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The stability of hypersonic boundary layer over an axisymmetric ccone-cylinder-flare con-
figuration at Mach 6 and zero degree angle of attack is investigated for different Reynolds
numbers. The shape has been designed for wind tunnel test experiments with two main goals:
keep an attached boundary layer all along the object and investigate the effects of pressure gra-
dients, flow expansion and recompression without flow separation, on the hypersonic boundary
layer stability. After a thorough study of the aerodynamic flow obtained in fully laminar con-
ditions, linear stability theory (LST) and linear parabolized stability equations (PSE) are used
to predict the amplification rates of the boundary layer disturbances. The stability analyses
are performed with the 2D-axisymmetric version of the STABL software suite from the Uni-
verity of Minnesota in LST and PSE modes. Code comparisons with the ONERA Mamout
solver are also realized in LST mode. The numerical stability results are compared to wind
tunnel measurements obtained in the BAM6QT (Boeing AFOSR Mach-6 Quiet Tunnel) wind
tunnel of Purdue University. The semi-empirical eN method allows to correlate transition with
the integrated growth of the linear instability waves. Finally, the computed N factors which
correspond roughly to wave amplitude are compared to measured power spectra.

I. Nomenclature

Mach = Mach number
pi = stagnation pressure (bar)
Ti = stagnation temperature (K)
Hi = total enthalpy (J/kg)
p = mean pressure (Pa)
T = static temperature (K)
ρ = density (kg/m3)
u,v,w = velocity in x,y,z directions (m/s)
V = velocity magnitude
Re/m = freestream unit Reynolds number (1/m)
x = geometric coordinate in streamwise direction (m)
y = geometric coordinate in body-normal direction (m)
z = geometric coordinate in spanwise direction (m)
Rn = nose radius (m)
δ = boundary layer thickness (m)
αi = amplification rate (1/m)
ψ = wave propagation angle (o)
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†PhD Student.
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Subscripts

∞ = value in freestream
e = value at the boundary layer edge

II. Introduction

The laminar-to-turbulent transition is a primordial input for trajectory and conceptional design of hypersonic objects.
Indeed, transition at hypersonic speeds causes large changes in heat transfer, skin friction and boundary layer

separation. Turbulent boundary layers increase the heating rate and the viscous drag, and offer a greater resistance to the
formation of separation bubble. As a consequence, the aerodynamic lift and drag, the stability and control of the object
as well as the thermal protection system are directly affected by the state of the boundary layer. So the knowledge of
stability and transition of high-speed boundary layer is an important issue for hypersonic flights. But understanding how
and where transition occurs on a given configuration during re-entry or high speed flight is one of the long-standing
problems in aerodynamics (Leyva [1]).

In flight or in a wind tunnel, disturbances are present in the flow and interact with the boundary layer that develops
along the object. The boundary layer acts as a selective filter where only certain frequencies and wavelengths of
those disturbances can be amplified and eventually induce a laminar-to-turbulent transition. For a small disturbance
environment, as explained by Stetson [2], four fundamentally different instability mechanisms can produce disturbance
growth in a hypersonic boundary layer: first-mode, second-mode, crossflow instabilities and Görtler vortices. Several
paths to transition exist (Morkovin, [3]) but, here, only the low disturbance level is considered where eigenmode growth
is dominant.

As detailed by Schneider [4], the first-mode instability is similar to low-speed Tollmien-Schlichting waves and
occurs for subsonic and moderate supersonic flows. It is most amplified when the wavefronts are oblique to the stream
direction. The second-mode instability concerns hypersonic flows. It is similar to a trapped acoustic wave and is most
amplified when the wavefronts are normal to the stream direction. The cross-flow instability occurs in three-dimensional
boundary layers, and has both traveling and stationary forms. The Gortler instability is important for boundary layers on
concave walls, and perhaps in some regions of concave streamline curvature.

Very instructive and thorough studies of the transition development are available for attached boundary layer mainly
on cone shapes [5] [6]. Here the ccone-cylinder-flare configuration allows to add the influence of pressure gradients,
flow expansion and compression, on the boundary layer stability. This shape, specially designed for this study, is made
so that the flow experiences a limited positive pressure gradient on the flare. This allows to keep an attached boundary
layer on the aft-cylinder and on flare. Indeed, a larger flare angle would generate a flow separation which represents an
even more challeging case. This complex case of instability development in the presence of a separation bubble could
be addressed in the framework of a future stability analysis study.

The hypersonic flows addressed here are considered in wind tunnel conditions at Mach 6. In these high speed
conditions and with the quasi-sharp cone cylinder shape, the edge Mach number will be greater than Mach 5 all along
the configuration. Following Mack’s theory [7], in this case the dominant instabilities will be the second-mode mode
waves. Görtler instabilities could also be present in the concave part of the geometry but here the flare angle is very
limited and these instabilities should not be predominant.

Görtler instabilities should be taken into account in the transition process for flow separated cases such as the
hollow cylinder flare configuration studied by Benay and Bur [8] [9] . The present shape but with a larger flare angles
would generate a flow separation and in this case both second-mode and Görtler instabilities should be considered
simultaneously. In the present study, with attached boundary layer only, the focus is mainly on the two-dimensional
second-mode waves.

The second-mode instability waves are investigated from the numerical point of view thanks to the boundary layer
stability computations, and also with wind tunnel experiments with high-frequency pressure sensor measurements. The
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numerical part is realized thanks to two stability codes, the STABL software suite from the University of Minnesota
[10] and the Mamout code from ONERA. The hypersonic experiments are conducted in the Boeing/AFOSR Mach-6
Quiet Tunnel (BAM6QT) of Purdue University [11].

III. Ccone-cylinder-flare geometry
An axisymmetric ccone-cylinder-flare configuration was designed in order to promote transition development for an

attached boundary layer flow with flow expansion and recompression in high speed flow. The main characteristics of the
designed shape are the following:

1) small nose radius Rn = 0.1 mm ;
2) half-cone angle is equal to 5 degrees ;
3) flare angle is equal to 3.5 degrees.

The main dimensions of the ccone-cylinder-flare configuration are given in table 1:

Table 1 Model coordinates

Nose-Cone junction Cone-Cylinder junction Cylinder-Flare junction End of flare
x (m) 0.0920x10−3 0.398147 0.525670 0.764456
y (m) 0.0997x10−3 0.034925 0.034925 0.049530

IV. Structured grid
The initial grid is a single-block structured grid composed of 1009 points in the longitudinal direction and 301

points in the wall normal direction. Special care is given to the first cell size and to the point distribution in the wall
normal direction in order to ensure a very accurate boundary layer calculation and also to capture correctly the shock all
along the shape. The initial grid generated with ICEM-CFD can be qualified as very good quality (see figure 1a) but
in order to ensure higher accuracy in the mean flow solution for the stability analysis, the shock tailoring procedure
available in the STABL suite is used. This grid adaptation procedure allows to capture all the gradients more accurately
by redistributing the grid points based on the initial converged solution (see figure 1b).

(a) Initial single-block structured grid (1009 x 301) - 303 709 grid points

(b) Shock tailored grid obtained at Re/m = 5.57x106 - 1 block (1009x298) - 300 682 grid points

Fig. 1 Initial and tailored structured grids
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V. CFD computations

A. Laminar mean flow computations
The laminar mean flow solutions for the stability analysis are performed with the axisymmetric CFD code provided

with the STABL software suite written by Dr. Heath Johnson [10]. This axisymmetric flow solver DPLR2D uses a finite
volume formulation and solves the reacting Navier-Stokes equations. The second-order inviscid fluxes are based on the
modified Steger-Warming flux vector splitting method. The viscous fluxes are also second order accurate. The time
integration method is the implicit first-order data parallel line relaxation (DPLR) method.

Since the aerodynamic flows considered here correspond to cold wind tunnel conditions in air, the gas mixture
considered for the computation is non-reacting gas "Air" (perfect gas) and the effects of chemistry and molecular
vibration are omitted for the calculations. The freestream aerodynamic conditions for the three considered cases are
given in Table 2:

Table 2 Aerodynamic conditions

Case Mach pi (bar/psia) Ti (K) Re/m p∞ (Pa) T∞ (K) ρ∞ (kg/m3) Twall (K) V∞ (m/s)
1 6.0 2.59 / 37.5 430. 2.79x106 164.0 52.4 0.01090 300. 871.0
2 6.0 5.17 / 75.0 430. 5.57x106 327.5 52.4 0.02175 300. 871.0
3 6.0 10.34 / 150.0 430. 11.15x106 654.9 52.4 0.04351 300. 871.0

The viscosity law used is Sutherland’s law and the heat conductivity is calculated using Eucken’s relation. For
the freestream temperature T∞ = 52.4K, the molecular viscosity value is µ = 3.400x10−6kg/(m.s) and and the heat
conductivity value is kcond = 0.004627 W/(m.K).

The laminar mean flow solutions obtained for the two extreme Reynolds number, Re/m = 2.79x106 and Re/m =
11.15x106, are presented respectively in figures 2a and 2b as pseudo-schlieren visualizations. The density gradient
magnitude shows the bow shock generated from the small nose radius of 0.1 mm, the boundary layer with a sensitive
increase on the cylinder due to the flow expansion and finally the recompression shock at the cylinder flare junction
which leads to a decrease of the boundary layer thickness. A clear Reynolds number effect is visible on these figures;
the boundary layer is far thicker at Re/m=2.79x106 compared to Re/m=11.15x106.

(a) Fully laminar computation at Re/m = 2.79x106

(b) Fully laminar computation at Re/m = 11.15x106

Fig. 2 Density gradient magnitude on the ccone-cylinder-flare configuration
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B. Flow analyis

1. Flow around the nose
From a stability analysis point of view, it is known that the increase of the bluntness of the nose (till a certain limit)

has a stabilizing effect on the boundary layer [12] [13]. Indeed, in hypersonic flow, increasing nose bluntness pushes
back the point where second-mode disturbances become active. Here, the cone has a quasi-sharp nose (Rn = 0.1mm)
so such a small nose radii will have a limited consequence on the boundary layer stability knowing also the entropy
swallowing distance is very limited. Nevertheless, for the accuracy of the stability analysis study, it was decided to give
special attention to the nose region in the computations.

For this perfect-gas flow, the Mach number distribution around the stagnation point is presented in figures 3a and 3b
for two extreme Reynolds numbers considered here Re/m = 2.79x106 and Re/m = 11.15x106.

(a) Re/m = 2.79x106 (b) Re/m = 11.15x106

Fig. 3 Mach number distribution around the nose

From a quantitative point of view, the shock stand-off distance ∆ can be compared to the Billig’s empirical formula
for sphere-cone shapes:

∆/Rn = 0.143exp(3.24/M2
∞)

Here with Rn = 0.1mm, the shock detachment evaluated with Billig’s formula is equal to ∆ = 0.0156mm. This
stand-off distance, plotted in figures 3a and 3b, highlights the physical Reynolds number effect on the shock layer
thickness. A decrease in thickness of the shock layer due the increase of density is clearly visible at Re/m = 11.15x106

when compared to Re/m = 2.79x106. As a consequence, a better agreement is logically observed between the higher
Reynolds number considered here and the Billig’s empirical stand-off distance.

The thermal environment around the nose is due to the conversion of the kinetic energy associated with hypersonic
flight. As shown in figures 4a and 4b, this conversion, due to the high compression and viscous energy dissipation
mechanisms around this stagnation region, leads into increasing temperature around the blunt nose as explained by
Bertin [14]. The isothermal wall temperature equal to 300 K explains the decrease of temperature near the wall.

(a) Re/m = 2.79x106 (b) Re/m = 11.15x106

Fig. 4 Temperature distribution around the nose
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The high gradients around the nose are very accurately captured by the computations so the influence of this very
small bluntness is thoroughly defined for the stability analysis.

2. Pressure and skin friction
On this ccone-cylinder-flare geometry, the flow encounters not only the classical quasi-constant pressure level on the

cone but also experiences pressure gradients further downstream: firstly a favorable pressure gradient on the cylinder
and secondly an adverse pressure gradient on the flare as shown in figure 5a.

The skin friction constantly diminishes on the cone and, after a narrow peak at cone-cylinder junction, experiences a
new significant decrease on the cylinder (see figure 5b). The minimum skin friction value at the cone-flare junction is
followed by a slight and progressive increase on the flare.

(a) Pressure distribution (b) Skin friction coefficient

Fig. 5 Pressure distribultion and skin friction as a function of Reynolds number

Near the cylinder-flare junction the flow faces the adverse pressure gradient due to the presence of the flare. This
generates a dynamic situation where the flux of the incoming fluid momentum will eventually be balanced by the force
and the flow will be brought to rest [15]. In this situation, a sufficient pressure gradient will lead to a flow separation.
Here the shape has been designed with a small flare angle in order to generate a limited adverse pressure gradient
so that no separation bubble appears. Here it is confirmed that the boundary layer is still attached. It can be noticed
nevertheless that the skin friction coefficient is close to zero at the cylinder-flare junction and is even at zero for the case
at Re/m = 11.15x106. The addition of the wall shear stress and the positive pressure increase is not sufficient to gener-
ate a backflow region but it can be stated that any increase of the flare anglewill lead to the formation of a separation bubble.

These favorable and adverse pressure gradients will have an influence on the boundary layer stability: it is known that
the expansion has a stabilizing effect while the compression has a destabilizing impact. The aim of this study consists in
evaluating the effects of these pressure gradients on the second-mode instability development along the object.

3. Boundary layer properties and edge Mach number
The boundary layer detection is never a trivial calculation for hypersonic flows. Here the detection is based on the

"Return from enthalpy overshoot" criterion. After detecting the total enthalpy peak in the boundary layer profile, the
algorithm moves away from the wall until the total enthalpy has returned to a value near the freestream one. For this
criterion, the total enthalpy at the boundary layer edge satisfies:

Hie <
Hi∞ − Hiwall

0.995
+ Hiwall

A detailed analysis of the STABL edge detection algorithms is available in [16]).
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After careful checks, this boundary layer edge detection method appears well suited and accurate for the present
cases which is mandatory for thorough analyses.

Whatever the Reynolds number considered, the general trend of the boundary layer thickness evolution is the
same. After the classical increase of the boundary layer thickness along the cone, a new abrupt and large thickness
increase appears on the cylinder because of the influence of the flow expansion generated at cone-cylinder junc-
tion. On the other hand, the adverse pressure gradient leads to an important decrease of the boundary layer thickness
on the first half of the flare before a new slight increase of the boundary layer thickness further downstream (see figure 6a).

When considering the different Reynolds numbers computed here, it can be seen as expected that the bound-
ary layer thickness decreases with the increase of Reynolds number: it goes from around 3.5 mm to 1.75 mm at
the end of the cone for the two extreme Reynolds numbers and from around 7 mm to 3.5 mm on the aft part of the cylinder.

The edge Mach number values detected with the total enthalpy criterion in the computations are shown in figure 6b. .
The value of Me ∼ 5.5 on the cone is in good agreement with the Taylor-Maccoll estimation of Me ∼ 5.6 for a 5-degrees
half-angle nearly-sharp cone at a freestream Mach number of 6.0 at moderate Reynolds numbers. Downstream, the edge
Mach number increases to around Me ∼ 6.1 on the cylinder due to the flow expansion and finally decreases to around
Me ∼ 5.65 on the flare after the recompression at the cylinder flare junction.

(a) Boundary layer thickness (b) Edge Mach number

Fig. 6 Boundary layer thickness and edge Mach number as a function of Reynolds number

Fig. 7 Boundary layer profiles on the configuration at Re/m = 5.57x106

It is known that the 2nd mode instabilities grow more rapidly at high Mach number values and on cold walls. Here,
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the high edge Mach number and the limited wall temperature (Twall ∼ 300K) suggest that the second-mode waves
will be the dominant instability as stated by Mack’s theory [7]. Furthermore, knowing that second-mode instability
frequencies are directly linked to the boundary layer thickness, it can be guessed that very different frequencies will be
amplified on the different part of the object.

The boundary layer profiles that develop on the cone, on the cylinder (accelerated flow) and on the flare (decelerated
flow) are shown in figure 7 for the computation at Re/m=5.57x106. The shapes of the profiles are dramatically different
on the three parts of the object. As a consequence, it can be guessed that the impact on the boundary layer stability will
be important.

4. Second-mode wave instabilities
Mack [7] found that the major instability waves leading to transition to turbulence on a smooth flat plate in a perfect

gas flow are the first and second modes. In a supersonic flow, the most unstable first-mode disturbance is always oblique
(ψ=45-60°). The wave angle ψ of the most unstable disturbance increases rapidly with Mach number and is in the
range from 55°-60° above Mach = 1.5. On the other hand, in hypersonic flows above an edge Mach number of 4.5, the
second-mode is the most unstable and two-dimensional disturbances (ψ=0 °) are the most unstable.

Following the previous analysis and results, the second-mode should be the dominant instability here. The
second-mode waves are acoustic instabilities propagating and growing inside the laminar boundary layer and their final
breakdown lead to turbulent flow. The boundary layer behaves as an acoustic waveguide as indicated by Fedorov [17].
Knowing that the wavelength of the 2nd mode instability is about twice the boundary layer thickness [18], the estimated
second-mode instability frequency is calculated as:

f2nd mode =
Ve

2δ
So for waves moving with the edge velocity (Ve ∼ 860m/s), the estimated frequency of the second-mode wave

disturbance will be respectively of the order of 240 kHz at the end of the cone for the thin boundary layer (δ ∼ 1.8mm)
at Re/m =11.15x106 and 120kHz for the thicker one (δ ∼ 3.6mm) at Re/m = 2.79x106. On the aft part of the model, the
second-mode frequency should be of the order of respectively 70 and 140 kHz for the two extreme Reynolds number
considered here (with δ equal respectively to around 5.8 mm and 3.0 mm).

VI. Stability analyses

A. Stability analysis solvers

1. STABL
The main part of the stability analyses are performed using the PSE-Chem solver, which is a part of the STABL

software suite [10]. PSE-Chem solves the reacting, two-dimensional, axisymmetric, linear parabolized stability equations
(PSE) to predict the amplification of disturbances as they interact with the boundary-layer. The PSE-Chem solver
includes finite-rate chemistry and translational-vibrational energy exchange. Generally, a transition location is predicted
using the semi-empirical eN method, in which transition is assumed to occur when a disturbance has grown by a fac-
tor of eN from its initial amplitude. TheN-factor values commonly used to correlate transition to flight are between 8 to 11.

Both linear stability theory (LST) and PSE analyses were performed using the PSE-Chem code. For the LST
analysis, a parallel flow assumption is made by neglecting derivatives of mean flow quantities in the direction of the
computational coordinate along the body. The PSE is expected to be more accurate as it does not assume parallel flow,
in this case linear stability theory is used to provide the initial wavenumber for the PSE marching procedure ([19]).

2. Mamout
Stability analyses have also been carried out on the same configurations with the ONERA in-house code Mamout.

This code solves the local linear stability equations for an incompressible fluid, an ideal gas or a chemical equilibrium
mixture, with the parallel flow assumption. The present computations use the perfect gas model. The resulting
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one-dimensional differential Eigenvalue problem can be solved thanks to several numerical schemes, among which
Chebyshev polynomial collocation method or high-order compact schemes. The computational grid can be split in
multiple sub-domains. Outside of the boundary layer, the fluctuation is matched to the analytical solution obtained for a
uniform base flow.

B. Stability analysis results
The same DPLR2D laminar flow solutions are used as input for STABL and Mamout stability analyses.

The second-mode disturbances are highly "tuned" to the boundary layer thickness resulting in considerable selectivity
in the disturbance frequencies which are most amplified [2]. Seeing the boundary layer thickness evolution shown in
figure 6a, it has been stated that the thin boundary layer on the cone will generate higher frequency disturbances than the
thicker boundary layer on the cylinder and on the flare. Here, another aerodynamic effect will impact the boundary layer
stability: the pressure gradients generated respectively on the cylinder and on the flare.

1. Amplification rates
All the stability diagrams presented in figures 8 and 9 for different Reynolds numbers show the standard "thumb"

curve on the cone. The higher frequencies at the beginning of the cone detune rapidly in the narrow amplified band
but, as the disturbance waves proceed more downstream, they become better tuned to the boundary layer thickness
and amplify at important rates on longer periods of growth. As a consequence, the resulting amplified boundary layer
instabilities can potentially reach high amplitude on the cone potentially leading to the critical breakdown amplitude for
moderate to high Reynolds numbers.

(a) STABL at Re/m = 5.57x106 (b) Mamout at Re/m = 5.57x106

Fig. 8 Amplification rates from STABL and Mamout LST analyses

(a) STABL at Re/m = 2.79x106 (b) STABL at Re/m = 11.15x106

Fig. 9 Amplification rates from STABL-LST analyses
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Concerning the cylinder part, it is known that a favorable pressure gradient has a stabilizing effect on the boundary
layer. This is definitively confirmed by the stability diagrams where no substantial amplification rates are visible on the
main part of the cylinder. As shown in figures 6 and 7, the boundary layer thickens very rapidly under the influence of
the flow expansion and experiences a very rapid change all along the cylinder. The "accelerated" boundary layer is very
stable as confirmed by the amplfication rate diagrams.

The phenomenon is totally different on the flare and it is interesting to remind here that adverse pressure gradients
are commonly known as destabilizing for the boundary layer. As visible in figures 6 and 7, the boundary layer thins
rapidly just after the cylinder-flare junction but, once the pressure gradient past, the boundary layer keeps a quite
constant thickness and a quite identical profile all along the flare. As a consequence, it can be guessed that, after an
important destabilization at the cylinder-flare junction, a quite amplified frequency "plateau" could be observed on the
flare. It is confirmed by figures 8 and 9 for the all the Reynolds numbers considered here. The amplified waves stay
in a narrow frequency range on the flare which can potentially generate high amplitude disturbances at the end of the flare.

All these general trends are confirmed for all the Reynolds number and with the code-to-code comparison, STABL /
Mamout, which points out a good agreement between these two numerical approaches. This verification gives an even
larger confidence in the numerical stability predictions.

The Reynolds effect on the amplification of the second-mode frequency waves is clearly highlighted by figure 9.
The large increase of the boundary layer thickness in the case of the lower Reynolds number leads to low frequency
range for the second mode amplification: 100-300 kHz on the cone and a narrow band around 50-60 kHz on the flare.
The higher Reynolds number considered leads logically to high frequency content: 200 to 1000 kHz on the cone and a
long flat frequency range on the flare around 120-130 kHz with important amplification rate levels.

An additional focus is proposed for the case at Re/m =5.57x106 in the next figures. The extract from SATBL and
Mamout in figure 10 indicate the amplification rates of the waves at different frequencies and propagation angles on the
cone at x=0.1m. The first-mode is visible for oblique waves with a maximum amplification detected at around 40 kHz
and ψ ∼ 65 − 70o. The second-mode is, as expected, clearly the dominant mode with a maximum amplifcation rate for
the two-dimensional waves (ψ ∼ 0o) at frequencies around 260-280 kHz.

(a) STABL at Re/m = 5.57x106 (b) Mamout at Re/m = 5.57x106

Fig. 10 Amplification rates by frequency and waves propagation angles at Re/m =5.57x106

The figure 11 shows the amplification rates at three different locations respectively on the cone, on the cylinder
and on the flare. As detailed by Arnal [20], these stability diagrams indicate that first-mode and second-mode
are simultaneously present. The amplification rates confirm the dominance of the higher frequency second-mode
for two-dimensional waves (ψ = 0o) whatever the considered location on the configuration. The first-mode insta-
bilities are most amplified as oblique waves with sensible levels obtained for wave propagation angle between 50o and 80o.

A more quantitative comparison between STABL and Mamout for the streamwise wavenumber and the maximum
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amplification rate prediction at three different locations on the object is provided in figure 12. The predicted wavenumbers
are quite exactly the same with the two codes. For the amplification rates, the agreement between the 2 codes is very
satisfying on the cone and on the flare. On the cylinder, the most amplified frequencies correspond very well but the
waves are more amplified with STABL. It seems that the influence of the pressure gradient is felt "stronger" by STABL
in comparison to Mamout. A slight difference can be also observed in the low frequency content corresponding to the
small amplification levels of the two-dimensional first-mode waves.

(a) STABL at Re/m = 5.57x106 - x=0.36m (b) STABL at Re/m = 5.57x106 - x=0.51m (c) STABL at Re/m = 5.57x106 - x=0.65m

Fig. 11 Amplification rates by frequency and waves propagation angles at Re/m =5.57x106

Fig. 12 Wavenumber and maximum amplification from STABL and Mamout in LST mode at Re/m =5.57x106

2. Second-mode instabilities: trapped acoustic waves
As explained by Fedorov [17] and Knisely [21], the second-mode disturbances belong to the family of trapped

acoustic waves. Indeed, a region of supersonic mean flow relative to disturbance phase velocity is present in the upper
part of the boundary layer while, in the lower part of the boundary layer, the disturbances are supersonic relative to the
mean flow. As a consequence, this small region near the wall acts as an acoustic waveguide where the waves are trapped.
Acoustic rays are reflected by the wall and can not cross the sonic line. The second-mode waves developing in this
near-wall region represent inviscid instabilities of acoustic nature which become the dominant instability in hypersonic
flow. This supersonic disturbance region can be represented by plotting the relative Mach number defined as:

Mr =
ū − cr

ā
where ū is the mean flow velocity, cr is the disturbance propagation speed and ā is the mean flow speed of sound.
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The region where the waves travel downstream supersonically relative to the mean flow is illustrated in figures 13,
14 and 15 respectively at the end of the cone, in the middle of the cylinder and at the end of the flare for a given phase
velocity wave equal to 800 m/s. The supersonic region is very thin. The associated pressure disturbance has a maximum
at the wall and decreases very rapidly in this supersonic region.

(a) Relative Mach number (b) Pressure disturbance profile

Fig. 13 Relative Mach number and pressure disturbance profile at the end of the cone (Re/m = 5.57x106)

(a) Relative Mach number (b) Pressure disturbance profile

Fig. 14 Relative Mach number and pressure disturbance profile at the end of the cylinder (Re/m = 5.57x106)

(a) Relative Mach number (b) Pressure disturbance profile

Fig. 15 Relative Mach number and pressure disturbance profile in the middle of the flare (Re/m = 5.57x106)

The disturbance profiles obtained with STABL and Mamout confirm that the main part of the second-mode lies
below the sonic line (as also shown by Chen et al. [22]) while the trace of the first-mode (2D waves only here) is visible
near the boundary layer edge close to the generalized inflection point. The high speed flow regime considered here leads
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logically to the dominance of the compressibility effects when compared to the viscous effects. As a consequence, the
second-mode is more unstable than the first-mode even if we consider the most-amplified oblique first-mode waves
at 55 − 60o (see figure 11). The second-mode disturbance peak is located at the wall, this represents a very useful
advantage to measure the amplitude of the second-mode waves by wall pressure measurements.

3. N-factors
Knowing the evolution of an initial disturbance as it moves downstream from its starting point through the mean

flowfield, the onset of transition can be estimated with the semi-empirical eN correlation method. In PSE-Chem, the N
factor is defined as:

N =
∫ s

s0

[−αi +
1

2E
dE
ds
]ds

where not only the imaginary component of the streamwise wavenumber is taken into account (as in LST) but also the
change in the kinetic energy of the shape function.

With this integrated growth of the linear instability waves, it is possible to correlate the onset of transition using
N-factor values of about 8-11 for quiet tunnel and flight environments and levels around 4 to 5 for conventional tunnels
with larger freestream noise environment.

Figure 16 shows the N factor distribution along the ccone-cylinder-flare configuration at Re/m =5.57x106 obtained
in PSE mode for the two-dimensional disturbances only (ψ= 0°). The wave amplitude increase on the cone is "classical"
and well correlated with the boundary layer thickness. The maximum amplitude of the waves increases when the
frequency decreases and the greatest N factor on the cone is obtained for 160 kHz (see also figure 18). The disturbances
are damped by the flow expansion occuring at the cone cylinder junction. The amplitude of low frequency disturbances
start to increase on the second part of the cylinder and some of them are amplified a new time on the flare leading to
high N factor levels at the end of the configuration for a very narrow frequency range (80-90 kHz).

(a) N factor evolution at Re/m = 5.57x106 - View 1 (b) Re/m = 5.57x106 - View 2

Fig. 16 N factor evolution along the object from STABL-PSE analysis at Re/m = 5.57x106

For this intermediate Reynolds number, N factors slightly lower than 5 are reached at the end of the cone and slightly
greater than 5 at the end of the model. Such N factors values can conduct to turbulent breakdown in a noisy environment
while quiet experiments should detect important waves amplitudes before critical laminar-to-turbulent breakdown.

The integrated N factors for the two other Reynolds numbers, Re/m = 2.79x106 and Re/m = 11.15x106, are shown in
figure 17 and 19. The general trend is the same as the previous one with a remarkable N factor increase along the cone
and along the flare but for totally different frequencies. This frequency change can be related, at first sight, to the very
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different boundary layer thickness for these two cases as shown in figure 6a.

At Re/m = 2.79x106, the maximum wave amplitude is limited with N factor values just below 3 at the end of the
cone and at around 3.6 at the end of the flare. From an experimental point of view, these levels are probably too low to
be detected in quiet conditions but measurements can be considered in noisy conditions for this case.

At Re/m = 11.15x106, high N factor values are reached: around 8 at the end of the cone and almost 9 at the end of
the flare. This case will be turbulent in noisy conditions but represents an ideal candidate for quiet experiments. Indeed,
in quiet tunnel conditions, without noise radiated from the boundary layers on the nozzle walls, this case will generate
critical wave amplitudes, very near to transition breakdown or possibly turbulent at the end of the configuration.

Fig. 17 N factors by frequency from STABL-PSE analysis at Re/m = 2.79x106

Fig. 18 N factors by frequency from STABL-PSE analysis at Re/m = 5.57x106

Fig. 19 N factors by frequency from STABL-PSE analysis at Re/m = 11.15x106

At this point of the paper, the flow and the stability analysis of the hypersonic boundary layer on the cone-cylinder-flare
configuration have been presented in detailed for three Reynolds number. In parallel of this numerical study, experiments
have been realized in the BAM6QT wind tunnel on this shape. Several runs have been obtained respectively in noisy
and in quiet conditions. In order to compare the previous numerical analysis to experimental results, three runs as close
as possible to the previous computational conditions have been selected. These comparisons will be presented in the
next chapter respectively for two noisy runs obtained at conditions near the low and medium Reynolds numbers, and for
one quiet run realized at the highest Reynolds number investigated in the numerical study.
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VII. Model and BAM6QT Experiments
The ccone-cylinder-flare model has been produced in the Aerospace Sciences Laboratory of Purdue University.

Experimental tests of this configuration were conducted in Purdue University’s Boeing/Air Force Mach 6 Quiet Tunnel.

A. Ccone-cylinder-flare model
As indicated previously, the model tested consists of a 5 degrees half-angle cone leading to a cylinder, followed

again by a 3.5 degrees half-angle straight conical flare. The nose tip was made to be as sharp as could be produced
with a nose radius equal to 0.1mm based on microscope visual inspection. As a reminder, the main dimensions of the
ccone-cylinder-flare configuration are given in table 1.

The model is divided into three sections: a stainless steel nose tip, an aluminum mid-body containing the initial 5
degrees cone and the first half of the cylinder, and an aluminum base including the latter half of the cylinder and the
3.5 degrees conical flare. The intersection of the cylinder with the 3.5 degrees cone presents a compression corner
to the oncoming flow. 11 sensor holes are located along the centerline of the model, with 3 additional holes located
azimuthally around the first cone to help zero the angle of attack of the model.

The majority of the third section of the model was coated with temperature sensitive paint (TSP) to study the heat
transfer and temperature variations caused by the compression corner. All 14 sensor holes were utilized, with all but
one being occupied by PCB 132B38 pressure sensors. The remaining hole contains a Schmidt-Boelter 8-1-0.25-48-
20835TBS heat transfer gauge used to calibrate the temperature sensitive paint. Figure 20 displays the installed model
with the locations and types of each sensor highlighted.

Fig. 20 Purdue model with 9 PCB sensors for BAM6QT experiments

The 13 PCB pressure sensors are used to record second-mode instabilities and 1 Schmidt-Boelter gauge is used to
measure the wall temperature. The sensor locations are indicated in table 3.

Table 3 Sensor locations on the configuration

PCB 1-4 PCB 5 PCB 6 S-B 7 PCB 8
Section Cone Cone Cylinder Cylinder Cylinder
x (m) 0.361 0.387 0.425 0.479 0.511

PCB 9 PCB 10 PCB11 PCB 12 PCB 13 PCB14
Section Flare Flare Flare Flare Flare Flare
x (m) 0.536 0.562 0.600 0.651 0.702 0.752

B. Boeing / AFOSR Mach-6 Quiet Tunnel
The BAM6QT is a Ludwieg tube, a long tube with a converging-diverging nozzle on the end (see figure 21). The

flow passes from the driver tube, through the test section, diffuser, a second throat, and finally to the vacuum tank.
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BAM6QT can be operated as a conventional noisy tunnel or as a quiet tunnel. Flow is initiated by bursting a double
diaphragm that is located downstream of the diffuser. Run times of 3-5 s are typical at present. The tunnel uses air as
the test gas and operates with an initial stagnation pressure of 34-2070 kPa (0.34-20.7 bar) and an initial stagnation
temperature of 430 K, giving a Re/m range of 0.36-22.3 x 106.

The test-section diameter is 0.241 m at the nozzle exit, and the nozzle is 2.590 m long. It is difficult to obtain
quiet flow in a hypersonic tunnel. The nozzle is polished to a mirror finish to avoid roughness-induced transition. The
contraction boundary layer is also removed by bleed slots at the throat for quiet runs. A new laminar boundary layer
begins just upstream of the nozzle throat and is maintained through the test section. The air is filtered to remove dust
or other particles above 0.01-microns that may damage the nozzle or trip the boundary layer. More details about the
development of the BAM6QT can be found in [11].

Fig. 21 Schematic of Boeing/AFOSR Mach 6 Quiet Tunnel

C. Comparison of STABL analyses and BAM6QT measurements

1. Noisy runs
Several noisy runs have been obtained during the wind tunnel test campaign. Two runs are considered for the

numerical / experimental comparison respectively at Re/m = 3.31x106 and Re/m = 6.00x106. In noisy environment, the
experimental Mach number is equal to 5.8 because of the larger turbulent boundary layer thickness which develops on
the nozzle walls in these conditions. The corresponding aerodynamic conditions are given in Table 4:

Table 4 Aerodynamic conditions

Run Mach pi (bar/psia) Ti (K) Re/m p∞ (Pa) T∞ (K) ρ∞ (kg/m3) V∞ (m/s)
Run25 5.8 2.85 / 41.3 430. 3.31x106 222.1 55.6 0.01391 867.3
Run18 5.8 5.17 / 75.0 430. 6.00x106 403.0 55.6 0.02523 867.3

These aerodynamic conditions are not exactly the ones corresponding to the numercial cases presented previously in
the paper at Mach 6, so new STABL computations have been performed at Mach 5.8.

Figures 22 and 23 show comparisons of measured power spectra with computed N factors. Indeed, N factor
correspond roughly with wave amplitude since it is a representation of how much a wave has grown along the body
(Berridge et al. [23]). The initial amplitude of the wave is not known so this N factor can not give an absolute wave
amplitude. Nevertheless, an interesting numerical / experimental analogy can be made by adjusting manually the
maximum N factors to fit the maximum power spectra value. This kind of plot has another advantage: if the stability
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computation is accurate and if 2nd mode waves are detected by the experiments, the peaks of amplified instability
should be at the same frequencies. In this case, if the computational and experimental frequencies match, no doubt the
detection of the waves is correct. Figures 22 and 23 display such N factor / power spectra comparison for the two noisy
runs considered here. The overall agreement is correct and the following analysis can be made.

On the cone, 2nd mode waves can be seen on each PCB sensor location (x = 0.361 m and x = 0.387 ). The large
peaks are centered respectively at around 140 and 130 kHz for the lower Reynolds number and at around 160 and 170
kHz for the larger Reynolds number. A slightly larger amplitude is logically observed at the second PCB location. A
correct agreement is obtained with the STABL N factors adjusted manually to fit with the experimental power spectra.
At the second sensor position, the N factor value is equal to almost 3 at Re/m = 3.31x106 and to 4.6 at Re/m = 6.00x106.
For these noisy runs, the power spectra indicate that the boundary layer remains laminar on the cone in these conditions.
A new increase of the Reynolds number (above 6 millions) should lead to a turbulent spectrum knowing that the onset of
transition can be estimated using N factor values around 4 to 5 for conventional noisy runs.

Fig. 22 Comparison of BAM6QT PSD data for noisy run 6 and STABL N-factors at Re/m = 3.3x106

Fig. 23 Comparison of BAM6QT PSD data for noisy run 18 and STABL N-factors at Re/m = 6.0x106

On the cylinder part, the computed / experimental comparison is not as evident as on the cone. At the considered
PCB location (x=0.511 m) just before the end of the cylinder, two peaks can be observed on the N factor prediction but
only one on the power spectra. Furtermore, the N factor and PSD levels do not fit. The figure 24 allows to explain the
two peaks computed with STABL at Re/m = 6.0x106. The first peak at around 170 kHz comes form the second-mode
waves highly amplified on the cone and progressively damped on the cylinder part. The second peak corresponds to
lower frequencies at around 70-90 kHz amplified along this second section of the object. The peak detected in the
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experiment is at 110 kHz so at a higher frequency than the numerical prediction. If the model was not accurately at
0 degree angle of attack, this could partly explain this scatter but a double check confirms that it is very near from 0
degree. No explanation is available about this point and the measured / computed comparison is unconclusive on this
cylinder part.

Fig. 24 STABL N factors corresponding to BAM6QT noisy run 18 at Re/m = 6.0x106

On the flare, the boundary layer is laminar at Re/m = 3.31x106 with experimental 2nd mode peaks observed at
around 70 and 75 kz. The computed frequencies are at a slighty lower frequency but second-mode waves are clearly
identified here by the computed and experimental approaches. For the second run at Re/m = 6.00x106, the PCB
measurements indicate a turbulent spectrum on the flare while the stability analysis indicates N factors at around 4.5 for
wave frequencies around 90 kHz for both sensors (x=0.651 m and x=0.702 m). In noisy conditions, such N facor values
are indeed near to transition or turbulent. Here the flow has become turbulent on the flare even if the predicted N factor
is slightly lower on the flare than on the cone - this fact is questionable and this situation is not fully explained at this
moment. One possible explanation could come from the one discussed by Marineau in [6]: in experiments an increased
tunnel noise exists at lower frequencies while a decreased tunnel noise is observed at high frequency. So the transition
could appear firstly on the lower frequency band on the flare than on the higher frequency band on the cone.

2. Quiet runs
New quiet runs have been realized very recently. The purpose of these tests was to obtain experimental data to

compare with STABL instability computations. One very interesting case is the one performed at the highest Reynolds
number i.e Re/m = 11.15x106. The aerodynamic conditions corresponding to this case are reminded in table 5 :

Table 5 Aerodynamic conditions

Run Mach pi (bar/psia) Ti (K) Re/m p∞ (Pa) T∞ (K) ρ∞ (kg/m3) V∞ (m/s)
Run28 6.0 10.34 / 150.0 430. 11.15x106 654.9 52.4 0.04351 871.0

The N factors evaluated along the configuration are displayed in figure 19 presented previously. The maximum N
factor values are above 8 on the cone and near 9 at the end of the flare. It is important to notice that only quiet runs can
measure such amplified instabilities ; this flowwould be turbulent at this Reynolds number in all conventional wind tunnels.

Figure 25 shows the experimental and computational results obtained for run 28. Figure 25a displays the power
spectra for each PCB sensor but PCB 2 and PCB 14 broke during the test campaign. Before analyzing the results, it is
important to notice that in the experimenal data, every PCB sensor contains a peak at around 124 kHz. As we will
explain below, this frequency is physical on the flare but not on the cone nor on the cylinder. It is uncertain the cause of
these peaks. Nevertheless, these data are very interesting and a useful analysis can be realized by comparing these
experimental results with the numerical analysis.

For PCBs 1, 3, and 4, which are located azimuthally around the first cone at the same axial position downstream, the
fluctuations peak at frequencies of 237 kHz, 235 kHz, and 236 kHz, respectively. This frequency agreement confirms
the very near zero angle of attack of the model during the test. Downstream of these sensors, PCB 5 peaks at 229
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kHz. The 2nd mode is clearly identified by these sensors on the cone, the slightly reduced frequency for PCB 5 is
due to the increase of the boundary layer thickness between these two locations. The measured and computed 2nd

mode frequencies compare very well as confirmed by figure 25b. The N factor values peak at high levels, 7.3 and 7.7
respectively, at the considered x-location on the cone (x=0.361 m and x=0.387m). The N factor is equal to 8 at the end
of the cone (see figure 19 and 26).

(a) Power spectra from the PCB sensors (b) Computed N factors at the sensor locations

Fig. 25 Power spectra from BAM6QT and computed N factors from STABL at Re/m = 11.15x106

Fig. 26 STABL N factors corresponding to BAM6QT quiet run at 150 psia

On the cylinder part, as indicated previously, the stabilizing effect of the flow expansion leads to very limited
amplification rates as shown in figure 9. In this zone where the boundary layer thickness rapidly increases and where the
boundary profile is strongly modified (see figure 7), the instabilities are damped on the first part of the cylinder and
amplified on the rear part but at much lower frequencies than the one on the cone. The PCB measurements are not
conclusive for this case on the cylindre part. Concerning the stabiltiy analysis, the computed N factors show one peak at
the first PCB location and two peaks at the second location. The high frequency peak at around 225 kHz is due to the
remaining but progressively damped 2nd mode waves initially generated upstream on the cone as shown in figure 26.
The second peak visible on PCB 8 is at around 110 kHz. Figure 26 shows that, after a first amplification on the cone,
these instabilities are amplified a new time along the cylinder and reach amplitudes corresponding to a N factor around 3.2.

Along the conical flare, the second set of peaks at around 124 kHz, matches very well with the predicted second
mode fluctuations. Figure26 displays three interesting discrete frequencies: 120, 125 and 130 kHz which clearly show
the evolution of these instabilities along the configuration. After a slight amplification of the 2D waves on the cone and
on the cylinder, because of the influence of the compression on the flare, a strong N factor increase is observed. Because
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of the quite constant boundary layer thickness and profile in this region, the same limited frequency range is amplified
downstream and reaches high N factor values near 9 at the end of the flare. The STABL results indicate N factor values
equal to 5.8 and 7.2 for PCB 12 and 13 located respectively at x=0.651 m and 0.702 m. Because of the presence of
spikes in the experiment, it is not possible to fit the the maximum power spectra with the maximum N factor levels at the
different sensor locations but the agreement on the frequency is very good.

VIII. Conclusion
This cone-cylinder-flare configuration generates a very interesting aerodynamic flow for the study of hypersonic

boundary layer stability in presence of pressure gradients. The 5-degree sharp cone leads "classically" to high instability
amplification rates at moderate Reynolds numbers but, further downstream, the flow expansion and the compres-
sion generated on the cylinder and on the 3.5 degree conical flare lead to important changes of the boundary layer stability.

The STABL stability computations and the BAM6QTwind tunnel data provide new insights about the boundary-layer
transition process on this axisymmetric cone-cylinder-flare configuration considered at Mach 6. For this case, at zero
angle of attack, the 2nd mode waves are the dominant instabilities. The 1st mode instabilities are still present in the
boundary-layer but at a lower amplification rate. For three different Reynolds number, respectively Re/m = 2.79x106,
5.57x106 and 11.15x106, this numerical study has confirmed the stabilizing effect of a favorable pressure gradient
and the destabilizing effect of an adverse pressure gradient. Indeed, a rapid damping of the 2nd mode high frequency
waves (generated upstream on the cone) is predicted on the first half of the cylinder. On the second half, because of an
important increase of the boundary-layer thickness, another range of lower frequency instabilities is slightly amplified.
On the flare, the stability computations show amplified waves in a narrow and quite constant frequency range conducting
to high 2nd mode wave amplitudes at the end of the configuration. Following this amplification pattern, the highest
N factor values are obtained at the end of the cone and at the end of flare but for totally different frequencies. At the
highest Reynolds number considered here, Re/m = 11.15x106, the N factor is equal to around 8 at the end of the cone
and to around 9 at the end of the flare for 2nd mode wave frequencies respectively equal to 230-240 kHz and 120-130 kHz.

Numerical / experimental comparisons have been realized for two intermediate Reynolds number, around 3 and 6
millions, in noisy conditions and for a higher Reynolds number, around 11 millions, in quiet conditions. The measured
and computed 2nd mode frequencies compare very well on the cone and on the flare. The comparison on the cylinder
part is more uncertain. Some questions are still open but the present study provides new insights in the physical
description of the transition process on a configurationwith favorable and adverse pressure gradients in hypersonic regime.

As a perspective, it can be said that new wind tunnel / stability analyses comparisons at complementary Reynolds
numbers could provide useful additional information for an in-depth transition description. It can also be stated that this
new cone-cylinder-flare configuration appears as a very good basis for complementary studies, such as the study of
bluntness effect on transition by considering different nose radius or also for the study of flow separation influence on
transition by increasing the flare angle.
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