. Sussmann naturally studied this case and proved the following non-controllability
result3:

Proposition 2.10 ([17, Proposition 6.3, p.707]). If f101(0) ̸∈ S1, then System (10) is not B-STLC.

This result has been extended to arbitrary values of the integer k by Stefani in [22], showing that the simplest
bracket in S2k+2, namely ad2k

f1
f0 (note that, for k = 0, f101 = −ad2k

f1
f0), provides an obstruction:

Proposition 2.11 ([22]). Assume that there exists k in N such that

ad2k+2
f1

f0(0) ̸∈ S2k+1.

Then, System (10) is not B-STLC.

The proof of these obstructions always consist in building a function of the state, in general one coordinate of
a well chosen system of coordinates, that will be non-decreasing along any solution, irrespective of the control,
at least close to equilibrium point and for small enough controls. In the cases above, the construction is possible
due to a single bracket, that was subsequently called a “bad bracket”. However, brackets that make Condition
(12) fail are not, in general, obstructions to controllability and should not be called “bad brackets”, even though

2Coron does the same “abuse” when translating [7, Theorem 7.3] into [3, Theorem 3.29].
3The original result assumes that |u| ⩽ 1, see the lines after Definition 2.2; Proposition 2.10 is hence slightly stronger than the

result in [17], but follows from the same proof.
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they may have been called so in some early literature trying to generalize the two propositions above. In fact,
as evidenced by an example by Kawski [23, Example 2.5.1], it is even not a good general idea to look for
obstructions through single brackets having such or such properties; obstructions are more to be found through
more complex objects involving the image in Lie(f0, f1) of the whole homogeneous component of the free Lie
algebra L(f̂0, f̂1) (see Section 2.1). In the present paper, the introduction of the quadratic form Dueq

2
(see (18))

in Section 3.2 is an illustration of such an obstruction that cannot be expressed in terms of a single bracket,
whereas the results in Section 3.1, that is a generalisation of Proposition 2.10 to our class of two-input systems,
still relies on the single bracket f101 and the possibility to “cancel” it through brackets involving the second
control vector field.

Let us review two more results establishing local controllability obstructions, both in the case where (12)
fails for k = 0. Returning to k = 0, assume now that the hypothesis of Proposition 2.10 is not satisfied, i.e.
f101(0) does belong to S1. As explained for instance in [17], the next lowest-order bracket in S2 that can be an
obstruction to controllability is f01,001 (defined in (9)).

It is however noticed by H. Sussmann in [17, p.710] (a similar counter-example is recalled as (27) at the
beginning of section 4.2) that f01,001(0) ̸∈ S1 is not an obstruction to STLC as defined in Definition 2.1. In [9],
Kawski obtained a new necessary condition by refining the space S1:

Proposition 2.12 ([9]). Let S ′ = {adk
f0

(ad3
f1
f0), k ∈ N} and S′ the vector subspace of Rn spanned by the value

at 0 of the elements of S ′.
If f01,001(0) ̸∈ S1 + S′, then System (10) is not STLC.

More recently, the authors of [11] showed that f01,001(0) ̸∈ S1 is indeed an obstruction, but to a stronger
notion of local controllability that we just recalled in Definition 2.5.

Proposition 2.13 ([11, Theorem 3]). If f01,001(0) ̸∈ S1, then System (10) is not W1,∞-STLC.

Concerning systems with control in Rm,m ⩾ 2, a general sufficient condition for local controllability, in the
vein of Proposition 2.9 but more complex, can be found in [7], but no necessary condition is known, to the best
of our knowledge. The main results of this paper, stated in the next section, are a step in this direction in the
sense that they give an extension of the necessary conditions contained in Propositions 2.10, 2.12 and 2.13 to
the case where the system has two scalar controls, and the vector field associated to the second control vanishes
at the equilibrium.

3. Main results
We now consider the control-affine system (3) (which is also system (1) with m = 2), assuming that (4) is

satisfied at zeq = 0, i.e. f0(0) = 0, f2(0) = 0, f1(0) ̸= 0, and we study local controllability for (z, (u1, u2)) close
to the equilibria (0, (0, ueq

2 )), with ueq
2 arbitrary.

Remark 3.1. The fact, due to (4), that any value of ueq
2 is an equilibrium value of the control for the system (3)

is somehow unusual. Of course, once some value of ueq
2 is set, one can always work around the null equilibrium

(0, (0, 0)) by performing the following affine feedback transformation on the control u2: ũ2 = u2 − ueq
2 . With

this transformed control, system (3) becomes

ż = f̃0(z) + u1f̃1(z) + ũ2f̃2(z) (13)

with f̃0 = f0 +ueq
2 f2, f̃1 = f1 and f̃2 = f2. Assume that system (13) is STLC at (0, (0, 0)) and let ε be a positive

real number, η be the associated parameter from Definition 2.1, and z0, z1 in B(0, η). There exist controls u1
and ũ2 in L∞([0, ε]) such that the solution of (13) with z(0) = z0 and these controls satisfy z(ε) = z1, and

∥u1∥L∞([0,ε],R) ⩽ ε , ∥ũ2∥L∞([0,ε],R) ⩽ ε.
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Hence, the solution of system (3) with z(0) = z0 and controls u2 = ueq
2 + ũ2 and u1 satisfies z(ε) = z1, and we

also have ∥u2 − ueq
2 ∥L∞([0,ε],R) ⩽ ε and ∥u1∥L∞([0,ε],R) ⩽ ε. Therefore, system (13) is STLC at (0, (0, 0)) if and

only if system (3) is STLC at (0, (0, ueq
2 )); this also holds for other types of local controllability.

Moreover, unlike STLC, the notion of B-STLC (Definition 2.2) is independent of ueq
2 : indeed, choosing α

sufficiently large, it is easy to see that system (1) is B-STLC at one equilibrium (0, (0, ueq
2 )) if and only if it is

B-STLC for all equilibria (0, (0, ueq
2 )).

Nevertheless, a key feature of our main results is that some particular values of ueq
2 (like the one called β in

Theorem 3.2) play an important role for recovering local controllability. Therefore, we choose to state Theorem
3.2 and 3.8 without readily taking ueq

2 = 0, while the proofs are conducted with ueq
2 = 0 using the feedback

transformation described above.

3.1. Obstruction coming from brackets of order 3
Here, we give a necessary condition that “generalizes” Proposition 2.10 for single-input systems to the class

(1)-(4) of two-input systems. The bracket that carries the obstruction is again f101 but now, f121 also plays
a role as it could compensate the bracket f101. The family S1 from Proposition 2.10 has to be replaced by a
larger family R1, made of all iterated Lie brackets of f0, f1 and f2 where f1 appears at most one time. We
denote by R1 the vector subspace of Rn spanned by the value at 0 of all elements of R1.

The necessary condition is the following.

Theorem 3.2. Consider System (3) under Assumption (4). Assume f101(0) ̸∈ R1.
1. If f101(0) ∈ R1 + Span(f121(0)), let β ∈ R be such that

f101(0) + βf121(0) ∈ R1. (14)

Then, for any ueq
2 ∈ R such that ueq

2 ̸= β, system (3) is not STLC at (0, (0, ueq
2 )).

2. If f101(0) ̸∈ R1 + Span(f121(0)), then, for any ueq
2 ∈ R, system (3) is not B-STLC at (0, (0, ueq

2 )).

Case 2. is the one where the obstruction from Proposition 2.10 (applied to the single-input system obtained
by taking u2 = 0) persists, i.e. the second control cannot improve controllability. In Case 1., on the contrary,
Relation (14) allows the bracket f121 to possibly compensate f101 around the particular control ueq

2 = β; the
theorem states that this value of the control is the only one around which System (3) may be STLC.

Remark 3.3. In Case 1., a careful inspection of the proof leads to a slightly stronger result : there is an
obstruction to a weaker controllability property where the control u1 is not required to be arbitrary small; this
hybrid property could be called (B,L∞)-STLC in the spirit of Definition 3.5 (see next section).

3.2. Obstruction coming from brackets of order 5
We now assume that the obstruction to STLC pointed out by Theorem 3.2 does not hold , and continue

exploring possible obstructions to STLC. The result we give in this direction may be viewed as a “generalization”
of Propositions 2.12-2.13, in the sense that it combines the point of view of Proposition 2.12 (enlarging the space
S1) and that of Proposition 2.13 (using a stronger form of STLC), and consequently identifies obstructions to
various forms of local controllability, tailored to two-input systems of the type (3)-(4), that we define hereafter:

Definition 3.4. Let k ∈ N. The control system (3) is (Wk,∞,L∞)-STLC at (zeq, (ueq
1 , u

eq
2 )) if, for every ε > 0,

there exists η > 0 such that, for every z0, z1 in B(zeq, η), there exists a control (u1(·), u2(·)) in Wk,∞([0, ε],R) ×
L∞([0, ε],R) such that the solution z(·) : [0, ε] → Rn of the control system (3) satisfies z(0) = z0, z(ε) = z1, and

∥u1 − ueq
1 ∥Wk,∞([0,ε],R) ⩽ ε, ∥u2 − ueq

2 ∥L∞([0,ε],R) ⩽ ε. (15)

Definition 3.5. Let k ∈ N. The control system (3) is (Wk,∞, B)-STLC at (zeq, (ueq
1 , u

eq
2 )) if there exists α > 0

such that, for every ε > 0, there exists η > 0 such that, for every z0, z1 in B(zeq, η), there exists a control
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(u1(·), u2(·)) in Wk,∞([0, ε],R) × L∞([0, ε],R) such that the solution z(·) : [0, ε] → Rn of the control system (3)
satisfies z(0) = z0, z(ε) = z1, and

∥u1 − ueq
1 ∥Wk,∞([0,ε],R) ⩽ ε, ∥u2 − ueq

2 ∥L∞([0,ε],R) ⩽ α. (16)

Remark 3.6. The norms used for each control are different in this controllability notion, making it a form
of “hybrid” small-time local controllability. It fits the nature of system (3), where the second control plays a
particular role due to the fact that f2 vanishes at 0.

Let us now introduce the elements of the obstruction. First of all, we assume that

f101(0) ∈ R1 , f121(0) ∈ R1 , f21,01(0) ∈ R1 . (17)

The first two points are introduced to step out of the obstruction given by Theorem 3.2; the case where a
relation like (14) would hold is not considered. Finally, the bracket f21,01, defined in (8), was not seen before;
its role will be discussed below the statement of Theorem 3.8.

The obstruction per se is more complex than the one in Propositions 2.12-2.13: instead of coming from a
single bracket f01,001, it comes from eight different brackets of order 5; for a given value of the equilibrium
control ueq

2 , it is convenient to define a map Dueq
2

: R2 → Rn as follows:

Dueq
2

(λ1, λ2) = λ2
1(f01,001(0) − ueq

2 f01,201(0)) + λ2
2(f21,021(0) − ueq

2 f21,221(0))
−λ1λ2(f21,001(0) + f01,021(0) − ueq

2 (f21,201(0) + f01,221(0))), (18)

and there will be an obstruction if the vector Dueq
2

(λ1, λ2) stays, for all (λ1, λ2) different from (0, 0), strictly on
the same side of some hyperplane containing a vector subspace Q of Rn, i.e. if the following condition C(Q)
holds:

C(Q) ⇔

{
there exists a linear form φ : Rn → R, whose restriction to Q is zero (i.e. Q ⊂ kerφ)
and such that the quadratic form (λ1, λ2) 7→

〈
φ , Dueq

2
(λ1, λ2)

〉
is positive definite. (19)

The vector space Q will be either R1 or larger subspaces obtained by adding either the space R′, generated by
four special brackets involving f2, namely

R′ = Span(f01,201(0), f21,221(0), f21,201(0), f01,221(0)), (20)

or the space R′′, which is the two-input analogy of the space named S′ in Proposition 2.12, and that we define
as generated by the value at zero of a special family W of brackets containing three times f1:

R′′ = Span {g(0), g ∈ W} , with (21)

W =

(
ℓ−2ν−µ−1∏

j=1
adfiℓ−j+1

)[( ℓ−2ν−1∏
j=ℓ−2ν−µ

adfiℓ−j+1

)
f1,

[( ℓ−ν−1∏
j=ℓ−2ν

adfiℓ−j+1

)
f1,
[( ℓ−1∏

j=ℓ−ν

adfiℓ−j+1

)
f1, fi1

]]]
,

(ℓ, µ, ν) ∈ N3, 0 ⩽ µ ⩽
1
3(ℓ− 1), µ ⩽ ν ⩽

1
2(ℓ− µ− 1), (i1, . . . , iℓ) ∈ {0, 2}ℓ

 . (22)

The vector fields composing the family W appear again in the proof of Theorem 3.8, in Equation (103).

Remark 3.7. This setup illustrates the remark by Kawski in [23, Example 2.5.1], showing that obstructions to
controllability rests on the behaviour of Dueq

2
(λ1, λ2) rather than only on the value of supposedly “bad” brackets

taken individually.
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We now state our main result.

Theorem 3.8. Consider system (3). Assume that (4) and (17) hold and let ueq
2 ∈ R.

Then, with condition C(Q) defined in equation (19), we have, at (0, (0, ueq
2 )):

1. If C(R1) holds, system (3) is not (W1,∞,L∞)-STLC.
2. If C(R1 +R′) holds, system (3) is not (W1,∞, B)-STLC.
3. If C(R1 +R′′) holds, system (3) is not STLC ( i.e. (L∞,L∞)-STLC).
4. If C(R1 +R′ +R′′) holds, system (3) is not (L∞, B)-STLC.

The proof is given in section 5.3. Its structure mirrors the one of the proof of Theorem 3.2, but it features
additional technical ideas, most of which are adapted from the proof of Proposition 2.12 conducted in [23, pp.40-
72] to our two-input setting.

Remark 3.9. Similarly to Theorem 3.2, in Cases 1. and 3., the “critical” values of ueq
2 for which C(R1) or

C(R1 +R′′) fails are the only ones for which one may overcome the obstruction and recover (W1,∞,L∞)-STLC.
However, while Theorem 3.2 shows that there exists a unique such value β, Theorem 3.8 does not guarantee
existence or uniqueness of these critical values.

Remark 3.10. Assumption (17) requires that f21,01(0) ∈ R1 for the Theorem to hold, but the same conclusion
holds if we relax this requirement and include f21,01(0) within the subspace Q satisfying condition C, hence the
analogous statement: if C(R1 + Rf21,01(0)) holds, system (3) is not (W1,∞,L∞)-STLC, and so on for the other
three cases. The proof is straightforwardly adaptable to this variation.

Remark 3.11. Condition C(R1) (that holds in all four cases of the theorem, see above) excludes in particular
the situation where f01,001(0) does not belong to Q but all the other brackets fi1,jk1 do. In this situation, since
none of the brackets of order 5 containing f2 would play any role, one could believe that the potential effect of u2
on the controllability properties of the system is erased, and that System (10) would not be (W1,∞, B)-STLC,
just like in the scalar-input case.

Nevertheless, it appears in the proof of Theorem 3.8 below that, in that situation, higher-order terms in
the Chen-Fliess series involving f2 cannot be easily dominated by the term associated to f01,001(0). Therefore,
this particular case does not seem straightforwardly reductible to the scalar-input case, and dealing with would
require a different strategy than the one used in our proof.

Some illustrating and enlightening examples concerning this theorem are presented in Section 4.2.

4. Illustrating examples and applications

4.1. Examples for Theorem 3.2
In Case 2. of Theorem 3.2, the second control u2 cannot compensate the obstruction to local controllability

induced by f101. The following example illustrates that case.

Example 4.1. Consider the system {
ẋ = y2 + yu1,
ẏ = 2y − u1 + xu2.

(23)

It is of the form (3) with

f0 =
(
y2

2y

)
, f1 =

(
y

−1

)
, f2 =

(
0
x

)
.

Straightforward computations show that

R1 = Span(e2), [f1, [f0, f1]](0) = −6 e1, f121(0) = e2,

so we are in Case 2. of Theorem 3.2. Therefore, for any ueq
2 ∈ R, system (23) is not B-STLC at (0, (0, ueq

2 )).
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In Case 1., Theorem 3.2 states that the system is not STLC around the equilibria (0, (0, ueq
2 )), unless ueq

2
is equal to a particular value β, that allows the bracket f121 to compensate the bracket f101. Around the
equilibrium (0, (0, β)), the system can then be STLC, like in the next example. The method used in the
following example to show STLC was introduced in [16] to show local controllability of magnetically driven
micro-swimming robots – as detailed below the following example. We reproduce it here on a simpler system.

Example 4.2. Consider the system 
ẋ = y2 + yu1 − 2

α
y2u2,

ẏ = 2y − u1 − 1
α
yu2,

(24)

for some α ̸= 0. Here we have

f0 =
(
y2

2y

)
, f1 =

(
y

−1

)
, f2 = − 1

α

(
2y2

y

)
.

Straightforward computations show that

R1 = Span(e2), [f1, [f0, f1]](0) = −6e1, f121(0) = 6
α

e1,

so we are in Case 1. of Theorem 3.2. Therefore, the system (24) is not STLC at (0, (0, ueq
2 )) if ueq

2 ̸= α.
Let us now study controllability at (0, (0, α)). As explained in Remark 3.1, we make the feedback transfor-

mation ũ2 = u2 = α+ ũ2, which transforms system (24) into
ẋ = −y2 + yu1 − 2

α
y2ũ2,

ẏ = y − u1 − 1
α
yũ2,

i.e. into (13) with f̃0 =
(

−y2

y

)
, (25)

and we show that this system is STLC at (0, (0, 0)) (in a sense the transformation “neutralizes" the bracket
f101). To this end, we use the sufficient Sussmann condition for controllability [7, Theorem 7.3] with θ = 1
and the notation for Gη introduced in [14, Definition III.10]. Since f121(0) = 6

α e1, the Lie brackets of order 3
generate the whole space, i.e. Gη is the whole tangent space if η > 3. The only Lie brackets of order at most
3 with an even number of 1 and 2 are [f1, [f̃0, f1]] and [f2, [f̃0, f2]], which are both zero and therefore belong
trivially to G3.

Hence, the Sussmann condition from [7] is satisfied and system (25) is STLC at (0, (0, 0)), so system (24) is
STLC at (0, (0, α)).

Example 4.3 (Application to micro-swimmer robots). In addition to the previous examples, let us present a
practical application of Theorem 3.2. The present paper was motivated by the work on controllability of micro-
swimmer robot models made in [14–16]. The two swimmers studied in these papers are made of two (respectively
three) magnetized rigid segments, linked together with torsional springs, immersed in a low-Reynolds number
fluid, and driven by a uniform in space, time-varying magnetic field H. The swimmers’ motion is assumed to be
planar. The magnetic field H belongs to the swimmers’ plane and can therefore be decomposed, in the moving
basis associated to the first segment, in two components called (H⊥, H∥).

Seeing the magnetic field as a control function, the dynamics of both swimmers write as control systems that
are exactly of type (3)-(4):

ż = f0(z) +H⊥f1(z) +H∥f2(z), (26)
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with the state z in R4 for the two-link swimmer (resp. R5 for the three-link swimmer). The detailed expressions
of f0, f1 and f2 with respect to the system parameters are given in [14, Equations (12) to (16)] (resp. [16,
Appendix]).

Moreover, assumptions (4) are satisfied. Hence, for all H∥ in R, (0, (0, H∥)) is an equilibrium point (the
first zero is short for (0, 0, 0, 0) in R4 (resp. (0, 0, 0, 0, 0) in R5)). One also has R1 = Span(e2, e3, e4) (resp.
R1 = Span(e2, e3, e4, e5)) and the brackets of interest for Theorem 3.2 read:

[f1, [f0, f1]](0) = (a2, 0, 0, 0) (resp. [f1, [f0, f1]](0) = (a3, 0, 0, 0, 0))

and
f121(0) = (b2, 0, 0, 0) (resp. f121(0) = (b3, 0, 0, 0, 0)),

with a2, a3, b2, b3 constants that are nonzero under generic assumptions on the system parameters – see [14,
Assumption III.2] (resp. [16, Assumption 1]).

We can therefore apply Theorem 3.2, Case 1. and conclude that the two-link swimmer (resp. three-link
swimmer) is not STLC at (0, (0, H∥)) for any H∥ such that H∥ ̸= a2/b2 (resp. H∥ ̸= a3/b3).

In [16], it is shown that the two-link swimmer (resp. the three-link swimmer) is indeed STLC at (0, (0, a2/b2))
(resp. (0, (0, a3/b3))), using the technique displayed in Example 4.2. However, the question of STLC at other
equilibria of type (0, (0, H∥)) was left open in [16, Remark 5]. Theorem 3.2 allows to answer that question:
(0, (0, a2/b2)) (resp. (0, (0, a3/b3))) is the only equilibrium of this type for which the swimmer is STLC.

Remark 4.4. Former studies on the two-link swimmer had led to the following results: in [14], it is shown
that the control system (26) associated to the 2-link swimmer is B-STLC at (0, (0, 0)) with controls bounded
by 2a2/b2; in [15], it is shown that it is moreover not STLC at (0, (0, 0)). The proof of this last result features
an explicit construction of the function Φ that is used in the proof of Theorem 3.2 below.

4.2. Examples for Theorem 3.8
We start by considering a scalar-input system, inspired by the classical example given by Sussmann in [17,

Equation (6.12), p. 711]: 
ẋ = u1,
ẏ = x,
ż = y,
ẇ = x3 + y2 + z2.

(27)

For this system, f01,001(0) is outside of S1. Yet it is shown (see [17]) that it is B-STLC (and STLC as well, as
shown for instance in [11, Example 12]). Furthermore, Proposition 2.13 shows that it is not W1,∞-STLC.

The following examples feature systems resembling System (27) with addition of a second control. Depending
on the vector field f2 associated to this second control, we will observe the role played by this second control in
the two different cases of Theorem 3.8.

Example 4.5. Consider the control system
ẋ = u1,
ẏ = x,
ż = y + xu2,
ẇ = x3 + y2 + z2.

(28)

Straightforward computations show that R1 = R1 + R′ = Span(e1, e2, e3) (in particular, one has f101(0) =
f121(0) = f01,21(0) = 0).

Moreover,
f01,001(0) = f21,021(0) = −2e4 and f21,001(0) = f01,021(0) = 0.
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Therefore, by choosing ψ = −e∗
4, we are in Case 1. of Theorem 3.8, and conclude that System (28) is not

(W1,∞, B)-STLC. Therefore, in this example, the second control does not help recover controllability, as in
Example 4.1.

Example 4.6. Now, we consider the following system:
ẋ = u1,
ẏ = x,
ż = y + xu2,
ẇ = x3 + y2 + z2 + (y2 + z2)u2.

(29)

All the relevant brackets are identical to those in the previous example, except that we now have

f01,201(0) = −2e4 and f21,221(0) = −2e4.

Therefore, by choosing φ = −e∗
4, we are in Case 2. of Theorem 3.8, and conclude that System (28) is not

(W1,∞,L∞)-STLC at (0, (0, 0)).
However, setting u2 = −1, System (29) becomes identical to the scalar-input system

ẋ = u1,
ẏ = x,
ż = y − x,
ẇ = x3.

(30)

Let us show that this system is W1,∞-STLC. In order to do this, we add the equation u̇1 = v to the system and
study controllability of this new extended system with state (u1, x, y, z, w) ∈ R5 and control v. We check that, for
this extended system, the Sussmann condition – already used above in Example 4.2 – is satisfied for θ = 1 around
the equilibrium 0R5 . Indeed, the brackets f1, [f0, f1], [f0, [f0, f1]], [f0, [f0, [f0, f1]]] and [f1, [f0, [f1, [f0, [f0, f1]]]]]
span the whole state space at 0R5 , and all the brackets of order at most 6 with an even number of times f1
vanish at 0R5 . Therefore, the extended system is STLC around 0R5 . This means that both u1 and u̇1 = v can be
arbitrary small in L∞-norm, and System (29) is indeed (W1,∞,B)-STLC, and (W1,∞,L∞)-STLC at (0, (0,−1)).

This second example illustrates the more interesting case of our result, in which the second control, when
set to be around a specific value depending of the behaviour of brackets of order 5, helps recovering local
controllability.

Cases 3 and 4 of Theorem 3.8 are analogous, in the sense that they only amount to change the “scalar-input”
structure (i.e. f0 and f1) of the above systems (28) and (29), to create a system that fits Proposition 2.12 when
u2 = 0.

Finally, let us present an example partly justifying the necessity of Assumption (17).

Example 4.7. Theorem 3.8 requires that f121(0) ∈ R1. The following example features a case where no
obstruction to local controllability can be obtained when this does not hold, even though all the other conditions
to apply Theorem 3.8 are satisfied.

Consider the following system: 
ẋ = u1,
ẏ = x,
ż = y + xu2,
ẇ = x3 + y2 + z2 + x2u2.

(31)

All the relevant brackets are identical to those of Example 4.5, except this time we have

f121(0) = −2e4,
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so Assumption (17) is not satisfied.
Then, the same straightforward computations as the ones carried in the previous example show that the

extended system (with the extra equation u̇1 = v and (v, u2) seen as the controls) satisfies the Sussmann
condition for θ = 1. Hence (31) is W1,∞-STLC at 0.

This example therefore highlights the role of the bracket f121, which seems to help recover some notion of
local controllability in this case. Of note, in the scalar-input case, control systems similarly featuring brackets
of different order interacting with each other were identified in [18].

5. Proofs of the Theorems

5.1. Notations and preliminaries
Solution associated to a control. Given a control t 7→ u(t) = (u1(t), u2(t)) in L∞([0, T ],R2), we denote by

t 7→ zu(t)

the solution of (3) with control u(.) starting from the origin, i.e. zu(0) = 0.
Vector fields and differential operators. A real analytic vector field f can equivalently be defined, in coordinates,

either by f(x) =

a1(x)
...

an(x)

 or by f =
n∑

k=1
ak

∂

∂xk
,

where a1, . . . , an are real analytic functions. The first notation views f as assigning a tangent vector to each
point while the second views f as a differential operator of order 1: fϕ =

∑n
k=1 ak

∂ϕ
∂xk

for any analytic function
ϕ. For two vector fields f and g, we denote by fg the differential operator of order 2 obtained by composition:
(fg)ϕ = f(gϕ). In coordinates, and if g =

∑n
k=1 bj

∂
∂xj

, one has

fg =
n∑

k=1

n∑
j=1

akbj
∂2

∂xk∂xj
+

n∑
j=1

(
n∑

k=1
ak
∂bj

∂xk

)
∂

∂xj
.

In that setting and as a differential operator, the Lie bracket (used so far in the paper, see beginning of
section 2.2), is a commutator: [f, g] = fg − gf ; one recovers the usual formula from fg and gf above.
Chen-Fliess series. Let I = (i1, . . . , ik) ∈ {0, 1, 2}k be a multi-index and f0, f1, f2 the three vector fields defining
the system in (3). One defines by iterated composition the kth order differential operator

fI = fi1fi2 . . . fik
.

For each u = (u1, u2) in L∞([0, T ],R2), for a multi-index I = (i1, . . . , ik) ∈ {0, 1, 2}k, the iterated integral
∫ T

0 uI

is defined as follows :∫ T

0
uI =

∫ T

0

∫ τk

0

∫ τk−1

0
· · ·
∫ τ2

0
uik

(τk)uik−1(τk−1) . . . ui2(τ2)ui1(τ1)dτ1dτ2 . . . dτk , (32)

where the symbol u0 is used with the convention u0 ≡ 1.
Let Φ : Rn → R be a real analytic function defined in a neighbourhood of 0 in Rn. The Chen-Fliess series

associated to f0, f1, f2, u and Φ at time T is defined as

Σ(u, f,Φ, T ) =
∑

I

(∫ T

0
uI

)
(fIΦ)(0), (33)
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where the summation is made over all the multi-indices I = (i1, . . . , ik) in {0, 1, 2}k with k ∈ N. The Chen-Fliess
series appears in a range of works in control theory and geometry (see [24–26]). It is shown in [17, Proposition
4.3, p. 698] that, due to the analyticity of the vector fields fi, for all A > 0, there exists T0(A) > 0 such that
the series converges for any T ⩽ T0 and any u such that ∥u∥L∞([0,T ]) ⩽ A, uniformly with respect to u and T ,
to Φ(zu(T )), i.e. one can write

Φ(zu(T )) = Σ(u, f,Φ, T ) . (34)
Finally, the analyticity of the fi and Φ implies, as stated in [17, Lemma 4.2, p.697] the existence of some

constant C independent of I such that
|(fIΦ)(0)| ⩽ Ck(k)!, (35)

where k stands for the length of I.

Constructing local coordinates from a collection of vector fields. The following lemma is classical in nature.

Lemma 5.1. Given n real analytic vector fields g1, . . . , gn on Rn such that g1(0), . . . , gn(0) form a basis of
Rn, there is a set of real analytic local coordinates z 7→ s(z) = (s1(z), . . . , sn(z)) defined on a neighborhood V of
0 such that s1(0) = · · · = sn(0) = 0 and, for any i, j, k in {1, . . . , n},

g1si(z) = δi,1, i ∈ {1, . . . , n}, z ∈ V, (36)
gjsi(0) = δi,j , (i, j) ∈ {1, . . . , n}2, (37)

gkgjsi(0) = 0, (i, j, k) ∈ {1, . . . , n}3, j ≤ k, (38)

where δi,j denotes the Kronecker symbol: δi,j is equal to 1 if i = j and 0 if i ̸= j.

Proof. Define a real analytic map T : (−ε, ε)n → Rn, for ε > 0 small enough4, by

T(t1, . . . , tn) = et1g1 ◦ · · · ◦ etngn(0), (39)

where etX denotes the flow at time t of a vector field X. Clearly, T(0) = 0 and the columns of the Jacobian of T
at 0 are the vectors g1(0), . . . , gn(0), linearly independent, hence T is a local diffeomorphism at 0, i.e., by taking
ε > 0 small enough (and smaller than above), it defines a diffeomorphism from (−ε, ε)n onto V = T((−ε, ε)n).
Let s : V → (−ε, ε)n be the inverse of this real analytic diffeomorphism, and let s = (s1, . . . , sn).

With these definitions, s1(0) = · · · = sn(0) = 0 follows from T(0) = 0; let us now prove (36) to (38). For any
z = T(t1, . . . , tn) ∈ V (i.e. si(z) = ti, i = 1, . . . , n, with |ti| < ε), one has si(etg1(z)) = ti + t δi,1 (if |t+ t1| < ε);
this implies (36). Taking integers j, k, and evaluating the ith coordinate of the point ev gj ◦ ew gk (0) yields,
assuming |v| < ε, |w| < ε and |v + w| < ε, to be sure that ev gj ◦ ew gk (0) is in V,

si(ev gj ◦ ew gk (0)) = v δi,j + w δi,k if j ≤ k

(this is wrong if j > k because ev gj and ew gk do not commute and T is defined with that order in (39)). By
definition of the Lie derivative, one may differentiate with respect to v to obtain the value of gjsi at that point:
gjsi(ev gj ◦ ew gk (0)) = δi,j . Differentiating this with respect to w to obtain the value of gkgjsi is correct only
when v = 0: gkgjsi(ew gk (0)) = 0. These two relations imply (37) and (38) by taking v = w = 0. □

4If the vector fields fi are complete, take ε = ∞ and T : Rn → Rn. If not, define complete vector fields f̂i = ρ fi with ρ a smooth
cut-off function that is identically equal to 1 in a neighborhood O of the origin, and define a smooth map T̂ : Rn → Rn from the
vector fields f̂1, . . . , f̂n as in (39). The vector fields are real analytic on O, although not on Rn. Taking ε > 0 small enough that
T((−ε, ε)n) ⊂ O, the restriction of T̂ to (−ε, ε)n provides the real analytic map T because it only depends on the restrictions of the
vector fields f̂i to O, that are real analytic, and are also the restrictions of fi’s to O.
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5.2. Proof of Theorem 3.2
Most of the section consists in proving Proposition 5.2 below, which refines the statement of Theorem 3.2.

The proof relies on similar arguments to those used to prove Proposition 2.10 in [17, pp.707-710].

Proposition 5.2. Assume that the assumptions of Case 1. (resp. Case 2.) of Theorem 3.2 are satisfied, with
ueq

2 = 0, and fix an arbitrary α > 0 (for case Case 2. only). There exists a neighborhood V of the origin, an
analytic function

Φ : V → R satisfying Φ(0) = 0, dΦ(0) ̸= 0, (40)
a constant K > 0, and some ε0 > 0 such that for any T , 0 < T < ε0, any essentially bounded control
u : t 7→ (u1(t), u2(t)) defined on [0, T ] satisfying

∥u1∥L∞([0,T ]) ≤ ε0 and ∥u2∥L∞([0,T ]) ≤ ε0 (resp. ∥u1∥L∞([0,T ]) ≤ α and ∥u2∥L∞([0,T ]) ≤ α
)
, (41)

one has zu(t) ∈ V for all t in [0, T ] and

Φ(zu(T )) ⩾ K ∥v1∥ 2
L2([0,T ]) (42)

with
v1(t) =

∫ t

0
u1(s) ds. (43)

Proof of Theorem 3.2 assuming Proposition 5.2. Fix α > 0 for case 2, choose ε smaller than the ε0 given by
Proposition 5.2. Then for any η, (40) implies that one may pick a point z1 in B(0, η) such that Φ(z1) < 0,
and (42) then clearly implies that there may exist no control u satisfying (41) and such that zu(T ) = z1.
This contradicts STLC according to Definition 2.1 (resp. B-STLC according to Definition 2.2) and proves
Theorem 3.2 in the case ueq

2 = 0. If ueq
2 ̸= 0, just perform the feedback transformation suggested in Remark

3.1: f0 +u1f1 +u2f2 = f̃0 +u1f1 + ũ2f2 with f̃0 = f0 +ueq
2 f2 and ũ2 = u2 −ueq

2 , apply the result to the system
ż = f̃0 + u1f1 + ũ2f2 at the equilibrium z = 0, (u1, ũ2) = (0, 0), and deduce the result at the equilibrium z = 0,
(u1, u2) = (0, ueq

2 ) for the original system (noting that f101(0)+βf121(0) is equal to f̃101(0)+(β−ueq
2 )f̃121(0)). □

Proof of Proposition 5.2. The first step is to define the function Φ that will later be proved to have the desired
properties.

Let d1 = dimR1 and d2 = dim(R1 + Span(f121(0))) (either d2 = d1 or d2 = d1 + 1). Let g1, . . . , gn be n
vector fields such that:

• g1 = f1,
• (g1(0), . . . , gn(0)) is a basis of Rn,
• in Case 1., (g1(0), . . . , gd1(0)) is a basis of R1 and gd1+1 = f101,
• in Case 2., (g1(0), . . . , gd2(0)) is a basis of R1 + Span(f121(0)) and gd2+1 = f101,

and define, from these vector fields, some local coordinates z 7→ (s1(z), . . . , sn(z)) in a neighbourhood V of 0
according to Lemma 5.1. Then, define Φ as follows:

• in Case 1., Φ(ζ) = sd1+1(ζ),
• in Case 2., Φ(ζ) = sd2+1(ζ).

The function Φ is real analytic on V and has, by construction, the following properties:

Φ(0) = 0, (44)
(Case 1.) ∀g ∈ R1, (gΦ)(0) = 0, (45)
(Case 2.) ∀g ∈ R1 ∪ {f121}, (gΦ)(0) = 0, (46)

f1Φ = 0 on V, (47)
(f101Φ)(0) = 1. (48)
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According to (47) and (4), one also has, with I = (i1, . . . , ik),

fIΦ(0) = 0 if i1 = 0 or i1 = 2 or ik = 1 . (49)

In order to show that Φ satisfies (42), we then consider the Chen-Fliess series Σ(u, f,Φ, T ) (see (33)) associated
to the above constructed Φ and split its terms into five different types:

Σ(u, f,Φ, T ) = P1 + P2 + P3 + P4 + P5,

where each Pi contains the terms with multi-indices I defined as follows:
• P1 : I = (2, . . . ), I = (0, . . . ), or I = (. . . , 1),
• P2 : I = (1, J) with J containing only 0’s and 2’s,
• P3 : I = (1, 1, 0),
• P4 : I = (1, 1, 2),
• P5 : all the remaining terms.

We immediately have P1 = 0 according to (49). We also have P2 = 0; indeed, let I = (1, i2, . . . , ik) with
ij = 0 or 2 for all j ∈ {2, . . . k}. Then, we can write that

f1fi2 . . . fik
= [f1, fi2 ]fi3 . . . fik

+ fi2f1 . . . fik
, (50)

and (fi2f1 . . . fik
Φ)(0) = 0 according to (49). Similarly, we have

[f1, fi2 ]fi3 . . . fik
= [[f1, fi2 ], fi3 ]fi4 . . . fik

+ fi3 [f1, fi2 ] . . . fik
, (51)

and ((fi3 [f1, fi2 ] . . . fik
)Φ)(0) = 0 because of assumption (4) and the fact that i3 = 0 or 2. Repeating this

operation k − 3 more times, we eventually get that

(f1fi2 . . . fik
Φ)(0) = ([. . . [f1, fi2 ], . . . , fik

]Φ)(0). (52)

But [. . . [f1, fi2 ], . . . , fik
] is in R1, so (f1fi2 . . . fik

Φ)(0) = 0 because of (45). Therefore,

P1 = P2 = 0. (53)
The terms P3 and P4, associated to the brackets f101 and f121, are the key parts of the proof. Let us compute

their value. For P3, we write
f1f1f0 = f1f0f1 + f1[f1, f0]

= f1f0f1 − [f1, f0]f1 + f101.

The first two terms on the right-hand side vanish when evaluated at 0 against Φ because of (47), so (f(1,1,0)Φ)(0) =
(f101Φ)(0) = 1 by (48). Moreover, the control integral part is given by∫ T

0
u(1,1,0) =

∫ T

0

∫ s

0
u1(σ)

∫ σ

0
u1(τ)dτdσds

=
∫ T

0

∫ s

0
v′

1(σ)v1(σ)dσds

so, overall

P3 = 1
2∥v1∥2

L2 , (54)

with v1 defined in Equation (43).
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Let us turn to P4. Expanding f121 into a sum of third order operators and applying (49) yields

(f1f1f2Φ)(0) = (f121Φ)(0). (55)

Here the two cases of the theorem differ. In Case 2., (46) implies f121Φ(0) = 0, hence P4 = 0. In Case 1.,
this does not hold, but there is a real number β and a vector field g such that f121 = −βf101 + g, with g ∈ R1
and β ̸= 0 because f101(0) /∈ R1. Thanks to (55), (45) and (48), we conclude that (f1f1f2Φ)(0) = −β. The
control integral associated to P4 reads∫ T

0
u(1,1,2) =

∫ T

0
u2(s)

∫ s

0
u1(σ)

∫ σ

0
u1(τ)dτdσds ⩽ 1

2 ∥u2∥L∞∥v1∥2
L2 ,

and we deduce the following bound on P4:

|P4| ⩽ 1
2 |β| ∥u2∥L∞∥v1∥2

L2 . (56)

Finally, we will show that the terms of P5 add up to a small remainder:

Lemma 5.3. For any α > 0, there exists T0 > 0 and a constant D > 0 such that, for all T in [0, T0], and all
(u1, u2) satisfying ∥u1∥L∞ ⩽ α and ∥u2∥L∞ ⩽ α, one has

|P5| ⩽ TD∥v1∥2
L2 . (57)

Proof. Let I be a multi-index such that the associated term in the series is in P5. Then I = (1, J, 1,K) with
K = (k1, . . . , kq) and J = (j1, . . . , jr) such that q ⩾ 1, q + r ⩾ 2 and J contains only 0’s and 2’s. Let us denote
by J2 the number of 2’s in J , and K1 and K2 respectively the number of 1’s and 2’s in K. The control integral
associated to I reads∫ T

0
uI =

∫ T

0

∫ sq

0

∫ sq−1

0
· · ·
∫ s2

0
ukq (sq)ukq−1(sq−1) . . . uk1(s2)Wr(s1)ds1 . . . dsq, (58)

with
Wr(s) =

∫ s

0
u1(τr+1)

∫ τr+1

0
ujr (τr)· · ·

∫ τ2

0
uj1(τ1)

∫ τ1

0
u1(τ0)dτ0 . . . dτr+1.

Applying triangle inequality, bounding ui by ∥ui∥L∞ (i = 1, 2) and using u0 = 1 yields∣∣∣∣∣
∫ T

0
uI

∣∣∣∣∣ ⩽ ∥u2∥K2
L∞∥u1∥K1

L∞

∫ T

0

∫ sq

0

∫ sq−1

0
· · ·
∫ s2

0
|Wr(s1)|ds1 . . . dsq, (59)

which can be rewritten as∣∣∣∣∣
∫ T

0
uI

∣∣∣∣∣ ⩽ ∥u2∥K2
L∞∥u1∥K1

L∞
1

(q − 1)!

∫ T

0
(T − s)q−1|Wr(s)|ds. (60)

The study of Wr(s) splits into three cases.
• Case r = 0. In this case, we have

W0(s) =
∫ s

0
u1(τ1)

∫ τ1

0
u1(τ0)dτ0dτ1 = 1

2v
2
1(s). (61)
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• Case r = 1. In this case, we integrate by parts to get

W1(s) = v1(s)
∫ s

0
uj1(τ)v1(τ)dτ +

∫ s

0
uj1(τ)v2

1(τ)dτ, (62)

and we apply triangle inequality to bound the uj1 term:

∥W1(s)∥ ⩽ ∥u2∥J2
L∞

(
|v1(s)|

∫ s

0
|v1(τ)|dτ +

∫ s

0
v2

1(τ)dτ
)
. (63)

(recall that, here, J2 = 1 if j1 = 2 and J2 = 0 if j1 = 0.)
• Case r > 1. In this case, we integrate by parts to get

Wr(s) = v1(s)
∫ s

0
ujr (τr)

∫ τr

0
ujr−1(τr−1)· · ·

∫ τ2

0
uj1(τ1)v(τ1)dτ1 . . . dτr

−
∫ s

0
v1(τr)ujr (τr)

∫ τr

0
ujr−1(τr−1)· · ·

∫ τ2

0
uj1(τ1)v(τ1)dτ1 . . . dτr,

(64)

and we use triangle inequality to bound the ujp terms:

|Wr(s)| ⩽ ∥u2∥J2
L∞

(
|v1(s)|

∫ s

0

∫ τr

0
· · ·
∫ τ1

0
|v1(τ1)|dτ1 . . . dτr −

∫ s

0
|v1(s)|

∫ τr

0
· · ·
∫ τ1

0
|v1(τ1)|dτ1 . . . dτr

)
, (65)

which can be rewritten as

|Wr(s)| ⩽ ∥u2∥J2
L∞

(
|v1(s)|
(r − 1)!

∫ s

0
(s− σ)r−1|v1(σ)|dσ − 1

(r − 2)!

∫ s

0
|v1(τ)|

∫ τ

0
(τ − σ)r−2|v1(σ)|dσdτ

)
. (66)

The Cauchy-Schwarz inequality yields∫ s

0
(s− σ)r−1|v1(σ)|dσ ⩽

sr−1/2
√

2r − 1
∥v1∥L2 . (67)

We then apply (67) to (66), once to the first term and twice to the second term, which leads to the
following upper bound:

|Wr(s)| ⩽ ∥u2∥J2
L∞

(
|v1(s)| ∥v1∥L2

(r − 1)!
sr−1/2

√
2r − 1

+
∥v1∥2

L2

(r − 2)!
sr−1√

(2r − 3)(2r − 2)

)
. (68)

Substituting (61), (63), and (68) in (60), and bounding (T − s) by T , we have:∣∣∣∣∣
∫ T

0
uI

∣∣∣∣∣ ⩽ ∥u2∥K2+J2
L∞ ∥u1∥K1

L∞
AT q+r−1

(q − 1)!(r − 2)!∥v1∥2
L2 , (69)

where (r− 2)! is replaced by 1 if r ∈ {0, 1}. Here and hereafter, A is a constant that may vary from line to line.
Thanks to (35), we have, for some constant C independent of I,

|(fIΦ)(0)| ⩽ Cq+r+2(q + r + 2)!. (70)

Combining (69) and (70), we find an upper bound for the whole term of index I from the series:∣∣∣∣∣
(∫ T

0
uI

)
(fIΦ)(0)

∣∣∣∣∣ ⩽ B(q, r)T∥u2∥K2+J2
L∞ ∥u1∥K1

L∞∥v1∥2
L2 ,
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with
B(q, r) = ACq+r+2T q+r−2 (q + r)!(q + r + 2)5

q!r! , (71)

where we bounded (q+r+2)
(q−1)!(r−2)! by (q+r)!(q+r+2)5

q!r! to encompass the cases r = 0 and r = 1.
Straightforward combinatorial arguments then yield an upper bound for P5:

|P5| ⩽ T∥v1∥2
L2

∑
r⩾0,q⩾1
r+q⩾2

B(q, r)
r∑

J2=0

(
r

J2

)
∥u2∥J2

L∞

q∑
K1=0

(
q

K1

)
∥u1∥K1

L∞

q−K1∑
K2=0

(
q −K1
K2

)
∥u2∥K2

L∞ . (72)

This can be rewritten as

|P5| ⩽ T∥v1∥2
L2

∑
r⩾0,q⩾1
r+q⩾2

B(q, r)(1 + ∥u2∥L∞)r(1 + ∥u2∥L∞ + ∥u1∥L∞)q. (73)

Using (1 + ∥u2∥L∞) ⩽ (1 + ∥u2∥L∞ + ∥u1∥L∞) and renumbering the terms of the sum for p ⩾ 2 and 0 ⩽ r ⩽ p
(such that p = r + q in equations (72) and (73)), one obtains

|P5| ⩽ T∥v1∥2
L2

∑
p⩾2

p∑
r=0

B(p− r, r)(1 + ∥u2∥L∞ + ∥u1∥L∞)p. (74)

From (71), we have
p∑

r=0
B(p− r, r) =

p∑
r=0

ACp+2T p−2 (p)!(p+ 2)5

(p− r)!r! .

Using Stirling’s formula, we deduce that for any α > 0, there exists T0 > 0 and a constant D > 0 such that, for
all T in [0, T0], and all (u1, u2) satisfying ∥u1∥L∞ ⩽ α and ∥u2∥L∞ ⩽ α, the series in (74) converges for all T in
[0, T0].

Including its limit for T = T0 and the other constants in a new constant D, we finally obtain (57) for any
T ∈ [0, T0]. □

We now end the proof of Proposition 5.2 in both cases. Let T0 and D be as defined in Lemma 5.3.
In Case 1., using (53) and (54), we have

Σ(u, f,Φ, T ) = 1
2∥v1∥2

L2 + P4 + P5, (75)

knowing, thanks to (56) and (57) that

|P4 + P5| ⩽ 1
2 |β|∥u2∥L∞∥v1∥2

L2 + TD∥v1∥2
L2 . (76)

Let ε be a real positive number such that ε( 1
2 |β|+D) ⩽ 1

4 . Let ε0 = min(T0, ε). Taking a smaller T if necessary,
we can assume that zu(t) ∈ V for all t in [0, T ]. Assume that T ⩽ ε0 and ∥u2∥L∞ ⩽ ε0. Using (76) into (75),
we obtain that Σ(u, f,Φ, T ) ⩾ 1

4 ∥v1∥2
L2 for all T ⩽ ε0 and ∥u2∥L∞ ⩽ ε0, i.e. we have proven (42) with K = 1

4 .
In Case 2., we obtain that

Σ(u, f,Φ, T ) = 1
2∥v1∥2

L2 + P5. (77)

Let ε be a real positive number such that εD ⩽ 1
4 . Let ε0 = min(T0, ε). Taking a smaller T if necessary, we can

assume that zu(t) ∈ V for all t in [0, T ]. Assume that T ⩽ ε0, ∥u1∥L∞ ⩽ α and ∥u2∥L∞ ⩽ α (for an arbitrary
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α > 0). Using (57) into (77), we obtain that Σ(u, f,Φ, T ) ⩾ 1
4 ∥v1∥2

L2 for all T ⩽ ε0, i.e. we have proven (42)
with K = 1

4 .
This concludes the proof of Proposition 5.2. □

5.3. Proof of Theorem 3.8
Most of this section consists in proving Proposition 5.4 below, more precise than Theorem 3.8.

Proposition 5.4. Assume that the assumptions of Theorem 3.8 are satisfied, and fix an arbitrary α > 0 (needed
for Cases 2. and 4. only). There exists a neighborhood V of the origin, an analytic function

Φ : V → R satisfying Φ(0) = 0, dΦ(0) ̸= 0, (78)

a constant K > 0, and some ε0 > 0 such that, for any T , 0 < T < ε0, any essentially bounded control
u : t 7→ (u1(t), u2(t)) defined on [0, T ] satisfying the correct smallness assumptions depending on the case
considered, and specified below, one has zu(t) ∈ V for all t in [0, T ] and

Φ(zu(t)) ⩾ K
(

∥w1∥ 2
L2([0,t]) + ∥w2∥ 2

L2([0,t])

)
, 0 ⩽ t ⩽ T (79)

with
w1(t) =

∫∫
0⩽s2⩽s1⩽t

u1(s1) ds1 ds2 , w2(t) =
∫∫

0⩽s2⩽s1⩽t

u1(s1)u2(s2) ds1 ds2 . (80)

The assumptions on the controls, depending on each case of the theorem, are as follows: in Case 1.,

∥u1∥W1,∞([0,T ]) ≤ ε0 and ∥u2∥L∞([0,T ]) ≤ ε0, (81)

in Case 2.,
∥u1∥W1,∞([0,T ]) ≤ ε0 and ∥u2∥L∞([0,T ]) ≤ α, (82)

in Case 3.,
∥u1∥L∞([0,T ]) ≤ ε0 and ∥u2∥L∞([0,T ]) ≤ ε0, (83)

in Case 4.,
∥u1∥L∞([0,T ]) ≤ ε0 and ∥u2∥L∞([0,T ]) ≤ α. (84)

Remark 5.5. Notice that u1 and u2 are not treated symmetrically in defining w1 and w2 in Equation 80 above:
w1 depends on u1 only, while w2 depends on u2 and u1.

Proof of Theorem 3.8 assuming Proposition 5.4. (Very similar to the proof of Theorem 3.2 assuming Proposi-
tion 5.2 in section 5.2.)

Fix α > 0 for case 2, choose ε smaller than the ε0 given by Proposition 5.4. Then for any η, (78) implies
that one may pick a point z1 in B(0, η) such that Φ(z1) < 0, and (79) then clearly implies that there may exist
no control u satisfying one of the smallness assumptions among equations (81)-(84) (depending on which case
of the Theorem in considered) and such that zu(T ) = z1. This contradicts local controllability according to
Definition 3.4 in Cases 1. and 3. (resp. Definition 3.5 in Cases 2. and 4.) and proves Theorem 3.2 in the
case ueq

2 = 0. If ueq
2 ̸= 0, just perform the same feedback transformation as in the proof of Proposition 5.2 and

deduce the result at the equilibrium z = 0, (u1, u2) = (0, ueq
2 ) for the original system. □

Proof of Proposition 5.4. Let T > 0, u1 ∈ W 1,∞([0, T ]) and u2 ∈ L∞([0, T ]).
We will prove (79) in several steps :

Step 1. We define a suitable function Φ.
Step 2. We study the associated Chen-Fliess series and, following [23, pp.41-56], we perform a “change of basis”

over the free vector space spanned by monomials fI with index I containing two or three times “1”.
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Step 3. We isolate and calculate the sum of four dominating terms, called Pdom,
Step 4. We deal with the remaining terms in the series, by showing that they are small compared to Pdom,
Step 5. Finally we sum all the terms and prove (79).

Step 1. Construction of Φ.
We start with the following lemma, stating that the assumptions made in Theorem 3.8 imply that f1(0), f01(0), f21(0)

are linearly independent.

Lemma 5.6. If the vector fields f0, f1 and f2 are such that (4) (with zeq = 0) and (17) hold and, for some
ueq

2 ∈ R and for all (λ1, λ2) ∈ R2\{(0, 0)}, Dueq
2

(λ1, λ2) /∈ R1, then

Rank{f1(0), f01(0), f21(0)} = 3 . (85)

Proof. First, notice that (85) is preserved by the feedback transformation ũ2 = u2 − ueq
2 described in Remark

3.1, so we can assume without loss of generality that ueq
2 = 0 in the statement of the Lemma.

Assume that (85) fails. Since f1(0) ̸= 0 (see (4)), we have three possible cases:
(i) Rank{f1(0), f21(0)} = 2,

(ii) Rank{f1(0), f21(0)} = 1 and Rank{f1(0), f01(0)} = 2,
(iii) Rank{f1(0), f01(0), f21(0)} = 1.

In case (i), there exists two real numbers µ, ν such that f01(0) = µf21(0)+νf1(0); introducing H = f01 −µf21 −
νf1, we have

f01 = µf21 + νf1 +H , H(0) = 0 . (86)
Taking the Lie brackets of both sides by f0 yields

f001 = µf021 + νf01 + [f0, H]. (87)

We take the Lie bracket by f01, and we use (86), (87), and the Jacobi identity in the last line, so that

f01,001 = µf01,021 + [f01, [f0, H]]
= µf01,021 + [µf21 + νf1 +H, [f0, H]]
= µf01,021 + µ[f21, [f0, H]] + ν[f1, [f0, H]] + [H, [f0, H]]
= µf01,021 + µf21001 − µ2f21021 − µνf2101 + νf1001 − µνf1021 − ν2f101
= −µ2 f21,021 + µ

(
f01,021 + f21,001

)
− µν

(
[f0, f121] + 2f21,01

)
+ ν[f0, f101] − ν2f101 + [H, [f0, H]] .

(88)
With D0 the map defined in (18), this implies

D0(1, µ) = −µν
(
[f0, f121](0) + 2f21,01(0)

)
+ ν[f0, f101](0) − ν2f101(0) + [H, [f0, H]](0) , (89)

where the right-hand side is in R1 from (17) and the fact that f0(0) = H(0) = 0.
In case (ii), we repeat the above calculations while swapping the roles of f01 and f21, yielding an expression

for f21,021 instead of f01,001 in equation (88) and obtaining that D0(µ, 1) ∈ R1. Finally, case (iii) is actually
contained in case (i) by taking µ = 0 in equation (86).

Overall, we have proven in each case the existence of (λ1, λ2) ̸= (0, 0) such that D0(λ1, λ2) ∈ R1 if (85) fails,
whence the Lemma. □

Remark 5.7. Let us underline here the necessity of the seemingly innocuous Assumption (17), and more
precisely that f101(0) ∈ R1 and f121(0) ∈ R1, to conclude this proof and deduce that [f0, f121](0) and [f0, f101](0)
belong to R1 in equation (89). In particular, we could not conclude if we only assumed f101(0), f121(0) ∈ Q for
Q another space containing R1. See section 4.2 for an example of system where f121(0) ̸∈ R1, and for which the
conclusion of Theorem 3.8 fails.
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Remark 5.8. Interestingly, the statement of Lemma 5.6 implies that R1 must be of dimension at least 3 for
our result to hold, and therefore the obstructions of Theorem 3.8 can appear only for systems with a state of
dimension at least 4 – like the examples in section 4.2.

Now, let d = dimQ (where Q is the subspace associated to proposition C in Theorem 3.8 and depends on
which of the four cases is considered) and construct n real analytic vector fields g1, . . . , gn enjoying the following
properties:

(1) g1 = f1, g2 = f01, g3 = f21, and (g1(0), . . . , gn(0)) is an basis of Rn,
(2) (g1(0), . . . , gd(0)) is a basis of Q and gd+1 is such that

⟨φ, gd+1(0)⟩ = 1 and ⟨φ, gj(0)⟩ = 0, j ̸= d+ 1, (90)

The first point is possible thanks to Lemma 5.6 and the second point is possible with the linear form φ given
by property C(Q), see (19). Then define, from these g1, . . . , gn, some local coordinates x 7→ (s1(x), . . . , sn(x))
in a neighbourhood V of 0 according to Lemma 5.1 and define Φ as follows:

Φ(ζ) = sd+1(ζ). (91)

By virtue of Lemma 5.1 and (4), the function Φ satisfies:

Φ(0) = 0, (92)
f1Φ = 0 on V, (93)
fIΦ(0) = 0 if i1 = 0 or i1 = 2 or ik = 1 . (94)

Moreover, one has, thanks to (37) and (90) for the first point, and (38) for the second point,

dΦ(0) = φ, (95)
∀k, ℓ ∈ {1, . . . , d}, k ⩾ ℓ ⇒ (gkglΦ)(0) = 0. (96)

Step 2. Change of basis. Consider the Chen-Fliess series Σ(u, f,Φ, T ), given by (33), associated to
Φ constructed above, and partition the series in the sum of the terms where derivation along f1 appears zero,
one, two, three or at least four times (the subscript refers to the number of times the index 1 appears in the
multi-index I ∈ {0, 1, 2}k):

Σ(u, f,Φ, T ) = P0 + P1 + P2 + P3 + P≥4 . (97)

As already noticed in the proof of Theorem 3.2 (equations (50) to (53)), the above properties of Φ and the fact
that f0 and f2 vanish at 0 imply P0 = P1 = 0; P≥4 will be dealt with directly in Step 4; we turn to P2 and P3.

The purpose of this step is the same as the classification in different types (P1 to P5) made in the proof of
Theorem 3.2: classify the terms into convenient categories, in order to study them more easily. However, here, in
P2 and P3, instead of simply categorizing the multi-indices I, we follow [23] and perform a re-arrangement that
can be seen as the result of a change of basis on the (free) vector space generated by non-commutative monomials
containing the same number of times the indeterminate f0, the same number of times the indeterminate f1 (two
or three times, indeed) and the same number of times the indeterminate f2; these vector spaces are homogeneous
component of the free associative algebra generated by the indeterminates f0, f1 and f2. In practice, this amounts
to manipulating the differential operators fI on one hand, and perform successive integrations by parts of the
iterated integrals

∫
uI on the other hand. This suitable change of basis is performed in detail in [23, pp.41-56]

for a scalar-input system and can be adapted to the two-control system (3), yielding the following expressions:
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P2 =
∑

ℓ∈N, L∈{0,2}ℓ

∑
µ∈{0,...,ℓ}

b2,L
µ (W 2,L

µ Φ)(0), (98)

P3 =
∑

ℓ∈N, L∈{0,2}ℓ

3∑
ξ=1

∑
(µ,ν)∈J (ξ,ℓ)

b3,L
ξ,µ,ν(W 3,L

ξ,µ,νΦ)(0), (99)

where
J (1, ℓ) = {(µ, ν) ∈ N2, 0 ⩽ µ ⩽ 1

3 (ℓ− 1), µ ⩽ ν ⩽ 1
2 (ℓ− µ− 1)},

J (2, ℓ) = {(µ, ν) ∈ N2, 2µ+ ν ⩽ ℓ− 1},
J (3, ℓ) = {(µ, ν) ∈ N2, ν ⩽ 2µ ⩽ ℓ− 1},

(100)

Let ℓ ∈ N and L = (i1, . . . , iℓ) in {0, 2}ℓ. The explicit expressions of the differential operators W read

W2,L
µ =

( ℓ−2µ−1∏
j=1

adfiℓ−j+1

)[( ℓ−µ−1∏
j=ℓ−2µ

adfiℓ−j+1

)
f1,
[( ℓ−1∏

j=ℓ−µ

adfiℓ−j+1

)
f1, fi1

]]
if 0 ⩽ 2µ ⩽ ℓ− 1, (101)

W2,L
µ =

(( µ∏
j=1

adfiℓ−j+1

)
f1

)(( ℓ∏
j=µ+1

adfiℓ−j+1

)
f1

)
if ℓ ⩽ 2µ ⩽ 2ℓ, (102)

W3,L
1,µ,ν = −

( ℓ−2ν−µ−1∏
j=1

adfiℓ−j+1

)[( ℓ−2ν−1∏
j=ℓ−2ν−µ

adfiℓ−j+1

)
f1,

[( ℓ−ν−1∏
j=ℓ−2ν

adfiℓ−j+1

)
f1,
[( ℓ−1∏

j=ℓ−ν

adfiℓ−j+1

)
f1, fi1

]]]
,

(103)

W3,L
2,µ,ν =

(( ℓ−2µ−ν−1∏
j=1

adfiℓ−j+1

)[( ℓ−µ−ν−1∏
j=ℓ−2µ−ν

adfiℓ−j+1

)
f1,
[( ℓ−ν−1∏

j=ℓ−µ−ν

adfiℓ−j+1

)
f1, fiν

]])(( ℓ∏
j=ℓ−ν+1

adfiℓ−j+1

)
f1

)
,

(104)

W3,L
3,µ,ν =

(( ℓ−µ−ν∏
j=1

adfiℓ−j+1

)
f1

)(( ℓ−µ∏
j=ℓ−µ−ν+1

adfiℓ−j+1

)
f1

)(( ℓ∏
j=ℓ−µ+1

adfiℓ−j+1

)
f1

)
. (105)

In particular, the family of operators in equation (103) is exactly the family W defined in equation (22) above
Theorem 3.8. Their values at 0 generate the subspace R′′ defined in Equation (21), which appears in Cases 2.
and 4. of the theorem.

The associated iterated integrals are respectively given by

b2,L
µ = − 1

2
∫
ui1

∫
ui2 · · ·

∫
uiℓ−2µ

(
∫
uiℓ−2µ+1 · · ·

∫
uiℓ−µ

∫
u1)(

∫
uiℓ−µ+1 · · ·

∫
uiℓ

∫
u1) if 0 ⩽ 2µ ⩽ ℓ− 1, (106)

b2,L
µ = (

∫
ui1 · · ·

∫
uiµ

∫
u1)(

∫
uiµ+1 · · ·

∫
uiℓ

∫
u1) if ℓ ⩽ 2µ ⩽ 2ℓ, (107)

b3,L
1,µ,ν = δ

∫
ui1 · · ·

∫
uiℓ−2ν−µ

(
∫
uiℓ−2ν−µ+1 · · ·

∫
uiℓ−2ν

∫
u1)(

∫
uiℓ−2ν+1 · · ·

∫
uiℓ−ν

∫
u1)(

∫
uiℓ−ν+1 · · ·

∫
uiℓ

∫
u1),
(108)

b3,L
2,µ,ν = 1

2

(∫
ui1 · · ·

∫
uiℓ−2µ−ν

(
∫
uiℓ−2µ−ν+1 · · ·

∫
uiℓ−µ−ν

∫
u1)(

∫
uiℓ−µ−ν+1 · · ·

∫
uiℓ−ν

∫
u1)
)

(
∫
uiℓ−ν+1 · · ·

∫
uiℓ

∫
u1),
(109)

b3,L
3,µ,ν = δ(

∫
ui1 · · ·

∫
uiℓ−µ−ν

∫
u1)(

∫
uiℓ−µ−ν+1 · · ·

∫
uiℓ−µ

∫
u1)(

∫
uiℓ−µ+1 · · ·

∫
uiℓ

∫
u1). (110)

The bounds on the iterated integrals have been removed to lighten notations. To avoid any notational ambiguity,
let us specify that the products of two or three integrals appearing in expressions (106), (108) and in the first
factor of (109) are meant to be part of the integrand of the integral sign on their left, whereas expressions (107)
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and (110) denote products of two or three independent integrals. The constant δ that appears in (108) and
(110) depends on ℓ, µ and ν and take only values 1, 1

2 or 1
6 .

Step 3. Dominating terms. The essence of the whole proof is to show that the four terms in (98) in P2,
for which ℓ = 3, µ = 1 and L in {(0, 0, 0), (0, 2, 2), (0, 0, 2), (0, 2, 0)} dominate the rest of the series. We call
Pdom the sum of these four terms.

The differential operators in these four terms read, with notations from (9),

W
2,(0,0,0)
1 = −f01,001, W

2,(0,2,2)
1 = −f21,021, W

2,(0,0,2)
1 = −f21,001, W

2,(0,2,0)
1 = −f01,021, (111)

and the associated integrals read

b
2,(0,0,0)
1 = −1

2∥w1∥2
L2 , b

2,(0,2,2)
1 = −1

2∥w2∥2
L2 , b

2,(0,0,2)
1 = b

2,(0,2,0)
1 = −1

2

∫
w1w2, (112)

where w1 and w2 are defined in (80). Now, let α = f01,001Φ(0), β = f21,021Φ(0) and γ = (f21,001Φ(0) +
f01,021Φ(0)). Gathering (111) and (112) into the expression of Pdom, we get

Pdom = 1
2

(
α∥w1∥2

L2 + β∥w2∥2
L2 + γ

( ∫
w1w2

))
. (113)

from which we get the lower bound

Pdom ⩾
1
2
(
α∥w1∥2

L2 + β∥w2∥2
L2 − |γ|∥w1∥L2∥w2∥L2

)
, (114)

which means that:
Pdom ⩾

1
2 ⟨φ , D0(∥w1∥L2 , ∥w2∥L2)⟩ , (115)

where D0 is defined in (18), and the linear form φ appears thanks to (95). Finally, positive definiteness in (19)
ensures the existence of K > 0 such that ⟨φ , D0(λ1, λ2)⟩ ⩾ 4K(λ2

1 + λ2
2). We therefore obtain the following

bound on Pdom:
Pdom ⩾ 2K(∥w1∥2

L2 + ∥w2∥2
L2). (116)

Step 4.
The goal of this step is to show that, under the right assumptions on T and the controls, the sum of the

Chen-Fliess series without the dominating terms studied in the previous step is smaller in absolute value than
K(∥w1∥2

L2 + ∥w2∥2
L2), where K is defined in Equation (116).

Since the calculations are quite lengthy, we summarize them as follows:
i) Terms in P2.

a. Four terms requiring special attention (namely those associated with indices L in {(2, 0, 0), (2, 2, 2) ,
(2, 0, 2), (2, 2, 0)}).

b. Vanishing terms.
c. Case 1 ⩽ µ ⩽ ℓ−1

2 .
d. Case ℓ

2 ⩽ µ ⩽ ℓ− 2.
e. Sum of all the terms from c. and d., called P2,2.

ii) Terms in P3.
a. Vanishing terms.
b. Case ξ = 1.
c. Case ξ = 2, µ = 0.
d. Case ξ = 2, µ ⩾ 1.
e. Case ξ = 3.

iii) Terms in P⩾4.
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Distinctions between different cases of the theorem need to be made at the following substeps:
• between Cases 1. and 3. on the one hand, and Cases 2. and 4. on the other hand, in the substep i)a,
• between Cases 1. and 2. on the one hand, and Cases 3. and 4. on the other hand, in the substep ii)b.

The rest of this step is valid for all cases.
Before starting, let us state the following lemma, that provides useful estimations on some control integrals

and derived from [11, Proposition 6].

Lemma 5.9. Let T > 0 and u1 ∈ W1,∞([0, T ]). There exists M1 and M2 independent of u1 and T such that:

∥v1∥4
L4 ⩽M1∥u1∥2

L∞∥w1∥2
L2 , (117)

∥v1∥3
L3 ⩽M2

(
1 + 1

T

)
∥u1∥W1,∞∥w1∥2

L2 . (118)

Proof. Both estimations are consequences of the Gagliardo-Nirenberg inequality (see for example [27, Theorem
9.3]), that we recall here : let p, q, r, α, s real numbers and j,m integers satisfying 1 ⩽ q, r ⩽ +∞, j

m ⩽ α ⩽ 1
and

1
p

= j + (1
r

−m)α+ 1 − α

q
. (119)

Then, for u a function on [0, T ] such that u ∈ Lq([0, T ]) and its weak derivative u(m) is in Lr([0, T ]), then u(j)

is in Lp([0, T ]), and there exists C1, C2 independent of u and T such that

∥u(j)∥Lp ⩽ C1∥u(m)∥α
Lr ∥u∥1−α

Lq +C2T
1
p − 1

s −j∥u∥Ls , (120)

where the power in front of T is obtained by a scaling argument from the inequality applied to functions defined
on [0, 1], as done in [11, Proposition 6]. Now, for (117), we take u = w1 (which belongs to W3,∞([0, T ])) and
apply (120) for p = 4, q = 2, r = ∞, α = 1

2 , s = 2, j = 1, and m = 2 to get

∥v1∥4
L4 ⩽ C1∥u1∥2

L∞∥w1∥2
L2 + C2T

−5∥w1∥4
L2 , (121)

then, notice that by definition of w1, we can write

T−5∥w1∥2
L2 ⩽ T−4∥w1∥2

L∞ ⩽ ∥u1∥2
L∞ , (122)

hence (117) with M1 = C1 + C2.
For (118), we take again u = w1 and apply (120) for p = 3, q = 2, r = ∞, α = 1

3 , s = 2, j = 1, and m = 3,
which yields

∥v1∥3
L3 ⩽ C1∥u1∥W1,∞∥w1∥2

L2 + C2T
− 7

2 ∥w1∥3
L2 . (123)

We then proceed with similar operations than in (122):

T−7∥w1∥2
L2 ⩽ T−6∥w1∥L∞ ⩽ T−2∥u1∥2

L∞ ⩽ T−2∥u1∥2
W1,∞ , (124)

hence (118) with M2 = max(C1, C2). □

We are now ready to start dealing with the terms in P2, P3 and P⩾4, following the substeps detailed above.
i) Terms in P2.
i) a. Four terms requiring special attention.
First of all, we will deal with the terms in P2 for which ℓ = 3 and µ = 1. Four of them (called the dominating

terms above) have already been studied in Step 3., so only four terms are remaining, namely those associated
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with indices L in {(2, 0, 0), (2, 2, 2), (2, 0, 2), (2, 2, 0)}. We denote their sum by P2,1. These terms require special
attention because their behaviour depends on which case of the theorem is considered. We have

W
2,(2,0,0)
1 = −f01,201, W

2,(2,2,2)
1 = −f21,221, W

2,(2,0,2)
1 = −f21,201, W

2,(2,2,0)
1 = −f01,221. (125)

Now, notice that in Cases 2. and 4. of Theorem 3.8, these four brackets belong to Q when evaluated at 0;
therefore, by construction of Φ, one has

W
2,(0,0,2)
1 Φ(0) = W

2,(2,2,2)
1 Φ(0) = W

2,(2,0,2)
1 Φ(0) = W

2,(0,2,2)
1 Φ(0) = 0,

and P2,1 = 0. On the other hand, in Cases 1. and 3. of the theorem, these terms do not vanish anymore, and
we need to look at the associated integrals b2,(2,0,0)

1 , b2,(2,2,2)
1 , b2,(2,0,2)

1 , b2,(2,2,0)
1 , that read

b
2,(2,0,0)
1 = −1

2

∫
u2w

2
1 , b

2,(2,2,2)
1 = −1

2

∫
u2w

2
2 , b

2,(2,0,2)
1 = b

2,(2,2,0)
1 = −1

2

∫
u2w1w2, (126)

Let A = max(|W 2,(0,0,2)
1 Φ(0)|, |W 2,(2,2,2)

1 Φ(0)|, |W 2,(2,0,2)
1 Φ(0)|, |W 2,(0,2,2)

1 Φ(0)|); bounding u2 by ∥u2∥L∞ in
(126), we obtain that P2,1 is bounded as follows:

|P2,1| ⩽ A∥u2∥L∞(∥w1∥2
L2 + ∥w2∥2

L2). (127)

Therefore, letting T1 = K
6A , for all u2 such that ∥u2∥L∞ ⩽ T1 and for all T ∈ [0, T1], one has

|P2,1| ⩽ K

6 (∥w1∥2
L2 + ∥w2∥2

L2). (128)

i) b. Vanishing terms.

We start by ruling out the vanishing operators, through the following lemma:

Lemma 5.10. One has, for ℓ ⩾ 0 and for L ∈ {0, 2}ℓ:
(1) (W2,L

0 Φ)(0) = 0,
(2) (W2,L

ℓ Φ)(0) = 0,
(3) (W2,L

ℓ−1Φ)(0) = 0.

Proof. Let ℓ ⩾ 0 and L ∈ {0, 2}ℓ.
(1). W2,L

0 (0) always belongs to Q, so we use property (95) of Φ to conclude.
(2). The operator W2,L

ℓ takes the form hf1 with h some vector field, so we use property (93) of Φ to conclude.
(3). First, we consider the case i1 = 0. Then, W2,L

ℓ−1 = hg2 with h ∈ Q, where g2 is defined in Step 1.
and Q naturally denotes the set of all the brackets appearing in the definition of Q. Because h belongs to Q
and (g1(0), . . . , gd(0)) is a basis of Q, there exists λ1, . . . , λd in R such that h(0) =

∑d
j=1 λjgj(0). Introducing

g0 = h −
∑d

j=1 λjgj , we have g0(0) = 0 and h = g0 +
∑d

j=1 λjgj . Since g0(0) = 0, we immediately have
(g0g2Φ)(0) = 0. Moreover, for j ∈ {2, . . . , d}, (gjg2Φ)(0) = 0 by virtue of property (96) of Φ. Finally, noticing
that g1g2 = [g1, g2]+g2g1 = f101+g2g1, and using again (96) as well as point (1) of the lemma (since f101(0) ∈ Q),
we have (g1g2Φ)(0) = 0. Overall, W2,L

ℓ−1Φ(0) = (hg2Φ)(0) = 0.
In the case iℓ = 2, W2,L

ℓ−1 = hg3 with h ∈ Q. Again, we write h = g0 +
∑d

j=1 λjgj with g0(0) = 0, and proceed
as above to show that (gjg3Φ)(0) = 0 for all j = 0, . . . , d, using (96) and the fact that [g1, g3](0) = f121(0) and
[g2, g3](0) = f01,21(0) belong to Q.

□
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Remaining terms.
According to Lemma 5.10, which rules out all the terms for which ℓ = 0, 1 or 2, and since we also ruled out

the terms for which ℓ = 3 through Pdom and P2,1, the remaining terms in P2 satisfy ℓ ⩾ 4. Let ℓ ⩾ 4 and
L ∈ {0, 2}ℓ. Let L2 be the number of 2’s in L. There are two cases to study depending on the index µ.

i) c. Case 1 ⩽ µ ⩽ ℓ−1
2 .

According to (106), we have

b2,L
µ = 1

2

∫
ui1

∫
ui2 · · ·

∫
uiℓ−2µ

(
∫
uiℓ−2µ+1 · · ·

∫
uiℓ−µ

∫
u1)(

∫
uiℓ−µ+1 · · ·

∫
uiℓ

∫
u1). (129)

There are three cases to study, depending on the value of iℓ−µ and iℓ.
(1) iℓ−µ = 0 and iℓ = 0. Bounding u2 by ∥u2∥L∞ gives

|b2,L
µ | ⩽ 1

2∥u2∥L2
L∞

∫ T

0

(T − s)ℓ−3

(ℓ− 3)! |w1(s)|2ds (130)

if µ = 1 and

|b2,L
µ | ⩽ 1

2∥u2∥L2
L∞

∫ T

0

(T − s)ℓ−2µ−1

(ℓ− 2µ− 1)!

(∫ s

0

(s− σ)µ−2

(µ− 2)! |w1(σ)|dσ
)2

ds (131)

if µ > 1. We use Cauchy-Schwarz inequality and bound (T − s) by T in (131) to get

|b2,L
µ | ⩽ 1

2∥u2∥L2
L∞

T ℓ−2µ−1

(ℓ− 2µ− 1)!

∫ T

0

(T − s)2µ−3

(2µ− 3)(µ− 2)!2

∫ s

0
w2

1(σ)dσds. (132)

Bounding (T −s) by T and the integral between 0 and s by the integral between 0 and T in (132) yields

|b2,L
µ | ⩽ 1

2∥u2∥L2
L∞

T ℓ−3

(2µ− 3)(l − 2µ− 1)!(µ− 2)!2 ∥w1∥2
L2 . (133)

Finally, we bound 1
(µ−2)! by µ

(µ−1)! in (133) to obtain a bound that encompasses all values of µ:

|b2,L
µ | ⩽ 1

2∥u2∥L2
L∞

µ2T ℓ−3

(l − 2µ− 1)!(µ− 1)!2 ∥w1∥2
L2 . (134)

(2) iℓ−µ = 2 and iℓ = 2. Bounding u2 by ∥u2∥L∞ gives

|b2,L
µ | ⩽ 1

2∥u2∥L2
L∞

∫ T

0

(T − s)ℓ−3

(ℓ− 3)! |w2(s)|2ds (135)

if µ = 1 and

|b2,L
µ | ⩽ 1

2∥u2∥L2−2
L∞

∫ T

0

(T − s)ℓ−2µ−1

(ℓ− 2µ− 1)!

(∫ s

0

(s− σ)µ−2

(µ− 2)! |w2(σ)|dσ
)2

ds (136)

if µ > 1, and we repeat steps (132) and (133) in (136) to obtain the upper bound

|b2,L
µ | ⩽ 1

2∥u2∥L2−2
L∞

µ2T ℓ−3

(l − 2µ− 1)!(µ− 1)!2 ∥w2∥2
L2 . (137)
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(3) iℓ−µ = 2 and iℓ = 0, or iℓ−µ = 0 and iℓ = 2. Bounding u2 by ∥u2∥L∞ gives

|b2,L
µ | ⩽ 1

2∥u2∥L2
L∞

∫ T

0

(T − s)ℓ−3

(ℓ− 3)! |w1(s)w2(s)|ds (138)

if µ = 1 and

|b2,L
µ | ⩽ 1

2∥u2∥L2−1
L∞

∫ T

0

(T − s)ℓ−2µ−1

(ℓ− 2µ− 1)!

(∫ s

0

(s− σ)µ−2

(µ− 2)! |w1(σ)|dσ
)(∫ s

0

(s− σ)µ−2

(µ− 2)! |w2(σ)|dσ
)

ds (139)

if µ > 1. Then, we repeat steps (132) and (133) in (139) and use the fact that 2xy ⩽ x2 + y2 to obtain

|b2,L
µ | ⩽ 1

4∥u2∥L2−1
L∞

µ2T ℓ−3

(l − 2µ− 1)!(µ− 1)!2 (∥w1∥2
L2 + ∥w2∥2

L2). (140)

i) d. Case ℓ
2 ⩽ µ ⩽ ℓ− 2.

According to (107), we have

b2,L
µ =

(∫
ui1 · · ·

∫
uiµ

∫
u1

)(∫
uiµ+1 · · ·

∫
uiℓ

∫
u1

)
.

Similarly to the case 2 ⩽ 2µ ⩽ l − 1, the study of b2,L
µ then splits in three cases depending on the value of iℓ−µ

and iℓ. Applying Cauchy-Schwarz inequality again leads to the following upper bounds:
(1) if iµ = 0 and iℓ = 0,

|b2,L
µ | ⩽ ∥u2∥L2

L∞
T ℓ−3√

(2µ− 1)(ℓ− µ− 1)(l − µ− 1)!(µ− 2)!
∥w1∥2

L2 . (141)

(2) if iµ = 2 and iℓ = 2,

|b2,L
µ | ⩽ ∥u2∥L2−2

L∞
T ℓ−3√

(2µ− 1)(ℓ− µ− 1)(l − µ− 1)!(µ− 2)!
∥w2∥2

L2 . (142)

(3) if iµ = 2 and iℓ = 0, or iµ = 0 and iℓ = 2,

|b2,L
µ | ⩽ 1

2∥u2∥L2−1
L∞

T ℓ−3√
(2µ− 1)(ℓ− µ− 1)(l − µ− 1)!(µ− 2)!

(∥w1∥2
L2 + ∥w2∥2

L2). (143)

i) e. Sum of all the remaining terms in P2.

We call P2,2 the sum of all the terms in P2 for which ℓ ⩾ 4, namely

P2,2 =
∑
ℓ⩾4

ℓ∑
µ=0

∑
L∈{0,2}ℓ

b2,L
µ W 2,L

µ Φ(0). (144)
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Using (35), we bound the (W 2,L
µ Φ)(0) with Cℓ+2(ℓ + 2)!, and use the upper bounds obtained in (134), (137),

(140), (141),(142) and (143):

|P2,2| ⩽
∑
ℓ⩾4

Cℓ+2T ℓ−3
ℓ∑

µ=0
B(ℓ, µ)

(
∥w1∥2

L2

∑
L∈{0,2}ℓ

iℓ−µ=0,iℓ=0

∥u2∥L2
L∞ +∥w2∥2

L2

∑
L∈{0,2}ℓ

iℓ−µ=2,iℓ=2

∥u2∥L2−2
L∞ +

∥w1∥2
L2 + ∥w2∥2

L2

2
∑

L∈{0,2}ℓ

iℓ−µ+iℓ=2

∥u2∥L2−1
L∞

)
,

(145)
with B(ℓ, µ) = µ2(ℓ+2)!

(ℓ−2µ−1)!(µ−1)!2 if 0 ⩽ 2µ ⩽ ℓ− 1 and (ℓ+2)!
(ℓ−µ−1)!(µ−2)! if ℓ/2 ⩽ µ ⩽ ℓ.

For given ℓ and µ, straightforward combinatorial calculation yields to∑
L∈{0,2}ℓ

iℓ−µ=0,iℓ=0

∥u2∥L2
L∞ =

∑
L∈{0,2}ℓ

iℓ−µ=2,iℓ=2

∥u2∥L2−2
L∞ = 1

2
∑

L∈{0,2}ℓ

iℓ−µ+iℓ=2

∥u2∥L2−1
L∞ = (1 + ∥u2∥L∞)ℓ−2. (146)

Substituting (146) in (145) yields

|P2,2| ⩽ 2(∥w1∥2
L2 + ∥w2∥2

L2)
∑
ℓ⩾4

Cℓ+2(1 + ∥u2∥L∞)ℓ−2T ℓ−3
ℓ∑

µ=0
B(ℓ, µ)

⩽ 2C6T (1 + ∥u2∥L∞)2(∥w1∥2
L2 + ∥w2∥2

L2)
∑
ℓ⩾0

(C(1 + ∥u2∥L∞)T )ℓ
ℓ+4∑
µ=0

B(ℓ+ 4, µ).

For T small enough, the series above converges and therefore there exists T2 such that for all T ∈ [0, T2],

|P2,2| ⩽ K

6 (∥w1∥2
L2 + ∥w2∥2

L2). (147)

ii) Terms in P3.
ii) a. Vanishing terms.
We start by ruling out the vanishing terms through the following lemma:

Lemma 5.11. One has, for ℓ ⩾ 0 and for L ∈ {0, 2}ℓ:
(1) (W3,L

2,0,0Φ)(0) = 0,
(2) (W3,L

2,0,1Φ)(0) = 0,
(3) (W3,L

3,1,1Φ)(0) = 0,
(4) (W3,L

3,µ,0Φ)(0) = 0 for all admissible µ.

The proof is based on the same arguments as the proof of Lemma 5.10.
Now, let ℓ ⩾ 1, L ∈ {0, 2}ℓ and L2 the number of 2’s in L.
ii) b. Case ξ = 1.
As mentioned above, for these terms (and only for them) we will need to distinguish between Cases 1.,2. and

Cases 3.,4. of the theorem. Indeed, in Cases 3. and 4., since R′′ ⊂ Q, and W3,L
1,µ,ν(0) ∈ R′′ by construction, we

immediately have (W3,L
1,µ,νΦ)(0) = 0 for all admissible µ and ν. Hence, the sum of the associated terms in the

Chen-Fliess series, called P3,1, is equal to zero.
On the other hand, in Cases 1.,2., these terms do not vanish, and we need to look at the iterated integrals.

We will see that an assumption of smallness of ∥u1∥W1,∞ will then be required to properly bound P3,1, which
explains that we can only deny (W1,∞,L∞)-STLC or (W1,∞, B)-STLC in those two cases.
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According to (108), we have

b3,L
1,µ,ν = δ

∫
ui1 · · ·

∫
uiℓ−2ν−µ

(
∫
uiℓ−2ν−µ+1 · · ·

∫
uiℓ−2ν

∫
u1)(

∫
uiℓ−2ν+1 · · ·

∫
uiℓ−ν

∫
u1)(

∫
uiℓ−ν+1 · · ·

∫
uiℓ

∫
u1).
(148)

We bound u2 with ∥u2∥L∞ in (148) to obtain:

|b3,L
1,µ,ν | ⩽ δ∥u2∥L2

L∞

∫
· · ·
∫

︸ ︷︷ ︸
ℓ−2ν−µ times

(∫
· · ·
∫

︸ ︷︷ ︸
µ times

|v1|
)(∫

· · ·
∫

︸ ︷︷ ︸
ν times

|v1|
)2
. (149)

Hence, if µ = ν = 0, (149) becomes

|b3,L
1,0,0| ⩽ δ∥u2∥L2

L∞

∫ T

0

(T − s)ℓ−1

(ℓ− 1)! |v1(s)|3ds, (150)

if ν = 0 and µ ⩾ 1, (149) becomes

|b3,L
1,µ,0| ⩽ δ∥u2∥L2

L∞

∫ T

0

(T − s)ℓ−µ−1

(ℓ− µ− 1)! v1(s)2
∫ s

0

(s− σ)µ−1

(µ− 1)! |v1(σ)|dσds, (151)

and if ν ⩾ 1, (149) becomes

|b3,L
1,µ,ν | ⩽ δ∥u2∥L2

L∞

∫ T

0

(T − s)ℓ−2ν−µ−1

(ℓ− 2ν − µ− 1)!

(∫ s

0

(s− σ)ν−1

(ν − 1)! |v1(σ)|dσ
)2(∫ s

0

(s− σ)µ−1

(µ− 1)! |v1(σ)|dσ
)

ds. (152)

In (150), (151) and (152), we bound (t − s) by t, (s − σ) by s and s by t where necessary, which yields the
following bound encompassing the three cases (150), (151) and (152):

|b3,L
1,µ,ν | ⩽ A(µ, ν)T ℓ−1∥u2∥L2

L∞

∫ T

0
|v1(s)|3ds, (153)

where A(µ, ν) is equal to δ
(l−1)! ,

δ
(l−µ−1)!(µ−1)! or δ

(l−2ν−µ−1)!(ν−1)!2(µ−1)! depending on the cases enumerated
above. Then, we use estimation (118) in Lemma 5.9 to obtain:

|b3,L
1,µ,ν | ⩽ A(µ, ν)K

(
1 + 1

T

)
T ℓ−1∥u2∥L2

L∞∥u1∥W1,∞∥w1∥2
L2 . (154)

Recalling that P3,1 denotes the sum of all the terms of the Chen-Fliess series for which k = 3 and ξ = 1, we
bound the operators W 3,L

1,µ,ν by Cl+2(l+2)! thanks to (35) and use (146) and the upper bound obtained in (154)
to obtain

|P3,1| ⩽ K

(
1 + 1

T

)
∥u1∥W1,∞∥w1∥2

L2

∑
ℓ⩾2

Cℓ+2(ℓ+ 2)!T ℓ−1
∑
µ,ν

A(µ, ν)
∑

L∈{0,2}ℓ

∥u2∥L2
L∞

⩽ K

(
1 + 1

T

)
C3(1 + ∥u2∥L∞)∥u1∥W1,∞∥w1∥2

L2

∑
ℓ⩾0

(C(1 + ∥u2∥L∞)T )ℓ
∑
µ,ν

(ℓ+ 2)!A(µ, ν).

For T small enough, the series above converges and therefore, there exists T3,1 such that, for all T ∈ [0, T3,1],
there exists δ(T ) ⩽ T such that, for

∥u1∥W1,∞ ⩽ δ(T ), (155)
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one has
|P3,1| ⩽ K

6 ∥w1∥2
L2 . (156)

Of important note, here the bound δ(T ) on ∥u1∥W1,∞ depends on the variable T , and not on the fixed bound
T3,1, as is the case for the other estimations that we prove in this step. Because of this, in Cases 1. and 2., we
will actually end up denying a slightly different notion of local controllability; but we will prove below (Lemma
5.12) that this notion is equivalent to the ones used in the Theorem.

ii) c. Case ξ = 2, µ = 0.
Considering only the nonvanishing terms, we know that ℓ ⩾ 3 and ν ⩾ 2. According to (109), we have

b3,L
2,0,ν = 1

2(
∫
ui1 · · ·

∫
uiℓ−ν

v2
1)(
∫
uℓ−ν+1· · ·

∫
uℓ

∫
u1). (157)

There is two cases to study, depending on the value of iℓ.
(1) iℓ = 0. We bound u2 by ∥u2∥L∞ in (157):

|b3,L
2,0,ν | ⩽ 1

2∥u2∥L2
L∞

(∫ T

0

(T − s)ℓ−ν−1

(ℓ− ν − 1)! v1(s)2ds
)(∫ T

0

(T − s)ν−2

(ν − 2)! w1(s)ds
)
. (158)

Then, Cauchy-Schwarz inequality yields

|b3,L
2,0,ν | ⩽ 1

2∥u2∥L2
L∞

T ℓ−ν− 1
2

√
2ℓ− 2ν − 1(ℓ− ν − 1)!

∥v1∥2
L4

T ν− 3
2

√
2ν − 3(ν − 2)!

∥w1∥L2 . (159)

Finally, we use estimation (117) in Lemma 5.9 to obtain:

|b3,L
2,0,ν | ⩽ 1

2K
T ℓ−2√

(2ℓ− 2ν − 1)(2ν − 3)(ℓ− ν − 1)!(ν − 2)!
∥u2∥L2

L∞∥u1∥2
L∞∥w1∥2

L2 . (160)

(2) iℓ = 2. We repeat steps (158) to (160) and obtain

|b3,L
2,0,ν | ⩽ 1

2K
T ℓ−2√

(2ℓ− 2ν − 1)(2ν − 3)(ℓ− ν − 1)!(ν − 2)!
∥u2∥L2−1

L∞ ∥u1∥2
L∞∥w1∥L2∥w2∥L2 , (161)

hence

|b3,L
2,0,ν | ⩽ 1

4K
T ℓ−2√

(2ℓ− 2ν − 1)(2ν − 3)(ℓ− ν − 1)!(ν − 2)!
∥u2∥L2−1

L∞ ∥u1∥2
L∞(∥w1∥2

L2 + ∥w2∥2
L2). (162)

ii) d. Case ξ = 2, µ ⩾ 1.
In this case, we notice that

b3,L
2,µ,ν = b2,(i1, ... ,iℓ−ν )

µ b
1,(iℓ−ν+1, ... ,iℓ)
1 . (163)

Bounds for |b2,(i1, ... ,iℓ−ν )
µ | were already found in (134), (137) and (140). Moreover, |b1,(iℓ−ν+1, ... ,iℓ)

1 | is bounded
as follows:

|b1,(iℓ−ν+1, ... ,iℓ)
1 | ⩽ T ν+1

(ν + 1)!∥u2∥J2
L∞∥u1∥L∞ , (164)

where J2 designates the number of 2’s amongst (iℓ−ν+1, . . . , iℓ).
Using (164) as well as (134), (137) and (140) in (163), we obtain the following bounds:
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(1) if iℓ−µ−ν = 0 and iℓ−ν = 0,

|b3,L
2,µ,ν | ⩽ 1

2∥u2∥L2
L∞∥u1∥L∞

µ2T ℓ−2

(l − 2µ− ν − 1)!(µ− 1)!2ν!∥w1∥2
L2 . (165)

(2) if iℓ−µ−ν = 2 and iℓ−ν = 2,

|b3,L
2,µ,ν | ⩽ 1

2∥u2∥L2−2
L∞ ∥u1∥L∞

µ2T ℓ−2

(l − 2µ− ν − 1)!(µ− 1)!2ν!∥w2∥2
L2 . (166)

(3) if iℓ−µ−ν = 0 and iℓ−ν = 2 or iℓ−µ−ν = 2 and iℓ−ν = 0,

|b3,L
2,µ,ν | ⩽ 1

4∥u2∥L2−1
L∞ ∥u1∥L∞

µ2T ℓ−2

(l − 2µ− ν − 1)!(µ− 1)!2ν! (∥w1∥2
L2 + ∥w2∥2

L2). (167)

Let us call P3,2 the sum of all the terms of the Chen-Fliess series for which k = 3 and ξ = 2. We proceed as
for ξ = 1 : bounding the operators W 3,L

2,µ,ν by Cl+2(l+2)! thanks to (35) and using the upper bounds obtained in
(160), (162), and (165) to (167), as well as (146), we obtain that there exists T3,2 such that for all T ∈ [0, T3,2],

|P3,2| ⩽ K

6 (∥w1∥2
L2 + ∥w2∥2

L2). (168)

ii) e. Case ξ = 3.

Considering only the nonvanishing terms, we know that µ ⩾ 2, ν ⩾ 1 and ℓ−µ− ν ⩾ 2. There is again three
cases to study, depending on the value of iℓ−µ−ν and iℓ.

(1) iℓ−µ−ν = 0 and iℓ = 0. Bounding u2 with ∥u2∥L∞ yields

|b3,L
3,µ,ν | ⩽ δ∥u2∥L2

L∞

( ∫
· · ·
∫

︸ ︷︷ ︸
ℓ−µ−ν−1 times

w1

)( ∫
· · ·
∫

︸ ︷︷ ︸
µ−1 times

w1

)( ∫
· · ·
∫

︸ ︷︷ ︸
ν+1 times

u1

)
. (169)

Using Cauchy-Schwarz inequality on the first two terms and equation (164) on the last term of (169),
we obtain

|b3,L
3,µ,ν | ⩽ δ∥u2∥L2

L∞∥u1∥L∞
T ℓ−2√

(2ℓ− 2µ− 2ν − 3)(2µ− 3)(ℓ− 2µ− ν − 2)!(µ− 2)!ν!
∥w1∥2

L2 . (170)

(2) iℓ−µ−ν = 2 and iℓ = 2. Repeating steps (169) and (170) yields

|b3,L
3,µ,ν | ⩽ δ∥u2∥L2−2

L∞ ∥u1∥L∞
T ℓ−2√

(2ℓ− 2µ− 2ν − 3)(2µ− 3)(ℓ− 2µ− ν − 2)!(µ− 2)!ν!
∥w2∥2

L2 . (171)

(3) iℓ−µ−ν = 2 and iℓ = 0 or iℓ−µ−ν = 0 and iℓ = 2. Repeating steps (169) and (170) yields

|b3,L
3,µ,ν | ⩽ 1

2δ∥u2∥L2−1
L∞ ∥u1∥L∞

T ℓ−2√
(2ℓ− 2µ− 2ν − 3)(2µ− 3)(ℓ− 2µ− ν − 2)!(µ− 2)!ν!

(∥w1∥2
L2 + ∥w2∥2

L2).

(172)
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Let us call P3,3 the sum of all the terms of the Chen-Fliess series for which k = 3 and ξ = 3. We proceed as
before : bounding the operators W 3,L

3,µ,ν by Cl+2(l+ 2)! thanks to (35) and using the upper bounds obtained in
(170), (171), and (172), we obtain that there exists T3,3 such that for all T ∈ [0, T3,3],

|P3,3| ⩽ K

6 (∥w1∥2
L2 + ∥w2∥2

L2). (173)

iii) Terms in P⩾4.
It is shown in [8, proof of Property (P)] that, in the scalar-input case the “high-order" remaining terms in

the series, associated with indices containing more than four 1’s, are such that there exists T4 > 0 such that for
T ∈ [0, T4],

|P⩾4| ⩽ (1 +DT )∥v1∥4
L4 . (174)

for some D > 0 that only depends on f0 and Φ. The computations made in [8, proof of Property (P)] are
straightforwardly adaptable to the two-control case, by systematically bounding u2(t) with ∥u2∥L∞ in the
iterated integrals.

Applying (117) from Lemma 5.9 in (174), we obtain that

|P⩾4| ⩽M(1 +DT )∥u1∥2
L∞∥w1∥2

L2 , (175)

⩽
K

6 ∥w1∥2
L2 , (176)

for ∥u1∥L∞ smaller than T5 =
(

K
12M(1+DT4)

)1/2.

Step 5. Sum of all the terms.
So far, we have obtained the following bounds for parts of the Chen-Fliess series:

• (128) for P2,1 and (147) for P2,2,
• (156) for P3,1, (168) for P3,2, and (173) for P3,3
• (176) for terms in P⩾4.

These bounds are valid for T small enough and occasionally under smallness assumptions on the controls; in
particular, recall that:

• (128) requires the smallness of ∥u2∥L∞ in Cases 1. and 3. – in the two other cases, we have P2,1 = 0,
• (156) requires that ∥u1∥W1,∞ ⩽ δ(T ) in Cases 1. and 2. – in the two other cases, we have P3,1 = 0,

where δ(T ) is defined in (155) and, by the generic term “smallness”, we mean upper bounds depending on
the constants T1, T2, T3,1, T3,2, T3,3, T4, T5. We are now ready to sum all the terms and conclude the proof.

Let ε0 = min(T1, T2, T3,1, T3,2, T3,3, T4, T5) and T ∈ [0, ε0]. Let α > 0 and u1 and u2 controls on (0, T )
satisfying one of the assumptions (81), (82), (83), or (84) in respectively Cases 1., 2., 3. or 4.. Gathering
all the bounds, and using the lower bound for Pdom obtained in (116), we deduce that the Chen-Fliess series
Σ(u, f,Φ, T ) satisfies

Σ(u, f,Φ, T ) ⩾ Pdom − |P2,1| − |P2,2| − |P3,1| − |P3,2| − |P3,3| − |P⩾4|, (177)

⩾ Pdom − 6 · K6 (∥w1∥2
L2 + ∥w2∥2

L2), (178)

⩾ K(∥w1∥2
L2 + ∥w2∥2

L2), (179)

which is precisely equation (79) in Proposition 5.4, and therefore completes the proof for Cases 3. and 4..
To deduce that the proposition holds in Cases 1. and 2., it remains to show that the conclusion we can draw

when having ∥u1∥Wk,∞ ⩽ δ(T ) is indeed equivalent to denying the STLC. As mentioned above, it turns out
defining STLC with such a bound dependent on T for u1 is equivalent to taking the bound equal to T , like
required by Definitions 2.1, 2.2, 3.4 and 3.5. We prove this statement in the following Lemma.
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Lemma 5.12. A given control system is locally controllable according to Definition 3.4 (resp. Definition 3.5)
if and only if it is locally controllable according to the same definitions, but where the bound ε on the norm of
u1 in (15) (resp. (16)) is replaced by a bound depending on ε, as follows:

∥u1 − ueq
1 ∥Wk,∞([0,ε],R) ⩽ δ(ε), (180)

with δ : (0,+∞) → (0,+∞) and δ(ε) ⩽ ε.

Proof. If the system is locally controllable as defined in the Lemma, then it is obviously STLC according to
Definition 3.4, since a control u1 satisfying (180) also satisfies (15).

Thus, we turn to the other implication. Assume the system is STLC according to Definition 3.4 and let
ε > 0. Thanks to this, we have the existence of η such that for all z0, z1 in B(zeq, η), we can find controls
defined on [0, δ(ε)

2 ], driving z0 to z1 and such that u1 satisfies ∥u1 − ueq
1 ∥Wk,∞([0,ε],R) ⩽

δ(ε)
2 .

Now, fixing z0 and z1 in B(zeq, η), we use this property to build two sets of controls: (ua
1 , u

a
2) driving z0 to

zeq in time δ(ε)
2 and (ub

1, u
b
2) driving zeq to z1 in time δ(ε)

2 . Finally, we define (u1, u2) on [0, ε] to be equal to
(ua

1 , u
a
2) on [0, δ(ε)

2 ], zero on [ δ(ε)
2 , ε− δ(ε)

2 ], and (ub
1, u

b
2) (appropriately translated in time) on [ε− δ(ε)

2 , ε]. The
controls (u1, u2) indeed drive z0 to z1 in time ε and satisfy (180).

Of course, the proof stays the same it we consider Definition 3.5 instead of Definition 3.4. □

This concludes the proof of Proposition 5.4. □

6. Conclusion
In this paper, we explored the controllability properties of systems with two controls (3), satisfying the

assumption (4). We have stated two results on these systems, Theorem 3.2 and Theorem 3.8, providing necessary
conditions for local controllability around equilibria. These results extend the classical necessary conditions
stated for scalar-control systems in [17]. Moreover, they are, to the best of our knowledge, the first results of
this nature for non-scalar-input systems.

This work does not only present a theoretical interest for control theory. Using Theorem 3.2, we were able to
completly solve an open question concerning the local controllability of magnetically controlled micro-swimming
robots (see Example 4.3). One can use our results to easily and systematically address local controllability issues
in similar applied situations.

Our necessary conditions are only based on brackets of order three and five, but there are higher-order
brackets that may prevent S2 to be contained in S1 (in the single-input case see for instance [11]). Giving
necessary conditions based on these brackets, for instance adapting the results from [11] to the situation (3)-
(4), is a possible continuation of the present work. The complexity of the higher-order terms structure in the
Chen-Fliess series however makes the analysis very intricate.
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