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Abstract:
The following report provides a complete description of the Electro-Mechanical Positioning
System (EMPS) which is a standard configuration of a drive system for prismatic joint of
robots or machine tools. First, an overview of EMPS is presented: its main components, the
continuous-time inverse and direct dynamic models suitable to describe its nonlinear dynamics
and the controller used to pilot it are described in details. Second, the trajectories used to excite
the EMPS, the data set available in .mat file format, the identification goals and the challenges
are introduced. Fourth, two source codes allowing the user to run the standard identification
method adopted in robotics and simulate the EMPS are presented. The EMPS has a pure
integrator, is piloted by a controller consisting of two nested loops and exhibits an asymmetrical
friction. This constitutes a challenge when performing identification of such electro-mechanical
systems.

1. EMPS OVERVIEW, MODELLING AND CONTROL

1.1 EMPS Overview

The EMPS illustrated Fig. 1 is a standard configuration
of a drive system for prismatic joint of robots or machine
tools. It is connected to a dSPACE digital control system
for easy control and data acquisition using Matlab and
Simulink software. Its main components are:

• A Maxon DC motor equipped with an incremental
encoder. As we shall see later, this DC motor is
position-controlled with a PD controller.
• A Star high-precision low-friction ball screw drive

positioning unit. Its extremity is equipped with an
incremental encoder that is not used in this bench-
mark.
• A load in translation. An accelerometer is mounted

on it and is not used in this benchmark.

The measurements provided by the encoder mounted at
the extremity of the ball screw and the accelerometer are
not used because such measurements are not available in
most industrial robots, see e.g. (Khalil and Dombre, 2004).

1.2 EMPS Modelling

The Inverse Dynamic Model (IDM) of a robot expresses
the joint torque/force as a function of the joint position,
velocity and acceleration, (Khalil and Dombre, 2004).
From Newton’s law, the IDM of EMPS is given by

τidm(t) = Mq̈(t) + Fv q̇(t) + Fcsign (q̇(t)) + offset, (1)

where q, q̇ and q̈ are respectively the joint position, velocity
and acceleration; τidm is the joint torque/force; M is the
inertia of the arm; Fv and Fc are respectively the viscous

and Coulomb frictions; offset is an offset of measurements
of τidm. M , Fv and Fc are referred to as the dynamic
parameters.

Equation (1) is linear in relation to the dynamic parame-
ters,

τidm(t) = [q̈(t) q̇(t) sign (q̇(t)) 1]θ = φ(t)θ , (2)

where φ(t) is the (1 × 4) observation matrix of basis
functions of the IDM and θ = [M Fv Fc offset]

T is the
(4×1) vector of the 3 dynamic parameters plus the offset.

The Direct Dynamic Model (DDM) of a robot ex-
presses the joint acceleration as a function of the joint
torque/force, position and velocity, (Khalil and Dombre,
2004). In the case of the EMPS, we have

q̈(t) =
τidm(t)

M
− Fv
M
q̇(t)− Fc

M
sign (q̇(t))− offset

M
. (3)

Again, the DDM is linear in relation to a set of parameters
that is a nonlinear combination of the dynamic parameters
i.e.

q̈(t) = [τidm(t) −q̇(t) −sign (q̇(t)) −1]θddm (4)

= φddm(t)θddm,

where φddm(t) is the (1 × 4) observation matrix of basis
functions of the DDM and θddm = [1/M Fv/M Fc/M
offset/M ]T is the (4 × 1) vector of the nonlinear combi-
nation of the 3 dynamic parameters plus the offset. In the
case of EMPS, the 3 dynamic parameters and the offset
are divided by M .

In (Brunot et al., 2015), a comparison between the IDM
and the DDM is made for the identification of the EMPS.
However, because the DDM is usually nonlinear with
respect to the dynamic parameters for multi degrees-of-
freedom robots, it is rarely used (Swevers et al., 2007) and
(Gautier et al., 2013).



Fig. 1. EMPS prototype

Finally, the DDM can be written as a transfer-function
(TF) like expression as usually done in robotics, (Gautier
et al., 2013)

q(t) =
b0

s (s+ a0)
(τidm(t)− d(t)) , (5)

where s = jω is the Laplace’s variable; b0 = 1/M ;
a0 = Fv/M ; d(t) = Fcsign(q̇(t)) + offset a perturbation
encompassing the Coulomb and offset effects.

1.3 EMPS Control

As well enlightened by relation (5), the EMPS model (1)
has a pure integrator and cannot, therefore, be identified
in open loop. The system is thus driven by a Proportional-
Derivative (PD) controller consisting of an outer loop
controlling the position and an inner loop controlling the
velocity. The control signal ν is given by

ν(t) = kpkv (qr(t)− q(t))− kv q̇(t), (6)

where kp is the proportional gain and kv is the derivative
gain. With the bandwidth of the position loop equal to
20 Hz, the gains haven chosen such as kp = 160.18 1/s
and kv = 243.45 V/(m.s−1). In Gautier et al. (2013), the
authors have shown that a PD control is enough to identify
the dynamic parameters of robots because an excellent
tracking is not needed.

The control signal, coming from the control law, is linked
to τidm by the following relation

τidm(t) = gτν(t), (7)

where gτ is the drive gain of the EMPS. Although the
drive gain is usually given by the manufacturer, it can be
identified with special tests (Gautier and Briot, 2014). In
this case, it has been estimated to gτ = 35.15 N/V .

2. DESCRIPTION OF DATA SET, EXCITATION OF
EMPS, IDENTIFICATION GOALS AND

CHALLENGES

2.1 Excitation of EMPS

According to (Gautier, 1991), M , Fv, Fc and offset con-
stitute the set of base parameters i.e. the set of structurally
identifiable. Hence, if the EMPS is appropriately excited,
then these parameters must be well identified. Of course, if
M , Fv, Fc and offset are well excited, so are 1/M , Fv/M ,
Fc/M and offset/M .

To excite the dynamic parameters, bang-bang acceler-
ations are applied to the EMPS. Such trajectories are
common in robotics, see (Khalil and Dombre, 2004), be-
cause they allow the user identifying the inertia (or mass),
gravity and friction parameters. Indeed, inertia (or mass)
is identified while the acceleration is varying (or constant)
over a period and gravity and friction parameters are
identified while the velocity is constant over a period with
a maximum angular range. Finally, to asses the excitation
of the system, the condition number of the observation
is considered, (Gautier, 1997). In this case, the condition
number being close to 30, the dynamic parameters can be
considered as well excited.

2.2 Description of Data Set

In most applications, the available information is the
measurements of the joint position denoted as qm and the
control signal denoted as νm. As previously mentioned, all
data are measured by a dSPACE digital control system in
order to ensure quality and periodicity.

The sampling frequency is 1kHz while the duration is 25s
approximately. qm is measured by an incremental encoder
whose the resolution is 12500 counts per revolution. Since
this encoder is working in quadrature count mode, its
resolution is finally 12500·4 = 50000 counts per revolution.
Such a resolution ensures an extremely good quality of
qm. Concerning νm, it is considered as the output of the
controller and is directly measured by the dSPACE card.

To compute the velocity involved in the control law (6),
the motor position is first filtered by a FIR filter. Hence,
at time k, on has

q̇m(k) =
qfm(k)− qfm(k − 1)

dt
with

qfm(k) = 0.5 · qm(k) + 0.5 · qm(k − 1)

where dt is the sampling time (1ms here); and qfm(k) the
filtered motor position at time k.

The EMPS DATA mat file contains all the data required
to identify the EMPS. The names of variables are the
following:

• qm: the vector of motor position expressed in the
load side i.e. in m;

• qg: the vector of reference of motor position expressed
in the load side i.e. in m;

• vir: the vector of motor force expressed in the load
side i.e. in N ;

• t: the vector of time expressed in seconds;
• kp: the gain of the outer loop of position in 1/s;
• kv: the gain of the inner loop of velocity in
V/(m.s−1);

• gtau: the drive gain in N/V .

It is important to stress that all the data were not
treated and they can be, therefore, considered as raw.
Furthermore, the input of the EMPS is the force i.e. vir
MATLAB variable while the output is the position i.e. qm
MATLAB variable.

To validate the estimates, cross-test validations must be
executed. To run cross-test validations, the EMPS is still
excited with bang-bang accelerations but pulses are also



Fig. 2. Diagram of EMPS and signals

directly applied. The EMPS DATA PULSE mat file
contains all the data required to execute the cross-test
validations. The pulses applied to the EMPS are stored
in the variable pulses N given in N .

The complete diagram of the EMPS is illustrated in Fig.
2 where the variables of signals stored in the mat file are
framed in green while the variables of gains are framed in
orange. Finally wq is the noise caused by the encoder.

2.3 Identification goals

In robotics, the main goal is to identify the physical
parameters involved in the IDM i.e. M , Fv and Fc in
order to develop accurate model-based controllers such as
the computed torques, see (Khalil and Dombre, 2004). In
addition, identifying these physical parameters allows the
user having a direct physical assessment of the results.

Always in robotics, another goal is the enhancement of
the mechanical or electrical design, e.g. to enhance the
haptic rendering and/or backdrivability, to increase the
stiffness of the structure, to lower the effect of frictions...
It is interesting to notice that identifying the EMPS (or
robots) to develop a simple controller (e.g. PID controller)
is not usual because the Computer-Aided Design (CAD)
values of dynamical parameters provided by manufacturers
are enough to design such controllers in order to get rough
performances.

2.4 Challenges

Despite its simplicity, it is really difficult to use common
toolboxes to identify the EMPS:

First, like any electro-mechanical systems, the EMPS
exhibits a pure integrator which means that it must be
identified with a closed-loop process.

Second, because the controller consists of two nested loops,
it cannot be written with the following form commonly
adopted in toolboxes

ν(t) = C(s)(qref (t)− q(t)) ,
where C(s) is the transfer function of the controller; and
qref (t) the position reference.

Third, the IDM of EMPS includes a nonlinear effect: the
friction. As we shall see later, the friction model which
is first assumed to be symmetric is, in fact, asymmetric.
Finally, these tree features make the usual toolboxes
rather ineffective if it is aimed to obtain accurate dynamic
models. This will be emphasized in a later section.

3. THE STANDARD METHOD FOR ROBOT
IDENTIFICATION: IDIM-LS

This section presents the standard approach employed
to identify the dynamic parameters of robots termed

the Inverse Dynamic Identification Model with Least-
Squares estimation (IDIM-LS). Such an approach has been
validated on several industrial robots and prototypes see
e.g. (Gautier, 1997), (Khalil and Dombre, 2004), (Swevers
et al., 2007), (Gautier et al., 2013), (Janot et al., 2014a)
and the references therein.

3.1 Joint velocity and acceleration estimation

The joint velocities and accelerations have to be calculated
from qm in order to build the observation matrix φ
as described in (Gautier, 1997). qm is firstly filtered to
obtain q̂. From this filtered position, the derivatives can
be calculated with finite differences. The filter type and

the cut-off frequency, ωfq , are selected such as
(
q̂, ̂̇q, ̂̈q) ≈

(q, q̇, q̈) in the range [0, ωfq ]. The filter, which is usually a
Butterworth one, is applied in both forward and reverse
directions to avoid lag introduction. The rule of thumb for
the cut-off frequency is ωfq ≥ 5ωdyn, where ωdyn is the
natural frequency of the highest mode of the closed-loop
system. The combination of the Butterworth filter and
the central differentiation is referred to as the bandpass
filtering process.

3.2 High-frequency ripples rejection

The IDIM differs from the IDM by an error term v(t),
resulting of perturbations coming from measurement noise
and modelling errors. The IDIM is then given by:

τ(t) = τidm(t) + v(t) = φ(t)θ + v(t). (8)

In practice, the torque is perturbed by high-frequency
ripples which are rejected by the controller. Those ripples
are removed with a parallel lowpass filtering of each
basis function at the cut-off frequency ωFp

≥ 2ωdyn. The
choice of ωFp

is involved to keep enough information while
avoiding the high frequency noise. Since there is no more
useful information beyond the cut-off frequency, the data
are also re-sampled by keeping one sample over nd, i.e.
nd is the decimation factor. This combination of parallel
filtering and re-sampling is referred to as the decimate
process. After data acquisition and parallel filtering, we
obtain

τFp
(t) = Fp(z

−1)τ(t) (9)

= φFp

(
q̂(t), ̂̇q(t), ̂̈q(t))θ + vFp

(t),

where z−1 is the backward shift operator and Fp is the
decimate filter applied to each element of the observation
matrix, the torque signal and the error term.

3.3 IDIM-LS estimates

The IDIM-LS estimates are given by

θ̂LS =
(
ΦT
Fp

ΦFp

)−1

ΦT
Fp
yFp

, (10)

where ΦFp is the (N×4) observation matrix resulting from

the sampling of φFp

(
q̂(t), ̂̇q(t), ̂̈q(t)); yFp

is the (N × 1)

vector of measurements resulting from the sampling of τFp
;

and N is the number of samples obtained after sampling
and decimation.

If the two following conditions hold



• φTFp
φFp

is full column rank,

• E
[
φTFp

vFp

]
= 0,

where E [·] denotes the mathematical expectation, then the
IDIM-LS (10) are unique and asymptotically unbiased.

3.4 A source code to run the IDIM-LS method

The Script IDIM LS m file presents a simple source code
allowing the user running the IDIM-LS method. The code
is commented and divided into 8 main parts:

• data loading;
• parameters of filters, both Butterworth and decimate;
• construction of the vector measurements;
• data filtering;
• construction of the observation matrix;
• decimation process;
• calculation of the IDIM-LS estimates;
• plotting and displaying the results.

Once the code executed, something like that must be
displayed on the MATLAB command window:

Parameter M1 : 95.1089 0.1085 0.1141 %

Parameter FV1 : 203.5034 1.1460 0.5631 %

Parameter FC1 : 20.3935 0.1012 0.4964 %

Parameter OF1 : -3.1648 0.0444 1.4021 %

Absolute value of the diagonal element of R

Parameter M1 : 64.1376

Parameter FV1 : 13.9005

Parameter FC1 : 69.1706

Parameter OF1 : 157.4483

Condition number of the observation matrix: 25.9883

Error norm : 108.7569

Relative error (%): 4.0834

Deviation of error: 2.1843

Then, a direct comparison between the reconstructed and
measured force is plotted, see Fig.3, and a cross test
validation is also performed by using a data set which
was not used to run the IDIM-LS method, see Fig.3.
In robotics, it is common to assess the quality of the
identification results by computing the relative error given
by

relerr = 100 · ||y − ŷ||
||y||

, (11)

where y is the (N × 1) vector of measurements; and ŷ
is the (N × 1) vector of estimation. For instance, in the

case of the IDIM-LS method, one has ŷ = ΦFp θ̂LS and
y = yFp when performing direct validations while one

has ŷ = ΦCTV
Fp

θ̂LS and y = yFp when performing cross

test validations; ΦCTV
Fp

is the (N × 4) observation matrix

constructed with the set of data which was not used to run
the identification process.

To execute the cross-test validation, the Script IDIM
LS CTV m file is provided. It loads the EMPS DATA
PULSE mat file and reconstructs the force with the new

set of data and the IDIM-LS estimates. Once the code
executed, something like that must be displayed on the
MATLAB command window:

Validating the IDIM-LS estimates with cross-test validation

Absolute value of the diagonal element of R

Fig. 3. Direct comparison between the reconstructed and
measured forces

Fig. 4. Cross-test validation: comparison between the force
reconstructed with a new set of data and the IDIM-LS
estimates and the measured one

Parameter M1 : 72.1282

Parameter FV1 : 13.9021

Parameter FC1 : 69.1914

Parameter OF1 : 157.4499

Condition number of the observation matrix: 26.0217

Error norm : 169.4876

Relative error (%): 5.9824

Deviation of error: 3.4039

Then a comparison is plotted, see Fig. 4.

Finally, the whole system is simulated with the estimated

values of the dynamic parameters (i.e. with θ̂LS) and
the simulated force, position, velocity and acceleration
are compared with the measured ones, see Fig.5. Again,
all the relative errors between the simulated data and
the measured ones are calculated with (11), e.g. when
comparing the measured and the simulated positions, one
has ŷ = qs and y = qm where qs is the simulated position.



3.5 Two source codes to simulate the EMPS

Two files allowing the simulation of the EMPS are pro-
vided. The simulation makes use of the DDM given by (3)
and this is clearly emphasized by Fig. 2.

The first one is the Simulation EMPS m file which
calls the Simulink EMPS Rigide Simulink file gener-
ated with the MATLAB 2016b version. To properly sim-
ulate the EMPS, the following commands must not be
modified

% Maximum voltage (saturation)

viradm = 10;

% For filtering the position

filterq1 = [0.5000 0.5000];

% Sampling

tec = t(10)-t(9);

% Duration

tf = t(end);

Once the code executed, something like that must be
displayed on the MATLAB command window:

Simulation of EMSP with DATA_EMPS.mat

Simulation duration: 0h,0m,2.65441s.

Relative errors with EMPS_DATA.mat :

Position : 0.013752%

Velocity : 0.22911%

Acceleration : 8.6036%

Force : 5.848%

Finally, a direct comparison between the simulated and
measured data is plotted, see Fig.5. According to the
relative errors calculated with 11, the IDIM-LS estimates
can be considered as good enough since these relative
errors do not excess 10%.

The second one is the Simulation EMPS Validation
m file which calls the Simulink EMPS Rigide Pulse
Simulink file generated with the MATLAB 2016b version.
This m file is used to perform cross-test validations by
comparing the simulated data with the measured one with
a trajectory that was not used to run the identification
process. This m file loads the EMPS DATA PULSE
mat file described in section 2.2.

Once the code executed, something like that must be
displayed on the MATLAB command window:

Simulation of EMSP with DATA_EMPS_PULSES.mat

Simulation duration: 0h,0m,3.35169s.

Relative errors with EMPS_DATA_PULSES.mat :

Position : 0.0080248%

Velocity : 0.47888%

Acceleration : 19.8152%

Force : 8.9409%

Finally, a direct comparison between the simulated and
measured data is plotted, see Fig.6. In this case, only
the relative error between the measured and simulated
acceleration calculated with 11 has significantly increased
whereas the others do not excess 10%. This rise may be
explained by a flexibility that was accidentally excited by
the pulses whereas the model does not account for it.

Fig. 5. Direct comparison between the simulated and
measured data

Fig. 6. Cross-test validation between the simulated and
measured data

3.6 Comparison with toolboxes

We tried to identify a dynamic model with the CAPTAIN
and the CONTSID toolboxes by assuming that it can be
expressed with a simple transfer function, poor results
were obtained:

• if ν(t) (i.e. vir Matlab variable) is considered as
the input and qm(t) as the output (i.e. qm Matlab
variable), a relerr of 74.6 % (!!) with a R2

T of 0.5 are
obtained;

• if ν(t) (i.e. vir Matlab variable) is considered as the
input and q̇m(t) = d

dt (qm(t)) (calculated with the diff
Matlab function) as the output, a relerr of 47.3 % (!)
with a R2

T of 0.8 is obtained.

For instance, a direct comparison between the measured
velocity and the one estimated with the rivcbjid function
of the CAPTAIN toolbox by considering a linear model
is illustrated in Fig.7. It is clear that the matching is not
really good.



Fig. 7. Direct comparison between the measured velocity
and estimated one obtained with the CAPTAIN tool-
box

One notable exception is the identification of the whole
closed loop i.e. by taking qr(t) as the input (i.e. qg Matlab
variable), qm(t) as the output (i.e. qm Matlab variable)
and a second-order structure. In this case, a relerr of
0.005 % (!!) with a R2

T of 1.0 are obtained. This result
is not surprising. Indeed, it simply indicates that d(t) has
been well rejected by the controller which implies that the
tracking is excellent. According to (Brunot et al., 2018a),
this leads to a second-order system for the whole closed
loop.

4. IMPROVING THE IDIM-LS METHOD

4.1 Considering other approaches

It is known that cautions must be taken when the LS
estimation is used to identify a system operating in closed
loop, see e.g. (Söderström and Stoica, 1983), (Ljung, 1999),
(Gilson et al., 2011), (Young, 2011) among others. This
explains why a tailor-made data filtering is employed to
identify electro-mechanical systems.

Recently, a method based on Instrumental Variable ap-
proach was proposed in (Janot et al., 2014a), (Janot et al.,
2014b) and then further improved in (Brunot et al., 2018b)
and (Brunot et al., 2018a). This approach combines the
IDM and DDM and has a good robustness against noises
and/or data filtering and converges quickly. In (Gautier
et al., 2013), the authors have proposed and validated
an original Input-Error identification method. Indeed, be-
cause the system is identified in closed loop, it has been
shown that the simulated position which is the usual
output in classical Output-Error methods is not really
sensitive to parameters’ variations. Hence, the authors
proposed to circumvent this problem by considering the
simulated joint torques instead of the simulated joint po-
sitions. Like IV approaches, this input-error method has
a good robustness against noises and data filtering and
converges quickly. It is worth to note that it is possible
to implement the IV and input-error methods mentioned
above by using the Simulink file provided by the authors.

In (Olsen et al., 2002), the authors present an interest-
ing Maximum Likelihood approach that is suitable for
identification of industrial robots while in (Ramdani and
Poignet, 2005) the authors have tested a set membership
uncertainty method. A multi-objective genetic algorithm
was used to identify the dynamic parameters of a hydraulic
robot manipulator in (Montazeri et al., 2017). The authors
suggested to employ the Linear Matrix Inequalities to
identify the dynamics of a SCARA robot in (Calafiore and
Indri, 2000).

Finally, in (Janot et al., 2017), the authors propose an orig-
inal method by combining the IDM and a black-box iden-
tification method termed the State-Dependent Parameter
identification method developed by P.C. Young, (Young,
2011) chapter 11. In so doing, he authors have shown that
the friction model is asymmetric i.e. described by

τfric = F+
v 0+(q̇) + F+

c sign(0+(q̇))+ (12)

F−
v 0−(q̇) + F−

c sign(0−(q̇)) ,

where 0+(q̇) = q̇ · (1 + sign(q̇))/2 (resp. 0−(q̇) = q̇ · (1 −
sign(q̇))/2) is a mathematical operator which returns q̇
when q̇ > 0 (resp. q̇ < 0) and 0 otherwise; and F+

v and
F+
c (resp. F−

v and F−
c ) are the viscous coefficient and

Coulomb coefficients for positive (resp. negative) velocities
respectively. It is interesting to note that this asymmetry
is due to a mechanical fatigue of the screw which is a
phenomenon that can be hardly a priori accounted for.

4.2 An asymmetric friction model inserted into the IDM

The Script IDIM LS Asym Fric m file presents a
source code allowing the user running the IDIM-LS
method with the asymmetric friction model (12) inserted
into the IDM.

Once the code executed, something like that must be
displayed on the MATLAB command window:

Parameter M1 : 95.1540 0.0827 0.0869 %

Parameter FV1p : 166.7061 1.2326 0.7394 %

Parameter FC1p : 20.1440 0.1088 0.5399 %

Parameter FV1m : 240.4236 1.2346 0.5135 %

Parameter FC1m : 20.6277 0.1091 0.5290 %

Absolute value of the diagonal element of R

Parameter M1 : 64.1376

Parameter FV1p : 9.8315

Parameter FC1p : 48.9895

Parameter FV1m : 9.8268

Parameter FC1m : 48.8267

Condition number of the observation matrix: 26.0197

Error norm : 82.8778

Relative error (%): 3.1117

Deviation of error: 1.6646

By considering the relative error, we can notice that the
IDM was slightly improved.
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