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The computational model of population protocols is a formalism that allows the analysis of properties emerging

from simple and pairwise interactions among a very large number of anonymous finite-state agents. Among the

different problems addressed in this model, average-based problems have been studied for the last few years. In

these problems, agents start independently from each other with an initial integer state, and at each interaction

with another agent, keep the average of their states as their new state. In this paper, using a well chosen stochastic

coupling, we considerably improve upon existing results by providing explicit and tight bounds of the time

required to converge to the solution of these problems. We apply these general results to the proportion problem,

which consists for each agent to compute the proportion of agents that initially started in one predetermined

state, and to the counting population size problem, which aims at estimating the size of the system. Both protocols

are uniform, i.e., each agent’s local algorithm for computing the outputs, given the inputs, does not require the

knowledge of the number of agents. Numerical simulations illustrate our bounds of the convergence time, and

show that these bounds are tight in the sense that among extensive simulations, numerous ones exactly fit with

our bounds.
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1 INTRODUCTION
This paper focuses on the deep analysis of average-based problems in the population protocol model, a

model in which agents are identically programmed, with no identity, and progress in their computation

through random pairwise interactions. A considerable amount of work has been done so far to determine

which properties can emerge from pairwise interactions between finite-state agents, together with the

derivation of bounds on the time and space needed to reach such properties (e.g., [3, 7, 16, 18, 25]).

In this work, we are primarily interested in problems that aim at precisely quantifying properties on

the system population. Specifically, assuming that each agent starts independently of each other in one

of two input states, say A and B, we are interested in determining the exact number of interactions that

allows each agent to locally estimate with any high probability the proportion of agents that started in

state A, and in estimating the population size. Both problems can be solved by relying on average-based

population protocols. We denote by n, nA and nB the total number of agents, the number of agents

which start in state A and the number of agents which start in state B, respectively. Briefly, the n agents

start independently from each other with an initial integer state, interact randomly by pairs, and at

each interaction, keep the average of both states as their new state. As usual, the time unit is discrete

and corresponds to an interaction.

State of the art. In 2004, Angluin et al. [4, 5] have formalized the population protocol model, and have

shown how to express and compute predicates in this model. Then in [6] the authors have completely

characterized the computational power of the model by establishing the equivalence between predicates

computable in the population model and those that can be defined in the Presburger arithmetic. Since

then, there has been a lot of work on population protocols including themajority problem [3, 7, 16, 18, 25],

the leader election problem [10, 19], in presence of faults [14], and on variants of the model [13, 17].

Draief and Vojnovic [16] and Mertzios et al. [18] propose a four-state protocol that solves the majority

problem with a parallel convergence time logarithmic in n but only in expectation. Moreover, the

expected convergence time is infinite when nA and nB are close to each other. Angluin et al.[7] and

Perron et al. [25] propose a three-state protocol that converges with high probability after a parallel

convergence time logarithmic in n but only if |nA − nB | ≥
√
n lnn.

Regarding the majority problem, Alistarh et al. [3] present a solution based on an average-and-conquer

method to exactly solve the majority problem. While their convergence time analysis needs to assume

a large number of states, in practice, their algorithm does not require more than n states to converge to

the majority. Bilke et al. [12] propose a majority-based protocol that converges in O(log2 n) parallel
steps and requires O(log2 n) states. Their protocol consists in a series of cycles, each cycle comprising

two phases. Orchestration of the phases relies on a local logical clock whose evolution is based on the

1-choice strategy. By following the same design principles, Alistarh et al. [2] improve upon Bilke et

al. [12] solution by relying on the 2-choice strategy to maintain the logical clock which guarantees

that O(logn) states are sufficient to converge in O(log2 n) parallel steps. Berenbrick et al. [11] continue

to improve upon the performance of this type of protocol by decreasing the time allocated to each

cycle (i.e., O(log2/3 n) parallel steps instead of O(logn) ones) which allows their solution to converge in

O(log5/3 n) parallel steps.
Focusing on the proportion problem, Mocquard et al. [23] provide optimal bounds in terms of order

complexity (i.e. in bigO notation) on the time it takes for each agent of the system to solve the proportion
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problem in the general case, and explicit and tight bounds under some restrictive assumptions. The

present paper extends [23] by removing those assumptions.

Regarding the estimation of the population size, Alistarh et al. [1] propose a protocol that in O(logn)
expected time and states converges to an approximation of the true size n. This is achieved by computing

an integer k such that with high probability

√
n ≤ 2

k ≤ n9. Doty and Eftekhari [15] improve this result

by estimating the population size to within a constant multiplicative factor, i.e. |k − logn | ≤ 5.7 but use
O(log2 n) parallel time to converge and O(log6 n) states.

Our contributions. The objective of the present paper is to improve upon previous results, and

in particular results of [23] by removing some restrictive hypotheses made in the analysis of the

convergence time of average-based protocols. Indeed, in [23] tight bounds on the convergence time of

those protocols were obtained assuming that the fractional part of the mean value ℓ of the sum of all

the initial states of all the agents is equal to 1/2. In the present paper, we generalize this analysis to all

values of this fractional part, i.e., ℓ − ⌊ℓ⌋ ∈ [0, 1).
Specifically, our analysis is based on an original approach consisting in associating with the stochastic

process C = {Ct , t ≥ 0} representing the evolution of the global state of the protocol, a shadow

stochastic process D = {Dt , t ≥ 0} whose initial state is the same as the one of C except for a fixed

number b of agents whose initial state values are incremented by 1. We prove in Lemma 5.4, that under

the same interactions, D follows the same evolution as C (remains in the shadow of C), i.e., Dt and

Ct are equal except for b agents whose state values are incremented by 1. The number b of agents is

chosen so that D satisfies the same hypotheses as those stated in Theorem 5.3. We extend the results of

Theorem 5.3 to give rise to Theorem 5.6 which does not require any restrictive hypotheses.

Note that in all our works, we always exhibit the constants arising in the complexity of our solutions.

This is extremely important in the case where these complexities are in O(logn) because the logarithm
function increases with n so slowly that even small constants rend the value of lnn meaningless with

respect to these constants even for large values of n.
Hence, we show that after no more than (n − 1)(2 ln(K +

√
n) − lnδ − ln 2) total interactions, where

K is a parameter that depends explicitly on the initial configuration of the system, with any predefined

probability 1 − δ , the difference between any two agents’ states is less than or equal to 2, and any

agent’s state is no more than 3/2 away from the mean value of the states of the agents.

We then apply those results to the proportion problem, which consists for each agent to compute

the proportion γ of agents that initially started in one predetermined state. We show that after no

more than (n − 1)(lnn − lnδ + 2 ln(2 + 1/ε) + ln(9/32)) total interactions, and by using ⌈3/(2ε)⌉ states,
with ε ∈ (0, 1), at any agent i the difference between i’s approximation of the proportion and the exact

proportion is less than ε with any high probability 1 − δ .
We then solve the system size problem which aims at approximating the size n of the system

population. We prove that each agent is able to determine either the exact value of the number n
of nodes or an approximation of this number, depending on the initial input valuem. Suppose that

the designer knows an upper bound N of the number n of agents. By takingm = 3N (N + 1), each

agent i possesses the exact value of n with probability at least 1 − δ and after a parallel time equal to

2 lnm − lnδ . Suppose now that the designer under estimates the value N , which should have been an

upper bound of n. We have thus n > N . If n ≤ 9(ln2 2)N 2(N + 1)2/4, then by takingm = 3N (N + 1) we
havem2 ≥ 4n/ln2 2. In that case each agent i possesses an approximated value of n with probability at
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4 • Mocquard, Robin, Sericola and Anceaume

least 1 − δ and after a parallel time equal to 2 lnm − lnδ . The value of this approximation lies within

lower and upper bounds computed by each agent i .
Numerical simulations illustrate our bounds of the convergence time, and show that these bounds

are tight in the sense that among extensive simulations, numerous ones exactly fit with our bounds.

The remaining of the paper is orchestrated as follows. Section 2 presents the problem addressed

in the population protocol model, whose formalization in terms of states, interactions and output

functions is recalled in Section 3. Section 4 defines the interaction function (i.e. the protocol) applied by

the agents when they randomly meet each other. Analysis of the protocol, whose main contribution

is the use of shadow process, is presented in Section 5. In Section 6, we apply our results to both

the proportion problem and the counting population size. The accuracy of our analytic study has

been illustrated through numerous simulations whose main results are presented in Section 7. Finally

Section 8 concludes the paper.

2 THE ADDRESSED PROBLEMS
We consider a set of n agents, interconnected by a complete graph, that asynchronously start their

execution in one of two distinct states A and B. Recall that nA (resp. nB ) is the number of agents whose

initial state is A (resp. B).

Proportion problem. A population protocol ran by all the nodes of the system solves the proportion

problem in τ steps with probability at least 1 − δ , for any δ ∈ (0, 1), if for any t ≥ τ , any node of the

system is capable of computing the ratio nA/n with any precision ε ∈ (0, 1), without the knowledge of
the population size n.

System size problem. A population protocol ran by all the nodes of the system solves the system size

problem in τ steps with probability at least 1 − δ , for any δ ∈ (0, 1), if for any t ≥ τ , any node of the

system is capable of computing a lower bound ωmin and an upper bound ωmax of n.

3 MODEL
In this section, we present the population protocol model, introduced by Angluin et al. [5]. This model

describes the behavior of a collection of agents that interact pairwise. The following definition is from

Angluin et al. [8]. A population protocol is characterized by a 6-tuple (Q, Σ,Ξ, ι,ω, f ), over a complete

interaction graph linking the set of n agents, where Q is a finite set of states, Σ is a finite set of input

symbols, Ξ is a finite set of output symbols, ι : Σ → Q is the input function that determines the initial

state of an agent, ω : Q → Ξ is the output function that determines the output symbol of an agent, and

f : Q ×Q → Q ×Q is the transition function that describes how two agents interact and update their

states. Initially all the agents start with a initial symbol from Σ, and update, upon pairwise interactions,

their state according to the transition function f . Interactions between agents are orchestrated by a

random scheduler: at each discrete time, any two agents are randomly chosen to interact with a given

distribution. Note that it is assumed that the random scheduler is fair, which means that the interactions

distribution is such that any possible interaction cannot be avoided forever.

The notion of time in population protocols refers to as the successive steps at which interactions

occur, while the parallel time refers to as the mean number of steps each agent executes. The parallel

time is thus essentially the time divided by the number n of agents [9]. Agents do not maintain nor use
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identifiers (agents are anonymous and cannot determine whether any two interactions have occurred

with the same agents or not). However, for ease of presentation the agents are numbered 1, 2, . . . ,n.

In this paper, we denote by C(i)
t the state of agent i at time t . The stochastic process C = {Ct , t ≥ 0},

where Ct = (C(1)
t , . . . ,C

(n)
t ), represents the evolution of the population protocol. The state space of C is

thus Qn
and a state of this process is also called a protocol configuration. We denote by Xt the random

pair of distinct nodes chosen at time t to interact, and for every i, j = 1, . . . ,n, with i , j, we define

pi, j (t) = P{Xt = (i, j)}.

We suppose that the sequence {Xt , t ≥ 0} is a sequence of independent and identically distributed

random variables. Since Ct is entirely determined by the values of C0,X0,X1, . . . ,Xt−1, this means

in particular that the random variables Xt and Ct are independent and that the stochastic process

C = {Ct , t ≥ 0} is a discrete-time homogeneous Markov chain. Classically, we suppose that Xt is

uniformly distributed, that is,

pi, j (t) =
1{i,j }

n(n − 1)
,

where 1A denotes the indicator function, which is equal to 1 if condition A is true and 0 otherwise.

4 AVERAGE-BASED POPULATION PROTOCOLS
Average-based population protocols use the average technique to compute for instance the proportion

of agents that started their execution in a given state A. This section describes the rules applied during

the interactions. At each discrete instant t , two distinct indices i and j are chosen among 1, . . . ,n
with probability 1/(n(n − 1)). Once chosen, the couple (i, j) interacts, and both agents update their

respective local state C(i)
t and C(j)

t by applying the transition function f , leading to state Ct+1, given by

f (C(i)
t ,C

(j)
t ) = (C(i)

t+1,C
(j)
t+1) with(

C(i)
t+1,C

(j)
t+1

)
=

(⌊
C(i)
t +C

(j)
t

2

⌋
,

⌈
C(i)
t +C

(j)
t

2

⌉)
(1)

and C(r )
t+1 = C

(r )
t for r , i, j .

Section 5 is devoted to the study of the bounds of the convergence time of average-based protocols.

This analysis will be applied in Section 6 to both the proportion problem and the size counting one.

5 ANALYSIS OF THE CONVERGENCE TIME OF AVERAGE-BASED PROTOCOLS
5.1 Notations
We will use in the sequel the Euclidean norm denoted simply by ∥.∥ and the infinite norm denoted by

∥.∥∞ and defined for all x = (x1, . . . ,xn) ∈ R
n
by

∥x ∥ =

(
n∑
i=1

x2i

)
1/2

and ∥x ∥∞ = max

i=1, ...,n
|xi |.
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5.2 Preliminaries
We recall the following well-known invariant result on average-based population protocols (see [22]).

Lemma 5.1. For every t ≥ 0, we have
n∑
i=1

C(i)
t =

n∑
i=1

C(i)
0
.

Proof. Using that for all integers k , k = ⌊k/2⌋ + ⌈k/2⌉, we deduce that the transformation from Ct
to Ct+1 described in Relation (1) does not change the sum of the entries of Ct+1. □

We denote by ℓ the mean value of the sum of the entries ofCt and by L the row vector ofR
n
with all

its entries equal to ℓ, that is

ℓ :=
1

n

n∑
i=1

C(i)
t and L := (ℓ, . . . , ℓ). (2)

The Markov chain C , ruled by the transition function f defined by Relation (1), approaches vector

L in the sense that the random vector Ct converges in probability towards vector L when t goes to
infinity [24]. Remark that C has a finite state space composed of a set of transient vector states and an

absorbing class of vector states whose entries are equal to ⌊ℓ⌋ or ⌈ℓ⌉. This absorbing class is reduced to

a single absorbing state when ℓ is an integer.

5.3 General Results
We first show that the expected value E

(
∥Ct − L∥2

)
is bounded by an affine recurrence relation.

Theorem 5.2. For every t ≥ 0, we have

E
(
∥Ct − L∥2

)
≤

(
1 −

1

n − 1

)t
E

(
∥C0 − L∥2

)
+
n

4

−
1{n odd}

4n
. (3)

Proof. The proof is based on a finer evaluation of the difference ∥Ct+1 − L∥2 − ∥Ct − L∥2 than the

one proposed in [23]. For sake of completeness we detail the proof in Appendix A.1. □

5.4 A First Bound on the Convergence Time
We introduce λ, the distance between ℓ and its nearest integer, that is

λ := min {ℓ − ⌊ℓ⌋, ⌈ℓ⌉ − ℓ} = min {ℓ − ⌊ℓ⌋, 1 − (ℓ − ⌊ℓ⌋)} .

It is easily checked that we have 0 ≤ λ ≤ 1/2.

In Theorem 4 of [23] or Theorem 5.2.8 of [20], we dealt with the case where λ is equal to 1/2. In the

following, we extend the results obtained in [23] or in [20] first to the case where λ =
(
n − 1{n odd}

)
/(2n)

(see Theorem 5.3) and then, for all λ ∈ [0, 1/2] (see Section 5.5).

Theorem 5.3. For all δ ∈ (0, 1), if λ =
(
n − 1{n odd}

)
/(2n) and if there exists a constant K such that

∥C0 − L∥ ≤ K then, for every t ≥ (n − 1) (2 lnK − lnδ − ln 2), we have

P

{
∥Ct − L∥∞ >

n + 1{n odd}

2n

}
= P

{
max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t > 1

}
≤ δ
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or equivalently,

P

{
max

1≤i≤n
C(i)
t = min

1≤i≤n
C(i)
t + 1

}
≥ 1 − δ .

Proof. The proof is detailed in Appendix A.2. It uses Theorem 5.2 combined with the Markov

inequality. □

Note that max1≤i≤n C
(i)
t = min1≤i≤n C

(i)
t +1 implies that min1≤i≤n C

(i)
t = ⌊ℓ⌋ and max1≤i≤n C

(i)
t = ⌈ℓ⌉.

Hence, Theorem 5.3 assures us that if λ is equal to

(
n − 1{n odd}

)
/(2n), then the protocol converges in

O(n lnK) (or O (lnK) in parallel time) with any high probability towards a class of absorbing vector

states which entries are equal to either ⌊ℓ⌋ or ⌈ℓ⌉.

5.5 The shadow process and the average-based protocols theorem
We introduce in this section what we call a shadow process of the stochastic process C = {Ct , t ≥ 0}.

This shadow process is a stochastic process denoted by D = {Dt , t ≥ 0} and defined at time t = 0 by

D(i)
0
= C(i)

0
+ 1{i ∈B0 },

where B0 is a non empty subset of b agents with b ≤ n − 1, i.e. B0 ⊂ {1, . . . ,n} and |B0 | = b.
For every t ≥ 1, the shadow process Dt is defined as process Ct , that is, when the couple (i, j) is

chosen to interact at time t (i.e. when Xt = (i, j)), the vector Dt+1 is given by(
D(i)
t+1,D

(j)
t+1

)
=

(⌊
D(i)
t + D

(j)
t

2

⌋
,

⌈
D(i)
t + D

(j)
t

2

⌉)
and D(r )

t+1 = D(r )
t for r , i, j .

In other words, processes Ct and Dt are coupled by process Xt : they behave identically in the sense

that at each time, the same two nodes are chosen for the interaction. The only difference lies in their

initial values. Note that process C is a part of the protocol but not process D which is introduced only

for the probabilistic analysis of C . Lemma 5.4 shows that if at time t = 0 D0 is “in the shadow” of C0

then for any time t ≥ 0, Dt remains “in the shadow” of Ct .

Lemma 5.4. For all t ≥ 0, there exists a non empty set Bt of b agents, i.e. Bt ⊂ {1, . . . ,n} and |Bt | = b,
such that for all i ∈ {1, 2, . . . ,n}, we have

D(i)
t = C

(i)
t + 1{i ∈Bt } . (4)

The proof appears in Appendix A.3. As we did for process C , we denote by ℓD the mean value of the

sum of the entries of Dt and by LD the row vector ofR
n
with all its entries equal to ℓD , that is

ℓD :=
1

n

n∑
i=1

D(i)
t and LD := (ℓD , . . . , ℓD ).

We use the shadow process to extend the results of Theorem 5.3 to the case of any λ value. We show

that for any process C associated with any initial condition C0, we can construct a shadow process D

verifying the condition of Theorem 5.3, i.e. λD = min

(
n−1{n odd}

2n , 1 −
(
n−1{n odd}

2n

))
=

n−1{n odd}

2n .

Lemma 5.5. For any process C , there exists a shadow process D of parameter b such that ℓD − ⌊ℓD⌋ =
n−1{n odd}

2n . Specifically, let d ≥ 0 be the smallest integer such that n divides
∑n

i=1C
(i)
0
+ d . Then
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8 • Mocquard, Robin, Sericola and Anceaume

• If 0 ≤ d < n/2, then b = d + n−1{n odd}
2

,
• If n/2 ≤ d < n, then b = d −

n+1{n odd}
2
.

The proof is detailed in Appendix A.3. The shadow process D, associated with process C , is thus
constructed from the rest of the Euclidean division of nℓ by n. Taking the complement of this rest to n,
we deduce the value of parameter b of the shadow process D.

Theorem 5.6. For all δ ∈ (0, 1), if there exists a constant K such that ∥C0 − L∥ ≤ K , then, for all
t ≥ (n − 1)

(
2 ln (K +

√
n) − lnδ − ln 2

)
, we have

P

{
∥Ct − L∥∞ ≥

3

2

}
≤ δ . (5)

Proof. Applying Lemma 5.5, we construct a shadow process Dt from a process Ct such that λD =(
n − 1{n odd}

)
/(2n). We conclude by applying Theorem 5.3 to the shadow process so constructed (see

details in Appendix A.3). □

Theorem 5.6 thus extends the results of Theorem 6 of [23] to the case of any λ value. For any λ value,

process Ct belongs to the open ball of radius 3/2 and center L, with any high probability in the infinite

norm, after no more than O(n ln(K +
√
n) ) time or O( ln(K +

√
n) ) parallel time (Relation (5)).

Corollary 5.7. For all δ ∈ (0, 1), if there exists a constant K such that ∥C0 − L∥ ≤ K , then for all
t ≥ (n − 1)

(
2 ln (K +

√
n) − lnδ − ln 2

)
,

P

{
max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t > 2

}
≤ δ (6)

Proof. Using that max1≤i≤n C
(i)
t ≥ ℓ ≥ min1≤i≤n C

(i)
t , we have that if ∥Ct − L∥∞ < 3/2, then

max

1≤i≤n
C(i)
t − ℓ < 3/2 and ℓ − min

1≤i≤n
C(i)
t < 3/2 =⇒ max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t ≤ 2.

Hence, P{∥Ct − L∥∞ < 3/2} ≤ P{max1≤i≤n C
(i)
t −min1≤i≤n ≤ 2}. We conclude applying Theorem 5.6.

□

6 APPLICATIONS
We recall that a population protocol is defined by a 6-tuple (Σ,Q,Ξ, ι,ω, f ), where the set of states is
Q = {0, 1, . . . ,m} and the transition function f is defined by Relation (1) (see Sections 3 and 4). In the

averaged-based protocols context, we have Σ = {A,B}, and the input function ι verifies: ι(A) =m and

ι(B) = 0, wherem is a positive integer. Thus, only the set of output symbols Ξ, the output function ω
and the integer valuem are application dependent. We recall that nA is the number of nodes starting in

state A. Note that we have

∥C0 − L∥2 = nA
(
m −

nAm

n

)
2

+ (n − nA)
(nAm

n

)
2

=m2nA
(
1 −

nA
n

)
. (7)
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6.1 Solving the Proportion Problem
For solving the proportion problem defined in Section 2, we denote by γA the proportion of nodes

starting with A, i.e. γA = nA/n. We thus have ℓ =mnA/n = γAm which also gives γA = ℓ/m.

Relation (7) gives a function of nA which reaches its maximum for nA = n/2. At that value we obtain
∥C0 − L∥2 ≤ m2n/4, that is

∥C0 − L∥ ≤
m
√
n

2

. (8)

In order to clarify the notation and since we are interested in computing the proportion γA of nodes

which started with value A, we add subscript A to the output function ω applied on the current state x
of any agent. We take, for every x ∈ Q ,

ωA(x) = x/m.

The set of output symbols is thus Ξ = {0, 1/m, . . . (m − 1)/m, 1}. The following theorem gives an

evaluation of the first instant t from which the distance betweenC(i)
t /m and γA, for all the nodes, is less

than a fixed ε with any high probability 1 − δ .
Theorem 6.1. For all δ ∈ (0, 1) and for all ε ∈ (0, 1), by taking m = ⌈3/(2ε)⌉, we have, for all

t ≥ (n − 1) (lnn − lnδ + 2 ln(2 + 1/ε) + ln(9/32)),

P

{
|ωA(C

(i)
t ) − γA | < ε, for all i = 1, . . . ,n

}
≥ 1 − δ .

The proof appears in Appendix A.4.

6.2 Solving the System Size Problem
In this subsection, we address the system size problem. Supposing that the number nA of nodes whose

initial value is equal to A is known, we prove that each agent is able to determine either the exact value

of the number n of nodes or an approximation of this number, depending on the initial input valuem.

We introduce the following two output functions, denoted byωmin andωmax , which give respectively

the lower and the upper bound of n. They are defined as follows. For all integer x ,

ωmin(x) =

⌈
2nAm

2x + 3

⌉
and ωmax (x) =


+∞ if x ≤ 1⌊
2nAm

2x − 3

⌋
if x ≥ 2.

All the proofs of this subsection are detailed in Appendix A.4. We first start by a general result on the

convergence time for the system size problem.

Theorem 6.2. For all δ ∈ (0, 1) and for all t ≥ (n − 1)
(
2 ln

(√
nAm +

√
n
)
− lnδ − ln 2

)
, we have

P

{
ωmin

(
C(i)
t

)
≤ n ≤ ωmax

(
C(i)
t

)
, for all i = 1, . . . ,n

}
≥ 1 − δ .

Note that Theorem 6.2 has a parallel time of convergence in O
(
log(

√
nAm +

√
n)

)
that depends on

n. Using an additional hypothesis, we can free ourselves from the dependence of the parallel time of

convergence on the knowledge of n.
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Corollary 6.3. If nAm2 ≥ 4n/ln2 2, for all δ ∈ (0, 1) and for all t ≥ (n − 1) (lnnA + 2 lnm − lnδ ), we
have

P

{
ωmin

(
C(i)
t

)
≤ n ≤ ωmax

(
C(i)
t

)
, for all i = 1, . . . ,n

}
≥ 1 − δ . (9)

Moreover, in the case where nAm ≥ 3n(n + 1), we have

P

{
ωmin

(
C(i)
t

)
= ωmax

(
C(i)
t

)
= n, for all i = 1, . . . ,n

}
≥ 1 − δ . (10)

The simpler way to use this corollary is to take nA = 1. Suppose that the designer knows an upper

bound N of the number n of agents. By takingm = 3N (N + 1), each agent i possesses the exact value
of n with probability at least 1 − δ and after a parallel time equal to 2 lnm − lnδ . This value is equal to

ωmin

(
C(i)
t

)
= ωmax

(
C(i)
t

)
for all i = 1, . . . ,n.

Suppose now that the designer under estimates the valueN , which should have been an upper bound of

n.We have thusn > N . Recall thatm = N (N+1). Ifn ≤ 9(ln2 2)N 2(N+1)2/4, thenwe havem2 ≥ 4n/ln2 2.
In that case each agent i possesses an approximated value of n with probability at least 1− δ and after a

parallel time equal to 2 lnm − lnδ . This value belongs to the interval

r
ωmin

(
C(i)
t

)
,ωmax

(
C(i)
t

)z
.

7 EXPERIMENTAL RESULTS
This section shows how tight our bounds are, by comparing Theorem 6.1, Theorem 6.2 and Corollary 6.3

to the results obtained via extensive simulations. The source code (Java) that allows us to obtain these

experiments has been placed in the gitLab publicly accessible archival repository [21]. A simulation

consists in the following steps: first, all the n nodes are initialized to 0 orm depending on the problem

that must be solved. Then, at each step of the simulation, two nodes are randomly chosen to interact

and update their state. The simulation stops when all the nodes are able to give the correct output, that

is when the convergence occurs.

7.1 The Proportion Problem
For this problem, the n nodes are randomly and independently initialized to 0 orm. Recall thatm =
⌈3/(2ε)⌉, where ε ∈ (0, 1) the sought precision. The number of nodes initialized withm is nA and the

proportion of such nodes if γA = nA/n. We denote by θ the parallel convergence time which is defined

by

θ =
inf

{
t ≥ 0 s.t. for all i = 1, . . . ,n,

���C(i)
t /m − γA

��� < ε
}

n
.

We have run R independent simulations and have stored the R values of the parallel convergence times

denoted by θ1, . . . ,θR . Recall that the convergence time nθk is the total number of interactions that

have been executed during the k-th simulation when the convergence occurs.

We first illustrate the influence of γA and we show the impact of the distance between ℓ and its

nearest integer (i.e. ℓ − ⌊ℓ⌋) on the approximated mean parallel convergence time θ = (θ1 + · · · + θR)/R.
When applying Theorem 5.6, the worst case is obtained when ∥C0 − L∥2 is as large as possible, which

leads to the largest possible value of K . We have seen in Section 6 that ∥C0 − L∥2 =m2nA (1 − nA/n) =
m2nγA(1 − γA). The maximum of this function is obtained when γA = 1/2, which thus gives the largest

bound of the convergence time. This is observed in the simulation results illustrated in Figure 1(a). For
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Fig. 1. Mean value θ of the parallel convergence time as a function of the proportion γA and as a function of the
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Fig. 2. Comparing the estimation θ ⌈R(1−δ )⌉ of T with the theoretical bound τ as a function of n.

each possible value of γA, we have run R = 10
6
independent simulations, and we plot the estimated

mean value θ of the parallel convergence time.

We show in Figure 1(b) the impact of ℓ on this estimated mean value. We have performed for different

initial distributions, R = 10
4
simulations in a system with n = 10

4
agents with m = 200, which

corresponds to ε = 0.0075. We have varied nA from 5000 to 5200, leading to ℓ values ranging from 100

to 104 with steps of 0.02. It is interesting to observe that when ℓ − ⌊ℓ⌋ = 1/2 (i.e., the fractional part of

ℓ is equal to 1/2), the estimated mean value of the parallel convergence time is maximal, while it is

minimal when the fractional part of ℓ is equal to 0 (i.e. when ℓ is an integer).
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The main lessons drawn from these experiments are that the mean convergence time is maximal

when γA = 1/2 and ℓ − ⌊ℓ⌋ = 1/2. Sufficient conditions to reach this maximum are obtained by setting n
even, nA = n/2 andm odd. In the following, all the experiments are run under these conditions, which

are denoted by C.

We now illustrate our bound. Note that this bound is tight in the sense that among the many

simulations we have performed under conditions C, a large number of them correspond exactly to

this bound. In the following, we sort the parallel convergence times of the R independent simulations,

i.e. θ1 ≤ . . . ≤ θR . Let T be the first instant t such that P{θ < t} ≥ 1 − δ . The estimation of T is thus

given by θ ⌈R(1−δ )⌉ . For usual values of ε like ε = 10
−p
, with p integer ≥ 2, all the values ofm = ⌈3/(2ε)⌉
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are even. In order to fit with conditions C, we take ε = 10
−p − 10

−2p/2. We can check thatm is odd

for every integer p ≥ 2. Figures 2, 3 and 4 compare simulation results which consist in the estimation

θ ⌈R(1−δ )⌉ of t with the theoretical bound τ of the parallel convergence time, given in Theorem 6.1 as

τ = ln(n) − ln(δ ) + 2 ln(2 + 1/ε) + ln(9/32).

These results are given as a function of n in Figure 2, as a function of ε in Figure 3 and as a function of

δ in Figure 4. As can be seen, simulations exactly fit with our theoretical bound, except for quite small

values of n, i.e. n ≤ 80 see Figure 2. This clearly shows the great tightness of our theoretical bound.

Note the logarithmic scale of the x-axis.

7.2 The System Size Problem
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Fig. 5. Comparing the estimation θ ⌈R(1−δ )⌉ of T with the theoretical bound τ as a function ofm with n = 10
3,

δ = 10
−4 and R = 10

5.

For this problem, all the n nodes are initialized to 0, except one node which is initialized tom. We

thus have nA = 1. We redefine θ as the parallel convergence time which is defined here by

θ =
inf

{
t ≥ 0 s.t. for all i = 1, . . . ,n, n ∈

r
ωmin

(
C(i)
t

)
,ωmax

(
C(i)
t

)z}
n

.

Hence the definition ofT remains the same using this new definition of θ . As for the proportion problem,

we have run R independent simulations and have stored the R values of the parallel convergence times
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denoted by θ1, . . . ,θR . Recall that the convergence time nθk is the total number of interactions that

have been executed during the k-th simulation when the convergence occurs.

Figure 5 compares simulation results which consist in the estimation θ ⌈R(1−δ )⌉ of T , where R = 10
5

and δ = 10
−4

with the theoretical bound τ of the parallel convergence time, given in Theorem 6.2 and

Corollary 6.3, that is

τ =

{
2 ln

(
m +

√
n
)
− lnδ − ln 2 ifm <

⌈
2

√
n/ln 2

⌉
2 lnm − lnδ otherwise

This figure shows tightness of our bounds. Indeed among the many simulations we have performed,

a large number of them correspond to these bounds. In this figure, we introduce the valuesm1 and

m2 ofm to show the different range in which either Theorem 6.2 or Corollary 6.3 apply. Indeed, since

nA = 1 and n = 10
3
, we definem1 =

⌈
2

√
n/ln 2

⌉
= 92 andm2 = 3n(n + 1) = 3003000. It follows that for

m ∈ J1,m1K only Theorem 6.2 applies. Form ∈ Jm1 + 1,m2 − 1K, we can use Relation (9) of Corollary 6.3

and form ≥ m2 we can use Relation (10) of Corollary 6.3. Clearly, the best result is obtained when

m ≥ m2 since in that case each agent knows that, after a parallel time τ ≥ 2 lnm− lnδ , the total number

of agents is equal to 10
3
with a probability greater than or equal to 0.9999. Form =m2, this parallel

time is 2 lnm2 − lnδ = 39.041.

8 CONCLUSION
In this paper we have presented a thorough analysis of the bound of the convergence time of average-

based population protocols, and applied it to both the proportion problem and the system size one.

Thanks to a well chosen stochastic coupling, we have considerably improved existing results by

providing explicit and tight bounds of the time required to converge to the solution of these problems.

Numerical simulations illustrate the tightness of our bounds of convergence times.
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A APPENDIX
A.1 Additional results of Subsection 5.3
In order to simplify the writing we use the notation Yt := ∥Ct − L∥2 and to prove Theorem 5.2 we need

the following two results.

Theorem A.1. For every t ≥ 0, we have

E (Yt+1 | Ct ) =

(
1 −

1

n − 1

)
Yt +

qt (n − qt )

n(n − 1)
,

where qt denotes the number of odd entries of vector Ct .

Proof. In the same way as in the proof of Theorem 6 in [22], one can deduce from Relations (1), that

for all t ≥ 0,

Yt+1 = Yt −
1

2

n∑
i=1

n∑
j=1

[(
C(i)
t −C(j)

t

)
2

− 1
{C (i )

t +C
(j )
t odd}

]
1{Xt=(i, j)} .

We recall that Xt and Ct are independent and that pi, j (t) = 1/(n(n − 1)). Conditioning first by Ct , then

taking the expectations, we get

E (Yt+1 |Ct ) = Yt −
1

2

(
n∑
i=1

n∑
j=1

[(
C(i)
t −C(j)

t

)
2

− 1
{C (i )

t +C
(j )
t odd}

])
pi, j (t)

= Yt −
1

2n(n − 1)

n∑
i=1

n∑
j=1

[(
C(i)
t −C(j)

t

)
2

− 1
{C (i )

t +C
(j )
t odd}

]
.

Using that (see in [22])

n∑
i=1

n∑
j=1

(
C(i)
t −C(j)

t

)
2

= 2nYt and
n∑
i=1

n∑
j=1

1
{C (i )

t +C
(j )
t odd}

= 2qt (n − qt ),

where integer qt is the number of odd entries of vector Ct , we deduce that

E (Yt+1 | Ct ) =

(
1 −

1

n − 1

)
Yt +

qt (n − qt )

n(n − 1)
,

which completes the proof of Theorem A.1. □

Corollary A.2. For every t ≥ 0, we have

E (Yt+1) ≤

(
1 −

1

n − 1

)
E (Yt ) +

n

4(n − 1)
−

1{n odd}

4n(n − 1)
.

Proof. Integer qt being the number of odd entries of vector Ct , we have qt ∈ {0, 1, . . . ,n}. The
function д defined, for x ∈ [0,n], by д(x) = x(n − x) has its maximum at point x = n/2, so we have

0 ≤ д(x) ≤ n2/4. Thus

д(qt ) = qt (n − qt ) ≤
n2

4

.

We distinguish the following two cases:
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• if n is even then qt can be equal to n/2 which means that the best upper bound of д(qt ) is n
2/4.

• if n is odd then qt being an integer, it cannot be equal to n/2. The maximum of дt (qt ) is then
reached either at point qt = (n − 1)/2 or at point qt = (n + 1)/2. For both points, we have

д(qt ) ≤ (n − 1)(n + 1)/4 = n2/4 − 1/4, so the best upper bound of д(qt ) is n
2/4 − 1/4.

Putting together the two cases, we obtain

qt (n − qt ) ≤
n2

4

−
1{n odd}

4

.

Using this inequality in Theorem A.1, we get

E (Yt+1 | Ct ) ≤

(
1 −

1

n − 1

)
Yt +

n

4(n − 1)
−

1{n odd}

4n(n − 1)
.

Taking the expectation in both sides, we obtain

E (Yt+1) ≤

(
1 −

1

n − 1

)
E (Yt ) +

n

4(n − 1)
−

1{n odd}

4n(n − 1)
,

which completes the proof of Corollary A.2. □

Theorem 5.2 solves the recurrence stated in Corollary A.2.

Theorem 5.2 For every t ≥ 0, we have

E (Yt ) ≤

(
1 −

1

n − 1

)t
E (Y0) +

n

4

−
1{n odd}

4n
. (11)

Proof. The proof is made by induction on the time t . Clearly, Relation (11) is true for t = 0. Suppose

that Relation (11) is true for a fixed integer t . Using Corollary A.2, we obtain

E (Yt+1) ≤

(
1 −

1

n − 1

)
E

((
1 −

1

n − 1

)t
E (Y0) +

n

4

−
1{n odd}

4n

)
+

n

4(n − 1)
−

1{n odd}

4n(n − 1)

≤

(
1 −

1

n − 1

)t+1
E(Y0) +

n

4

−
1{n odd}

4n
,

which completes the proof of Theorem 5.2. □

A.2 Additional results of Subsection 5.4
We start by the following Lemma.

Lemma A.3. Let h = ⌊ℓ⌋ + 1/2 and H = (h,h, . . . ,h) ∈ Rn .
If λ =

(
n − 1{n odd}

)
/(2n), then

∥Ct − L∥2 = ∥Ct − H ∥2 −
1{n odd}

4n
≥

n

4

−
1{n odd}

4n
(12)
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Proof. Remark that vector Ct − L is orthogonal to the unit vector e (all the entries of e are equal
to 1):

⟨Ct − L, e⟩ =
n∑
i=1

(
C(i)
t − ℓ

)
= nℓ − nℓ = 0.

Hence, since L−H = (ℓ−h)e , we deduce thatCt −L and L−H are orthogonal too. Applying Pythagore’s

Theorem, we obtain

∥Ct − H ∥2 = ∥Ct − L∥2 + ∥L − H ∥2 ⇒ ∥Ct − L∥2 = ∥Ct − H ∥2 − ∥L − H ∥2. (13)

We have

∥L − H ∥2 = n(ℓ − h)2 = n (1/2 − (ℓ − ⌊ℓ⌋))2

By definition of λ and since λ = (n − 1{n odd})/(2n), we have either ℓ − ⌊ℓ⌋ = (n − 1{n odd})/2n or

ℓ − ⌊ℓ⌋ = (n + 1{n odd})/2n. In both cases, we get

∥L − H ∥2 =
1{n odd}

4n
. (14)

Then, remark that

∥Ct − H ∥2 ≥ n min

1≤i≤n
|C(i)

t − (⌊ℓ⌋ +
1

2

)|2 ≥ n |
1

2

|2 =
n

4

. (15)

Injecting Relation (14) in Relation (13), and applying Inequality (15), we conclude Inequality (12). □

Lemma A.4. If λ =
(
n − 1{n odd}

)
/(2n), then

max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t > 1 ⇐⇒ ∥Ct − L∥∞ >

n + 1{n odd}

2n
. (16)

Proof. Note first that if λ =
(
n − 1{n odd}

)
/(2n) then we have

∥Ct − L∥∞ ≥ 1 − λ =
n + 1{n odd}

2n
. (17)

If max1≤i≤n C
(i)
t −min1≤i≤n C

(i)
t = 1, then, using Relation (2), we have

min

1≤i≤n
C(i)
t ≤

1

n

n∑
i=1

C(i)
t = ℓ ≤ max

1≤i≤n
C(i)
t = min

1≤i≤n
C(i)
t + 1.

It follows easily that min1≤i≤n C
(i)
t = ⌊ℓ⌋ and max1≤i≤n C

(i)
t = ⌈ℓ⌉. Hence, we have

∥Ct − L∥∞ = max {ℓ − ⌊ℓ⌋, ⌈ℓ⌉ − ℓ)} = 1 − λ

since max {ℓ − ⌊ℓ⌋, ⌈ℓ⌉ − ℓ)} +min {ℓ − ⌊ℓ⌋, ⌈ℓ⌉ − ℓ)} = 1. We deduce

max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t = 1 =⇒ ∥Ct − L∥∞ =

n + 1{n odd}

2n
. (18)

If ∥Ct − L∥∞ =
n+1{n odd}

2n , then ∥Ct − L∥∞ = max {ℓ − ⌊ℓ⌋, ⌈ℓ⌉ − ℓ)}. Remark that, by definition of the

infinity norm,

∥Ct−L∥∞ = max

1≤i≤n
|C(i)

t −ℓ | = max

(
| max

1≤i≤n
C(i)
t − ℓ |, | min

1≤i≤n
C(i)
t − ℓ |

)
= max

(
max

1≤i≤n
C(i)
t − ℓ, ℓ − min

1≤i≤n
C(i)
t

)
.
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By identification, we have either

max

1≤i≤n
C(i)
t − ℓ = ℓ − ⌊ℓ⌋ and ℓ − min

1≤i≤n
C(i)
t = ⌈ℓ⌉ − ℓ

or

max

1≤i≤n
C(i)
t − ℓ = ℓ − ⌊ℓ⌋ and ℓ − min

1≤i≤n
C(i)
t = ⌈ℓ⌉ − ℓ.

Hence,(
max

1≤i≤n
C(i)
t − ℓ

)
+

(
ℓ − min

1≤i≤n
C(i)
t

)
= (⌈ℓ⌉ − ℓ) + (ℓ − ⌊ℓ⌋) =⇒ max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t = ⌈ℓ⌉ − ⌊ℓ⌋ .

If ℓ is an integer (i.e. n divides

∑n
i=1C

(i)
0
), then ⌈ℓ⌉ − ⌊ℓ⌋ = 0. This involves that λ = 0, which is impossible

here since λ is supposed to be equal to

(
n − 1{n odd}

)
/(2n) and n ≥ 2 (pairwise interactions). Otherwise,

if ℓ is not an integer, then ⌈ℓ⌉ = ⌊ℓ⌋ + 1. Combining this result with Relation (18), we deduce that

max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t = 1 ⇐⇒ ∥Ct − L∥∞ =

n + 1{n odd}

2n
.

Hence, combining this relation with Relation (17), we deduce Relation (16). □

We can now turn to the proof of Theorem 5.3.

Theorem 5.3 For all δ ∈ (0, 1), if λ =
(
n − 1{n odd}

)
/(2n) and if there exists a constant K such that

∥C0 − L∥ ≤ K then, for every t ≥ (n − 1) (2 lnK − lnδ − ln 2), we have

P

{
∥Ct − L∥∞ >

n + 1{n odd}

2n

}
= P

{
max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t > 1

}
≤ δ . (19)

Equivalently,

P

{
max

1≤i≤n
C(i)
t = min

1≤i≤n
C(i)
t + 1

}
≥ 1 − δ . (20)

Proof. We first aim to show that

max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t > 1 =⇒ ∥Ct − L∥2 ≥

n

4

−
1{n odd}

4n
+ 2. (21)

Let h = ⌊ℓ⌋ + 1/2 and H = (h,h, . . . ,h) ∈ Rn
.

In the same way, if max1≤i≤n C
(i)
t −min1≤i≤n C

(i)
t > 1, then there exists an agent i such that |C(i)

t −h | ≥

3/2, and for all j ∈ {1, 2, . . . ,n} \ {i}, |C(j)
t − h | ≥ 1/2. We can thus write

max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t > 1 =⇒ ∥Ct − H ∥2 ≥

n − 1

4

+

(
3

2

)
2

=
n

4

+ 2.

Applying Lemma A.3, we thus obtain Relation (21), and deduce that

P

{
max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t > 1

}
≤ P

{
∥Ct − L∥2 ≥

n

4

−
1{n odd}

4n
+ 2

}
. (22)

Then, from Relation (3) of Theorem 5.2, we obtain

E

(
∥Ct − L∥2 −

n

4

+
1{n odd}

4n

)
≤

(
1 −

1

n − 1

)t
E(∥C0 − L∥2).

, Vol. 1, No. 1, Article . Publication date: July 2019.



20 • Mocquard, Robin, Sericola and Anceaume

Let τ = (n − 1) (2 lnK − lnδ − ln 2). For t ≥ τ , we have(
1 −

1

n − 1

)t
≤ e−t/(n−1) ≤ e−τ /(n−1) =

2δ

K2
.

Moreover, since ∥C0 − L∥ ≤ K , we get E(∥C0 − L∥2) ≤ K2
and thus

E

(
∥Ct − L∥2 −

n

4

+
1{n odd}

4n

)
≤ 2δ .

Using the Markov inequality (Lemma A.3 ensures that we take the expectation of a non negative random

variable), we obtain for t ≥ τ ,

P

{
∥Ct − L∥2 −

n

4

+
1{n odd}

4n
≥ 2

}
≤ δ .

Hence, we deduce from Relation (22) that, for t ≥ τ ,

P

{
max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t > 1

}
≤ δ .

Remark that max1≤i≤n C
(i)
t cannot be equal to min1≤i≤n C

(i)
t here. Indeed, if so, then vector Ct is equal

to vector L, implying that ℓ is an integer. In such a case, λ = 0, which is impossible since n ≥ 2 (pairwise

interactions). Hence, P

{
max1≤i≤n C

(i)
t −min1≤i≤n C

(i)
t ≤ 1

}
= P

{
max1≤i≤n C

(i)
t = min1≤i≤n C

(i)
t + 1

}
and we directly obtain Relation (20).

Finally, applying Lemma A.4, we deduce that

P

{
max

1≤i≤n
C(i)
t − min

1≤i≤n
C(i)
t > 1

}
= P

{
∥Ct − L∥∞ >

n + 1{n odd}

2n

}
,

which ends the proof. □

A.3 Additionnal proof of Subsection 5.5
Lemma 5.4 For all t ≥ 0, there exists a non empty set Bt of b agents, i.e. Bt ⊂ {1, . . . ,n} and |Bt | = b,
such that for all i ∈ {1, 2, . . . ,n}, we have

D(i)
t = C

(i)
t + 1{i ∈Bt } . (23)

Proof. The proof is made by induction. Relation (23) is clearly true for t = 0 by definition of D0.

Suppose that at time t ≥ 0, there exists a set Bt ⊂ {1, 2, . . . ,n} with |Bt | = b, satisfying Relation (23).

Let i and j be the two agents interacting at time t , i.e. let Xt = (i, j), for both processes Ct and Dt . We

distinguish the following cases.

• Case 1 : i, j ∈ Bt .
In this case, we have

D(i)
t+1 =

⌊
D(i)
t + D

(j)
t

2

⌋
=

⌊
C(i)
t +C

(j)
t + 2

2

⌋
= C(i)

t+1 + 1.

In the same way, we have D(j)
t+1 = C

(j)
t+1 + 1, which means that i, j ∈ Bt+1. The other entries being

invariant, we have Bt+1 = Bt .
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• Case 2 : i, j < Bt .
In this case, we have D(i)

t+1 = C
(i)
t+1 and D

(j)
t+1 = C

(j)
t+1 which means that i, j < Bt+1. The other entries

being invariant, we have Bt+1 = Bt .
• Case 3 : i ∈ Bt and j < Bt .

– Case 3.1 : C(i)
t +C

(j)
t is even.

In this case, we have

D(i)
t+1 =

⌊
D(i)
t + D

(j)
t

2

⌋
=

⌊
C(i)
t + 1 +C

(j)
t

2

⌋
=

⌊
C(i)
t +C

(j)
t

2

⌋
= C(i)

t+1.

In the same way, we have D(j)
t+1 = C(j)

t+1 + 1, which means that i < Bt+1 and j ∈ Bt+1. We thus

have Bt+1 = (Bt \ {i}) ∪ {j} and so |Bt+1 | = |Bt | = b.

– Case 3.2 : C(i)
t +C

(j)
t is odd.

In a similar way to the case 3.1, we have D(i)
t+1 = C

(i)
t+1 + 1 and D(j)

t+1 = C
(j)
t+1, which means that

i ∈ Bt+1 and j < Bt+1 and so Bt+1 = Bt .
• Case 4 : i < Bt and j ∈ Bt .

– Case 4.1 : C(i)
t +C

(j)
t is even.

In a similar way to the case 3.2, we have D(i)
t+1 = C

(i)
t+1 and D(j)

t+1 = C
(j)
t+1 + 1, which means that

i < Bt+1 and j ∈ Bt+1 and so Bt+1 = Bt .

– Case 4.2 : C(i)
t +C

(j)
t is odd.

In a similar way to the case 3.1, we have D(i)
t+1 = C

(i)
t+1 + 1 and D(j)

t+1 = C
(j)
t+1, which means that

i ∈ Bt+1 and j < Bt+1. We thus have Bt+1 = (Bt \ {j}) ∪ {i} and so |Bt+1 | = |Bt | = b.

In all the cases, we have shown that Bt+1 ⊂ {1, 2, . . . ,n}, that |Bt+1 | = |Bt | = b and that (23) is true at

time t + 1, which completes the proof of Lemma 5.4. □

Lemma A.5. For all t ≥ 0, we have

∥Ct − L∥∞ − ∥Dt − LD ∥∞ ≤
n − 1

n

Proof. From Lemma 5.4, we easily get

ℓD =
1

n

n∑
i=1

D(i)
t = ℓ +

|Bt |

n
= ℓ +

b

n
.

Observing that

∥Dt − LD ∥∞ = max{ℓD − min

1≤i≤n
D(i)
t , max

1≤i≤n
D(i)
t − ℓD },

∥Ct − L∥∞ = max{ℓ − min

1≤i≤n
C(i)
t , max

1≤i≤n
C(i)
t − ℓ},

we first deduce that

− ∥Dt − LD ∥∞ ≤ −

(
ℓD − min

1≤i≤n
D(i)
t

)
and − ∥Dt − LD ∥∞ ≤ −

(
max

1≤i≤n
D(i)
t − ℓD

)
. (24)

We distinguish two cases:
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• Case 1: ∥Ct − L∥∞ = ℓ −min1≤i≤n C
(i)
t . Applying Relation (24), we deduce that

∥Ct − L∥∞ − ∥Dt − LD ∥∞ ≤

(
ℓ − min

1≤i≤n
C(i)
t

)
−

(
ℓD − min

1≤i≤n
D(i)
t

)
.

Since, from Lemma 5.4, we have that min1≤i≤n D
(i)
t ≤ min1≤i≤n C

(i)
t + 1, we deduce

∥Ct − L∥∞ − ∥Dt − LD ∥∞ ≤ ℓ − ℓD + 1 = 1 −
b

n
≤

n − 1

n
.

• Case 2: ∥Ct − L∥∞ = max1≤i≤n C
(i)
t − ℓ. Applying Relation (24), we deduce that

∥Ct − L∥∞ − ∥Dt − LD ∥∞ ≤

(
max

1≤i≤n
C(i)
t − ℓ

)
−

(
max

1≤i≤n
D(i)
t − ℓD

)
.

Since, from Lemma 5.4, we have max1≤i≤n C
(i)
t ≤ max1≤i≤n D

(i)
t , we deduce again

∥Ct − L∥∞ − ∥Dt − LD ∥∞ ≤ ℓ − ℓD =
b

n
≤

n − 1

n
,

which ends the proof. □

Lemma A.6. For all t ≥ 0, we have

∥Dt − LD ∥ − ∥Ct − L∥ <
√
n.

Proof. Remark that vector Dt − LD is orthogonal to the unit vector e (all the entries of e are equal
to 1):

⟨Dt − LD , e⟩ =
n∑
i=1

(
D(i)
t − ℓD

)
= nℓD − nℓD = 0.

Hence, since LD − L = (ℓD − ℓ)e , we deduce that Dt − LD and LD − L are orthogonal too. It follows, by

using the Pythagore’s Theorem, that we have

∥Dt − L∥2 = ∥Dt − LD ∥
2 + ∥LD − L∥2 =⇒ ∥Dt − LD ∥ ≤ ∥Dt − L∥.

From Relation (4), we have D(i)
t − C(i)

t = 1{i ∈Bt }, for every i = 1, . . . ,n. Since |Bt | = b, this leads to

∥Dt −Ct ∥ =
√
b. From the triangle inequality we get

∥Dt − L∥ ≤ ∥Ct − L∥ + ∥Dt −Ct ∥ = ∥Ct − L∥ +
√
b .

Thus

∥Dt − L∥ ≤ ∥Ct − L∥ +
√
b ≤ ∥Ct − L∥ +

√
n,

since b < n. □

Lemma 5.5 For any process C , there exists a shadow process D of parameter b such that ℓD − ⌊ℓD⌋ =
n−1{n odd}

2n . Specifically, let d ≥ 0 be the smallest integer such that n divides

∑n
i=1C

(i)
0
+ d .

• If 0 ≤ d < n/2, then b = d +
n−1{n odd}

2
,

• If n/2 ≤ d < n, then b = d −
n+1{n odd}

2
.

, Vol. 1, No. 1, Article . Publication date: July 2019.



Average-based Population Protocols : Explicit and Tight Bounds of the Convergence Time • 23

Proof. We consider a set B0 of agents with cardinality b ∈ {0, · · · ,n − 1} and the corresponding

shadow process Dt of process Ct defined in Section 5.5. By definition of ℓD , we have, from Lemma 5.4,

ℓD = ℓ +
b
n which gives ℓD − ⌊ℓD⌋ = ℓ +

b
n − ⌊ℓ + b

n ⌋.

Let an integer d such that n divides nℓ + d . We thus have ℓD − ⌊ℓD⌋ =
b−d
n − ⌊ b−dn ⌋.

• Case 1: if 0 ≤ d < n/2, we take b = d +
n−1{n odd}

2
, which leads to 0 ≤ b ≤ n − 1 and

ℓD − ⌊ℓD⌋ =
n − 1{n odd}

2n
− ⌊

n − 1{n odd}

2n
⌋ =

n − 1{n odd}

2n
,

since 1 >
n−1{n odd}

2n > 0 and by definition of the floor function.

• Case 2: if n/2 ≤ d < n, we take b = d −
n+1{n odd}

2
, which leads to 0 ≤ b ≤ n − 1 and

ℓD − ⌊ℓD⌋ = −
n + 1{n odd}

2n
− ⌊−

n + 1{n odd}

2n
⌋ = −

n + 1{n odd}

2n
+ 1,

since 0 > −
n+1{n odd}

2n > −1 (and by definition of the floor function). Hence, ℓD − ⌊ℓD⌋ =
n−1{n odd}

2n ,

which ends the proof.

□

Theorem 5.6 For all δ ∈ (0, 1), if there exists a constant K such that ∥C0 − L∥ ≤ K , then, for every
t ≥ (n − 1)

(
2 ln (K +

√
n) − lnδ − ln 2

)
, we have

P

{
∥Ct − L∥∞ ≥

3

2

}
≤ δ . (25)

Proof. Let d an integer such that n divides nℓ + d . Applying Lemma 5.5, we deduce that there exists

a shadow process D associated with a set B0 of agents with cardinality b such that

ℓD − ⌊ℓD⌋ =
b − d

n
− ⌊ℓ +

b − d

n
⌋ =

n − 1{n odd}

2n
.

Hence, λD = min

(
n−1{n odd}

2n , 1 −
n−1{n odd}

2n

)
=

n−1{n odd}

2n . In addition, from Lemma A.6, we have ∥D0 −

LD ∥ ≤ ∥C0 − L∥ +
√
n ≤ K +

√
n, by hypothesis. We can thus apply Theorem 5.3 to process Dt and

obtain that, for t ≥ (n − 1)
(
2 ln(K +

√
n) − lnδ − ln 2

)
,

P

{
∥Dt − LD ∥∞ >

n + 1{n odd}

2n

}
= P

{
max

1≤i≤n
D(i)
t − min

1≤i≤n
D(i)
t > 1

}
≤ δ .

From Lemma A.5, we get

∥Ct − L∥∞ ≤ ∥Dt − LD ∥∞ +
n − 1

n
,

which gives

∥Dt − LD ∥∞ ≤
n + 1{n odd}

2n
=⇒ ∥Ct − L∥∞ ≤

3n − 2 + 1{n odd}

2n
<

3

2

,

thus

P

{
∥Ct − L∥∞ <

3

2

}
≥ P

{
∥Dt − LD ∥∞ ≤

n + 1{n odd}

2n

}
,
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or equivalently

P

{
∥Ct − L∥∞ ≥

3

2

}
≤ P

{
∥Dt − LD ∥∞ >

n + 1{n odd}

2n

}
≤ δ ,

which completes the proof of Theorem 5.6. □

A.4 Additional results of Subsection 6
Theorem 6.1 For all δ ∈ (0, 1) and for all ε ∈ (0, 1), by taking m = ⌈3/(2ε)⌉, we have, for all t ≥

(n − 1) (lnn − lnδ + 2 ln(2 + 1/ε) + ln(9/32)),

P

{
|ωA(C

(i)
t ) − γA | < ε, for all i = 1, . . . ,n

}
≥ 1 − δ .

Proof. Sincem = ⌈3/(2ε)⌉, we have, from Relation (8),

∥C0 − L∥ ≤
m
√
n

2

=

⌈
3

2ε

⌉ √
n

2

≤

(
3

2ε
+ 1

) √
n

2

=

(
3 + 2ε

4ε

)
√
n.

By choosing K = (3 + 2ε)
√
n/(2ε), we obtain

2 ln(K +
√
n) = 2 ln

[(
3 + 6ε

4ε

)
√
n

]
= lnn + 2 ln(3/4) + 2 ln(2 + 1/ε).

We are now able to apply Theorem 5.6, which leads, for all δ ∈ (0, 1) and for all

t ≥ (n − 1) (lnn − lnδ + 2 ln(2 + 1/ε) + ln(9/32)), to

P {∥Ct − L∥∞ ≥ 3/2} ≤ δ

or equivalently, since ℓ = γAm, to

P

{���C(i)
t − γAm

��� < 3/2, for all i = 1, . . . ,n
}
≥ 1 − δ .

This can be also written as

P

{���C(i)
t /m − γA

��� < 3/(2m), for all i = 1, . . . ,n
}
≥ 1 − δ

and, sincem ≥ 3/(2ε), we get

P

{���C(i)
t /m − γA

��� < ε, for alli = 1, . . . ,n
}
≥ 1 − δ ,

which completes the proof of Theorem 6.1. □

Recall that

ωmin(x) =

⌈
2nAm

2x + 3

⌉
and ωmax (x) =


+∞ if x ≤ 1⌊
2nAm

2x − 3

⌋
if x ≥ 2.

Theorem 6.2 For all δ ∈ (0, 1) and for all t ≥ (n − 1)
(
2 ln(

√
nAm +

√
n) − lnδ − ln 2

)
, we have

P

{
ωmin

(
C(i)
t

)
≤ n ≤ ωmax

(
C(i)
t

)
, for all i = 1, . . . ,n

}
≥ 1 − δ .
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Proof. From Relation (7), we obtain ∥C0 − L∥ ≤
√
nAm

√
1 − nA/n ≤

√
nAm. Applying Theorem 5.6,

we deduce that for all t ≥ (n − 1)
(
2 ln(

√
nAm +

√
n) − lnδ − ln 2

)
,

P

{
∥Ct − L∥∞ <

3

2

}
≥ 1 − δ .

Then, using that

∥Ct − L∥∞ < 3/2 ⇐⇒ for all i = 1, . . . ,n, C(i)
t − 3/2 < ℓ = nAm/n < C(i)

t + 3/2, (26)

we deduce first that, for all i = 1, . . . ,n, nAm
C (i )
t +3/2

< n, which involves that ωmin

(
C(i)
t

)
=

⌈
nAm

C (i )
t +3/2

⌉
≤ n.

For the left hand-side of Relation (26), if C(i)
t ≤ 2, then ωmax (C

(i)
t ) = +∞, thus n ≤ ωmax (C

(i)
t ).

And if C(i)
t ≥ 2 we deduce from Relation (26) that

n <
nAm

C(i)
t − 3/2

=⇒ n ≤

⌊
nAm

C(i)
t − 3/2

⌋
= ωmax (C

(i)
t ).

We conclude that, for all i = 1, . . . ,n, n ≤ ωmax (C
(i)
t ), which completes the proof. □

Corollary 6.3 If nAm
2 ≥ 4n/ln2 2, for all δ ∈ (0, 1) and for all t ≥ (n − 1) (lnnA + 2 lnm − lnδ ), we

have

P

{
ωmin

(
C(i)
t

)
≤ n ≤ ωmax

(
C(i)
t

)
, for all i = 1, . . . ,n

}
≥ 1 − δ .

Moreover, in the case where nAm ≥ 3n(n + 1), we have

P

{
ωmin

(
C(i)
t

)
= ωmax

(
C(i)
t

)
= n, for all i = 1, . . . ,n

}
≥ 1 − δ .

Proof. The first additional hypothesis nAm
2 ≥ 4n/ln2 2 give us that

n

nAm2
≤

ln
2

2

4

. (27)

Using the fact ln(1+y) ≤ y, for everyy ≥ 0, we obtain, for everyu,v withu,v > 0, that ln(u+v)−ln(u) =
ln(1+v/u) ≤ v/u. Hence, ln(u +v) ≤ ln(u)+v/u. Applying this inequality with u =

√
nAm andv =

√
n,

and using Relation (27), we obtain a lower bound for 2 ln

(√
nAm

)
+ ln 2:

ln

(√
nAm +

√
n
)
≤ ln

(√
nAm

)
+

√
n

√
nAm

= ln

(√
nAm

)
+

√
n

nAm2
≤ ln

(√
nAm

)
+
ln 2

2

.

This inequality tells us that if t ≥ (n−1) (lnnA + 2 lnm − lnδ ) = (n−1)(2 ln
(√
nAm

)
+ln 2−lnδ−ln 2),

then t ≥ (n − 1)
(
2 ln(

√
nAm +

√
n) − lnδ − ln 2

)
, we can thus apply Theorem 6.2, which completes the

first part of the proof.

We turn now to the second part of the proof. First, we have from Theorem 5.6 that

C(i)
t >

nAm

n
−
3

2

, for all i = 1, . . . ,n. (28)

, Vol. 1, No. 1, Article . Publication date: July 2019.



26 • Mocquard, Robin, Sericola and Anceaume

Using the second additional hypothesis ( 3n(n + 1) ≤ nAm ), we first deduce that

3n2 ≤ nAm − 3n.

Multiplying each side of the inequality by 4nAm/n2, we obtain that

12nAm ≤ (2nAm/n)2 − 12nAm/n.

Then, using that

(2nAm/n)2 − 12nAm/n = (2nAm/n − 3)2 − 9 = 4(nAm/n − 3/2)2 − 9, (29)

we deduce

12nAm ≤ 4(nAm/n − 3/2)2 − 9.

Combining Relations (28) and (29), we obtain, for all i = 1, · · · ,n,

0 ≤ 12nAm < 4(C(i)
t )2 − 9.

Hence, for all i = 1, · · · ,n,

12nAm

4(C(i)
t )2 − 9

< 1 ⇐⇒
2nAm

2C(i)
t − 3

−
2nAm

2C(i)
t + 3

= ωmax

(
C(i)
t

)
− ωmin

(
C(i)
t

)
< 1,

since 1/(2x − 3) + 1/(2x + 3) = 6/(4x2 − 9), for all real x . Hence,

ωmin

(
C(i)
t

)
= ωmax

(
C(i)
t

)
= n, for all i = 1, . . . ,n,

which ends the proof. □

, Vol. 1, No. 1, Article . Publication date: July 2019.


	Abstract
	1 Introduction
	2 The addressed Problems
	3 Model
	4 Average-based Population Protocols
	5 Analysis of the Convergence Time of Average-based protocols
	5.1 Notations
	5.2 Preliminaries
	5.3 General Results
	5.4 A First Bound on the Convergence Time
	5.5 The shadow process and the average-based protocols theorem

	6 Applications
	6.1 Solving the Proportion Problem
	6.2 Solving the System Size Problem

	7 Experimental results
	7.1 The Proportion Problem
	7.2 The System Size Problem

	8 Conclusion
	References
	A Appendix
	A.1 Additional results of Subsection 5.3
	A.2 Additional results of Subsection 5.4
	A.3 Additionnal proof of Subsection 5.5
	A.4 Additional results of Subsection 6


