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Abstract—An iterative method, namely EM-EOF (Expectation
Maximization-Empirical Orthogonal Functions) is proposed for
the first time to retrieve missing values in InSAR displacement
time series. The method decomposes the temporal covariance into
different EOF modes by solving the eigenvalue problem, and
then selects an optimal number of EOF modes to reconstruct
the time series. After an appropriate initialization of missing
values, the proposed method performs (i) a cross-validation error
minimization to find an estimate of the optimal number of EOF
modes used in the reconstruction and (ii) an iterative update of
missing values which gives the best estimate of missing data points
according to the cross-validation error. Results on a time series
of Sentinel-1 A/B unwrapped interferograms over the Gorner
glacier from November 2016 to March 2017 demonstrate the high
efficiency of the proposed method at retrieving missing values and
denoising the time series, even in case of time series with limited
size and spatio-temporally correlated gaps.

Index Terms—Gap filling, EOFs, InSAR, displacement, time
series

I. INTRODUCTION

T IME series analysis of remotely sensed images is an
essential step to better understand some physical phe-

nomena observed on Earth, especially since the recent de-
velopment of online platforms allowing an easier access to
satellite-derived products.

Differential interferometry (DInSAR) and offset tracking are
well-developed techniques that have experienced continuous
improvements over time to compute ground displacements
maps from Synthetic Aperture Radar (SAR) images [1], [2].
Regardless of their capability to produce precise ground dis-
placements estimations with enhanced spatial coverage, time
series of displacement measurement derived from SAR images
can suffer from missing data in space and time dimensions.
Data gaps can occur for various reasons including raw data
quality and/or technical limitations of the ground displacement
computation method itself.

Of course, the missing data problem is not new [3]. In
remote sensing, it is a well-documented problem, especially
in optical and infrared satellite images where data quality is
strongly dependent on cloud coverage [4–6]. An important
framework of gap-filling methods already exists in ocean-
atmosphere science and hydrology [7–10].

Despite the large variety of domains concerned with miss-
ing data, there has not been, to our knowledge, any study
which fully focused on developing methods which can handle

missing data in SAR-derived products such as interferograms
and offset time series. When analyzing displacement maps
computed from SAR images, one has to consider various
noises, besides the displacement signal itself. An efficient
method aiming at filling in gaps in SAR-derived displacement
maps should thus be able to handle noise and displacement
signal complexity, e.g. noise correlated at different scales in
both time and space dimensions, and multiple behaviors of
displacement (linear, oscillatory, etc.).

From the existing methods (see [11] for a review), Empirical
Orthogonal Functions (EOFs) have been used to infer missing
data and to predict spatio-temporal signals [7], [12], thanks
to their advantages such as ease of implementation, high
efficiency and needless a priori information. The EOF analysis
is based on the eigenvalue decomposition of the covariance
of a time series into orthogonal functions, and allows a
representation of the signal into different variability modes
sometimes called trends, oscillatory patterns and noise [13],
[14]. By initializing the missing points to a relevant value
and by selecting an appropriate number of EOF modes used
in the reconstruction, one can extract dominant features of
a time series and retrieve the values of the initially missing
points. In InSAR displacement measurement, the EOF analysis
has recently been used for the first time to denoise and
extract displacement signal from a time series of Sentinel-
1 A/B interferograms over the Gorner glacier [15]. Spectacular
results have been obtained, which confirms the efficiency of
EOF-based methods in the analysis of InSAR displacement
time series. Therefore, it also seems promising to use the EOF
analysis to fill in data gaps in InSAR displacement time series.

In this paper, we propose a data-adaptive, iterative EOF-
based, gap-filling method adapted for InSAR displacement
time series with complex displacement signal and noise
behaviors. We call the method EM-EOF for Expectation
Maximization-EOF. Starting from an appropriate initialization,
missing values are first updated in an iterative way given
the observed values (Expectation step), and then the error
between initial and reconstructed fields is minimized with the
current estimate of missing values (Maximization step). The
method is organized in two steps, with each of them using the
described EM principle. In order to deal with the case where
no ground truth is available (a frequent issue in displacement
measurement), we propose a cross-validation technique to
compute errors. The EM-EOF method is applied to a time



series of Sentinel-1 A/B interferograms over the Gorner glacier
between November 2016 and March 2017 where data gaps are
observed.

II. METHODOLOGY

The general principle of EM-EOF is given in the diagram
in Fig. 1. Missing values are initialized by the appropriate
value (section B). Then, the temporal covariance of the time
series is formed and decomposed into EOF modes. The
appropriate number of EOF modes to reconstruct the time
series is estimated by minimizing the error between initial
and reconstructed field (section C), and a refinement of the
estimation of missing values based on an iterative update is
performed (section D). Finally, the field is reconstructed with
the optimal number of EOF modes and the updated missing
values (section E).

A. Theoretical background

Let us suppose that we have a data grid composed by a
spatio-temporal field X which contains missing data. The field
can be written in matrix form:

X =
(
x1,x2, . . .xn

)
=


x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xp1 xp2 · · · xpn

 (1)

where each column xt is an observation at a given time t,
(t = 1, . . . n) and each line is a time series of a given grid
point s (with s = 1, . . . p). The spatial mean of the field at
each time (i.e. mean of each column) is subtracted to form the
spatial anomaly X ′:

X ′ = X − 1pX̄ (2)

where 1p is the column vector of length p containing only
ones and X̄ =

(
x̄1, x̄2, . . . x̄n

)
is a row vector with each x̄t

being the spatial mean of the observation at time t.
The sample temporal covariance matrix Ĉ of X is then

given by:

Ĉ =
1

p− 1
X ′TX ′ (3)

The eigenvectors of the matrix Ĉ can simply be found by
resolving the eigenvalue equation:

ĈU = UΛ (4)

where Λ = diag(λ1, . . . λn) contains the eigenvalues λ of
matrix Ĉ in decreasing order, with each indicating the fraction
of total variance explained by the corresponding EOF mode.
Each column ui of U is a eigenvector of Ĉ corresponding
to the eigenvalue λi. Each eigenvector is orthogonal to each
other, hence the name EOF. Each EOF mode describes the
spatio-temporal variability of the spatial anomaly of the field
[14].
X ′ can be totally reconstructed by summing the Principal

Components (PCs) ai multiplied by the EOFs:

Fig. 1. Diagram of the 2-steps procedure of the EM-EOF method. Data gaps
are first initialized. Step 1 estimates the optimal number of EOF modes M
for reconstruction which minimizes the error function. Step 2 is a refinement
step which iteratively uses updates of missing values to reconstruct the time
series.

X̂ ′ =

n∑
i=1

aiu
t
i (5)

where ai = X ′ui is a spatial pattern map associated with
each EOF mode ui. The PCs refer to the spatial modes of
variability of the time series and the EOFs show how these
modes oscillate in time.

B. Initialization of missing values

Initialization of missing values is a key parameter of the
EM-EOF method because it impacts the estimation of the
temporal covariance matrix Ĉ and thus the computation of the
EOFs. The value of initialization should be set in accordance
to the distribution of the observed values, because it can lead
to a biased estimate of the optimal number of EOF modes in
step 1 and can increase the time of convergence [16] of the
iterative update in step 2. However, synthetic tests have shown
that no significant difference is observed on the reconstruction
performance between a initialization of X by the spatial mean
or by the spatial mean plus a Gaussian noise. We therefore
choose to initialize missing values by the spatial mean as it
avoid any bias in the computation of the anomaly matrix.

C. Step 1 : find the optimal number of EOF modes

In this step, we perform the computation of equations (3),
(4) and reconstruct the time series as in equation (5) by
successively adding one EOF mode at a time. At each step,
we compute a cross-validation root-mean-square error (cross-
RMSE) [17] which estimates the reconstruction error :

E(k) =

[
1

N

N∑
i=1

|X̂k −X|2
]1/2

(6)

where X = {xi}1≤i≤N is the cross validation data subset of
X which contains N points randomly chosen in space and time
among existing data. These points are set as artificial missing
data with their values set aside. After each reconstruction with
k EOF modes, the cross validation data set X is compared to
the new estimated set X̂k. The number of points N must be
neither too small nor too large : a small N cannot provide



a good statistical representation of the time series whereas a
large N can affect the reconstruction error since the quantity
of missing data is increased. The advantage of cross-RMSE
lies in its independence of the true field if it exists, which
makes it a robust indicator of the reconstruction error when
dealing with real data with limited access to ground truth. Each
error E(k), k = 1, . . . n between the time series reconstructed
using k EOF modes is computed, and we then find the optimal
number M which minimizes the error function E(k):

M = arg min
M∈[1,n]

E(k) (7)

Synthetic tests have shown that strong correlated (in both space
and time dimensions) noise present in the data can lead to an
over-estimation of M , mainly because correlated noise will
add significant variance to secondary modes, resulting in a
selection of more EOF modes in the reconstruction.

D. Step 2 : update missing values

Step 2 is a refinement step : equations (3), (4) and (5) are
computed in an iterative loop. At iteration i, the reconstruction
is performed using the missing values obtained at iteration
i − 1. The cross-RMSE is computed at each iteration. Once
the convergence is obtained, i.e. the difference ∆E = Ei(k)−
Ei−1(k) is smaller than a predefined convergence value β,
one more EOF mode is added to the reconstruction and the
iteration process starts again with the added EOF mode. If the
error starts to increase, the procedure stops, otherwise it keeps
going until the number of EOF modes, M , is reached.

E. Reconstruction of the field

The final step consists in reconstructing the time series using
the estimated optimal number of EOF modes M at step 1 and
the updated missing values found at step 2 :

X̂ ′ =

M∑
i=1

aiu
t
i (8)

which is simply a truncation of equation (5) by its first M
terms. To get the reconstructed field X̂ , we finally add the
spatial mean back to the anomaly :

X̂ = X̂ ′ + 1pX̄ (9)

III. APPLICATION TO A TIME SERIES OF INCOMPLETE
UNWRAPPED INTERFEROGRAMS

17 Sentinel 1 A/B SAR images acquired from Novem-
ber 2016 to March 2017 were available for displacement
measurement over the Gorner glacier located in the canton
of Valais, Switzerland, and from which 16 interferograms
were computed from consecutive acquisitions with an interval
of 6 days. All interferograms contain missing data because
of coherence loss due to rapid glacier flow and/or snow
falls. The quantity of data gaps per interferogram ranges
from 11.8 to 27.4 %, and the time series also contains a
missing interferogram because of total coherence loss. The
signal to noise ratio (SNR) varies from one interferogram to
another, with sometimes significant noise. The relatively small

size of the time series (16 displacement maps), the spatio-
temporal distribution of data gaps and the presence of possible
significant noise, and a total missing interferogram in the time
series altogether make the reconstruction challenging.

The EM-EOF method is then applied to this time series of
interferograms. Examples of the reconstruction are presented
in figure 2 : case 1 (first line) contains 14.6% of data gaps,
case 2 (second line) is the reconstruction of the missing
interferogram (100% of data gaps) and case 3 (third line)
contains 27.4% of data gaps. Missing values are initialized
by the spatial mean. We choose to set the number of cross-
validation points to 1% of the total observed points per
interferogram, thus making it proportionally equal at all times.
The optimal number of EOF modes to reconstruct the time
series was found to be 3.

In case 1, the displacement signal shows consistent patterns
in missing data areas with the overall displacement pattern, but
with a smoother texture. In observed areas, the reconstruction
does not degrade the displacement pattern. The center part
of the glacier shows small zero-centered residuals, which
demonstrates the capacity of the method to retrieve missing
values and to reduce noise represented by higher order EOF
modes. Large residuals are observed close to the glacier edges
because localized phase unwrapping errors exist in the original
interferogram in transition zones between static rock and ice
in motion.

To reconstruct the missing interferogram (case 2), the spatial
mean is replaced by the temporal mean given by X̄ =(
x̄1, x̄2, . . . x̄p

)T
. X̄ is added as in equation (9) (replacing the

second term by X̄1n where 1n is a n-length row vector) which
means that the displacement pattern is mainly determined
from the temporal mean of the time series. As some grid
points are only observed a few times in the time series,
their temporal mean is statistically less representative than
the theoretical temporal mean, which can potentially lead to a
biased reconstructed value.

The reconstruction of case 3 also shows a consistent
displacement pattern with the initial field. On the original
interferogram, data gaps (due to low coherence) induced phase
unwrapping errors in some localized area, which results in
discontinuities of displacement values in the residuals, where
large values are mainly observed. However, no displacement
signal can be identified in the residual.

Despite the high efficiency of the EM-EOF method, note
however that this method is not sensitive to displacement
signals related to unique and local events. Therefore, this part
of the signal cannot always be retrieved in the reconstruction,
which constitutes one limitation of the method.

IV. CONCLUSION

EM-EOF is an iterative method to retrieve missing values in
a time series of SAR-derived displacement measurement. This
method does not need any a priori information, is data adaptive
and has a high computational efficiency since it only needs a
few eigenvalues to fill in the missing data. Satisfactory results
are obtained in the case of the Gorner glacier for retrieving
consistent displacement patterns in missing data areas with no



Fig. 2. a) Original b) reconstructed interferograms and c) residuals (original - reconstructed) in radar geometry at three time intervals (2016/12/23-2016/12/29,
2017/01/10-2017/01/16, 2017/01/16-2017/01/22). Displayed values are in centimeters in the radar line-of-sight (LOS).

degradation of the observed parts. In particular, the efficiency
of the method is highlighted for reconstructing a completely
missing interferogram in the time series by working on the
temporal mean instead of the spatial mean. The EM-EOF
method can greatly help to increase the effective size of the
time series, and thus to facilitate the understanding of the
phenomenon under observation, particularly if low coherence
in interferograms is a frequent issue. In the future work, in-
stead of the temporal covariance, a spatio-temporal covariance
will be taken into account in order to better characterize the
displacement behaviour in the time series, e.g. reconstruct
more propagating structures in space and time in the signal.
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