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Abstract One challenge for social network researchers is to evaluate balance in
a social network. The degree of balance in a social group can be used as a tool
to study whether and how this group evolves to a possible balanced state. The
solution of clustering problems defined on signed graphs can be used as a criterion
to measure the degree of balance in social networks and this measure can be
obtained with the optimal solution of the Correlation Clustering (CC) problem,
as well as a variation of it, the Relaxed Correlation Clustering (RCC) problem.
However, solving these problems is no easy task, especially when large network
instances need to be analyzed. In this work, we contribute to the efficient solution
of both problems by developing sequential and parallel ILS metaheuristics. Then,
by using our algorithms, we solve the problem of measuring the structural balance
on large real-world social networks.

Keywords Correlation Clustering · Social Network · Structural Balance · ILS ·
VND

1 Introduction

Structural balance is recognized as a major social process which can be employed
as a framework for studying the stability of social groups, their relationships and
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their conflicts. According to structural balance theory, the balance or equilibrium
of a social system seeks the human propensity to preserve a cognitive consistency
between hostility and friendship. The supporting principle, as proposed by Hei-
der (Heider 1946), is fairly simple: “my friend’s friend is my friend, the enemy of
a friend is my enemy, my enemy’s enemy is my friend (or may become one), and
so on”. When balance is not present, tension is propagated in the minds of group
members in a way that can ultimately lead to the altering of opinion.

Structural balance theory was first formulated by Heider (Heider 1946) with
the purpose of describing antagonistic relationships between those people per-
taining to the same social group (like/dislike, love/hate, respect/disrespect,
or trust/distrust). Signed graphs were then introduced by Cartwright et
al. (Cartwright and Harary 1956), which formalized Heiders theory and stated
that a balanced social group could be partitioned into two groups (or clusters),
being that all relationships (or edges) within clusters are positive (internal sol-
idarity) and all those between clusters are negative (mutually hostile groups).
Davis (Davis 1967) later introduced a notion called ”weak balance”, that further
generalizes social balance with an assertion that a balanced social group can be di-
vided into two or more mutually antagonistic subgroups (or clusters), each having
internal solidarity.

Structural balance theory has a multitude of applications. Investigating the
temporal dynamics of communities has attracted an increasing amount of atten-
tion, with models attempting to forecast how networks evolve over time. Known
works involve the dynamics of signed structures and group formation (Doreian
and Krackhardt 2001), including balance adjustment processes (Abell and Ludwig
2009). Structural balance is also potentially useful to study similarity and correla-
tion networks, such as those determined by common voting patterns, or alliances
and disputes (Traag and Bruggeman 2009, Macon et al. 2012).

In social network research, signed graphs have been widely used to represent
antagonistic systems (Doreian and Mrvar 1996a, Inohara 1998, Yang et al. 2007,
Abell and Ludwig 2009, Doreian and Mrvar 2009, Facchetti et al. 2011, Esmailian
et al. 2014). Based on these structures, researchers are challenged to measure and
evaluate balance of social networks. Numerous criteria and resolution approaches
have been incorporated into the literature as an attempt to accomplish this task.
However, most methodological research in this field is based on unsigned networks
such as Facebook and Twitter (Duch and Arenas 2005, Newman 2006, Brandes
et al. 2008), which contain only positive relationships (e.g. friend or trust) between
users. For signed social networks, quantifying and evaluating balance is still dif-
ficult and problematic (Doreian and Mrvar 2009, Leskovec et al. 2010, Facchetti
et al. 2011, Srinivasan 2011, Esmailian et al. 2014). Our contribution is to the
evaluation of structural balance within these networks.

Clustering is the action of partitioning individual elements into groups (clus-
ters) based on their similarity. Clustering problems on signed graphs appear in sev-
eral scientific areas: efficient document classification (Bansal et al. 2002), detection
of embedded matrix structures (Gülpinar et al. 2004), biological systems (Das-
Gupta et al. 2007), community structure (Traag and Bruggeman 2009, Macon
et al. 2012), and image segmentation (Kim et al. 2014). In particular, the clus-
tering task in a signed network attempts to identify k antagonistic groups in the
network, being that most entities within the same cluster are friends while most
entities belonging to different clusters are enemies. Notice that, since this (weak)
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balance definition solely applies to signed networks, most traditional clustering
algorithms for unsigned networks cannot be directly applied.

The solution of clustering problems is an important criterion to measure
the level of balance in signed social networks (Doreian and Mrvar 1996a, 2009,
Figueiredo and Moura 2013). One such instance is the Correlation Clustering (CC)
problem introduced by Bansal et al. (2002). In fact, minimizing the imbalance de-
fined by structural balance is exactly equivalent to solving the CC problem. As
stated in Bansal et al. (2002), it is the problem of partitioning n objects with the
goal of minimizing the sum of negative elements that occur within clusters, plus
the sum of positive elements that occur between clusters. The main idea is that,
in a signed network, there are some links that create imbalance. The number of
such links can be expressed as an amount of frustration. The CC objective func-
tion consists of minimizing that frustration. Alternative measures to structural
balance and the associated clustering problems have been previously discussed as
well (Doreian and Mrvar 2009, Figueiredo and Moura 2013). Our contribution fo-
cuses on structural balance evaluation using the CC and a relaxed version of this
problem.

In a pragmatic approach, since large social networks1 require analysis (Kunegis
et al. 2009, Leskovec et al. 2010, Facchetti et al. 2011), clustering problems are
primarily solved by the use of heuristic methods. For example, large-scale online
networks with opposite types of relationships have gained in popularity. Slash-
dot (Slashdot 1997), a website that features news stories on science and technol-
ogy, incorporates a feature allowing users to tag each other as friends or foes.
On-line review websites such as Epinions (Epinions 1999) allow users to either
like or dislike other people’s reviews. The definition of a measure to represent the
balance/imbalance of a social network adds to itself a degree of approximation
to the task of evaluating balance in a social network. Thus, it is imperative that
the clustering problem associated with this measure be solved efficiently. This is
particularly challenging when, as in social networks retrieved from on-line media,
the size of the community is very big, of the order of 105 individuals or higher.

As far as we know, there are only two metaheuristic approaches to solve the
CC problem: Zhang et al. (2008) and Drummond et al. (2013). The first consisting
of a genetic algorithm for the CC problem, applied to document clustering, while
the latter presents a Greedy Randomized Adaptive Search Procedure (GRASP)
(Feo and Resende 1995) implementation capable of efficiently solving the prob-
lem in networks of up to 8000 vertices. Since previous works on the CC problem
have used greedy local search algorithms with success (VOTE/BOEM (Elsner
and Schudy 2009) and Doreian Mrvar algorithm (Doreian and Mrvar 1996b)), we
have chosen to focus our research in the development of local search algorithms
with a greedy component. Moreover, population-based algorithms (like genetic al-
gorithms) usually have a high computational cost, while local search algorithms
with a greedy component (like GRASP and ILS approaches) are faster when solv-
ing combinatorial problems on huge instances. A neighborhood search heuristic
for a related problem (clique partitioning), developed by Brusco and Köhn (2009),
has confirmed our choice.

1 We consider small networks those comprised of dozens of nodes, while medium-sized net-
works contain hundreds of elements and large-scale ones can have more than a hundred thou-
sand nodes.
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Based on the GRASP proposed by Drummond et al. (2013), we have con-
tributed to the efficient solution of the CC problem by developing sequential and
parallel Iterated Local Search (ILS) (Lourenço et al. 2003) metaheuristics. This
work is an extention of the work presented in Levorato et al. (2015), which high-
lighted preliminary results obtained through initial experiments. These findings
motivated the execution of several other tests in order to achieve a detailed anal-
ysis of the clustering problems discussed in this work, focused on the application
perspective.

In this paper, we first present a thorough analysis of the ILS introduced in Lev-
orato et al. (2015) in comparison with other solution approaches proposed in the
literature. We give a detailed view of all aspects of the sequential and parallel
ILS algorithms. We then extend the procedure to solve the Symmetric Relaxed
Correlation Clustering (SRCC) problem, proposed by Doreian and Mrvar (2009)
as an alternative measure of the structural balance of a social network. Roughly
speaking, the SRCC problem is another version of the Correlation Clustering prob-
lem, with a costly objective function. Extending the ILS metaheuristic to solve
the SRCC problem demanded not only a new objective function to evaluate the
partition. The algorithm used additional data structures in order to reduce the
computational effort needed to analyze the solutions visited at each iteration.
Our work is the first one to solve the SRCC problem on large-scale real-world
instances (Leskovec and Krevl 2014) and to conduct an analysis of the relative
imbalance provided by the CC and SRCC problems.

As previously mentioned, structural balance theory affirms that human so-
cieties tend to avoid tension and conflicted relationships. In a signed graph that
represents a real-world social network, this translates into a level of balance greater
than expected, when compared to a random signed graph of equivalent size (Fac-
chetti et al. 2011). Partial hints that real-world, currently available signed social
networks are more balanced than expected are provided by Kunegis et al. (2009),
Leskovec et al. (2010), Kunegis et al. (2010), Facchetti et al. (2011). Our analysis
confirms that three well-known signed social networks (WikiElections, Epinions
and Slashdot) are indeed extremely balanced, hence supporting previous related
works.

We also present a historical and geopolitical analysis of the results obtained
from the voting on resolutions in the United Nations General Assembly (UNGA),
this based on the solutions for the CC and SRCC problems. Other works have also
applied different signed network clustering methods to networks of international
alliances and disputes (Traag and Bruggeman 2009, Macon et al. 2012).

2 The Correlation Clustering problem

Correlation Clustering (Bansal et al. 2002) is a clustering technique stemming
from the problem of document clustering in which, when given a large corpus of
documents such as web pages, one wants to group them into the optimal number of
clusters, without specifying that number in advance. The basic problem consists of
minimizing the number of unrelated pairs that are clustered together, in addition to
the number of related pairs that are separate. In this section, we formally describe
the CC problems and present a mathematical formulation, to be accompanied by
a literature review.
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2.1 The Correlation Clustering problem - Mathematical Formulation

Let G = (V,E) be an undirected graph2 where V is the set of n vertices and E

is the set of edges. In this text, a signed graph is allowed to have parallel edges
(i.e. two edges associated with a given pair of vertices) but no loops. Also, we
assume that parallel edges always have opposite signs. For a vertex set S ⊆ V , let
E[S] = {(i, j) ∈ E | i, j ∈ S} denote the subset of edges induced by S. For two vertex
sets S,W ⊆ V , let E[S : W ] = {(i, j) ∈ E | (i ∈ S, j ∈ W ) ∨ (i ∈ W, j ∈ S)}. One
observes that, by definition, E[S : S] = E[S]. Consider a function s : E → {+,−}
that assigns a sign to each edge in E. An undirected graph G together with a
function s is called a signed graph, denoted by G = (V,E, s). An edge e ∈ E

is called negative if s(e) = − and positive if s(e) = +. Let E− and E+ denote,
respectively, the set of negative and positive edges in a signed graph. The negative
graph density is defined as d− = |E−|/|E|, while the positive graph density is
d+ = |E+|/|E|.

A partition of V is a division of V into non-overlapping and non-empty sub-
sets. Consider a partition P = {S1, S2, . . . , Sl} of V . The cut edges and the uncut

edges related with this partition are defined, respectively, as the edges in sets
∪1≤i<j≤lE[Si : Sj ] and ∪1≤i≤lE[Si]. Let we be a nonnegative edge weight associ-
ated with edge e ∈ E. Also, for 1 ≤ i, j ≤ l, let

Ω+(Si, Sj) =
∑

e∈E+∩E[Si:Sj ]

we and Ω−(Si, Sj) =
∑

e∈E−∩E[Si:Sj ]

we.

The imbalance I(P ) of a partition P is defined as the total weight of negative uncut
edges and positive cut edges, i.e.,

I(P ) =
∑

1≤i≤l
Ω−(Si, Si) +

∑
1≤i<j≤l

Ω+(Si, Sj). (1)

That being said, we are ready to provide a formal definition to the CC problem.

Problem 21 (CC problem) Let G = (V,E, s) be a signed graph and we be a non-

negative edge weight associated with each edge e ∈ E. The correlation clustering problem

is the problem of finding a partition P of V such that the imbalance I(P ) is minimized.

The classical mathematical formulation for the CC problem is an integer linear
programming (ILP) model proposed to uncapacitated clustering problems (which
are also known as clique partitioning problems whenever the underlying graph
is complete; see references in (Mehrotra and Trick 1998)). In this formulation, a
binary decision variable xij is assigned to each pair of vertices i, j ∈ V , i 6= j, and
defined as follows: xij = 0 if i and j are in a common set; xij = 1 otherwise. The

2 It is possible to solve the CC problem on directed graphs. One must first convert the
directed graph to an undirected one: opposite arcs with the same sign are converted to a single
edge whose weight is equal to the sum of the arcs’ weights; opposite arcs with different signs
become two parallel edges, each one with the original sign and weight of each arc.
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model minimizes the total imbalance.

minimize
∑

(i,j)∈E−

wij(1− xij) +
∑

(i,j)∈E+

wijxij (2)

subject to xip + xpj ≥ xij , ∀ i, p, j ∈ V, (3)

xij = xji, ∀ i, j ∈ V, (4)

xij ∈ {0, 1}, ∀ i, j ∈ V. (5)

Even though this formulation is polynomial-sized, having n(n − 1) variables and
n3 + n2 constraints, notice that, according to constraints (4), half of the variables
can be eliminated, which reduces both the number of variables and constraints of
the formulation.

A set partitioning formulation (Mehrotra and Trick 1998) proposed in the lit-
erature to uncapacitated clustering problems, could also be used in the solution
of the CC problem. As we can expect, these two formulations are not appropriate
solution approaches when time limit is a constraint in the solution process. The
authors in (Figueiredo and Moura 2013) report that the classical formulation be-
gins to fail with random instances of 40 vertices and negative density (d−) equal
to 0.5.

2.1.1 Literature Review of the CC problem

To our knowledge, the CC problem (as defined above) was first addressed by
Doreian et al. (Doreian and Mrvar 1996a) (although not under this name), who
provided a heuristic solution method for analyzing structural balance in signed
social networks. Their method, implemented in software Pajek (De Nooy et al.
2011), consists of a simple greedy neighborhood search procedure which requires
the number of clusters in the desired solution. Having a document clustering prob-
lem in mind, Bansal et al.(Bansal et al. 2002) formalized the unweighted version
of the CC problem and also discussed its NP-completeness proof, whereas the
weighted version of the problem was addressed in (Demaine et al. 2006). Integer
linear programming (ILP) can be used to solve the CC problem optimally, but only
when the number of data points is small. Since it consists of a NP-hard minimiza-
tion problem, the only available solutions for large instances are either heuristic
or approximate. Predominately investigated from the viewpoint of constant fac-
tor approximation algorithms (Bansal et al. 2002, Swamy 2004, Charikara et al.
2005, Demaine et al. 2006, Giotis and Guruswami 2006, Ailon et al. 2008), the
problem has been applied in several areas, such as portfolio analysis in risk man-
agement (Harary et al. 2003, Huffner et al. 2010), biological systems (DasGupta
et al. 2007, Huffner et al. 2010), grouping of genes (Bhattacharya and De 2008),
efficient document classification (Bansal et al. 2002), detection of embedded ma-
trix structures (Gülpinar et al. 2004), image segmentation (Kim et al. 2014) and
community structure (Traag and Bruggeman 2009, Macon et al. 2012).

Additionally, some authors have focused on the detection of overlapping com-
munities in signed graphs (Zhang et al. 2007, Bonchi et al. 2011). In particular,
(Bonchi et al. 2011) define an optimization problem that extends the framework
of Correlation Clustering to allow overlaps.

An evaluation of different heuristic strategies (greedy and local search methods)
for the CC problem is performed in (Elsner and Schudy 2009), using two practical
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tasks: document clustering3 and natural language processing (instances of n =
1000), to which ILP does not scale. In this situation, the authors’ recommendation
for CC Problem solution is the V OTE/BOEM greedy algorithm, which rapidly
obtains good objective values (with tight bounds). A greedy neighborhood-based
heuristic for the problem has also been proposed by (Wang and Li 2013). Instead of
stepping through the vertices according to a vertex permutation, their algorithm,
known as Restoring, partitions vertices according to an edge permutation.

In (Yang et al. 2007), the CC problem is known as community mining and an
agent-based heuristic called FEC is proposed to its solution. In order to assess the
performance of FEC, the authors present a method for generating random signed
networks with controlled community structures, based on a set of parameters.
However, they only test their algorithm results against the Doreian Mrvar (DM)
algorithm (Doreian and Mrvar 1996b), based on the clusters listed in each solution,
and without presenting a numerical measure of imbalance. Also, according to the
authors, the success of the FEC algorithm is based on its capacity of extracting
the communities initially defined by the aforementioned generation routine.

Genetic algorithms have been applied to document clustering, using the CC
problem as objective function (Zhang et al. 2008). Unfortunately, no explanation
about the genetic operators is available, and we were unable to obtain the pro-
gram code or generate the instances used in the experiments, making it difficult to
understand and recreate the proposed procedure. Lately, we presented a Greedy
Randomized Adaptive Search Procedure (GRASP) (Feo and Resende 1995) imple-
mentation that provides an efficient solution to the CC problem in networks of up
to 8000 vertices (Drummond et al. 2013). Then, based on this method, we intro-
duced sequential and parallel ILS (Iterated Local Search (Lourenço et al. 2003))
procedures for the CC problem (Levorato et al. 2015). In this work, besides pro-
viding a thorough analysis of ILS in comparison with other solution approaches,
we focus on the application point of view, performing structural balance analysis
on real-world signed social networks.

2.2 Relaxed Correlation Clustering: an alternative measure for structural balance

As we noted in the introduction, other measures of structural balance are proposed
in the literature. In (Doreian and Mrvar 2009), the definition of a k-balanced signed
graph was informally extended in order to include relevant processes (polarization,
mediation, differential popularity and subgroup internal hostility) that originally
were viewed as violations of structural balance. For example, the existence of a
group of individuals who share only positive relationships with everyone in the
network counts as imbalance in the CC Problem. Nonetheless, the individuals in
this group could be construed as mediators (i.e. their relations probably won’t
change over time) and, as pointed in (Esmailian et al. 2014), their relations should
not be considered as a contribution to the imbalance of the network.

Using this new definition, structural balance was generalized to a version la-
beled as relaxed structural balance (Doreian and Mrvar 2009). Similarly to the CC

3 The original data set from UCI Machine Learning Repository (Bache and Lichman 2013)
consists of 20000 messages taken from 20 newsgroups. However, since the authors’ bounding
technique did not scale to the full dataset, they restricted their testbed to a subsample of 100
messages from each newsgroup, for a total of 2000 messages.
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problem, measuring the relaxed structural balance can be accomplished through
the solution to the Relaxed Correlation Clustering (RCC) problem. A redefinition
of relaxed imbalance of a partition P that takes into account symmetric relation-
ships among clusters is available, with the name of Symmetric Relaxed Imbalance
(SRI) (Figueiredo and Moura 2013).

SRI(P ) =
∑

1≤i≤l
min{Ω

+(Si,Si),

Ω−(Si,Si)
}+

∑
1≤i<j≤l

min{Ω
+(Si,Sj),

Ω−(Si,Sj)
}. (6)

This gives rise to a new graph clustering problem, the Symmetric Relaxed
Correlation Clustering Problem, which will be used in this work. The problem is
stated as follows.

Problem 22 (Symmetric RCC problem) Let G = (V,E) be a signed graph, we
be a non-negative edge weight associated with edge e ∈ E and k be an integer value

satisfying 1 ≤ k ≤ n. The symmetric relaxed correlation clustering problem is the

problem of finding a l-partition P of V , with l ≤ k, such that the symmetric relaxed

imbalance SRI(P ) is minimized. Let us denote this minimal value by SRCC(G,k).

It is worth noting that the Symmetric RCC (SRCC) problem is closely related
with the CC problem but it is not a particular case nor is it a generalization.
Actually, each feasible solution (a graph partition) of the SRCC problem is also
feasible in the CC problem but the problems have different cost functions, i.e.,
there are different ways of evaluating the imbalance of a partition. The SRCC
problem is intuitively as difficult as the CC problem and is indeed a NP-hard
problem (Figueiredo and Moura 2013).

2.2.1 Literature review of the RCC problems

To the best of our knowledge, the RCC problems have been proposed for only the
evaluation of structural balance in social networks. However, these problems could
be also used as an approach to efficient community detection. Two solution meth-
ods were initially proposed in the literature for RCC problems: a greedy heuristic
approach (Doreian and Mrvar 2009) and a branch-and-bound procedure (Brusco
et al. 2011). Computational experiments with both procedures were reported over
literature instances with up to 29 vertices (small instances in Section 4.2, item (i))
and for random instances with |V | ∈ {20, 40} (Doreian and Mrvar 2009, Brusco
et al. 2011). For the branch-and-bound procedure, the values considered for k were
k ≤ 7 for literature instances and k ∈ {3, 5} for the set of random instances.

Further on, (Figueiredo and Moura 2013) presented the first mathematical for-
mulation for the RCC and SRCC problems: a representatives ILP formulation,
which is harder to solve than the CC ILP formulation. For the set of benchmark
instances, the ILP formulation was able to solve the problem when k = 2, k = 3
(for some instances) and for high values of k. The results presented for the branch-
and-bound procedure in (Brusco et al. 2011) demonstrated that this approach was
efficient in the solution of RCC instances with k ≤ 8. At this point, no metaheuris-
tic approaches have been applied to solve the RCC problems.
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3 Solving the Correlation Clustering problem by metaheuristics

We have implemented ILS (Lourenço et al. 2003) for the solution of the CC prob-
lem. Our ILS algorithm was first implemented sequentially. Then, in order to
obtain performance improvements that would allow the program to scale to large
network instances, we extended the algorithm to run tasks in parallel by applying
two well-known strategies.

3.1 Multistart Iterated Local Search (ILS) heuristic for the CC Problem

The Iterated Local Search (Lourenço et al. 2003) (ILS) belongs to a class of local
search algorithms (as VNS (Mladenović and Hansen 1997), IGS (Ruiz and Stützle
2007), GRASP (Feo and Resende 1995) and ad hoc local-search schemes (Brusco
and Köhn 2009)) proposed in the literature to efficiently investigate the solution
space of combinatorial problems. The difference among all these methods is the
philosophy used to walk in the solution space. ILS is a metaheuristic based on
stochastic multi-restart search, which iteratively applies local search to perturba-
tions of the current best solution, generating a random walk in the space of local
optima. Each new solution obtained is then refined using an embedded heuristic.

As mentioned in Section 2.1, the CC problem is related to the clique partition-
ing problem. The authors in (Brusco and Köhn 2009) developed a neighborhood
search heuristic (known as NS-R) for the clique partitioning problem, which is
similar to the one proposed in this section. NS-R includes the basic principles
of random perturbation and pursuit of a local optimum through a local search
procedure also present in ILS.

Our ILS algorithm to solve the CC problem reuses the constructive and local
search modules of GRASP, as well as its multistart nature. We have also added a
procedure that creates perturbations in the best current solution, creating a mul-
tistart Iterated Local Search (ILS) algorithm called ILSMultiStartCC. Multistart
provides an additional approach to diversify the obtained solutions, restarting the
ILS algorithm with a new randomized initial solution any time a search region has
been largely explored.

Algorithm 1 outlines how ILS works, by the use of 4 components: (i) Con-

structivePhase, which creates an initial solution, (ii) the local search module Vari-

ableNeighborhoodDescent, (iii) a procedure called Perturbation to modify a solution
at random, and (iv) an acceptance criterion, which decides from which solution
the search will restart. The iter parameter contains the number of multistart it-
erations – how many times ILS is to be invoked, returning the best solution from
all ILS executions. The iterMaxILS value represents the number of ILS itera-
tions (inner loop), including perturbation and local search operations. Lastly, the
perturbationMax parameter restricts the degree of perturbations applied to a spe-
cific solution. Below we provide a full description of each step of the algorithm.

Each ILS iteration starts with the construction of an initial greedy-randomized
solution. This is performed inside the ConstructivePhase procedure, in Algorithm
2. Formalizing it requires additional notation: let P = {S1, S2, ..., Sl} denote a
partial partition (i.e., a partition of a proper subset of V ). We specify below a
function f : (V \

⋃
1≤k≤l Sk) → R, which will measure the effect on imbalance I of
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inserting a vertex i in the partial partition P .

f(i) = min

I(P ∪ {i}), min
1≤k≤l
Sk∪{i}

I(P )

 . (7)

This minimization function compares the cost of inserting vertex i in a new cluster
(f(i) = I(P ∪ {i})) with the cost of inserting it into one of the l clusters in P .
Remark that a vertex having a low cost function value will possibly generate less
imbalance when added to the partial partition P .

In this phase, the ordered set Lf is defined (line 3) as the set of vertices
{v : v ∈ V \

⋃
1≤k≤l Sk} sorted in decreasing order of the function value f(v). At

each iteration (lines 4-8), we randomly pick a vertex i between the first bα. | Lf |c
elements in this set and add it to the partial partition. Observe that the param-
eter α denotes the randomness level of the construction phase. This operation is
repeated until a partition of V is generated.

The construction method does not necessarily return a locally optimal solu-
tion with regard to a certain neighborhood. Thus the solution P returned by
ConstructivePhase can be improved by the local search procedure VariableNeigh-

borhoodDescent (Algorithm 3).

For local search, we apply the Variable Neighborhood Descent (VND) heuris-
tic, a variant of the Variable Neighborhood Search (VNS) method, proposed by
Mladenović and Hansen (1997). Unlike some methods which employ only a sin-
gle neighborhood, VND systematically alternates between different neighborhoods
within a local search. It is based on the idea that a local optimum found by one
neighborhood structure is not necessarily the local optimum of another neighbor-
hood structure. VND begins with the partition returned by the construction phase,
trying to improve the solution value I(P ) with the new value I(P ) from the best
solution found in the r−neighborhood, denoted by Nr(P ), and defined as the family
of all partitions obtained by moving r vertices in P from one cluster into another.
If an enhancement is found, r returns to its initial value and the best solution is
updated (lines 7 and 8). Otherwise, the next neighborhood is traversed (line 11).
If no improving partition is found in the most distant neighborhood of the cur-
rent solution, local search stops. Note that the neighborhood analyzes partitions
of various sizes (i.e. a vertex can be moved into a new cluster or can be removed
from a single vertex cluster). Also observe that we have applied a neighborhood
with r ≤ 2 and as its complete traversal was very time-consuming, we adopted a
first improvement (first descent) heuristic, which means that local search will halt
whenever it finds an improvement of the current solution.

The subsequent stage of the algorithm is producing a perturbation, consisting
of t random vertex movements between clusters (Algorithm 4). In the end of the
main loop (line 21 in Algorithm 1), a simple acceptance criterion was applied. Only
improving moves were allowed, that is, a move that forces the cost to decrease,
which in turn corresponds to a first-improvement descent in the set of solutions.

As observed by Den Besten et al. (2001), the efficacy of the local search mod-
ule is of extreme importance to ILS, since it influences not only the quality of
the final solution of the metaheuristic, but also the total time spent. In turn, the
perturbations should enable ILS to escape from local optima, meanwhile avoid-
ing excessively strong movements that bring the same disadvantages of random
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Algorithm 1: ILSMultiStartCC

1 Input: G = (V,E), α, iter, iterMaxILS and perturbationMax
2 Output: partition P∗

3 P∗ = ∅; I(P∗) =∞; i = 1;
4 while (i 6 iter)
5 P = ConstructivePhase(G,α);
6 P = V ariableNeighborhoodDescent(P,G);
7 j = 1; t = 1;
8 repeat

9 P = Perturbation(P, t);

10 P = V ariableNeighborhoodDescent(P,G);

11 if (I(P ) < I(P ))

12 P = P ; j = 1; t = 1;
13 else
14 j = j + 1;
15 if (j > iterMaxILS)
16 t = t+ 1; j = 1;
17 end if
18 end if
19 while (t 6 perturbationMax)
20 i = i+ 1;
21 if (I(P ) < I(P∗))
22 P∗ = P ;
23 end while
24 return P∗;

Algorithm 2: ConstructivePhase

1 Input: G = (V,E) and α
2 Output: partition P
3 P = ∅; Lf = Order(V );
4 while (Lf 6= ∅)
5 Choose vertex i randomly among the first bα. | Lf |c elements of Lf ;
6 Update Sk = Sk ∪ {i} where k is the component in P that minimizes f ;
7 Lf = Lf − {i}; Re-order(Lf );
8 end while
9 return P ;

Algorithm 3: V ariableNeighborhoodDescent

1 Input: G = (V,E) and a partition P
2 Output: partition P
3 r = 1;
4 while (r ≤ 2)

5 for all P ∈ (Nr(P ))

6 if (I(P ) < I(P ))
7 r = 1;

8 P = P ;
9 end for

10 if (P has not improved)
11 r = r + 1;
12 end while
13 return P ;

restart. The perturbations, as well as the acceptance criteria, have huge influence
on the walk through the search space and can be applied to algorithm tuning, os-
cillating between intensification and diversification of the search. Designing an ILS
algorithm thus requires an appropriate configuration of its modules, with global
efficiency in mind.
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Algorithm 4: Perturbation

1 Input: G = (V,E), a partition P and perturbation level t
2 Output: partition P
3 i = 1;
4 while (i 6 t)
5 Choose a random cluster cx ∈ P and a random vertex i ∈ cx;
6 Choose a random cluster cy ∈ P such that x 6= y;
7 Move vertex i from cluster cx to cluster cy ;
8 i = i+ 1;
9 end while

10 return P ;

3.2 Parallel ILS and Parallel Variable Neighborhood Descent

In practice, interesting real-world optimization problems are often NP-hard, com-
plex, and time consuming. Although the utilization of a sequential metaheuristic
provides significant time reduction in the search process, execution time remains
high for real-world problems arising in both academic and industrial domains.
For example, when it comes to signed social networks, the instances generated
from Wikipedia, Slashdot and Epinions websites, available in Leskovec and Krevl
(2014), have thousands of nodes and in some cases almost a million relationships4.
Therefore, parallelism presents as a natural way not to only reduce the search
time, but also to improve the quality of the provided solutions.

The independent approach was our first method to create a parallel program
(Gendreau and Potvin 2010), applying message passing for inter-process commu-
nication. Information exchange between processors occurs only on problem input,
detection of process termination and collection of best overall solution. When p

processors are executed, a single (master) process reads the problem data and for-
wards it to the other p−1 processes. Each process is then in charge of executing a
portion of the multistart iterations. The program terminates once each individual
process finishes executing. Observe that distinct random seeds are used by each
process in the construction phase (line 5 in Algorithm 2) to benefit the exploration
of various search spaces.

Processing the search space in parallel can also increase the exploration in
the search space, reducing the computation time as well (Alba 2005, Crainic and
Toulouse 2010). With this idea in mind, an interesting approach is extending
parallel metaheuristics to use the Parallel Variable Neighborhood Descent (PVND)
(Ekşioglu et al. 2002) algorithm inside the local search phase. In this additional
parallelization approach, besides having a set of (master) processes responsible for
executing a copy of ILS, there is a new kind of process known as search slave, which
is specialized in executing the local search (VND) algorithm over a subset of the
search space. The only difference from the previously explained VND procedure
is the neighborhood traversal (line 5 in Algorithm 3), which is now executed in
parallel, attempting to obtain a balanced load among the processor cores. This
way the search space of the r − neighborhood of the current best solution (Nr(P ))
is partitioned among the available search slave processes in order to search for the
combination that minimizes the imbalance value I(P ). Search slave processes send
a message to an ILS master process whenever they find an improved solution or

4 Wikipedia adminship election data has 7,000 vertices and 100,000 edges, Epinions signed
social network has 131,828 vertices and 841,372 edges and Slashdot Zoo signed social network
(from February 21 2009) is comprised of 82,144 vertices and 549,202 edges.
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finish their search space traversal. In the end, the ILS master process will gather
each solution produced in parallel, selecting the best one.

4 Experiments

The following methods will be used to access the perfomance of the ILS introduced:

– Integer Linear Programming (ILP) model: can provide an exact solution
to the CC problem, but is unable to process larger instances. Besides using
the exact solution provided by the ILP model, we identify for which instance
size the ILP formulation becomes very big and the solver is not able to return
a good solution within the time limit. In these cases, the use of heuristics is
necessary.

– GRASP metaheuristic5 (Drummond et al. 2013): provides efficient solutions
to the CC problem for signed graphs of up to 8000 nodes. Additionally, we
have made two modifications to the original GRASP algorithm from Drum-
mond et al. (2013). First, we have adapted the construction phase, originally
based on Nascimento and Pitsoulis (2013), replacing the modularity gain func-
tion (used on unsigned graphs) by an imbalance (minimization) gain func-
tion, which makes more sense for signed graphs. In order to improve the local
search procedure, we replaced the simple neighborhood traversal with a Vari-
able Neighborhood Descent heuristic;

– VNS metaheuristic (Mladenović and Hansen 1997): Variable Neighborhood
Search consists of a well-established standard metaheuristic for combinatorial
optimization. Based on our ILS algorithm, we have implemented VNS by doing
the following changes to Algorithm 1:
– line 3: replacing “P ∗ ← ∅” and “I(P ∗) = ∞” by “P ∗ ←
ConstructivePhase(G,α)”;

– line 5: replacing “P ← ConstructivePhase(G,α)” by “P ← P ∗”.
– Doreian Mrvar Method, implemented in Pajek software6 (De Nooy et al.

2011): consists of a relocation algorithm for partitioning signed graphs. In sim-
ple terms, a given partition (randomly generated at each iteration) is optimized
to get as much as possible positive edges inside clusters and negative edges be-
tween clusters. In the local optimization procedure, vertices can be moved from
one cluster to another or pairs of vertices can be interchanged between clusters.
For each such change, the criterion function is evaluated. If a relocating change
leads to a decrease of the criterion function, the new partition is retained and
the process continues until the criterion function cannot be lowered. If the pro-
cedure finds several optimal solutions, all of them are reported. More details
are available in Doreian and Mrvar (1996b);

– VOTE/BOEM heuristic (Elsner and Schudy 2009): provides good correlation
clustering solutions on datasets far too large for ILP to scale. The algorithm

5 In simple terms, GRASP (Feo and Resende 1995) is a multistart metaheuristic in which
each iteration consists basically of two phases: construction (Algorithm 2) and local search
(Algorithm 3).

6 The Pajek program is for analysis and visualization of large networks, which provides
features such as cluster identification, decomposition of large networks, visualization tools, as
well as an implementation of several efficient algorithms for analysis of large networks, having
thousands or even millions of vertices.
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is composed of two phases: (1) the VOTE algorithm adds each vertex to the
cluster that minimizes the correlation clustering objective; and (2) the best
one element move (BOEM) algorithm repeatedly makes the most profitable
and the best element move until a local optimum is reached.

As previously metioned, although an approach based on genetic algorithms has
been proposed in Zhang et al. (2008) for the CC problem and applied to document
clustering, unfortunately, we were unable to implement the procedure and compare
it to our algorithms. There was no explanation as to how the genetic operators
were applied and we were also unable to obtain or recreate the instances used in
the experiments.

Moreover, we were also unable to directly compare our results with the solu-
tions of the FEC algorithm in Yang et al. (2007), even though we had generated
and used, in our experiments, the random signed networks with controlled com-
munity structures, as presented in their work. We verified that, since the FEC
heuristic is focused on community detection, using a different criterion than min-
imizing imbalance, FEC does not present optimal (or close to optimal) solutions
for the CC problem. In fact, when using the aforementioned random instances as
reference, the imbalance measures of the best clustering configurations pointed by
FEC are higher than the solutions generated by our algorithms.

We next present extensive computational results obtained with four bench-
marks.

4.1 Computational environment

The algorithms described in the previous section were implemented in ANSI C++
and MPI (OpenMPI) for message passing. All experiments were performed (with
exclusive access) on a cluster with 42 nodes, each one with two Intel Xeon Quad-
Core 2.66GHz processors and 16Gb of RAM under Linux (Red Hat 5.3). The ILP
formulation presented in Section 2 is coded in Xpress Mosel 3.2.0 with solver Xpress
Optimizer 21.01.00. The CPU time limit is set to 1 hour for the ILP formulation.
Additionally, all heuristic outcomes represent the average of 25 independent runs.

4.2 Test problems

Computational experiments were undertaken on (i) a set of 32 social networks
from the literature, (ii) a set of 63 network instances that represent the United
Nations General Assembly (UNGA) voting data, (iii) a set of 60 completely ran-
dom instances, and (iv) a set of 45 random signed networks with a predefined
community structure. We will briefly describe these instances7.

(i) This set of instances is composed by 22 small size instances normally used
in blockmodeling approaches to structural balance (Brusco 2003, Doreian
and Mrvar 2009, Figueiredo and Moura 2013) and 6 signed networks (where
n ∈ {600, 1000, 2000, 4000, 8000, 10000}) extracted from the large scale social

7 All instances are available in http://www.ic.uff.br/~yuri/files/CCinst.zip.

http://www.ic.uff.br/~yuri/files/CCinst.zip
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network representing the technology-related news website Slashdot8(Leskovec
et al. 2010, Facchetti et al. 2011).

(ii) We generated 63 medium-sized social networks based on the United Nations
General Assembly (UNGA) voting records of each annual session between the
years of 1946 and 20089. Such networks are weighted versions of UNGA signed
graphs used by Figueiredo and Frota (2014). The set of vertices in each signed
graph represents the list of countries in the associate annual voting session. The
set of weighted positive/negative edges is defined as follows. For each pair of
vertices (countries) i, j and for each resolution voted in the session, we totaled
the weights associated with all pairs of votes from i and j: edge weights can
be equal to 1.0 or 0.5; a positive edge means an agreement, while a negative
edge represents a disagreement. Following an observation from Macon et al.
(2012), we treat differently the disagreement (agreement) in a yes-no (yes-yes
or no-no) pair of votes on a same resolution from a yes-abstain or no-abstain
(abstain-abstain) pair. We normalize by the total number of votes in a session.

(iii) We generated random social networks with n ∈ {200, 400, 600}, varying network
density d = 2× |E|/(n2 − n) and negative graph density defined here as d− =
|E−|/|E|. For each value of n, we considered a set of 12 random instances having
d and d− ranging, respectively, in sets {0.1, 0.2, 0.5, 0.8} and {0.2, 0.5, 0.8}. The
random selection of graph edges follows a uniform distribution.

(iv) We generated 45 random signed networks with a predefined community struc-
ture, according to Yang et al. (2007). The random signed network is defined as
SG(c, n, k, pin, p−, p+), where c is the number of communities in the network, n
is the number of nodes in each community, k is the degree of each node, pin is
the probability of each node connecting other nodes in the same community, p−
denotes the probability of negative links appearing within communities, and p+
denotes that of positive links appearing between communities. The signs of the
generated links within communities are positive, whereas those between com-
munities are negative. Based on the network generation process, there will be
c×n×k×pin×p− negative links within communities and c×n×k×(1−pin)×p+
positive links outside communities.

4.3 Methodology

We used the instances in (i) and (ii) to parametrize the heuristics. After testing
various combinations of parameters, including the maximum level of perturbation,
the configurations in Table 1 presented the best results for ILS, depending on the
instance size. In order to apply the GRASP algorithm, the configuration in Table 2
presented the best results.

When testing the independent parallel version of ILS, if p is the number of
simultaneous processes, the number of multistart iterations (iter parameter) is
reduced to iter/p. This is due to the fact that the parallel procedure executes p

8 We have extracted subsets of Slashdot Zoo signed social network from Febru-
ary 21 2009 (Leskovec and Krevl 2014), containing the first n vertices, where n ∈
{600, 1000, 2000, 4000, 8000, 10000}. Since the original Slashdot network is a signed digraph,
before extracting the subsets, we have converted it into an undirected graph.

9 United Nations General Assembly Voting Data, by Anton Strezhnev and Erik Voeten,
http://hdl.handle.net/1902.1/12379. Accessed in Apr 2016.

http://hdl.handle.net/1902.1/12379
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SetPar Graph size Time limit Alpha Neighborhood Iterations ILS iterations Perturbation level

A n < 300 1 hour α = 0.4 r = 1 iter = 10 iterMaxILS = 5 perturbMax = 3

B n ≥ 300 2 hours α = 1.0 r = 1 iter = 10 iterMaxILS = 5 perturbMax = 30

Table 1 Parameters used in the ILS algorithm.

SetPar Graph size Time limit Alpha Neighborhood Number of iterations without improvement

A n < 200 1 hour α = 0.8 r ≤ 2 iter = 400

B n ≥ 200 2 hours α = 1.0 r = 1 iter = 400

Table 2 Parameters used in the GRASP algorithm.

independent metaheuristic procedures at the same time, which provides enough
variability so that the aggregated results of parallel ILS are quality-equivalent to
those of the sequential ILS.

4.4 Exact solution by ILP formulation

As noted in the literature (Mehrotra and Trick 1998), the linear relaxation of
the ILP formulation described in Section 2.1 provides a very good representation
of the problem which allows discovering the optimal solution for many instances
by solving this linear relaxation. Experiments reported in Figueiredo and Moura
(2013) confirm this assertion: the 22 small instances in set (i) were solved to
optimality in some seconds. Also, in our experiments, the instances in set (ii) were
solved to optimality by the ILP formulation in the root of the branch and bound
tree.

The drawback of the ILP approach appears when we attempt to solve larger
instances, which also happens to other related problems (Mehrotra and Trick 1998,
Brusco and Köhn 2009). For most completely random instances in (iii), the solver
is unable to find an optimal solution to the CC problem within the time limit. On
Slashdot-based instances, the ILP formulation becomes too big and the solver is
unable to return any feasible solution within the prescribed time limit.

4.5 Sequential ILS vs. sequential GRASP

We compared both SeqGRASP and SeqILS, in their best configurations. When
applying the set of completely random instances (iii) as input, we observe the
superiority of SeqILS over SeqGRASP. For random instances with 200 ≤ n ≤ 600,
as Figure 1 shows10, the average time to target of ILS was smaller than GRASP’s:
on average, ILS is 5 times faster than GRASP. SeqILS running time was strictly
better in 30 of these instances, while SeqGRASP found the target solution value11

earlier for 6 instances.12

10 Instances solved in less than 100 seconds were omitted from the graph.
11 The target solution value is calculated as the best solution value that can be obtained by

all heuristic methods when solving a specific instance.
12 The full tables containing the comparison between SeqGRASP and SeqILS are available

in http://www.ic.uff.br/~yuri/files/CC-ADDcomp.zip

http://www.ic.uff.br/~yuri/files/CC-ADDcomp.zip
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Additionally, when applying both metaheuristics to solve the random instances
with predefined community structure in (iv), SeqILS was, on average, superior to
SeqGRASP in execution time, as shown in Figure 2.13 An analysis of the execution
time between SeqILS and SeqGRASP indicates the superiority of SeqILS in 28 of
44 instances.14 On average, SeqILS is more than 2 times faster than SeqGRASP
to find the specified target solution values.

(1) (2)

20
0/

0.
8/

0.
8

0

100

200

300

400

500

600

700

E
x
e
cu

ti
o
n
 t

im
e
 (

s)

(1) (2)

40
0/

0.
5/

0.
8

(1) (2)

40
0/

0.
8/

0.
8

(1) (2)

60
0/

0.
1/

0.
8

(1) (2)

60
0/

0.
2/

0.
5

(1) (2)

60
0/

0.
2/

0.
8

(1) (2)

60
0/

0.
5/

0.
5

(1) (2)

60
0/

0.
5/

0.
8

(1) (2)
60

0/
0.

8/
0.

5

(1) (2)

60
0/

0.
8/

0.
8

(1) SeqILS (2) SeqGRASP

Fig. 1 Sequential GRASP (SeqGRASP) and sequential ILS (SeqILS) results for random in-
stances in (iii). On the x-axis, instances are labeled according to their parameters (n/d/d−)
and those solved in less than 100 seconds were omitted. Execution time spent (in seconds) by
each algorithm to reach a specific target solution value, after 25 independent executions.

Experiments with larger social networks were also performed with SeqGRASP
and SeqILS. In this context, when solving Slashdot-based instances in (i), after
running both algorithms for 2 hours, ILS has improved the solution quality on
larger instances, with more than 2000 vertices (Table 3). Additionally, both Seq-
GRASP and SeqILS solve the CC problem with low variances in solution value,
as seen in the confidence intervals (columns SeqGRASP-CI and SeqILS-CI in Ta-
ble 3). This confirms the robustness of these heuristics, for the stability of the
solution values returned by both algorithms.

Figure 3 presents an additional comparison between both algorithms, based on
Time-to-Target Plots (TTT-plots) (Aiex et al. 2007), used to analyze the behavior
of stochastic algorithms. One can notice the improved behavior of SeqILS when
compared to SeqGRASP. For example, when solving Slashdot n = 8000 instance,
the probability of SeqILS finding the target solution of 16068 in 2000 seconds is
almost equal to 100% while the same probability lies below 65% for SeqGRASP.

13 Instances solved in less than 5 seconds were omitted from the graph.
14 The full tables containing the comparison between SeqGRASP and SeqILS are available

in http://www.ic.uff.br/~yuri/files/CC-ADDcomp.zip

http://www.ic.uff.br/~yuri/files/CC-ADDcomp.zip
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Fig. 2 Sequential GRASP (SeqGRASP) and sequential ILS (SeqILS) CC results for random
instances with predefined community structure in (iv). The boxplot shows the execution time
(in seconds) spent by each algorithm to reach the specified target solution value, after 25
independent executions. On the x-axis, instances are labeled according to their parameters
(c/n/k/pin/p−/p+) and those solved in less than 5 seconds were omitted.

SeqILS SeqGRASP SeqVNS

n Avg I(P) CI Avg I(P) CI Gap I(P) Avg I(P) CI Gap I(P)

1000 600 0 600 0 0 600.95 0.35 0.95

2000 2,184.14 0.15 2,184.76 0.17 0.62 2,237.34 9.55 53.20

4000 6,193.35 0.57 6,198.79 0.49 5.44 6,232.56 3.99 39.21

8000 16,060.55 1.66 16,076.52 0.88 15.97 16,063.82 4.74 3.27

10000 20,571.35 5.40 20,579.29 1.48 7.94 20,580.94 3.20 9.59

Table 3 Results obtained on Slashdot instances, with sequential ILS (SeqILS), sequential
GRASP (SeqGRASP) and sequential VNS (SeqVNS). Number of vertices: n; Avg I(P): value
of the best solution found after 2 hours of execution; CI is the 95% confidence interval of the
solution value I(P), for each algorithm; Gap I(P)=[SeqGRASP or SeqVNS Avg I(P)]−[SeqILS
Avg I(P)].

The above results lead us to conclude that the potential power of ILS lies in its
random and biased sampling (perturbations) of the set of local optima found in
the local search step. In most cases, i local searches within ILS perturbations can
be invoked much faster than if the same i local searches were performed within
GRASP’s random restart framework.

4.6 Sequential ILS vs. sequential VNS

In order to compare the performance obtained with metaheuristics that focus
on diversification vs. intensification, we compared our sequential ILS procedure
(SeqILS) with Variable Neighborhood Search (SeqVNS) to solve the most difficult
instances (Slashdot instances) in set (i). After running both algorithms for 2 hours,
ILS has improved the solution quality on larger instances (Table 3). On the other
hand, VNS is not able to reach the same average solution values.

In theory, ILS has the advantage of increased diversification, using perturba-
tions to better explore the search space and escape from local optima. On its turn,
VNS should be more lightweight to run, since it avoids executing local search over
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Fig. 3 Time-to-Target Plot (TTT-plot)(Aiex et al. 2007) for SeqILS, SeqVNS and SeqGRASP
algorithms when solving Slashdot n = 8000 instance to obtain the target solution value I(P ) =
16068. TTT-plots show, on the y-axis, the probability that an algorithm will find a solution
at least as good as a given target solution value within a specific running time, displayed on
the x-axis.

new initial solutions from random restart, a time consuming step. As a conse-
quence, VNS tends to concentrate on the region of the best known solution.

That being said, we provide a second comparison between both algorithms,
based on Time-to-Target Plots (TTT-plots), evidentiating the superiority of Se-
qILS when compared to SeqVNS. When solving Slashdot n = 8000 instance, the
probability of SeqILS finding the target solution of 16068 in 1000 seconds is above
95% while the same probability lies below 80% for SeqVNS. In summary, when
solving the CC problem, the ILS algorithm is more efficient than VNS.

4.7 Comparison with existing heuristics

Our goal in the next subsections is to verify the limit of Doreian Mrvar and
VOTE/BOEM heuristics. Notice that these heuristics are simplified versions of
a local search heuristic, so they tend to have inferior performance when compared
to metaheuristics. In order to run the tests, we chose to slice a huge real-world net-
work into smaller sizes. For that purpose, we used the Slashdot Zoo network from
February 21 2009 instance (Leskovec and Krevl 2014), which presented one of the
largest values of imbalance, for both the CC and SRCC measures (see Table 6).

4.7.1 Sequential ILS vs. Doreian Mrvar Method

The Doreian Mrvar Method (implemented in Pajek software) presents good-quality
results (with respect to solution value and average time spent) for the small-
sized literature instances in (i) and also for random social networks of up to 50
vertices (Figueiredo and Moura 2013). However, for larger instances, it presents
poor performance.
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Instance SeqILS Doreian Mrvar Method V OTE/BOEM

n |E−| |E+| w(E−) w(E+) k BestSol Time k BestSol Time k BestSol Time

600 156 1761 156 1761 9 109.2 13.44 9 133.5 1010.83 12 111.0 1.14

1000 859 5132 859 5132 18 600.1 30.20 18 630.4 5654.79 44 608.9 4.27

2000 3217 17598 3217 17598 31 2191.9 99.76 - - - 105 2264.2 43.86

4000 8664 40868 8664 40868 44 6207.2 528.44 - - - 147 6216.5 395.10

8000 22789 86916 22789 86916 80 16071.6 2208.41 - - - 375 16115.8 3475.91

10000 29805 109266 29805 109266 95 20591.4 4277.18 - - - 169 23458.4 7041.97

Table 4 Sequential ILS for the CC Problem, here named SeqILS, vs. Doreian Mrvar Method
vs. V OTE/BOEM results obtained on Slashdot signed graphs. BestSol is the average value
of the best imbalance found within the time limit, after 25 executions of each algorithm.

For this benchmark, we compared our ILS procedure with Doreian Mrvar
Method to solve the Slashdot instances in set (i). We have obtained average results
of 25 executions (Table 4). The software Pajek (version 4.09)15 was invoked with
the following configuration: Doreian Mrvar Method, starting from a random par-
tition (1-mode), 100 repetitions, α = 0.5, minimum number of vertices in clusters
= 1.

Pajek’s Doreian Mrvar Method accepts only one stopping criterion: number
of iterations. Since an iteration of this method is fundamentally different from
an iteration performed by ILS, the number of iterations is not a sound basis for
comparison of both algorithms. Therefore, as an alternative, we have set the time-
limit parameter of ILS to 2 hours and the number of repetitions of Doreian Mrvar
Method to 100, which was enough for this method to either reach the same solution
value of ILS, or exceed its time limit with an inferior solution value. In this way, we
were able to compare both solution values and execution times in a fair manner.
When it comes to these larger instances, our ILS procedure can get to the same
solution or to a better one at least 13 times faster than Pajek’s Doreian Mrvar
Method. We do not include Doreian Mrvar Method execution data for instances
with n > 1000, as it was unable to complete 100 iterations within 2 hours.

4.7.2 Sequential ILS vs. VOTE/BOEM

We have implemented the VOTE/BOEM heuristic for the CC Problem (here
named V OTE/BOEM), comparing the obtained solutions with the previous re-
sults from our sequential ILS algorithm. Again, our goal was to solve the Slashdot
instances in set (i). The time limit was set to 2 hours for both procedures.

As shown in Table 4, the results of the sequential ILS are always bet-
ter than V OTE/BOEM . For smaller instances, the faster execution times of
V OTE/BOEM are not surprising, since the heuristic is equivalent to only one
multistart iteration of the GRASP metaheuristic proposed in Drummond et al.
(2013). However, as the number of vertices increases, the ILS procedure outper-
forms VOTE/BOEM. Our sequential ILS algorithm becomes the fastest choice to
solve the CC problem when the number of vertices is big (n ≥ 8000).

15 In order to solve the CC Problem with Doreian Mrvar Method inside Pajek, we followed
these steps: after loading the network file, we created a random initial partition using 1−mode.
At this point we defined the number of clusters k of the solution. We have used the same number
of clusters of the solution returned by ILS. Finally, we called the resolution method from the
menu (Network→ Signed Network→ Create Partition→ Doreian Mrvar Method), specifying
the number of repetitions (we set it to 100), the alpha parameter (set to 0.5 to match the CC
Problem objective function) and the minimum number of vertices in clusters (set to 1).
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Instance SeqILS ParILS/SeqVND(10) ParILS/ParVND(8)

Target I(P) Avg Time CI Avg Time CI Speedup Efficiency Avg Time CI Speedup Efficiency

600 109 13.44 3.81 3.33 0.90 4.04 40.36% 4.74 0.37 2.83 35.41%

1000 600 30.20 1.35 5.75 0.41 5.25 52.55% 9.49 0.46 3.18 39.78%

2000 2185 99.76 6.14 18.39 1.82 5.43 54.25% 57.24 2.30 1.74 21.79%

4000 6195 528.44 35.20 91.14 7.75 5.80 57.98% 330.80 15.25 1.60 19.97%

8000 16065 2,208.41 165.49 425.57 36.25 5.19 51.89% 590.40 12.92 3.74 46.76%

10000 20580 4,277.18 291.29 709.04 47.25 6.03 60.32% 1,012.47 32.03 4.22 52.81%

Average 5.29 52.89% 2.89 36.08%

Table 5 CC results obtained on Slashdot signed graphs by the use of different
metaheuristic approaches: Sequential ILS (SeqILS), Parallel ILS with sequential VND
(ParILS/SeqV ND(np)) and Parallel ILS with parallel VND (ParILS/ParV ND(np)), where
np is the number of processes in parallel. Target I(P) is the target imbalance value used as
stopping criterion for each algorithm. Avg Time is the average execution time (in seconds)
spent by each algorithm to reach the specified target solution value, after 25 independent
executions. CI is the 95% confidence interval of the execution time, for each algorithm.

4.8 Sequential vs. parallel ILS

Since the Slashdot instances in (i) have shown the limits of the sequential version
of ILS, we have used them to assess the performance of the parallel ILS algorithm.
Three different solution methods were applied:

– sequential ILS metaheuristic (SeqILS, using only one core of a processor);
– independent parallel ILS with sequential local search (ParILS/SeqV ND);
– parallel ILS with parallel local search (ParILS/ParV ND).

The parameters of the procedures used in the parallel approaches of ILS are
the same used for testing the sequential algorithm, except for the number of
ILS multistart iterations. For independent parallel ILS (ParILS/SeqV ND), in
order to perfectly divide the number of multistart iterations of the original ILS
procedure, 10 master processes execute one multistart iteration of ILS each. In
ParILS/ParV ND, the runtime configuration has 8 processes running in parallel,
out of which 2 processes are ILS masters (each one running 5 ILS iterations) and
the other 6 processes consist of VND search slaves, 3 for each master16.

Finally, in order to compare the sequential and parallel procedures, the fol-
lowing additional stopping criterion was applied: all procedures stop whenever the
specified target solution value [Target I(P)] is found.

On average, the independent parallel ILS (ParILS/SeqV ND) with 10 processes
is the best solution method17. As shown in Table 5, it can solve the Slashdot
instances in set (i) up to 6 times faster than sequential ILS, with an average
efficiency of 53%.

On the other hand, the results obtained with parallel ILS with parallel local
search (ParILS/ParV ND) have no such performance improvement as one would

16 We conducted several experiments to find the optimal number of processes to be used in the
parallel algorithms. This setting is closely related to the hardware configuration of the computer
cluster used in the experiments. Since each machine in the computer cluster has 2 quad-core
CPUs (8 processor cores), it can host 8 processes running in parallel. In ParILS/ParV ND,
we chose to group each ILS master process together with its corresponding VND search slaves,
in order to maximize the performance of message exchange between related processes.
17 Whenever it is required to assess the performance of parallel algorithms, two metrics are

applied: speed-up Su(p) measures the acceleration observed for the parallel algorithm when
compared with its sequential version and efficiency E(p) measures the average fraction of time
along which each process is effectively used. Thus, Su(p) = T (seq)/T (p), such that T (seq)
is the time required for the sequential algorithm and T (p) the time required for the parallel
algorithm run on p processors, and E(p) = Su(p)/p.
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expect. Using 8 processes to execute the algorithm (2 ILS masters and 3 VND
search processes per master) resulted in an average speedup of 2.9 (average ef-
ficiency of 36%) for Slashdot instances. Therefore, the additional computational
resources required to run parallel local search are not worth the available acceler-
ation and efficiency brought by this procedure.

It is worth noticing that, although we have also applied the same parallelization
approaches to GRASP, the obtained experimental results were not as good (in
terms of performance) as those of ILS18.

4.9 SRCC experimental results

The RCC ILP formulation becomes numerically more difficult to solve with the
symmetric definition and, as a consequence, the authors in Figueiredo and Moura
(2013) were able to calculate the SRCC solution only for smaller networks, namely
the literature instances in (i). We have applied these results to validate the quality
of the SRCC solutions returned by our metaheuristics.

When adapting the ILS metaheuristic to solve the SRCC problem, instead of
the CC problem, there is the need to change the objective function that evaluates
the partition. When it comes to the SRCC problem, this evaluation becomes more
costly, as it demands the solution of a series of minimization problems defined in
equation 6 (Section 2.2). In order to reduce this computational cost, the algorithm
manipulates matrices with precalculated imbalance values between clusters, and
these matrices are incrementally updated whenever an improved solution is found.
The matrices are then used to analyze the solutions visited at each local search
iteration. In this way, our ILS heuristic is able to provide an efficient solution to the
SRCC Problem, applying the same methods (and corresponding configurations)
used to solve the CC Problem, with one major advantage over exact methods: it
can process larger graph files.

Therefore we have extended the metaheuristics explained in the previous sec-
tion to deal with this new measure, modifying the applied objective function. Also,
in order to provide SRCC measures for larger graph files, we ran the ILS proce-
dure restricting the number of clusters in the SRCC solution in order to match
the exact number of clusters (k) found by the CC solution previously obtained by
the program. This way, we were able to compare the imbalance of the solutions
returned by both ILS algorithms (CC and SRCC).

After solving the SRCC problem, one can observe that, when compared to the
CC problem, the imbalance measures obtained with SRCC are sometimes smaller,
as can be seen on Figure 4 (UNGA instances). A reason why the CC problem tends
to over-evaluate the imbalance is related to penalizing relationships associated with
mediation processes that occur in the network.

5 Analysis of structural balance on large real-world social networks

In this section, we apply the previously presented ILS algorithms to efficiently solve
the CC and SRCC problems, and analyze the obtained solutions to the United

18 The table containing the performance comparison between Parallel GRASP and Parallel
ILS is available in http://www.ic.uff.br/~yuri/files/CC-ADDcomp.zip

http://www.ic.uff.br/~yuri/files/CC-ADDcomp.zip
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Fig. 4 CC and SRCC imbalance measures of UNGA instances listed in Section 4.2-(ii). In
this graph, we only list the years when the CC and SRCC imbalance values differ. For a
full report of these results, see the complementary material in http://www.ic.uff.br/~yuri/
files/CCcomp.zip.

Nations General Assembly Voting Data and three large signed social networks
(Epinions, Slashdot and Wikipedia) available in Leskovec and Krevl (2014).

5.1 United Nations General Assembly (UNGA) Voting Data

As noted in the introduction, some authors have applied different signed graph
clustering methods to networks of international alliances and disputes. Traag and
Bruggeman (2009) analyzed international relations taken from the Correlates of
War (Stinnett et al. 2002) data set, while Macon et al. (2012) showed how three
different network representations could be used to identify voting groups in UNGA
annual sessions.

Likewise, our work is based on the voting on resolutions in the United Nations
General Assembly (UNGA), separated by year. Having applied the sequential ILS
algorithm using the UNGA instances listed in Section 4.2-(ii) as input, we give a
taste of social network analysis that can be done with the obtained CC and SRCC
results. 19 We interpret the results obtained on graphs associated with UNGA
votes, i.e. groups of countries that minimize network imbalance, in addition to
some historical and geopolitical facts.

5.1.1 UNGA CC results

According to our results, in 1946 (first UNGA voting session), the obtained CC
solution has Poland, Czechoslovakia, Yugoslavia, Russia, Ukraine and Belarus to-
gether in the same group, reflecting the Soviet Union power in Eastern Europe.
In the same period, the United States and Cuba appeared together in another
group, and such behavior persisted until 1953, the year of the Cuban Revolu-
tion (Pérez-Stable 1993). Afterwards, in 1962, year of the Cuban missile crisis
(Allison 1969), bipolarity was obvious during the Cold War. Our CC results indi-
cate two clusters: (i) USA, with most Latin American countries, Western Europe,
Japan, Taiwan, India, Australia and other Pacific Countries; and (ii) Russia, with
Cuba, Poland, Hungary, Czechoslovakia, Albania, Yugoslavia, Bulgaria, Ukraine
and many African countries. By 1963, Cuba had moved towards a full-fledged
Communist system modeled on the Soviet Union.

19 For a full report of these results, including the groups of countries in each solution,
separated by year, see the complementary material in http://www.ic.uff.br/~yuri/files/
CCcomp.zip.

http://www.ic.uff.br/~yuri/files/CCcomp.zip
http://www.ic.uff.br/~yuri/files/CCcomp.zip
http://www.ic.uff.br/~yuri/files/CCcomp.zip
http://www.ic.uff.br/~yuri/files/CCcomp.zip
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Additional results are linked to Apartheid in South Africa: the country appears
isolated in the CC clustering solution for the 1974 voting session. In that year a
motion was passed to expel South Africa from the UN, but this was vetoed by
France, the United Kingdom and the United States, all key trade associates of
South Africa (Nesbitt 2004, McGreal 2006, Dowdall 2009). The results obtained
for the graph associated to 1974 also show an approximation of the USSR (Russia)
and Arab states (Libya, Sudan, Iran, Iraq, Egypt, Syria, Lebanon, Jordan, Saudi
Arabia, Kuwait, Bahrain, Qatar, United Arab Emirates, Oman and Afghanistan),
which appear in the same group. This behavior makes sense, since after the mid
1950’s and throughout the remainder of the Cold War the Soviets unequivocally
supported various Arab regimes in lieu of Israel (Golani 1995, Golan 2010).

Later on, from 1987 to 1991, during the period known as the First Intifada,
characterized by Palestinian uprising against the Israeli occupation of the Pales-
tinian Territories (Smith 2010), the CC results show that Israel is always in a small
group while most other countries of the world form another group. The USA, how-
ever, always appears together with Israel and sometimes other countries like the
UK, France and German Federal Republic also appear in the same group.

More recently, regarding the Gaza-Israel conflict, in 2006, Israel and USA ap-
pear together, isolated in a group, with the rest of the world in another group. This
is probably due to the large-scale conventional warfare beyond the peripheries of
the Gaza Strip (Mearsheimer and Walt 2006), in addition to the 2006 Lebanon
War (Kreps 2007).

5.1.2 UNGA SRCC results

As explained in the previous section, an interesting analysis of the SRCC prob-
lem provides a different view over certain relations that were previously seen as
violations to the balance on the network according the original CC problem defi-
nition. Since the SRCC problem does not count certain types of ties as violations
(for considering some ties belonging to processes occurring in the network, such
as positive and negative mediation), the values of imbalance tend to be even lower
than those identified by the CC problem solver. Thus it is possible to extract and
detect which actors possibly belong to a group of mediators. Taking the UNGA
CC and SRCC solution values into account, as can be seen on Figure 4 in Sec-
tion 4.9, it is possible to identify in which yearly voting sessions the SRCC relaxed
imbalance is smaller than the CC imbalance measure. In these cases, there are
relationships / ties that were not classified by SRCC as violations of the balance
of the network. For example, in the voting session of 1987, we were able to identify
a group of countries that acted as positive mediators: Canada, Ireland, Nether-
lands, Belgium, Luxembourg, France, Spain, Portugal, German Federal Republic,
Italy, Norway, Denmark, Iceland, Japan, Australia and New Zealand. This group
of sixteen countries has 100% of internal positive relationships and 92% of external
positive relationships. Besides this, there are two other clusters: the first one with
the USA, Dominica, the UK and Israel, and another one with 138 countries. The
year of 1987 is exactly when the First Intifada commenced, so probably the small
group with Israel and the large group with most countries of the World are in
opposite camps, subject to the mediation of a third group of countries.

The same holds true in the analysis of the SRCC results of 1990. In this case,
the group of mediators was composed of the following twelve countries, out of
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which eleven were also present in the mediation group of 1987: Canada, Nether-
lands, Belgium, Luxembourg, Portugal, German Federal Republic, Poland, Italy,
Norway, Denmark, Iceland and Japan. This group of twelve countries has 100% of
internal positive relationships and 94% of external positive relationships. There are
also two other groups. The second one comprising of nine countries (United States
of America, Panama, United Kingdom, France, Sao Tome and Principe, Equato-
rial Guinea, Liberia, Israel and Cambodia) and the third one with 137 nations,
including all Arab and Soviet states. The First Intifada lasted until the Madrid
Conference in 1991, though some date its conclusion to 1993, with the signing of
the Oslo Accords (Munem 2008). With this in mind, an evidence that supports
the existence of the aforementioned mediation group is the second phase of the
Madrid Peace Process, launched by the United States and Russia in Moscow, in
January 1992. Foreign ministers and delegates from thirty six countries - including
representatives from the Middle East, Europe, Japan, China and Canada - were
involved.

5.2 Epinions, Slashdot and Wikipedia social media networks

In this section, we evaluate three large online signed social networks available in
Leskovec and Krevl (2014): (i) the social network of the technology-news website
Slashdot20, where a signed link indicates that one user likes or dislikes the com-
ments of another; (ii) the voting network of Wikipedia (WikiElections21), where
a signed link indicates a positive or negative vote by one user on the promotion
to admin status of another; and (iii) the trust network of Epinions product review
website22, where users can indicate their trust or distrust of the reviews of others.

Table 6 presents different imbalance measures found in the literature for the
aforementioned social networks. Facchetti et al. (2011) defines a fraction called
δ/m, which can be interpreted as a measure of the relative imbalance of the net-
work, since it consists of the number of frustrated bipartite relationships divided
by the total number of relationships of the network. In turn, Chiang et al. (2013)
shows the proportion of balanced 3-cycles (P (Cli)), and Leskovec et al. (2010)
presents a measure of balanced undirected triads.

Method Measure Slashdot Wikipedia Epinions

Facchetti et al. (2011) δ/m 14.76% 14.20% 7.17%

Chiang et al. (2013) 1− P (Cli) 13.35% 21.65% 9.50%

Leskovec et al. (2010) % unbalanced triads 8.80% 9.10% 5.90%

ILS-CC %I(P ) 14.04% 14.32% 7.89%

ILS-SRCC %RI(P ) 13.90% 5.37% 7.81%

Table 6 Comparison of imbalance measures from different authors and our results (ILS-CC
and ILS-SRCC).

By applying the best parallel version of the ILS algorithm, we provide an
analysis of the relative imbalance of these networks, which corresponds with the

20 Slashdot friends or foes network from Feb 21 2009: 82,144 vertices and 549,202 edges.
21 Wikipedia adminship election data: 7,000 vertices and 100,000 edges.
22 Epinions who-vote-whom network: 131,828 vertices and 841,372 edges.
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results from three different works that have also shown how these networks are
extremely balanced when compared to random networks of equivalent size.

According to Facchetti et al. (2011), the fraction of imbalance for the undi-
rected Slashdot network is 14.76%, which is compatible with the results obtained
by ILS −CC. Our metaheuristic has reached a solution with a relative imbalance
( %I(P ) ) of 14.04% (Table 6). Remark that the divergence in these values is ex-
pected and is probably due to the different measures applied. ILS −CC managed
to fully process Wikipedia network, resulting in a relative imbalance (%I(P )) of
14.32%, while the paper’s measure points to the value of 14.20%. Moreover, the
relative imbalance of Epinions network obtained by ILS − CC was 7.89%, being
very close to the paper’s result (7.17%).

Additionally, according to Chiang et al. (2013), the three former social networks
exhibit high levels of balance - we show the corresponding values of imbalance
(1−P (Cli)) in Table 6. Even though this measure is not the same objective function
of the CC problem, it still indicates that these networks are indeed extremely
balanced, which is in accordance with the result of our work. Also remark that
the same work presents another measure called P0(Cli), which consists of the
expected probability of finding balanced 3-cycles in an equivalent random network.
The values of P0 are a lot smaller than the values of P (P0 equals an average of
60%). This leads to the conclusion that, in random networks of equivalent size,
imbalance measures tend to be much higher than the actual imbalance of the three
aforementioned social media networks.

Finally, a third work by Leskovec et al. (2010) confirms that the analysed
social media networks have high relative balance (i.e. low relative imbalance). In
the corresponding line of Table 6, we display the percentage of unbalanced triads,
based on the measures provided by the authors.

In summary, the above comparisons indicate that the measure applied in Fac-
chetti et al. (2011) matches our relative imbalance measure derived from the CC
problem objective function, while the measures available in Chiang et al. (2013)
and Leskovec et al. (2010) underevaluate the imbalance of the networks, as they
are based only on unbalanced triangles.

Great part of the imbalance measure of the networks is due to unaccounted
mediation relationships. Although ILS − SRCC was not able to detect mediation
processes occurring in Slashdot and Epinions networks, the Wikipedia network
does indeed present a great quantity of relationships associated with mediation
and this translates into a lower imbalance measure (%RI(P )), as shown in Table 6.
This points to relative values of (relaxed) imbalance even lower than those found
by the CC problem solver. Thus, if we factor the SRCC results into consideration,
the Wikipedia network is still more balanced than the measures from Facchetti
et al. (2011) and also the CC problem.

6 Discussion and perspectives

The CC and SRCC consist of NP-hard combinatorial optimization problems. We
have contributed to their efficient solution by incorporating the ILS metaheuris-
tic, enabling the analysis of structural balance on real-world social networks. We
have also demonstrated the potential of social network analysis over UNGA vot-
ing session data, Wikipedia election history, Slashdot friends or foes network and
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Epinions who-trust-whom online social network. To the best of our knowledge, CC
and SRCC measures of large social networks have yet to be calculated.

The multistart ILS metaheuristic, proposed here to solve these problems, is
an improvement over the existing GRASP approach to solve the CC Problem,
either by outperforming, in processing time, the GRASP metaheuristic proposed
earlier, or by improving the solution quality. In fact, our tests have shown that
the sequential version of ILS is more efficient than the existing heuristics (Doreian
Mrvar Method - implemented in Pajek, and VOTE/BOEM). ILS also provides
better solutions when compared to the VNS metaheuristic, showing that, to solve
the CC problem, diversification is more efficient than intensification.

Additionally, the parallel ILS with sequential VND, which offers substantial
speedups over the sequential algorithm, is the most efficient metaheuristic to
solve larger instances, such as those based on real-world signed social networks
(Wikipedia, Slashdot and Epinions), as well as completely random and random
instances with a predefined community structure.

Regarding the Symmetric RCC Problem, we were able to calculate the Sym-
metric Relaxed Imbalance (SRI) of all network instances cited in the experiments
by applying an extension of the parallel ILS metaheuristic used to solve the CC
Problem.

The multistart ILS heuristic can also be incorporated in the efficient solution
of instances from other problems. The CC problem can be applied in several areas,
in which large instances probably require solving. With this idea in mind, practi-
tioners interested in these applications can apply our heuristic. In future work, we
can explore many paths by generalizing various aspects of our research. We intend
to use our methods to analyse other real networks that represent a social group in
different periods of time. On top of this, it is possible to generalize our heuristic
to manage other ways of evaluating the imbalance of the network, which implies
solving other relaxed versions of the CC problem. It is also possible to look for
overlapping communities.
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Den Besten, Matthijs, Thomas Stützle, Marco Dorigo. 2001. Design of iterated local search
algorithms. Applications of Evolutionary Computing. Springer, 441–451. 10

Doreian, P., A. Mrvar. 1996a. A partitioning approach to structural balance. Social Networks
18 149–168. 2, 3, 6

Doreian, P., A. Mrvar. 2009. Partitioning signed social networks. Social Networks 31 1–11. 2,
3, 4, 7, 8, 14

Doreian, Patrick, David Krackhardt. 2001. Pre-transitive balance mechanisms for signed net-
works*. Journal of Mathematical Sociology 25(1) 43–67. 2

Doreian, Patrick, Andrej Mrvar. 1996b. Structural balance and partitioning signed graphs.
Developments in data analysis 195–208. 3, 7, 13

Dowdall, Aaron T. 2009. The birth and death of a tar baby: Henry kissinger and southern
africa. Ph.D. thesis, University of Missouri–Columbia. 24

Drummond, Lucia, Rosa Figueiredo, Yuri Frota, Mario Levorato. 2013. Efficient solution
of the correlation clustering problem: An application to structural balance. YanTang
Demey, Herv Panetto, eds., OTM 2013 Workshops, LNCS , vol. 8186. Springer Berlin
Heidelberg, 674–683. 3, 4, 7, 13, 20

Duch, Jordi, Alex Arenas. 2005. Community detection in complex networks using extremal
optimization. Physical review E 72(2) 027104. 2



Evaluating balancing on social networks through Correlation Clustering problems 29
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