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Abstract: We initiate a study of the boundary version of the square-lattice Q-state Potts

antiferromagnet, with Q ∈ [0, 4] real, motivated by the fact that the continuum limit of the

corresponding bulk model is a non-compact CFT, closely related with the SL(2,R)k/U(1)

Euclidian black-hole coset model.

While various types of conformal boundary conditions (discrete and continuous branes)

have been formally identified for the the SL(2,R)k/U(1) coset CFT, we are only able in

this work to identify conformal boundary conditions (CBC) leading to a discrete bound-

ary spectrum.

The CBC we find are of two types. The first is free boundary Potts spins, for which we

confirm an old conjecture for the generating functions of conformal levels, and show them

to be related to characters in a non-linear deformation of the W∞ algebra.

The second type of CBC — which corresponds to restricting the values of the Potts

spins to a subset of size Q1, or its complement of size Q−Q1, at alternating sites along the

boundary — is new, and turns out to be conformal in the antiferromagnetic case only. In the

following, we refer to these new boundary conditions as “alt” boundary conditions. Using

algebraic and numerical techniques, we show that the corresponding spectrum generating

functions produce all the characters of discrete representations for the coset CFT. The

normalizability bounds of the associated discrete states in the coset CFT are found to have

a simple interpretation in terms of boundary phase transitions in the lattice model. In
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the two-boundary case, with two distinct alt conditions, we obtain similar results, at least

in the case when the corresponding boundary condition changing operator also inserts a

number of defect lines.

For
√
Q = 2 cos πk , with k ≥ 3 integer, we show also how our boundary conditions can

be reformulated in terms of a RSOS height model. The spectrum generating functions are

then identified with string functions of the compact SU(2)k−2/U(1) parafermion theory

(with symmetry Zk−2). The new alt conditions are needed to cover all the string functions.

We provide an algebraic proof that the two-boundary alt conditions correctly produce the

fusion rules of string functions. We expose in detail the special case of Q = 3 and its link

with three-colourings of the square lattice and a corresponding boundary six-vertex model.

Finally, we discuss the case of an odd number of sites (in the loop model) and the rela-

tion with wired boundary conditions (in the spin model). In this case the RSOS restriction

produces the disorder operators of the parafermion theory.

Keywords: Conformal and W Symmetry, Boundary Quantum Field Theory, Black Holes

in String Theory
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1 Introduction

The critical antiferromagnetic Potts model on the square lattice enjoys remarkable proper-

ties which are not fully understood, despite years of work on the topic [1–5]. The most re-

markable aspect of this model is that it is described, in the continuum limit, by a conformal

field theory (CFT) with a continuous spectrum of critical exponents [6–9], closely related

— after parametrising
√
Q = 2 cos γ, where γ = π

k and k ≥ 2 — with the SL(2,R)k/U(1)

coset “Euclidian black-hole” CFT [10, 11]. While this kind of relationship between a com-

pact (albeit non-unitary) lattice model and a non-compact CFT has been extended to

other cases — for instance, two coupled antiferromagnetic Potts models [12], polymers at

the theta-point [13, 14], or truncations of the Chalker-Coddington model [15] — it has

only been studied so far in the bulk. It is natural to wonder how the relation between

models persists in the boundary case, and what this might tell us about issues ranging,

for instance, from the microscopic interpretation of the non-compact degrees of freedom in

the continuum limit of the antiferromagnetic (AF) Potts model to the possible conformally

invariant boundary conditions in the Euclidian black hole CFT [16].

This paper is intended as the first in a series devoted to study this question. We

will mostly focus here on the Potts model per se, and discuss in a subsequent work what

happens for the underlying staggered six-vertex model — or to the cognate staggered

(“alternating”) XXZ spin chain [17, 18].

In section 2 we review well-known facts about the Potts model, its clusters and loops

representations in the bulk, and its known critical lines. In section 3 we review aspects

of the boundary Potts model, together with known conformal boundary conditions for the

ferromagnetic case. In section 4 we review the known case of free boundary conditions for

the AF Potts model — which turns out to be conformal indeed — pointing out in particular

the presence of an underlying (deformation of) W∞ symmetry.

Section 5 is the centrepiece of the present paper. There, we identify new conformal

boundary conditions specific to the AF Potts model — which we nickname “alt” because

they involve the alternation of certain variables — together with the associated partition

functions, which turn out to be combinations of discrete characters of the SL(2,R)/U(1)

coset model. Many issues are discussed, in particular those concerning normalisability.

Section 6 delineates the relationship with parafermions [19] when k is an integer, and leads

to the definition of a new staggered restricted solid-on-solid (RSOS) model [20] in the Zk
universality class. Section 7 examines the special case of the two and three-state Potts

models and interprets the “alt” boundary conditions in terms of these well-studied models.

Finally, in section 8, we study the RSOS and loop models with an odd number of sites,

which we find to give the so-called “disorder operators” arising in parafermion theories,

which were first studied in [21].

For the reader’s convenience, we here give a list of notations, consistent with our earlier

works on related topics:

• Wb/u
j — standard modules over the blob algebra,

• X b/uj — simple modules over the blob algebra,
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• Wj — standard modules over TLN ,

• Xj — simple modules over TLN ,

• j — the Uqsl(2) spin, with l = 2j the number of through-lines,

• J — the sl(2,R) spin,

• L — number of Potts spins in a horizontal row of the lattice,

• N — number of strands in the loop model/the number of sites in the spin chain

(N = 2L),

• λdJ,M — discrete character of the SL(2,R)/U(1) coset model,

• λr,j — generating function of levels in the loop model with “alt” boundary conditions,

• cml — string function, i.e., the generating function of levels in the Zk−2

parafermion CFT.

2 The (bulk) Q-state Potts model on the square lattice

2.1 Clusters and loops

We will concern ourselves here with the Q-state Potts model on the square lattice defined

by the Hamiltonian

H = −K1

∑
〈ij〉1

δσi,σj −K2

∑
〈ij〉2

δσi,σj , (2.1)

where 〈ij〉1 and 〈ij〉2 denote respectively the set of horizontal and vertical nearest neigh-

bours, while K1 and K2 are the corresponding coupling constants. Eq. (2.1) gives the

partition function

Z =
∑
{σ}

∏
〈ij〉1

exp(K1δσi,σj )
∏
〈ij〉2

exp(K2δσi,σj ) , (2.2)

where the sum is over all configurations of the Potts spins σ. Here each spin can take the

integer values σi = 1, 2, . . . , Q, and {σ} denotes the collection of all spins.

We will be particularly interested in the isotropic model, i.e. K1 = K2 = K. In this

case, eqs. (2.1)–(2.2) become

H = −K
∑
〈ij〉

δσi,σj (2.3)

and

Z =
∑
{σ}

exp(−H) =
∑
{σ}

∏
〈ij〉

exp(Kδσi,σj ) (2.4)

respectively. It is known that the model admits a duality transformation, under which the

variable v ≡ exp(K)− 1 is replaced by its dual value v∗ ≡ Q/v. The (positive) fixed point

of this relation, namely vc =
√
Q, is known to correspond to the ferromagnetic critical

point [22]. Notice that under duality, a horizontal pair of nearest neighbours is replaced

by a dual vertical pair, and vice versa.
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(a) (b) (c) (d)

Figure 1. Each tile on the lattice will take one of the forms shown in panels (a), (b), (c) and (d).

The black circles represent the points where the Potts spins lie. The vertices with no black circles

are points on the dual lattice.

Very remarkably the isotropic square-lattice Potts model is also critical at another

value, vAF = −2+
√

4−Q, the antiferromagnetic critical point [1]. Since this is not a fixed

point under duality, the dual value v∗AF ≡ Q/vAF = −2 −
√

4−Q provides a second AF

critical point in the same universality class as vAF.

Returning to the anisotropic model, we can write

exp(K1δσi,σj ) = 1 + v1δσi,σj

exp(K2δσi,σj ) = 1 + v2δσi,σj
(2.5)

and evaluating these identities for δσi,σj = 0 or 1, we see that they are satisfied provided

we set
v1 = exp(K1)− 1

v2 = exp(K2)− 1 .
(2.6)

Following the strategy of Fortuin and Kasteleyn (FK) [23], we insert (2.5) into (2.2) and

expand out the products. For each term in the expansion, we draw a line between neigh-

bouring Potts spins i and j provided it corresponds to picking the second term vkδσi,σj
in (2.5), and no line if the first term 1 is taken. Making this choice for each nearest

neighbour pair defines a graph G of clusters (connected components) containing |G1| hor-

izontal and |G2| vertical lines. We can then write the partition function as a sum over all

possible clusters:

Z =
∑
G

v
|G1|
1 v

|G2|
2

∑
{σ}

δσi,σj , (2.7)

where
∑
G

is a sum over all clusters. We denote moreover the total number of lines in G as

|G| = |G1|+ |G2| . (2.8)

If we define the quantity C(G) as the number of connected components in G, the partition

function (2.2) can be rewritten as [23]

Z =
∑
G

v
|G1|
1 v

|G2|
2 QC(G) . (2.9)

Following Baxter, Kelland and Wu [24], we can next transform this cluster model into

a loop model, i.e., rewrite the partition function as a sum over loops. The graph of clusters

G is made up of four different types of tiles, shown in figure 1, defined by the following
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Figure 2. The one-to-one mapping between cluster configurations and loop configurations.

two binary choices: 1) For tiles of type (a) and (c), the Potts spins (resp. dual Potts spins)

stand at the top and bottom vertices (resp. at the left and right vertices) of the tile, while

it is the other way around for tiles of type (b) and (d). 2) For tiles of type (a) and (b), the

FK expansion contains a line between the two Potts spins, while for tiles of type (c) and

(d) there is no such line. A loop representation equivalent to the FK one is now defined

by assigning to each tile two quarter-turn loop segments, as shown in figure 1. Doing this

for each tile of the lattice (with appropriate boundary conditions), we obtain an ensemble

of closed loops, as shown in figure 2. Notice in particular that the loops surround the FK

clusters and are themselves surrounded by the cycles of the FK clusters.

It follows from this property of surrounding that the number of loops ` in any given

configuration is the sum of the number of connected components C and the number of

independent cycles S in the corresponding FK cluster configuration:

` = C + S (2.10)

We furthermore have another easily verified topological identity (Euler relation) for each

cluster configuration:

C = |V | − |G|+ S , (2.11)

where |V | is the number of vertices on the lattice. Combining eqs. (2.10)–(2.11) gives us

C =
1

2
(|V | − |G|+ `) , (2.12)

and inserting this into (2.9) gives us the partition function expressed in terms of the loop-

related quantities [24]

Z = Q
|V |
2

∑
loops

x
|G1|
1 x

|G2|
2 Q

`
2 , (2.13)

where we have defined x1 ≡ expK1−1√
Q

and x2 ≡ expK2−1√
Q

. The isotropic case corresponds to

x1 = x2 = x. In other words, apart from an unimportant overall factor, Z consists of local

weights x1, x2 depending on the choice of tiles, and a non-local weight of
√
Q per loop.
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2.2 Critical lines

There are two well-known critical lines of physical interest for the Q-state Potts model on

the square lattice. The ferromagnetic self-dual line is obtained for x1x2 = 1, with xi > 0.

The isotropic case corresponds to x1 = x2 = 1 and thus

eK1 = eK2 = 1 +
√
Q (2.14)

The corresponding loop model is then purely “topological” in the sense that the weight of

configurations only depends on the number of loops, each of which comes with a fugacity√
Q. The continuum limit of this model is reviewed in many places (see e.g. [2, 25]). Using

the parametrisation
√
Q = 2 cos γ, with γ = π

k and k ≥ 2, the central charge in particular

is known to be

c = 1− 6

k(k − 1)
. (2.15)

The critical exponents and three point-functions are well known, and closely related with Li-

ouville CFT at c ≤ 1 (sometimes called time-like Liouville) [26–28]. The question of higher

correlation functions in the model remains still partly open, but has recently witnessed

important progress [29, 30]. The antiferromagnetic (AF) critical line is not self-dual,1 and

given by (
eK1 + 1

) (
eK2 + 1

)
= 4−Q . (2.16)

The isotropic point corresponds to

eK1 = eK2 = −1 +
√

4−Q . (2.17)

Note that the corresponding loop model has weights that depend also on |G|, the number

of lines in the graphical expansion. Note that for the model to be “physical” one would in

general require eK ≥ 0 that is Q ≤ 3. We will, however, consider all values of Q ∈ [0, 4]

in what follows, since many of the parameters characterising the corresponding CFT turn

out to depend continuously on Q throughout this range.

The continuum limit of this model is quite intricate, and the present paper considers

but one of its many aspects which has not yet been brought under sufficient control. The

central charge along the AF line is however well established to be [2, 3]

cPF = 2− 6

k
, (2.18)

where the subscript PF abbreviates “parafermion” for reasons that will be exposed in

details below. Moreover, the exponents are closely related [6–9] with the spectrum of the

SL(2,R)k/U(1) coset model [10, 11], henceforth simply referred to as the black-hole (BH)

theory because of its string-theory origins. Recall that this CFT has central charge

cBH = 2 +
6

k − 2
, (2.19)

1As we have seen above, its image under the duality transformation gives rise to a non-physical regime

with complex Boltzmann weights.
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while the conformal weights read:

hBH = −J(J − 1)

k − 2
+

(n± wk)2

4k
, (2.20)

where J is an sl(2,R) spin.

Since the target of this CFT is non-compact, care must be taken with issues of nor-

malisability. It is known, in particular, that the ground state (corresponding to J = 0)

is non-normalisable. Normalisable states come in a few discrete representations (see be-

low), and in the continuum representations J = 1
2 + is, with s ∈ R. The central charge

of the antiferromagnetic Potts model (2.18) is obtained from (2.19) by a “twist” of the

compact-boson on top of the J = 1
2 state in (2.20) — see [6] for a detailed discussion of

this point.

An intriguing aspect of the antiferromagnetic Potts model meanwhile is that it also

exhibits, for k integer, a close relationship with compact parafermions Zk−2. The latter can

be considered as the coset theory SU(2)k−2/U(1), and are well known to have the central

charge (2.18). It is important to stress that we are not talking here about the non-compact

parafermions naturally associated with the SL(2,R))k/U(1) theory. These correspond to a

symmetry Ŵ∞(k), and correspond formally to SU(2)−k/U(1), since

2 +
6

k − 2
= 2− 6

(−k + 2)
(2.21)

Instead, we really mean here a symmetry Wk−2, “hidden”, as it were, within Ŵ∞(k), under

some sort of “symmetry” k → 2− k. We will shed some more light on this question in the

subsequent sections.

In general, we shall denote exponents in the BH theory by h and those in the AF Potts

model by ∆.

3 Boundary Potts model

In the following it will be useful to turn to a more algebraic framework whose basic pieces

we now recall. We will exclusively consider the Potts model on a strip of the square lattice

of width L (the number of Potts spins), with the transfer matrix “propagating” in the

vertical direction.

3.1 Free boundary conditions and the Temperley-Lieb algebra

The simplest boundary conditions are obtained when the Potts spins on the boundary are

“free”. In this case, the cluster expansion of section 2 goes through as is. Meanwhile,

it is well known that the transfer matrix can be expressed as a product of elementary

edge generators:

T = (x1 + e1)(x1 + e3) · · · (x1 + e2L−1)(1 + x2e2)(1 + x2e4) · · · (1 + x2e2L−2) . (3.1)

In the factors of the form (x1 + e2k−1) the first term corresponds to a tile of type (a) in

figure 1, while the second term corresponds to a tile of type (c). Similarly, in the factors

– 7 –
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of the form (1 + x2e2k) the first (resp. second) term corresponds to a tile of type (d) (resp.

type (b)). In other words, the former factors add a row of vertical edges between the

Potts spins, while the latter ones add a row of horizontal edges. In these expressions the ei
are operators acting on the Potts spins Hilbert space will well-known expressions.2 More

relevant to us is the fact that the ei obey the defining relations of the Temperley-Lieb (TL)

algebra [31]

e2
i =

√
Qei ,

eiei±1ei = ei ,

eiej = ejei for |i− j| ≥ 2 .

(3.2)

While the integer-Q Potts model provides one representation of this algebra, the FK cluster

and loop models correspond to other representations (essentially the same ones in these

latter two cases), which now makes sense for all values of Q. In the loop language, we can

interpret the TL relations graphically by associating a tile with the loop configurations

shown in figure 1(d) to the identity operator, and the tile in figure 1(c) to the TL operator

ei. The corresponding tiles (a) and (b) have the same interpretation, except that they

include the factors x1,2 in order to account for the weighting of the lines in the expansion.

Multiplying TL generators then corresponds to stacking tiles vertically. The graphical

interpretation of the relation e2
i =
√
Qei is shown in figure 3. We see that stacking an ei

tile on top of another ei tile creates a loop, and this loop gets the Boltzmann weight
√
Q.

Similarly, the relation eiei−1ei is illustrated in figure 4.

Note that, for the time being, the boundary conditions imposed in eq. (3.1) are free on

both sides of the lattice. This corresponds to the fact that the loop segments that touch the

left and right sides of figure 2 are simply reflected back into the system. We can see that

the transfer matrix (3.1) creates all the possible loop configurations with such boundary

conditions (such as the one in figure 2), and eq. (3.2) ensures that the corresponding loops

get the correct Boltzmann weights. In other words, repeated applications of T in eq. (3.1)

builds up the partition function Z in eq. (2.13).3

Another useful representation of the TL algebra is obtained by turning to the six-vertex

model, where

en = I⊗n−1 ⊗


0 0 0 0

0 e−iγ 1 0

0 1 eiγ 0

0 0 0 0

⊗ I⊗2L−n−1 . (3.3)

The operator en can also be written in terms of Pauli matrices

en =
1

2

[
σxnσ

x
n+1 + σynσ

y
n+1 − cos γ(σznσ

z
n+1 − I)− i sin γ(σzn − σzn+1)

]
. (3.4)

In the Euclidian description of the model, the vertex representation of the Temperley-Lieb

algebra leads to a reformulation of eq. (2.13) as a staggered six-vertex model [17, 18].

2These expressions depend on the type of representation chosen: original Potts spins σi, FK clus-

ters, loops, six-vertex model, etc. Their form for the last two representations will be discussed in some

detail below.
3Specifying the boundary conditions between the top and bottom layers would require a more detailed

discussion.
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=
√
Q

Figure 3. Graphical interpretation of the Temperley Lieb algebra e2i =
√
Qei. Multiply-

ing Temperley Lieb operators corresponds to stacking tiles vertically. Stacking the tiles in the

left-hand part of the figure corresponds to the following string of Temperley Lieb operators:

eiIi−1Ii+1ei = eiei =
√
Qei.

=

Figure 4. Graphical interpretation of the Temperley Lieb algebra eiei−1ei = ei. Stacking the tiles

in the left-hand part of the figure corresponds to the following string of Temperley Lieb operators:

eiIi+1ei−1ei = eiei−1ei

With free boundary conditions for the Potts model, the transfer matrix of that vertex

model commutes with the quantum group Uqsl(2).

3.2 Possible other boundary conditions and the blob algebra

Another type of boundary conditions — often referred to as “blob” for reasons to be

discussed below — consists in restricting the Potts spins on the boundary to take values

in {1, 2, . . . , Q1}, that is, in a subset of the original range {1, 2, . . . , Q}. Note that for the

original Q-integer Potts model, this only makes sense if Q1 ≤ Q is also integer. However,

once the definition of the model has been extended to all real values of Q — e.g., by going to

the loop or six-vertex representation — it is no longer necessary to impose this restriction

on Q1, which can hence be taken arbitrary real as well.

By following the steps of the mapping onto clusters and loops, this blob boundary

condition corresponds to giving clusters touching the boundary the weight Q1 instead of Q

and to loops touching the boundary the weight Q1/
√
Q [32]. Note that in this definition,

the blob boundary conditions is only applied to one side — conventionally the left one —,

while the other side retains free boundary conditions. It is also possible to choose blob

boundary conditions on both sides, as we discuss below.

The blob boundary conditions are easily implemented by introducing the “blob alge-

bra” [32–34] which is defined by supplementing (3.2) by an extra generator b subject to

– 9 –
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= y

Figure 5. Graphical interpretation of the blob algebra relation e1be1 = ye1

Figure 6. The blobbed loop model where loops that touch the left boundary at least once (blobbed

loops) get a modified Boltzmann weight.

the new relations:
e1be1 = ye1 ,

b2 = b ,

eib = bei for i > 1 .

(3.5)

The graphical interpretation of the first of these relations is illustrated in figure 5. The blob

operator b adds a “blob” to the left most loop strand and closed “blobbed loops” then get

the modified Boltzmann weight y. The relation b2 = b describes the property that loops

which touch the left boundary more than once get the same weight as loops that touch the

left boundary exactly once.

3.3 The ferromagnetic Potts model

In the case of the ferromagnetic Potts model, “blob” boundary conditions are conformally

invariant for all values of y [34], provided of course that the bulk theory is critical (0 ≤
Q ≤ 4). A configuration of the model with these boundary conditions is illustrated in

figure 6. Note that the general blob boundary conditions include the case of free boundary

conditions (Q1 = Q), as well as, for Q ∈ {1, 2, 3, 4} integer, the case of fixed (Q1 = 1) or

“mixed” (1 < Q1 < Q integer) boundary conditions [36].
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It is sometimes useful to discuss boundary conditions in terms of the dual model as

well. Consider for instance a square lattice, like in figure 6, with the top and bottom sides

identified, so that the lattice has the topology of the annulus with the two rims being the left

and right sides. With free boundary conditions along both rims, the duality transformation

produces another square-lattice annulus, but with different boundary conditions. Indeed

there is now a single dual spin to the left of the first column of original Potts spins, connected

to each of the dual spins between the first and second columns.4 This is sometimes called

“wired” boundary conditions. Notice that this dual lattice can also be seen as a regular

square lattice with an extra column on the left, all of whose spins have been contracted

to form a single one. It follows that free boundary conditions are dual to fixed boundary

conditions.5 The opposite is of course also true: if we give the same value to all the Potts

spins in the first column, we can contract them, so the dual lattice is a regular square

lattice, hence sustains free boundary conditions.

The new boundary condition discussed in [36] is dual to the mixed boundary condition

Q = 3, Q1 = 2. It appears however less obvious how to discuss it directly in terms of the

original spins, i.e., without invoking duality.

4 Free boundary conditions in the AF Potts model, and W∞ algebra

Free boundary conditions are known to be conformally invariant for the antiferromagnetic

Potts model, just like they were for the ferromagnetic one. The transfer matrix is given by

eq. (3.1), which reads in the isotropic case

T = (x+ e1) · · · (x+ e2L−1)(1 + xe2) · · · (1 + xe2L−2) , (4.1)

but now with the AF choice (2.17) of the coupling constants, viz.

x =
eK − 1√

Q
=
−2 +

√
4−Q√
Q

. (4.2)

This corresponds, in the six-vertex model representation of the TL algebra, to a staggered

six-vertex model with full Uqsl(2) symmetry: the transfer matrix (4.1) commutes with the

generators of the quantum group [39].

The continuum limit of the AF Potts model with these boundary conditions was elu-

cidated as early as [2], and further studied and confirmed in [3, 37, 38]. Free boundary

conditions for the Potts model translate into an even number of spins, N = 2L, for the

vertex model/spin chain, and thus into an integer value of the Uqsl(2) spin j. It is conve-

nient in what follows to introduce the (even) integer l = 2j. The generating function of

conformal levels was then proposed to be [2]

Kl = TrWj=l/2
qL0−c/24 =

q(l+1)2/4k

η(q)2

[
1 + 2

∞∑
n=1

(−1)nqn(n+l+1)/2

]
, (4.3)

4The situation along the right rim is of course analogous.
5The situation becomes slightly more subtle if we play with the difference between the values of the

contracted spins on the left and right rims. This can be conveniently discussed in terms of the two-

boundary TL algebra [35]. We shall come back to boundary conditions that distinguish both rims later in

this paper.
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where we have parameterised
√
Q = q + q−1, with q ≡ eiγ ≡ eiπ/k. In the loop representa-

tion, the number l can be interpreted geometrically as the number of defect lines (unpaired

loop strands) that run from the bottom to the top of the lattice. Such lines are also called

through-lines and have a well-known algebraic interpretation in terms of the TL algebra.

Assuming that the case l = 0 — which by the above remark is tantamount to imposing

free boundary conditions on both sides of the lattice (or free-free boundary conditions, for

short) — corresponds to the identity sector of the theory, this allows one to identify the

central charge

c = 2− 6

k
(4.4)

and coincides indeed with the central charge of the SU(2)k−2/U(1) coset theory (formally

extended to k real). Meanwhile, the leading critical exponent in Kl is

∆l =
l(l + 2)

4k
, (4.5)

which can be identified [2, 3] as one of a more general family of exponents for the

SU(2)k−2/U(1) theory

∆m
l =

l(l + 2)

4k
− m2

4(k − 2)
. (4.6)

In particular, we have ∆l = ∆0
l .

While the initial identification of the Kl generating functions was restricted to a few

levels in [2], we have carefully checked the validity of the expansion (4.3) for a large number

of levels. For K0 for instance we have

K0 = q−
cAF
24 (1 + q2 + 2q3 + 4q4 + 6q5 + 11q6 + · · · ) . (4.7)

This has been observed on the lattice by the analysis of the first 40 eigenvalues of the

transfer matrix (4.1). To calculate the central charge and leading exponent corresponding

to the transfer matrix in (4.1) we use the well-known formula relating the finite-size free-

energy density fo the critical exponents h and the central charge c:

fL = f0 +
fs
L
−
π( c

24 − h)

L2
+O

(
1

L3

)
, (4.8)

where the free-energy density fL is related to the leading transfer matrix eigenvalue λ0 by6

fL =
log λ0

2L
. (4.9)

We compute fL explicitly by exact numerical diagonalisation methods, then extract h and

c by studying the scaling of fL and comparing with (4.8). We find the remaining exponents

in the model by extrapolating to the limit 1
L → 0 the quantities

h(L) = −L
π

log

∣∣∣∣λiλ0

∣∣∣∣ , (4.10)

where λi denotes the i-th leading transfer matrix eigenvalue.

6The factor of 2 appearing here comes from the fact that (4.1) is a double-row transfer matrix. We will

later consider an example of a four-row transfer matrix — see eq. (5.6) — where this factor of 2 will be

replaced by 4 when computing the exponents.
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By considering sizes up to N = 24 we can see the first six levels (with multiplicities)

of the spectrum generating function, as is written in equation (4.7). For concreteness, we

have focussed on the case k = 4.2, but other values confirm this result. Similarly, we have

observed the following levels for j = 1:

K2 = q∆2−
cAF
24 (1 + 2q + 3q2 + 6q3 + 10q4 + · · · ) . (4.11)

The Kl are interesting objects for several reasons. If we recall the expression of char-

acters of the W∞ algebra [40]

ChW∞n =
1

η(q)2

∞∑
m=1

(−1)mq
m(m−1)

2
+mn(qm − 1) (4.12)

(this result is valid for n ∈ Z), we see first of all that

K0 = q
1
4k ChW∞0 . (4.13)

While the power of q corresponds to the difference between the central charge c = 2 of

the W∞ theory and cAF, the appearance of the same character ChW∞0 suggests that the

antiferromagnetic Potts model exhibits a symmetry that should be some sort of deformation

of the W∞ algebra. Recall that for the latter, one has an infinity of generators W s with

spin s and linear commutation relations

[W s
m,W

s′
n ] = [(s′ − 1)m− (s− 1)n]W s+s′−2

m+n . (4.14)

It is believed that the SL(2,R)/U(1) theory admits a symmetry which is a non-linear

deformation of W∞ that depends on k, dubbed Ŵ∞(k) in [41]. The deformation is, for

k generic, not expected to change the characters, since it does not affect the spin of the

generators. Indeed, it is easy to match the first few terms in the expansion of (4.13) —

i.e., those shown explicitly in (4.7) — with elementary counting where, for every integer

spin s ≥ 2, a new independent field of conformal weight n appears:7

h = 2 : T

h = 3 : ∂T,W3

h = 4 : ∂2T, T 2, ∂W3,W4

h = 5 : ∂3T, T∂T, ∂2W3, TW3, ∂W4,W5

h = 6 : ∂4T, T∂2T,W3∂T,W
2
3 , T∂W3, T

3, TW4, ∂
3W3, ∂

2W4, ∂W5,W6

. . .

The relevance of ChW∞n characters to the SL(2,R)/U(1) model can be seen in the

expression for the discrete, trivial representation character of the latter theory, given in [41]

ĉj=0
m = q|m|+

m2

k
q
−6
k−2

η(q)2

[
1 +

∞∑
n=1

(−1)nq
n2+n(2|m|+1)

2 (1 + q−|m|)

]
= q

m2

k
+ 6

k−2 ChW∞m (4.15)

7Note that there is no field with h = 1 in this list, hence no U(1) current.
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It is also expected [41] that the Ŵ∞(k) algebra truncates when k = −k′, k′ ∈ N, to the

symmetry algebra of the Zk′ parafermionic theory. Since our model only corresponds to

k ≥ 2, this observation will not be directly relevant to us.

The emergence of W∞ (or Ŵ∞(k)) extends to all the generating functions in this sector,

through the following easily established identity

Kl = q(l+1)2/4k
(

ChW∞n=0 + 2ChW∞n=1 + . . .+ 2ChW∞n=l/2

)
. (4.16)

Note that the number of terms in this expression is 2× l
2 +1 = 2j+1 (recalling that l = 2j).

In conclusion, it is difficult to interpret the Potts model partition functions with free

boundary conditions directly in terms of the SL(2,R)/U(1) sigma model, essentially because

of the shift of ground-state energy, which does not seem to have a natural interpretation

in terms of discrete spins in (4.15). On the other hand, the appearance of the spectrum of

the W∞ identity representation as excitations over the AF Potts ground state is a strong

indication that this model enjoys a deformed version of the W∞ symmetry.

5 New boundary conditions for the AF Potts model

We start with the observation that the usual “blobbed” boundary conditions (which, we

recall, correspond to fixing the values of the spin in the Q-state Potts model to a subset

{1, 2, . . . , Q1} on the boundary) do not seem, in general to be conformally invariant in

the critical antiferromagnetic case.8 Meanwhile, we have, by trial and error — and in-

spired by the Ising case, as discussed below — identified a whole new family of boundary

conditions which are conformally invariant in the AF Potts model, but are not in the fer-

romagnetic one. We refer to these boundary conditions as “alt”, for reasons which will

become clear below.

5.1 The alt boundary conditions

Instead of fixing the spins to a subset on one of the boundaries — by convention the left one

—, we now fix them to two complementary, alternating subsets. In other words, we decide

that Potts spins on even (say) boundary sites can only take a particular set of Q1 ≤ Q

values, while spins on odd boundary sites can only take value in the complementary set of

Q2 = Q−Q1 values. No spin can be in both sets.

As before, we can make sense of this definition for all real values of Q, Q1 by going to

the loop or vertex representation. In particular, we no longer require 0 ≤ Q1 ≤ Q. The

partition function of this model in the loop representation is:

ZAlt
Potts = Q

V
2

∑
loops

x|E|Q
`
2

(
Q1

Q

)`1 (Q2

Q

)`2
, (5.1)

8There does not seem much point in providing data to justify this statement: what is observed is simply

that the scaled gaps, while converging to fixed (real) values for large systems as they should in a scaling

theory, do not reproduce any of the features expected from a CFT. Most noticeably, they do not form

conformal towers with integer-spaced scaling levels characteristic of descendent states.
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where the sum is over all loops that do not touch the boundary at both even and odd

sites, and `1 and `2 are the number of loops that touch the boundary at exclusively even

and exclusively odd sites, respectively. This describes what we may call the partition

function of an alternating boundary loop model. Eliminating the nugatory overall factor,

and matching the notation of the usual blobbed loop model, we define

ZAlt
Loop =

∑
loops

x|E|Q
`−`1−`2

2 (y1)`1(y2)`2 , (5.2)

where y1 and y2 are the Boltzmann weights of loops that touch the boundary at exclusively

even and exclusively odd sites respectively, and n0 =
√
Q is the weight of any of the `−`1−`2

loops in the bulk (i.e., loops that do not touch any site on the left boundary). Once again

the sum is over loops that do not touch the boundary at both even and odd sites. We can

rewrite the foregoing expression as

ZAlt
Loop =

∑
loops

x|E|Q
`
2

(
y1

n0

)`1 ( y2

n0

)`2
. (5.3)

The algebraic framework that permits us to analyse this object is now the blob algebra

instead of the Temperley-Lieb algebra. The corresponding blob parameter is y1 = Q1/
√
Q,

which we parameterise as

y1 =
Q1√
Q
≡ sin(r + 1)γ

sin rγ
, (5.4)

while

y2 =
Q−Q1√

Q
=
√
Q− y1 =

sin(r − 1)γ

sin rγ
, (5.5)

where we recall that we have n0 =
√
Q = 2 cos γ. The model is described by a transfer

matrix T written entirely in terms of blob algebra generators:

T = t1t2 , (5.6)

where

t1 = b(e1)(x+ e3)(x+ e5) · · · (x+ e2L−1)(1 + xe2)(1 + xe4) · · · (1 + xe2L−2) , (5.7)

t2 = (1− b)(e1)(x+ e3)(x+ e5) · · · (x+ e2L−1)(1 + xe2)(1 + xe4) · · · (1 + xe2L−2) . (5.8)

We stress that the new boundary condition — which we shall call “alt” in the following

— is for the time being imposed on only one side of the system. Note also that under

r → −r, y1 and y2 are swapped, which corresponds simply to swapping the odd and even

sites (or odd and even loops), and does not change any of the properties of the system.

In what follows, we can therefore assume without loss of generality that r ≥ 0. We can

furthermore define the operator u ≡ 1− b such that b, u are orthogonal projectors:

b2 = b

u2 = u

bu = ub = 0

b+ u = 1

(5.9)
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Figure 7. The “alternating loop model”: the “blobs” correspond to the operator b and the squares

correspond to the operator u = 1− b.

Figure 8. The critical exponent plotted vs. k, using the values r = 2.5 and j = 0. It can be seen

that the finite-size values for the critical exponents converge (slowly) to the exact value.

and we can rewrite eq. (5.8) as

t2 = u(e1)(x+ e3)(x+ e5) · · · (x+ e2L−1)(1 + xe2)(1 + xe4) · · · (1 + xe2L−2) . (5.10)

We shall represent the operator u as a square; closed loops with a square then get the

modified Boltzmann weight y2. A configuration of the alternating loop model is shown in

figure 7.

5.2 Discrete characters for sl(2,R)

While the blob algebra is reminiscent of the Temperley-Lieb algebra, the two have interest-

ing differences. First of all, blob standard modules in general come in two types, depending

on whether the leftmost through-line is blobbed or unblobbed. The two types have the

same dimension

dimWb/u
j =

(
N

N/2− j

)
. (5.11)
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Figure 9. The critical exponent plotted vs. k,

using the values r = 2.1 and j = 1 in the blob

sector.

Figure 10. The critical exponent plotted vs.

k, using the values r = 2.1 and j = 1 in the

unblob sector.

where as usual 2j is the number of through-lines. The generating functions of the levels

for the alt transfer matrix in each of the two sectors are found numerically (see table 1) to

have the following scaling limit:

TrWb
j
qL0−c/24 7→ λr,j , (5.12)

TrWu
j
qL0−c/24 7→ λk−r,j , (5.13)

where r parameterises the blob parameter according to eqs. (5.4)–(5.5). Note that the

result (5.13) follows from (5.12), since r → k−r exchanges y1 and y2 (using also periodicity

of y1, y2 under r → r + k), while exchanging y1 and y2 obviously also exchanges the roles

of b and u. The quantities λr,j entering eqs. (5.12)–(5.13) are defined as

λr,j =
1

η(q)2
q

(r+2j)2

4k
− (r−1)2

4(k−2)Sj , (5.14)

where

Sj =
∞∑
n=0

(−1)nq
n2

2
+n

2
(2j+1) (5.15)

and η(q) = q1/24
∏∞
n=1(1− qn) is Dedekind’s eta function.

Remarkably, these quantities are formally identical with characters of discrete repre-

sentations DdJ,M for the SL(2,R)/U(1) theory. Indeed from [16, 42] these characters are,

for level k and M ≥ 0,

λdJ,M = η(q)−2q
(J+M)2

k q−
(J−1/2)2

k−2 SM , M ≥ 0 , (5.16)

where 1
2 < J < k−1

2 , 2J ∈ N is the spin of the discrete SL(2,R) representation and J +M

are the U(1) charges, with M ∈ Z. We see that the correspondence with our case must be

J =
r

2
,

M = j ,

λr,j = λdJ,M . (5.17)
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Equally remarkably, we see that the “spin” in Uqsl(2) corresponds to the U(1) number in

the coset theory, while it is the r-number (which can be interpreted in terms of a boundary

spin [32]) that corresponds to the SL(2,R) spin. Note that since we deal with systems of

even length, j is integer and thus so is M . Of course the parameter r in the lattice model

does not have to be integer; but since 2J ∈ N, it is only this case that lends itself to an

interpretation in terms of discrete representations. Note, however, that even when r is an

integer, k − r is not an integer for k generic. The generating function in the unblobbed

sector can nevertheless be interpreted in terms of SL(2,R) as well. Indeed, for M ≤ −1,

the discrete characters are usually expressed slightly differently [16]9,10

λdJ,M = η(q)−2q
(J−|M|)2

k q−
(J−1/2)2

k−2 q|M |S|M | , for M ≤ −1 , (5.18)

and we find correspondingly

J =
r

2
,

M = −j ,
λk−r,j = λdJ,M . (5.19)

In table 1 we compare the generating functions of the alternating loop model observed

on the lattice with the quantites defined in equations (5.12) and (5.13). In figures 8, 9

and 10 we plot the critical exponent as a function of k, and three different spin sectors:

j = 0, j = 1 in the blob sector, and j = 1 in the unblob sector.

Since M = ±j depending on the sector, we see that all allowed values of M in the

discrete characters are observed in the lattice model. We will discuss the values of J in

section 5.3. Note that the characters Kl from section 4 can also be expressed in terms of

discrete characters. We find indeed the simple identities

Kl = λd1
2
, l
2

− λd1
2
,− l+2

2

. (5.20)

Since the Kl are obtained by focussing only on the Temperley-Lieb subalgebra of the blob

algebra — that is, in fact, the top module of the blob algebra for the degenerate case r = 1

— it is tempting to think that the first discrete character in (5.20) would be obtained by

taking the trace over the full module X br=1,j=l/2.11 But this is not at all what happens

— extending the transfer matrix from the Temperley-Lieb to the full blob algebra in the

case r = 1 leads to a complete change of thermodynamic properties, and is connected with

normalisability issues we discuss next. We also emphasise that, while the alt boundary

conditions are also described with a label r, there is no way to go from them to the

boundary conditions of section 4 by sending r → 1.

9In fact, it can be shown that expression (5.16) also holds for M ≤ −1 thanks to the identity S−j+Sj−1 =

1 [43]. Note also that q−jS−j = Sj , so we have the algebraic identity λr,j = λk−r,−j .
10For comparison with [16] we have λd

J,M = χd
−J,M+J . In other words, the labels j, l in this reference are

given by j = −J, l = M .
11A similar feature is known to occur in the ferromagnetic case, where the trace over the full module

gives the character of the Verma module qh1,1+l−c/24/P (q) while the trace over the top module gives the

character of the ‘Kac’ module qh1,1+l−c/24(1 − q1+l)/P (q).
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k Sector r Exponent Generating function

4.5 j = 0 2 0.0667 1 + q + 3q2 + 6q3 + . . .

4.5 j = 1 blob 2 0.733 1 + 2q + 4q2 + 8q3 + . . .

4.5 j = 1 unblob 2 0.844 1 + 2q + 4q2 + 8q3 + . . .

4.5 j = 2 unblob 2 2.067 1 + 2q + 5q2 + . . .

4.5 j = 2 blob 2 1.844 1 + 2q + 5q2 + . . .

5.1 j = 0 2.2 0.0664 1 + q + 3q2 + 6q3 + . . .

5.1 j = 1 blob 2.2 0.655 1 + 2q + 4q2 + 8q3 + . . .

5.1 j = 1 unblob 2.2 0.837 1 + 2q + 4q2 + 8q3 + . . .

5.1 j = 2 unblob 2.2 2.066 1 + 2q + 5q2 + . . .

5.1 j = 2 blob 2.2 1.635 1 + 2q + 5q2 + . . .

Table 1. Some examples of the generating functions and critical exponents observed numerically

on the lattice for two different values of k and r, in both the blobbed and the unblobbed sectors.

The generating functions are written to the order to which they can be clearly observed on the

lattice by diagonalising the transfer matrix for the alternating loop model. Up to this order they

agree with the generating functions defined in eqs. (5.12)–(5.13).

5.3 Normalisability issues

The inequality 1
2 < J < k−1

2 , where 2J ∈ N, for normalisable states in the CFT suggests

that the identification of the generating function of levels in the lattice model with discrete

characters must break down at some point for r < 1 or r > k − 1. Where exactly it

breaks down is not so clear, since J in the CFT is necessarily integer while our variable r is

continuous. We find in fact that the identification breaks down for r < rc where 1 < rc < 2

is some critical value of r dependent on k. The same phenomenon must then happen for

r > k − rc, because of the r → k − r symmetry.

We find numerically that the analytical continuation of the levels contributing to the

discrete character within the interval [rc, k− rc] correspond, outside this interval, to highly

excited states. In other words, there are numerous level crossings at rc and k− rc. Outside

this interval, the true ground state of the theory does not follow analytically from the

ground state within the interval. This is related to the behaviour of the boundary energy

in eq. (4.8) as will now be discussed.

Recall that to calculate the leading critical exponent from the finite-size scaling of the

lattice model we use eq. (4.8), while to find the descendant states within a given sector we

use eq. (4.10). It is found, however, that there are in fact two different types of states in the

spectrum, with two different boundary free energies fs in eq. (4.8). We can see from (4.8)

that only states with the lower value of fs will contribute to the low-energy spectrum in the

thermodynamic limit. The values of these two boundary free energies, f1
s and f2

s , however

depend on r, and it is found that there exists a critical value 1 < rc < 2 such that they

cross. Accordingly, when r < rc (or r > k− rc) the low-energy part of the spectrum in the

thermodynamic limit is no longer described by the generating functions in (5.12)–(5.13).

We can see this phenomenon illustrated quite clearly in figures 11–12. When the

green line is below the purple line, the r ∈ [rc, k− rc] regime, the spectrum is described by
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Figure 11. The two boundary energies f1s and

f2s plotted vs. r, for k = 5 in the j = 0 sector.

The critical values of rc are the points of inter-

section of the two curves.

Figure 12. The two boundary energies f1s and

f2s plotted vs. r, for k = 7 in the j = 0 sector.

The critical values of rc are the points of inter-

section of the two curves.

Figure 13. The two boundary energies f1s and

f2s plotted vs. r, for k = 5 in the j = 3 blob

sector. The critical values of rc are the points

of intersection of the two curves.

Figure 14. The two boundary energies f1s and

f2s plotted vs. r, for k = 5 in the j = 3 unblob

sector. The critical values of rc are the points

of intersection of the two curves.

equations (5.12) and (5.13). When the green line is above the purple line, the r /∈ [rc, k−rc]
regime, the states corresponding to the green line no longer affect the low-energy part of

the spectrum in the thermodynamic limit.

Certainly the states whose boundary energy is the continuation of the boundary energy

within the interval do not contribute, outside the interval, to partition functions in the

scaling limit. This is because the BCFT is obtained after subtracting the non-universal

ground state energy fs associated with a given boundary condition:12 states with a higher

ground-state energy are exponentially suppressed as e−L(f ′s−fs) in the partition function.

It is not clear what these states possibly encode from a field theoretic point of view — that

is, how the low-lying excitations above the “wrong” ground state might scale. We are not

sure in particular whether or not we would find the continuation of the generating functions

12It is important to recall here that fs does in general depend on the boundary condition (while it is

always set equal to zero in the BCFT). The point is that, in this particular case, we have two families of

states, with the same boundary conditions, and with different values of fs.
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observed for r ∈ [rc, k− rc]. It seems nevertheless worth pointing out that there is a known

case [44] of a bulk model possessing a continuous parameter, which can be adjusted so as

to make two different bulk free energies cross; and on either side of this transition both the

true ground state and the “wrong” ground state obtained by analytic continuation from

the other side of the transition — each together with their low-energy excitations — behave

as two different fully-fledged conformal field theories. We do not wish to rule out that the

present model might provide a boundary analogue of this scenario.

Note that in figures 13–14 we see the same crossing phenomenon occurring when there

are defect lines present in the system. In particular, figures 13–14 illustrate this for j = 3.

This is the scenario that we would expect from the connection between level-crossing and

normalisability; the inequality 1
2 < J < k−1

2 with 2J ∈ N — recall the associations made

in (5.19) — for normalisable states suggests that the breakdown of the correspondence

between the continuum limit of the lattice model and the discrete character is independent

of j and therefore should also occur for j 6= 0. Figures 13–14 show that this indeed the case.

Meanwhile we note that we have not been able to interpret in a satisfactory way the

structure of the excitations above the true ground state for r 6∈ [rc, k − rc] either: it is not

clear whether they have anything to do with a boundary CFT any longer.

5.4 A first-order boundary phase transition

The level crossing observed at rc and k − rc can be interpreted as a first-order boundary

phase transition, since it corresponds to a discontinuity of the derivative of the boundary

free energy. Defining fs = − logZ
M where M is the number of sites in the vertical direction of

the lattice and Z is the partition function defined in (5.3), an easy calculation shows that

∂fs
∂r

=
γ sin γ

M sin(rγ)

[
〈`1〉

sin((r + 1)γ)
− 〈`2〉

sin((r − 1)γ)

]
, (5.21)

where 〈`1〉 and 〈`2〉 are the expectation values of the number of contractible blobbed and

contractible unblobbed loops respectively. We believe that, as we cross the critical value

rc (or k − rc), we go from a situation where the ground state is dominated by entropic

considerations and 〈`2〉 is finite to a situation where the ground state is dominated by

energy considerations and `2 is zero in the ground state.

5.5 Extended characters

The generating functions of levels correspond to traces of powers of the transfer matrix, and

as such describe partition functions of the underlying staggered six-vertex model (which

will be discussed more in our next paper). These same functions are closely related to,

but different from, the physical partition functions of the Potts model itself, which are

obtained as certain modified traces. In the loop-model context, this situation corresponds

to identifying the top and bottom sides of the lattice, while giving definite weights to the

contractible and non-contractible loops obtained under this gluing. This construction has

been discussed quite generally in [32]. If non-contractible blobbed and unblobbed loops

are given the respective weights

` = 2 coshα and m =
sinh(α+ β)

sinhβ
, (5.22)
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the partition function reads

Z =
∞∑
j=0

sinh(2jα+ β)

sinhβ
TrW b

j
−
∞∑
j=1

sinh(2jα− β)

sinhβ
TrWu

j
, (5.23)

where Tr denotes the usual trace within the standard modules of the blob algebra. Inserting

our results for the blobbed and unblobbed partition functions with alt boundary conditions

on the left side, we find

Z =

∞∑
j=0

sinh(2jα+ β)

sinhβ
λr,j −

∞∑
j=1

sinh(2jα− β)

sinhβ
λk−r,j

=
∞∑
j=0

sinh(β + 2jα)

sinhβ
λdr/2,j +

∞∑
j=1

sinh(β − 2jα)

sinhβ
λdr/2,−j

=
∞∑

j=−∞

sinh(β + 2jα)

sinhβ
λdr/2,j , (5.24)

where in the second equality we have used the correspondences (5.17) and (5.19) with

the discrete SL(2,R)/U(1) characters. It follows that the generating functions of levels

obtained previously are just what is needed to calculate the partition functions of the loop

models as well. If we now restrict to the Potts model per se, for which ` =
√
Q = q + q−1,

so α = iγ, and specialise also to the case k integer, we find that the sum can be split:

Z =

k−1∑
j=0

sinh(β + 2ijγ)

sinhβ

∞∑
n=−∞

λdr/2,j+nk . (5.25)

Introduce now the “extended characters” [42]

ΛJ,M =
∑
n∈Z

λdJ,M+nk . (5.26)

Recall that for M + nk ≥ 0 we have λdJ,M+nk = λr,j , with J = r
2 and M + nk = j. When

M + nk < 0 we have instead λdJ,M+nk = λk−r,−M−nk. Hence, starting with j ∈ [0, k[ we

find for the sum in (5.25).

Z =
k−1∑
M=0

sinh(β + 2iγM)

sinhβ
ΛJ,M (5.27)

with, as usual, J = r
2 and M = j. Similar identities would hold with free boundary

conditions on both sides, or alt on both sides, a case to which we turn now.

5.6 Combining alt boundary conditions

We now wish to consider the case where alt boundary conditions are imposed on both sides

of the strip. The general situation is characterised by more parameters than previously.

First, the parametrisation (5.4) of the alternatingly restricted number of Potts states on the
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boundary has to be made independently for both boundaries. Instead of r, we thus have

r1 for the left boundary and r2 for the right boundary. Second, the algebraic framework

must be similarly extended, so as to have blob and unblob operators — denoted b1, b2 and

u1 = 1 − b1, u2 = 1 − b2 respectively — for each side. The proper algebraic framework

for this situation is called the two-boundary Temperley-Lieb (2BTL) algebra [32, 35, 45].

Third, with 2j > 0 through-lines, we need to define four different sectors — denoted bb,

ub, bu and uu — where the left (resp. right) label specifies whether the leftmost (resp.

rightmost) through-line carries the blob or unblob operator, b1 or u1 (resp. b2 or u2).

Note that even though the lattice model allows continuous values of r1 and r2, the

discrete character in equation (5.16) (which played the role of the generating function

when “alt” was imposed on only one side of the system) is only defined for 2J ∈ N. From

the correspondences in (5.17) and (5.19) we have then that r ∈ N also. As we shall now see,

the discrete character also arises when “alt” is placed on both sides. We hence consider

only the case r1 and r2 integer. Note that when j = 0 the lattice model is more subtle

since loops can touch both boundaries.13 We leave the case j = 0 as a problem for the

future and in what follows we instead focus only on j > 0.

Interestingly, in this framework there are two distinct ways to implement alt boundary

conditions on both sides of the system. In figure 15 the blob operator on both the left

and right boundaries acts on odd-numbered rows, while the unblob operator acts on even-

numbered rows on both boundaries. We call this setup “correlated boundary conditions”.

The alternative to this is shown in figure 16. Here the blob operator acts on odd rows

on the left, and on even rows on the right — and vice versa for the unblob operators;

we call this setup “anti-correlated boundary conditions”. In order to make sense of the

continuum limit in terms of conformal field theory, we must consider correlated boundary

conditions when the width of the lattice L is even and anti-correlated boundary conditions

when L is odd, or anti-correlated boundary conditions when the width of the lattice L is

even and correlated boundary conditions when the width of the lattice L is odd. (Note

that in figures 15–16 our conventions are such that L = 4).

These two ways of implementing the alt boundary conditions on both sides give rise

to two different generating functions in the continuum limit. The continuum limit must

include the two generating functions found, as we have explained, by treating seperately

the correlated and anti-correlated boundary conditions. Redefining now r = min(r1, r2),14

extensive numerical studies and consistency arguments similar to those in [35] lead to the

following conjectures in the case r1, r2 integer and j 6= 0:

TrWbb
j
7→

∞∑
n=0

λr1+r2−1−2nr,j+nr + λ|r2−r1|+1−2nr,j+(n+1)r−1 , (5.28)

TrWub
j
7→

∞∑
n=0

λ−r1+r2−1−2nr,j+nr + λ−r1+r2+1−2r(n+1),j+(n+1)r−1 , (5.29)

13In particular, one can distinguish between four types of loops touching both boundaries, depending on

whether they pick up b or u labels at either boundary.
14That is, r here has a different meaning than in the one-boundary case.

– 23 –



J
H
E
P
1
0
(
2
0
1
9
)
2
5
4

Figure 15. Alt on both sides: correlated boundary conditions in the bu sector with j = 1.

Figure 16. Alt on both sides: anti-correlated boundary conditions in the bu sector with j = 1.

TrWbu
j
7→

∞∑
n=0

λr1−r2−1−2nr,j+nr + λr1−r2+1−2r(n+1),j+(n+1)r−1 , (5.30)

TrWuu
j
7→

∞∑
n=0

λ−r1−r2−1−2nr,j+nr + λ−r1−r2+1−2r(n+1),j+(n+1)r−1 . (5.31)

6 From Potts AF to Zk−2 parafermions for k integer

6.1 The case of free boundary conditions. RSOS truncation

It was also observed in [2] that when q is a primitive root of unity, so that k is integer, the

generating functions of levels belonging to simple representations (so-called type II in [39])
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of Uqsl(2), which can be expressed as usual using an alternating sum

c0
l =

∞∑
n=0

(
Kl+2nk −K2(n+1)k−l−2

)
= Kl −K2k−l−2 +Kl+2k −K4k−l−2 + . . . , (6.1)

exactly coincide with the string function of the Zk−2 symmetric CFT. The string function

c0
l in (6.1) is a special case of the more general object [57]:

cml =
1

η(q)2

∑
n1,n2∈Z/2
n1−n2∈Z

n1≥|n2|,−n1>|n2|

(−1)2n1sign(n1)q
(l+1+2n1k)

2

4k
− (m+2n2(k−2))2

4(k−2) . (6.2)

Meanwhile, the alternating sum in (6.1) can be interpreted as the partition function of a

staggered RSOS model where heights live on an Ak−1 Dynkin diagram, with heights on

the left side of the strip fixed to 1, and those on the right side fixed to l + 1 [46]. (Note

that this partition function can also be interpreted as the trace over the simple submodule

of the Temperley-Lieb algebra module Wj .) This result, which will be discussed in more

details below, strongly suggests that the RSOS version of the AF Potts model for k integer

coincides with the Zk−2 parafermion theory. Our aim is now to return to the alt boundary

conditions defined in section 5.1, in order to explore their potential relationship with the

string functions missing in (6.1), viz., all those with m 6= 0.

First, however, we must clarify what we mean by the “RSOS version” of the AF Potts

model. These RSOS models are not the same models as the RSOS models introduced by

Andrews, Baxter and Forrester (ABF) [47]. The AF Potts RSOS models are defined by

assigning integer heights — or more precisely, nodes in the associated Dynkin diagram —

to the union of Potts spin vertices (solid circles in figure 2) and their duals. The RSOS

constraint amounts, as usual, to imposing that nearest-neighbour vertices (i.e., an adjacent

pair of a Potts vertex and a dual vertex) carry nearest-neighbour heights. But unlike the

ABF models, the RSOS model associated with the AF Potts model has Boltzmann weights

that are “staggered”, i.e., even and odd numbered tiles will have different Boltzmann

weights. These staggered weights ultimately stem from the alternating local weights x1

and x2 defined in (2.13).

To understand this in detail, consider the lattice in figure 17. The degrees of freedom

which live on the vertices of the lattice are integer heights from the set {1, 2, . . . , k− 1} —

i.e., the Dynkin diagram Ak−1 — where the parameter k will be related to the loop weight

` = 2 cos γ via the relation γ = π
k . The heights attributed neighbouring vertices differ by

±1. Boltzmann weights are then associated to each tile and depend on the heights at each

of the tile’s vertices; see figure 18.

Each tile in the lattice is labelled by an integer giving its position along the horizontal

axis, as shown in figure 17. The staggering comes about by allowing the Boltzmann weights

to depend on the parity of the tile label. Specifically, to tiles with an even label we give

the weight

W (a, b, c, d) = δ(a, c) + x2

√
SaSc√
SbSd

δ(b, d) , (6.3)
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1 3 5

2 4

1 3 5

2 4

1 3 5

2 4

1 3 5

h1

h1

h1

h1

hN+1

hN+1

hN+1

hN+1

Figure 17. The staggered RSOS model. An integer heights lives on each vertex, here shown

for a lattice of width N = 2L = 6. The numbers on the centre of the tiles are labels; in the

staggered model, even and odd numbered tiles get different Boltzmann weights. When we pick the

boundary heights h1 = 1 and hN+1 = 1 + l, this RSOS model produces the string function c0l in

the continuum limit.

a

b

c

d

Figure 18. Four heights around a tile in the RSOS model

whereas tiles with an odd label get the weight

W (a, b, c, d) = x1δ(a, c) +

√
SaSc√
SbSd

δ(b, d) . (6.4)

In these expressions, the height values a, b, c, d are associated with the vertices bordering

the tile as shown in figure 18, and we have defined

Sa =
sin(aπk )

sin(πk )
. (6.5)

It is easy to see that the weights x1 and x2 are analogous to those appearing in figure 1.

Moreover, the Kronecker deltas are related with the line expansion in figure 2.

In the following we will mostly be interested in the isotropic case, x1 = x2 = x, where

as before x = eK−1√
Q

. Note also that x ≤ 0 along the antiferromagnetic critical line (since

Q ∈ [0, 4]), and hence some of the tiles will have negative Boltzmann weights.

Note that we can write the Boltzmann weights in eqs. (6.3)–(6.4) in terms of a spectral

parameter u. As in [3] we have

x1 =
sinu

sin(γ − u)
,

x2 =
− cos(γ − u)

cos(u)
.

(6.6)
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h1

h2

h3

h4

h5

h6

h7

Figure 19. The state |h1h2h3h4h5h6h7〉.

Using eqs. (6.6), we can write the Boltzmann weights as components of an integrable

R-matrix. We define

R(u) = I +
sin(γ − u)

sin(u)
ei , (6.7)

where ei are the TL generators acting in the RSOS representation, given explicitly by

ei |h1, . . . , hi−1, hi, hi+1, . . . , hN+1〉

= δ(hi−1, hi+1)
∑
h′i

√
ShiSh′i

Shi−1

∣∣h1, . . . , hi−1, h
′
i, hi+1, . . . , hN+1

〉
, (6.8)

where |h1, . . . , hi−1, hi, hi+1, . . . , hN+1〉 is a state specifying the heights on the N + 1 con-

secutive sites along one row of the lattice (see figure 19). Clearly, eq. (6.7) recovers the

Boltzmann weights (6.3) for even-labelled tiles when we consider the R-matrix to live on

these tiles. The shifted matrix R(u − π
2 ) then recovers the weights of odd-labelled tiles

in (6.4). We stress that even though we are using an integrable R-matrix to define these

Boltzmann weights, the diagonal geometry of figure 17 means that the model is not inte-

grable. This staggering process was applied to the vertex representation in [6], the so-called

“staggered six-vertex model”.

Equation (6.1) describes the relationship between the AF Potts loop model and the AF

Potts RSOS model and suggests that the string function c0
l can be realised on the lattice

via the AF Potts RSOS model. It turns out that fixing the heights on the left boundary

of the lattice to be h1 = 1, and those on the right boundary to be hN+1 = 1 + l indeed

reproduces the full string function c0
l in the continuum limit. By symmetry of the Dynkin

diagram, and of the weights in (6.8), obviously the same result would be recovered for

h1 = 1 + l and hN+1 = 1.

We now wish to find other boundary conditions whose continuum limit produces all

of the other string functions cml , i.e., the cases m 6= 0. It will turn out that the “alt”

boundary conditions in the AF Potts RSOS model will serve this purpose.

6.2 Missing string functions and alt boundary conditions

Of course the discrete character λdJ,M pertains naturally to a theory with the central charge

cBH given by (2.19) and conformal weights

hJ,M =
(J +M)2

k
− J(J − 1)

k − 2
. (6.9)

Nonetheless it is also possible to interpret it formally within a theory with central charge

cPF given by (2.18). In this case, the corresponding conformal weights become

∆J,M = hJ,M −
1

4(k − 2)
− 1

4k
=

(J +M − 1/2)(J +M + 1/2)

k
− (J − 1/2)2

k − 2
. (6.10)
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In the following we shall maintain this distinction, by denoting always the weights pertain-

ing to the black-hole theory by h, and those related to the parafermionic interpretation of

the AF Potts model by ∆. Assuming M ≥ 0, and using the correspondence in (5.17), this

latter expression leads to the weight

∆r/2,j =
(r − 1 + 2j)(r + 1 + 2j)

4k
− (r − 1)2

4(k − 2)
, (6.11)

which can be matched with the parafermion exponents ∆m
l defined in eq. (4.5) if we set

m = r − 1 ,

l = r − 1 + 2j . (6.12)

This suggests we are on the right track to identifying the other string functions. Indeed,

suppose now that k is integer. Using the representation theory of the blob algebra, the

simple top is formally obtained via

X br,j =

∞⊕
n=0

[(
Wb
j+nk/Wu

j+r+nk

)
−
(
Wb
k−j−r+nk/Wu

k−j+nk

)]
(6.13)

The corresponding generating function of levels for the alt boundary conditions is then

TrX b
r,j
qL0−c/24 =

∞∑
n=0

[
λm+1, l−m

2
+nk − λk−m−1, l+m+2

2
+nk

−λm+1, 2k−l−m−2
2

+nk + λk−m−1, 2k−l+m
2

+nk

]
=

∞∑
p=−∞

[
λdm+1

2
, l−m

2
+pk
− λdm+1

2
,− l+m+2

2
+pk

]
(6.14)

This can be reformulated as (see eq. (A.16) in the appendix)

TrX b
r,j
qL0−c/24 =

∞∑
n=0

[
TrF̃l+2nk,m

qL0−c/24 − TrF̃2k−l−2+2nk,m
qL0−c/24

]
= cml , for m ≤ l

(6.15)

with the correspondence (6.12). As the notation indicates, this expression coincides with

the string function for the Zk−2 parafermion theory (see the appendix for more detail and

formulas).15 Note that since j is integer, l and m have the same parity, as required. Note

finally that the generating functions F̃l,m are invariant under m → −m, so we get as well

the string functions c−ml = cml .

We can now study the range of values of the parameters. For q = eiπ/k, the simplest

case is r = 1, for which we have to consider in fact only the TL algebra. The possible

values of j are given by j = 0, . . . , k2 − 1, so

l = 2j = 0, . . . , k − 2 . (6.16)

15Sometimes string functions are defined with an extra factor η(q), so what we denote cml is referred to

as η(q)cml .
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For r = 2, . . . k − 2, we see first, from m = r − 1, that

m = 1, . . . , k − 3 . (6.17)

As far as l is concerned, we have to invoke the representation theory of the blob algebra.

For a given value of r, we have now the allowed values of j in the blobbed sector, j =

0, . . . , k−1−r
2 , which correspond to

l = r − 1 + 2j = m, . . . , k − 2 (6.18)

To get the missing values of l we need to consider the unblobbed sector. We have first the

equivalent of (6.13)

X ur,j =

∞⊕
n=0

[(
Wu
j+nk/Wu

r−j+nk
)
−
(
Wb
k−r+j+nk/Wb

k−j+nk

)]
= cm2m−l , for m ≤ l . (6.19)

Indeed, straightforward calculation first leads to an identity similar to (6.15) but with

ck−2−m
k−2+l−2m, following from the transformation r → k − r. Using a standard identity for

string functions cml = ck−2−m
k−2−l in Zk−2 theories [48], gives instead the string function cm2m−l.

For the unblobbed sector, meanwhile, the allowed values of j are j = 0, . . . , r−1
2 , so l =

r − 1 + 2j = r − 1, . . . , 2(r − 1) = m, . . . , 2m. It follows that 2m− l = 0, . . .m, recovering

what was missing in (6.18) to cover the whole set16

l = 0, . . . , k − 2 (6.20)

as in (6.16).

Equations (6.14) and (6.15) tell us that the alt boundary conditions in the AF Potts

RSOS model should produce the string functions cml in the continuum limit. We now

describe what precisely “alt” means for the RSOS model.

Consider the RSOS boundary conditions on the lattice in figure 20. Heights are fixed

to hN+1 = a on the right boundary, to h1 = b on the left boundary, and heights h2 next to

the left boundary alternate between b± 1 as shown. We will write this boundary condition

as b±, . . . , a. It is found that the boundary condition:

(m+ 1)±, . . . , (l + 1) (6.21)

produces the string function cml in the continuum limit (m 6= 0). Similarly, we will write

1+, . . . , (l + 1) to denote the boundary condition in figure 17 in section 6.1 — i.e., with

a constant, non-alternating value of h2 — that produces the string function c0
l .

17 Using

this notation, table 2 shows the exact correspondence between string functions and RSOS

boundary conditions for the case k = 6. The generating functions (i.e., the string functions)

are written up to the number of terms that we have observed by the numerical study of

the lattice model.
16Note that l = m is common to both sets, since it corresponds to j = 0 for which there is no distinction

between blobbed and unblobbed.
17Note that since heights are restricted to be between 1 and k − 1 we cannot have an “alt” condition on

a boundary where the boundary height is fixed as h1 = 1. The superscript in 1+, . . . is actually redundant,

since h2 = 2 then follows from the RSOS constraint alone.
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b

b

b

b

b− 1

b+ 1

b− 1

b+ 1

b− 1

a

a

a

a

Figure 20. Alternating boundary conditions in the antiferromagnetic RSOS model. We will write

this boundary condition as b±, . . . , a.

Boundary condition Exponent Generating function

1+, . . . , 1 0 cm=0
l=0 = qh−

c
24 (1 + q2 + 2q3 + . . .)

1+, . . . , 3 1
3 cm=0

l=2 = qh−
c
24 (1 + 2q + 3q2 + 5q3 + . . .)

1+, . . . , 5 1 cm=0
l=4 = qh−

c
24 (1 + q + 3q2 + 3q3 + . . .)

2±,. . . ,2 1
16 cm=1

l=1 = qh−
c
24 (1 + q + 2q2 + 4q3 + . . .)

2±,. . . ,4 9
16 cm=1

l=3 = qh−
c
24 (1 + 2q + 3q2 + 5q3 + . . .)

3±,. . . ,1 3
4 cm=2

l=0 = qh−
c
24 (1 + q + 2q2 + 3q3 + . . .)

3±,. . . ,3 1
12 cm=2

l=2 = qh−
c
24 (1 + q + 3q2 + 4q3 + . . .)

3±,. . . ,5 3
4 cm=2

l=4 = qh−
c
24 (1 + q + 2q2 + 3q3 + . . .)

4±,. . . ,2 9
16 cm=3

l=1 = qh−
c
24 (1 + 2q + 3q2 + 5q3 + . . .)

4±,. . . ,4 1
16 cm=3

l=3 = qh−
c
24 (1 + q + 2q2 + 4q3 + . . .)

Table 2. String functions in the k = 6 antiferromagnetic RSOS model. The string functions are

expanded up to the terms we can clearly observe on the lattice.

6.3 The case of alt on both sides: fusion of string functions

We have found that the continuum limit of the AF Potts RSOS model coincides with that of

the Zk−2 parafermion theory and we have found an “alt” boundary condition corresponding

to each of the string functions in these models. This prescription, however, was restricted

to the case where the alt boundary condition is on one side only with the other side having

free boundary conditions. We would expect that putting the alt boundary conditions on

both sides of the lattice would correspond to the fusion of fields in the Zk−2 parafermion

theory. As will be shown below from our numerical results, this is indeed the case.
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b

b

b

b

b− 1

b+ 1

b− 1

b+ 1

b− 1

a− 1

a+ 1

a− 1

a+ 1

a− 1

a

a

a

a

Figure 21. Alternating boundary conditions on both sides. We will write this boundary condition

b±, . . . ,±a and refer to it as “correlated” boundary conditions.

We can however recover this result from knowledge of the generating functions pro-

duced in the continuum limit of the loop model with the alt conditions on both sides; see

eqs. (5.28)–(5.31). Sections 6.1 and 6.2 used the representation theory of the blob algebra

to move between the loop model and the RSOS model; the generating function of the irre-

ducible representation of the blob algebra created by the infinite sum in eq. (6.14) produced

the RSOS representation. We can use the same method for the case with the alt condition

on both sides, i.e., when there are two blob operators, to calculate the generating functions

in the RSOS model produced by putting the alt condition on both sides. The relevant

algebra in this case is the two-boundary Temperley-Lieb (2BTL) algebra [32, 35, 45].

Section 6.3.1 will present the numerical results of the RSOS model with the alternating

boundary condition on both sides. These results will be interpreted in terms of the fusion

of fields in Zk−2 parafermion theory. Section 6.3.2 will recover these results by studying

the representation theory of the 2BTL algebra.

6.3.1 Alt on both sides in the RSOS model: numerics

As was the case in the loop model (see section 5.6) there are two ways to put the alt bound-

ary condition on both sides and these two ways will give two different continuum limits.

Consider the boundary conditions in figures 21 and 22. The heights at the boundaries are

fixed to the same, constant values in the two figures, namely h1 = b on the left boundary

and hN+1 = a on the right boundary. However, in figure 21 the lattice sites with heights

hN = a− 1 just next to the right boundary appear on the same rows as lattice sites with

heights h2 = b− 1 just next to the left boundary. Conversely, in figure 22 the heights a− 1

appear on the same row as b+ 1. We will refer to these two situations as “correlated” and

“anticorrelated” (alternating) boundary conditions respectively.

We will write a generic correlated boundary condition as b±, . . . ,±a and a generic anti-

correlated boundary condition as b±, . . . ,∓a. We find that one can obtain two different
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b

b

b

b

b− 1

b+ 1

b− 1

b+ 1

b− 1

a+ 1

a− 1

a+ 1

a− 1

a+ 1

a

a

a

a

Figure 22. Alternating boundary conditions on both sides. We will write this boundary condition

b±, . . . ,∓a and refer to it as “anti-correlated” boundary conditions.

conformally invariant continuum limits from these boundary conditions. In the first case,

we must consider correlated boundary conditions when the width of the lattice L is even and

anti-correlated boundary conditions when the width L is odd. The second case works the

other way around: we take anti-correlated boundary conditions for L even and correlated

boundary conditions for L odd. (Note that in our conventions N = 2L = 6 in figures 21

and 22). The two different choices correspond to two different continuum limits. The

string functions obtained from this prescription for the case k = 6 are shown in table 3.

The boundary conditions reported in the table are the boundary conditions we take for

L even. The number of terms we have written in the expansion of the string function

correspond to the number of terms that we can clearly observe on the lattice. We have the

general result that for the correlated boundary condition:

(m1 + 1)± . . .± (m2 + 1) (6.22)

in even sizes (and hence anti-correlated in odd sizes) the continuum limit is given by the

string function cm1+m2
0 . Similarly, the anti-correlated boundary condition

(m1 + 1)± . . .∓ (m2 + 1) (6.23)

in even sizes (and hence correlated in odd sizes) gives the string function cm1−m2
0 . Compare

this with the parafermion fusion rules [48] for fields of the form φml=0:

φm1
l=0 × φ

m2
l=0 = φm1+m2

l=0 (6.24)

Clearly then, the boundary condition for L even in (6.22) corresponds to the fusion of the

fields in equation (6.24) and the boundary condition in (6.23) for L even corresponds to

the fusion of the fields

φm1
0 × φ−m2

0 = φm1−m2
0 (6.25)
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Boundary condition Exponent Generating function

2±,. . . ,±2 3
4 cm=2

l=0 = qh−
c
24 (1 + q + 2q2 + 3q3 . . .)

2±,. . . ,∓2 0 cm=0
l=0 = qh−

c
24 (1 + q2 + 2q3 . . .)

3±,. . . ,±3 1 cm=4
l=0 = qh−

c
24 (1 + q + 3q2 + 3q4 . . .)

3±,. . . ,∓3 0 cm=0
l=0 = qh−

c
24 (1 + q2 + 2q3 . . .)

2±,. . . ,±4 1 cm=4
l=0 = qh−

c
24 (1 + q + 3q2 + 3q3 . . .)

2±,. . . ,∓4 3
4 cm=2

l=0 = qh−
c
24 (1 + q + 2q2 + 3q3 . . .)

4±,. . . ,±4 3
4 cm=2

l=0 = qh−
c
24 (1 + q + 2q2 + 3q3 . . .)

4±,. . . ,∓4 0 cm=0
l=0 = qh−

c
24 (1 + q2 + 2q3 . . .)

Table 3. String functions in the k = 6 antiferromagnetic RSOS model with the alternating bound-

ary condition on both sides. Note that the boundary condition written in the table corresponds

to the boundary condition when L is even. When the left and right boundary conditions are “cor-

related” for L even then we take “anticorrelated” boundary conditions for L odd, and vice versa.

The string functions are expanded up to the terms we can clearly observe on the lattice.

Finally, let us notice that when we put correlated and anti-correlated boundary con-

ditions together on the same lattice (i.e., we sum the correlated and anti-correlated con-

figurations) we will clearly get the sum of the two string functions in the continuum limit

cm1+m2
0 + cm1−m2

0 . We can interpret this as the result of the fusion product:

1√
2

(φm1
l=0 + φ−m1

l=0 )× 1√
2

(φm2
l=0 + φ−m2

l=0 ) (6.26)

6.3.2 Alt on both sides in the RSOS model: 2BTL representation theory

The representation theory of the 2BTL algebra [32, 35, 45] was further studied from a

conformal perspective in [49]. As was discussed in section 5.6, when there is a blob on both

sides of the system there are four sectors to consider, labelled by bb, ub, bu and uu. It was

found in [49] that (when q = eiπ/k is a primitive root of unity) the following infinite sum

corresponds to the generating function of an irreducible representation:

X bbj =
∑
n1=0

Wbb
j+n1k −

∑
n1=0

Wbb
k−(r1+r2)+1−j+n1k

−
∑
n1=0

Wub
j+r1+n1k

+
∑
n1=0

Wub
k−(r2−1)−j+n1k

−
∑
n1=0

Wbu
j+r2+n1k +

∑
n1=0

Wbu
k−(r1−1)−j+n1k

+
∑
n1=0

Wuu
r1+r2+j+n1k −

∑
n1=0

Wuu
k+1−j+n1k .

(6.27)

We find results in agreement with equation (6.27), but we also find that the diagram

of inclusions from which this infinite sum can be derived requires modification, i.e., the

known 2BTL inclusion diagram does not in fact lead to equation (6.27) as was previously

thought [49]. When we impose r1 + r2−1 + 2j ≤ k−1 and j > 0 we find that the inclusion
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Wbb
j Wbb

k−(r1+r2−1)−j Wbb
k+j Wbb

2k−(r1+r2−1)−j Wbb
2k+j

. . .

. . .

. . .

. . .

Wub
r1+j Wub

k−(r1−1)−j Wub
k+r1+j Wub

2k−(r1−1)−j

Wbu
r2+j Wbu

k−(r2−1)−j Wbu
k+r2+j Wbu

2k−(r2−1)−j

Wuu
r1+r2+j Wuu

k+1−j Wuu
k+r1+r2+j

Figure 23. The corrected 2BTL inclusion diagram, replacing the one published in [49]. The

repeated part of the diagram is such that all standard modules beyond those in the first three

columns each have three out-going arrows.

diagram should instead be given by figure 23. The only difference here to the diagram

published in [49] is that we do not have an arrow from Wbb
k+j to Wbb

k−(r1+r2−1)−j .

We will use the expressions in eqs. (5.28)–(5.31) to calculate X bbj , and we will show

that the resulting generating function is that corresponding to the fusion of parafermion

fields. We have from expressions (5.28) to (5.31):

Wbb
j+n1k →

∞∑
n2=0

λr1+r2−1−2n2r,j+n2r+n1k

+λ|r2−r1|+1−2n2r,j+(n2+1)r−1+n1k (6.28)

Wbb
k−(r1+r2)+1−j+n1k

→
∞∑

n2=0

λr1+r2−1−2n2r,k−(r1+r2)+1−j+n2r+n1k

+λ|r2−r1|+1−2n2r,k−(r1+r2)−j+(n2+1)r+n1k (6.29)

Wub
j+r1+n1k →

∞∑
n2=0

λ−r1+r2−1−2n2r,j+r1+n2r+n1k

+λ−r1+r2+1−2r(n2+1),j+r1+(n2+1)r−1+n1k (6.30)

Wub
k−(r2−1)−j+n1k

→
∞∑

n2=0

λ−r1+r2−1−2n2r,k−(r2−1)−j+n2r+n1k

+λ−r1+r2+1−2r(n2+1),k−r2−j+(n2+1)r+n1k (6.31)

Wbu
j+r2+n1k →

∞∑
n2=0

λr1−r2−1−2n2r,j+r2+n2r+n1k

+λr1−r2+1−2r(n2+1),j+r2+(n2+1)r−1+n1k (6.32)

Wbu
k−(r1−1)−j+n1k

→
∞∑

n2=0

λr1−r2−1−2n2r,k−(r1−1)−j+n2r+n1k

+λr1−r2+1−2r(n2+1),k−r1−j+(n2+1)r+n1k (6.33)

Wuu
r1+r2+j+n1k →

∞∑
n2=0

λ−r1−r2−1−2n2r,j+r1+r2+n2r+n1k

+λ−r1−r2+1−2r(n2+1),j+r1+r2+(n2+1)r−1+n1k (6.34)
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Wuu
k+1−j+n1k →

∞∑
n2=0

λ−r1−r2−1−2n2r,k+1−j+n2r+n1k

+λ−r1−r2+1−2r(n2+1),k−j+(n2+1)r+n1k (6.35)

We will consider for now the case r1 ≤ r2, so that we have r = r1. After taking the sum
∞∑

n1=0
of the expression in (6.28), we can write it as:

∞∑
n1=0

λr1+r2−1,j+n1k + λ−r1+r2+1,j+r1−1+n1k

+
∞∑

n1=0

∞∑
n2=0

λ−r1+r2−1−2n2r1,j+r1+n2r1+n1k

+ λ−r1+r2+1−2(n2+1)r1,j+r1+(n2+1)r1−1+n1k ,

(6.36)

where we see that the second term cancels the expression in eq. (6.30) entirely. Similarly,

applying the same sum to the expression in (6.29) gives:

∞∑
n1=0

λr1+r2−1,k−(r1+r2)+1−j+n1k + λ−r1+r2+1,k−r2−j+n1k

+

∞∑
n1=0

∞∑
n2=0

λ−r1+r2−1−2n2r1,k−(r2−1)−j+n1k+n2r1

+ λ−r1+r2+1−2(n2+1)r1,k−r2−j+n1k+(n2+1)r1 ,

(6.37)

where the second term now cancels the expression in (6.31) entirely. In a similar way,

we can make the same cancellations for the terms in (6.32) and (6.34) as well as (6.33)

and (6.35). In the end, we are left with the terms:

X bbj =
∞∑

n1=0

λr1+r2−1,j+n1k −
∞∑

n1=0

λk−r1−r2+1,j+r1+r2−1+n1k

−
∞∑

n1=0

λr1+r2−1,k−r1−r2+1−j+n1k +
∞∑

n1=0

λk−r1−r2+1,k−j+n1k

+

∞∑
n1=0

λ−r1+r2+1,j+r1−1+n1k −
∞∑

n1=0

λk+r1−r2−1,j+r2+n1k

−
∞∑

n1=0

λ−r1+r2+1,k−r2−j+n1k +
∞∑

n1=0

λk+r1−r2−1,k−r1+1−j+n1k

(6.38)

where we have dealt with the negative values of r in λr,j by defining r modulo k. We

further have the relationship

2j = k − r2 − r1 (6.39)

when we want the loop model parameters to correspond to the RSOS model. Using equa-

tions (6.15) and (6.13), equation (6.38) then becomes

X bbj = cm=r2−r1
l=k−2 + cm=r1+r2−2

l=k−2 , (6.40)
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which, after using the identities r1 = m1 + 1 and r2 = m2 + 1, yields

X bbj = cm=m2−m1
l=k−2 + cm=m1+m2

l=k−2 . (6.41)

But using the string function identities cml = c−ml and ck−2−m
k−2−l = cml , we can rewrite this as

X bbj = cm=m1−m2
l=k−2 + cm=k−2−m1−m2

l=0 , (6.42)

which, when we compare with eq. (6.26), is nothing but the fusion product

1√
2

(φm1
l=0 + φ−m1

l=0 )× 1√
2

(φk−2−m2
l=0 + φ−k+2+m2

l=0 ) . (6.43)

In summary, then, we have recovered the numerical results found in section 6.3.1 from

studying the representation theory of the 2BTL algebra.

7 Special cases: the two and three-state Potts models

It is well known that the two-state ferromagnetic Potts model — alias the Ising model —

is equivalent to an antiferromagnetic one in the bulk. Indeed, the mapping between these

models is easily obtained by switching the sign of the couplings and flipping the spins at

the same time. Under this transformation, the critical ferromagnetic coupling eK = 1+
√

2

becomes e−K = (1+
√

2)−1 =
√

2−1, which is the critical coupling for the Q = 2 AF Potts

model indeed.

This mapping becomes more interesting in the presence of a boundary. While free

boundary conditions map onto free, fixed boundary conditions map onto alt boundary

conditions (that is, alternating + and − spins on the boundary for Q = 2). This sug-

gests that the natural “equivalent” of fixed boundary conditions in the AF case is alt, an

observation we have confirmed in detail earlier.

Coming now to the three-state critical AF Potts model, it is also well known that it

can be reformulated as a colouring problem (see the discussion in [2], for example). As was

discussed in section 2, the antiferromagnetic critical point of the Potts model is defined

by [1]

exp(K) = −1 +
√

4−Q . (7.1)

We see that setting Q = 3 sends K → −∞. Considering then the classical Potts Hamil-

tonian in eq. (2.3), the only allowed configurations of Potts spins are those where no two

neighbouring spins can be identical. This is the “colouring problem”; the partition function

is given by the number of configurations that allow Q = 3 possible colours on each site,

but no two neighbouring sites can have the same colour.

The conformal boundary conditions found for the AF Potts model in the general case

are relevant for Q = 3 as well, of course. Free boundary conditions mean just that for

Q = 3 as well. With alt boundary conditions, even boundary sites can take two particular

values, and odd boundary sites are fixed to the remaining value (or vice versa). In the

language of the colouring problem, we can fix for example all odd boundary sites to have

the colour labelled by 2, and even boundary sites can take either the colours 1 or 3; see
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figures 24 and 25. We see that this boundary condition automatically satisfies the colouring

constraint that no neighbouring sites can have the same colour. (We will in fact show below

that the Q = 3 AF Potts model with alt boundary conditions is equivalent to the XXZ

spin chain with ∆ = 1
2 and free boundary conditions.)

Note however that just as in the RSOS and loop models, there are different ways to

implement the alt condition when it is applied to both the left and right boundaries at

the same time. Once we fix, for example, odd boundary sites on the left to take only one

colour (in figure 24 this colour is 2) we have a choice between fixing odd boundary sites

on the right to one specific colour or to allow odd boundary sites on the right to take two

colours. If we choose the former, (i.e. odd boundary sites on both the right and left are

fixed to take one colour) we refer to this as “correlated”. This is the case in the right panel

of figure 24. If we choose the inverse, i.e., we say that odd boundary sites on the left are

fixed to one specific colour but odd boundary sites on the right are allowed to take two

colours (and hence even sites on the right boundary are fixed to the one remaining colour),

we refer to this as “anti-correlated”. This is the case in the left panel of figure 24.

But even after we have specified “correlated” or “anti-correlated” we still have an ad-

ditional choice in relation to which particular colours we choose. In figure 24 the boundary

site that is fixed to one particular value is equal to 2 on both sides. In figure 25, however,

this is not the case; we again have “anti-correlated” boundary conditions in the left image

and correlated boundary conditions in the right image, but the fixed height on the left

boundary is equal to 2 whereas on the right boundary the fixed height is equal to 3. Since

everything in the colouring problem is defined modulo 3, there are only four independent

cases, corresponding to those in figures 24 and 25. We will denote these four cases by by

C=, C 6=, A= and A 6=; C and A refer to “correlated” and “anti-correlated” respectively,

while the = and 6= signs refer to the cases where the left boundary colour that is fixed is

equal (resp. not equal) to the right boundary colour that is fixed. (See figures 24 and 25).

As we saw in sections 6.3.1 and 5.6 when considering the RSOS and loop models

respectively, making sense of the continuum limit of the alt condition on both sides of the

boundary requires much care. In particular one must consider the two different scenarios:

1. Correlated boundary conditions when the lattice width L is even and anti-correlated

boundary conditions when the lattice width L is odd.

2. Anti-correlated boundary conditions when the lattice width L is even and correlated

boundary conditions when the lattice width L is odd.

(Note that in our notations L = 5 in figures 24 and 25). These two scenarios give two

different continuum limits. The results are shown in table 4.

The central charge for Q = 3 becomes simply cAF = 1, corresponding to a free boson

(see, e.g., [50]). It is well known that the AF Potts model at this point is in fact equivalent

to a compactified free boson, which is itself equivalent to the (diagonal) Z4 parafermionic

theory. These identifications are encoded in the torus partition function

ZQ=3 =
1

η(q)η(q̄)

∑
e∈ Z

3
m∈3Z

q
1
4

(
√

3e+ m√
3

)2
q̄

1
4

(
√

3e− m√
3

)2
(7.2)
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1,3
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2

1,3

2

1,3

2

Figure 24. Left panel: anti-correlated boundary condition A= . Right panel: correlated boundary

condition C=.

2

1,3

2

1,3

2

1,2

3

1,2

3

1,2

2

1,3

2

1,3

2

3

1,2

3

1,2

3

Figure 25. Left panel: anti-correlated boundary condition A 6=. Right panel: correlated boundary

condition C 6=.

Boundary condition (for odd lattice size L) Generating function

Free/Free cm=0
l=0 + cm=0

l=4

Alt/Free cm=1
l=1 + cm=1

l=3

Alt/Alt: C= cm=0
l=0 + cm=4

l=0

Alt/Alt: A= 2cm=2
l=0

Alt/Alt: C 6= cm=0
l=2

Alt/Alt: A 6= cm=2
l=2

Table 4. Boundary conditions and their continuum limits. As explained in the text there are four

independent “alt/alt” boundary conditions. The precise meaning of the labels of these four types

are explained in figures 24 and 25. The boundary conditions written above are those taken for L

odd. See the main text for a discussion on the relevance of the parity of L.

and the identity [48, 51]

ZQ=3 =
1

2

∑
l,m

|cml |2. (7.3)

The expansions of the string functions cml worked out in [51] are repeated here. (Our

notations for cml however differ from [51] by a factor of 1/η(q)). Define the objects:

W =
1

η(q)

∑
k∈Z

(−1)kqk
2
,
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3

1

3

2

1

2

3

2

3

2

3

2

1

2

2

3

2

1

2

3

1

3

2

1

1

2

1

3

2

2

3

2

1

3

3

2

3

2

1

Figure 26. The partition function of the three-state Potts model is equal to that of the six-vertex

model, where the six vertices all have the same Boltzmann weight. Each of the circles can take one

of three colours (represented by 1,2 and 3) in any given configuration, and no two nearest neighbours

can have the same colour. Each configuration of the three-state Potts model is mapped to the six

vertex model. An example of this mapping with alt boundary conditions on both the left and right

boundary is shown in the image on the left. Alt boundary conditions can be seen to correspond to

reflecting boundary conditions in the six-vertex model. An example of the mapping for alt boundary

conditions on the left boundary and free boundary conditions on the right boundary is shown in the

figure on the right. With free boundary conditions there is no constraint on arrows, as illustrated

on the right boundary (in the figure on the right).

W± =
1

η(q)

∑
k∈Z

(±1)kq(k+ 1
4

)2 ,

Yn(q) =
1

η(q)

∑
k∈Z

q3(k+n
6

)2 , for n = 0, 1, 2, 3 . (7.4)

We then have:

cm=0
l=0 =

1

2
(Y0 +W ) , cm=2

l=0 =
1

2
Y3 , cm=4

l=0 =
1

2
(Y0 −W ) ,

cm=1
l=1 =

1

2
(W+ +W−) , cm=3

l=1 =
1

2
(W+ −W−) ,

cm=0
l=2 =Y2 , cm=2

l=2 =Y1 .

(7.5)

The relationship with the free boson corresponds, on the lattice, to the fact that the

critical AF three-state Potts model is equivalent to the six-vertex model [52]. The idea

is the following: pick any lattice site and choose a particular nearest neighbour. We will

orient ourselves such that we are facing the nearest neighbour of interest. If this nearest

neighbour has a colour with a label succeding (modulo 3) that of the site we are standing

at, we will draw a left-pointing arrow between the two lattice sites.18 If on the contrary this

nearest neighbour has a colour with a label preceeding (modulo 3) that of the site we are

standing at, then we will assign a right-pointing arrow. There is then a one-to-one mapping

between allowed configurations in the colouring problem and allowed configurations in the

six-vertex model. See figure 26 for an application of this mapping.

We can see then that the alternating boundary conditions in the Potts model translate

into “reflecting” boundary conditions in the six vertex model: arrows on the boundary are

18Note that left and right are well-defined because we have chosen to stand facing a particular direction.
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divided into pairs as shown in figure 26 and each pair must include one left and one right-

pointing arrow, so any outgoing arrow is indeed reflected back into the system. Meanwhile,

free boundary conditions for the AF Potts model correspond to free boundary conditions for

the six-vertex model, meaning that arrows can freely go into or emerge from the boundary.

Note then that in the context of integrable boundary conditions [54], the alt/alt condition

can be interpreted as a boundary condition described by a K-matrix equal to the identity

on both the left and the right boundary. Let us consider now the implications of this

correspondence. We will parameterise the six-vertex model R-matrix by:

R(u) =


sinh(u+ iγ) 0 0 0

0 sinh(u) sinh(iγ) 0

0 sinh(iγ) sinh(u) 0

0 0 0 sinh(u+ iγ)

 (7.6)

(which is the same as that in [54] when we relate the parameter η appearing in [54] to the

parameter γ by η = iγ). The diagonal K-matrices then read

K(u) =

(
sinh(u+ ξ) 0

0 − sinh(u− ξ)

)
. (7.7)

As was shown in [54] the corresponding Hamiltonian is given by

H = −
N−1∑
n=1

(σxj σ
x
j+1 + σyj σ

y
j+1 − cos γσzjσ

z
j+1) + sinh iγ(σ3

1 coth ξ + σ3
N coth ξ) , (7.8)

which is the XXZ Hamiltonian with some extra boundary terms. We have that for the

three-state AF Potts model γ = 2π
3 , and for the isotropic case that we are considering u =

− iπ
3 . Then setting the free parameter ξ = iπ

2 ensures that the K-matrix in (7.7) becomes

proportional to the identity, hence corresponding to the reflecting boundary conditions of

figure 26. With these values of the parameters the boundary term in (7.8) disappears and

we are left with

H = −
N−1∑
n=1

(
σxj σ

x
j+1 + σyj σ

y
j+1 +

1

2
σzjσ

z
j+1

)
. (7.9)

The continuum limit of this Hamiltonian has been studied in [58]; comparing this work to

our results in table 4 allows us, as we will now show, to recover eqs. (7.5). In [58] it was

found that the generating function of the spectrum of the Hamiltonian (7.8) (in the sector

with spin Sz) in the continuum limit is given by

Z(Sz) =
qgS

2
z

η(q)
=
q

S2
z
3

η(q)
. (7.10)

The second equality comes from the definition of g: we have g = 1 − γ
π and γ = 2π

3 .

Consider then the three-state AF Potts model with the boundary condition C= (defined in

figure 24) in odd sizes. From the relationship with the six-vertex model (figure 26) we can

see that this boundary condition corresponds to the spin sectors Sz = 0,±3,±6,±9, . . .

– 40 –



J
H
E
P
1
0
(
2
0
1
9
)
2
5
4

Then from (7.10) we have that the generating function of the boundary condition C=

should be given by ∑
Sz∈Z

Z(3Sz) =
1

η(q)

∑
Sz∈Z

q3S2
z . (7.11)

However, by comparing this to table 4 we also have that the generating function arising

from the boundary condition C= gives cm=0
l=0 + cm=4

l=0 . We can see from eqs. (7.5) that this

is indeed consistent and we have

1

η(q)

∑
Sz∈Z

q3S2
z = Y0 = cm=0

l=0 + cm=4
l=0 . (7.12)

Similarly, consider the the three-state AF Potts model with the boundary condition C 6=

(defined in figure 25) in odd sizes. In this case the correspondence can be seen to be with

the six-vertex spin sectors: Sz = . . .− 7,−4,−1, 2, 5, 8, . . . . . . So according to (7.10) we get

for the generating function
1

η(q)

∑
k∈Z

q
1
3

(3k−2)2 , (7.13)

which when comparing with the result in table 4 for the generating function of this bound-

ary condition we find:

cm=0
l=2 = Y2 =

1

η(q)

∑
k∈Z

q
1
3

(3k−2)2 (7.14)

which is consistent with eqs. (7.5). Eqs. (7.5) can therefore be seen as the continuum

version of the equivalence between the XXZ chain with free boundary conditions and the

three-state AF Potts model with alt boundary conditions.

By considering the two remaining alt/alt boundary conditions in table 4 (i.e. A= and

A 6=) we can derive two more identities appearing in (7.5). They are

cm=2
l=0 =

1

2
Y3 =

1

2η(q)

∑
k∈Z

q3(k+1/2) (7.15)

and

c2
2 = Y1 =

1

η(q)

∑
k∈Z

q3(k+ 1
6

)2 . (7.16)

The two “anti-correlated” boundary conditions A= and A6= correspond to half integer

spin sectors of the XXZ chain. We can see this in two ways. The first way is to recall that

A= for L odd has the same continuum limit as C 6= for L even. We have seen from the

mapping from 3-state Potts to the XXZ chain that L even in the Potts model corresponds

to an XXZ chain of odd length, and hence necessarily with half integer spin. In particular,

one can see that A= produces the generating function associated with the spin sectors

Sz = . . .− 9
2 ,−

3
2 ,

3
2 ,

9
2 . . ., and A6= to the sectors Sz = . . .− 7

2 ,−
1
2 ,

5
2 ,

11
2 . . ..

We can recover the same result from a different point of view. We can see from

figure 27 that the “anti-correlated” boundary conditions correspond to reflecting boundary

conditions in the vertex model but where the pairs of arrows on the left and right boundaries

are not correlated to occur on the same rows of the lattice. We see from the right panel
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2

1,3

2

1,3

2

1,3

2

1,3

2

1,3

2

3

2

3

1

3

1

2

1

2

3

2

3

2

3

Figure 27. Left panel: anti-Correlated alt boundary conditions correspond to reflecting boundary

conditions in the six vertex model, but where the pairing of arrows on the left and right boundary

are anti-correlated. Right panel: the Hamiltonian/Transfer Matrix that describes the vertex model

acts on a chain with an extra spin that is decoupled from the rest of the system. This extra spin

has the effect of adding ± to the total spin.

in figure 27 that this is equivalent to a situation where the Transfer Matrix/Hamiltonian

acts on a system with an extra spin that is decoupled from the system. This extra spin

contributes ±1
2 to the total spin of the system; we hence go from a system with integer

spin to a system with half integer spin.

8 Odd number of sites

All the discussion so far was restricted to spin chains where the number of sites N = 2L

was even. It is also possible to consider instead the case N odd, which in the Potts

model formulation corresponds to having wired boundary conditions on one boundary. See

figure 28 and the discussion of wired boundary conditions in section 3.3.

Introduce first ZND, the partition function of the free boson with Neumann/Dirichlet

boundary conditions:

ZND =
1

η(q)

∑
n∈Z

q(n− 1
4

)2 . (8.1)

From extensive numerical studies, our first result is the generating function of levels in the

loop model for half-odd integer spin j — the equivalent of (4.3):

K̃j = ZND ×
1

η(q)

qk[ 1
4
− (j+1

2 )

k

]2
− q

k

[
1
4

+
(j+1

2 )

k

]2 . (8.2)

We can give a few examples to support this result. When we fix k = 4.2 and analyse the

first 40 eigenvalues of the loop model transfer matrix (with free boundary conditions) up

to size N = 25 we find

K̃j= 1
2

= q∆− c
24 (1 + q

1
2 + q + 2q

3
2 + 3q2 + 4q

5
2 + 6q3 + . . .) , (8.3)

which is consistent with eq. (8.2) up to the level written. Similarly, we have

K̃j= 3
2

= q∆− c
24 (1 + q

1
2 + 2q + 3q

3
2 + 4q2 + 6q

5
2 + . . .) . (8.4)
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Figure 28. The loop model with and odd number of strands. There must be at least one defect

line running through the system when N is odd. We have N = 7 and j = 1
2 in this example. An odd

number of strands in the loop model corresponds to wired boundary conditions on one boundary in

the Potts model: in this figure the wired boundary conditions are imposed on the right boundary:

all Potts spins on the right boundary are identified, since they cannot be separated by any loop.

When k is an integer, we can again ask about the potential relationship between the

RSOS model and parafermions. To start, recall the expression for characters of the C-

disorder fields in Zk−2 parafermionic CFT [53]. Setting l = k + 2r, with 1 ≤ r ≤ k
2 ,

we have

ξl = q−1/48
∞∏
n=1

(
1− qn−1/2

) ∞∏
n=1

1 + qn/2

1− qn/2
[Θl,2k(τ/2)−Θ2k−l,2k(τ/2)] . (8.5)

The pre-factor can be massaged to read

q−1/48
∞∏
n=1

(
1− qn−1/2

) ∞∏
n=1

1 + qn/2

1− qn/2
=
ZND

η(q)
, (8.6)

while it is easy to check that

ξl =

∞∑
n=0

[
K̃j+nk − K̃k−1−j+nk

]
, (8.7)

using also l = k − 2− 4j or r = 2j + 1. On the other hand, we know by general quantum

group arguments (see above) that such an alternating sum is, when k is integer, the result

for the corresponding RSOS model with heights 1 on the left boundary and even height

r = 2j + 1 (recall that j is half an odd integer). These boundary conditions correspond

therefore to the character of a C-disorder field in the Zk−2 theory with dimension

∆ =
k − 4 + (k − 2− 4j)2

16k
. (8.8)
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Boundary condition k Exponent Generating function

1,. . . ,2 4 0 1 + q
1
2 + q

3
2 + q2 + q

5
2 + q3 + q

7
2 + 2q4 + 2q

5
2 + . . .

1,. . . ,2 5 1
40 1 + q

1
2 + q + q

3
2 + 2q2 + 2q

5
2 + 3q3 + 3q

7
2 + 4q4 + 5q

9
2 + 6q5 + 7q

11
2 + . . .

1,. . . ,4 5 1
8 1 + q + q

3
2 + q2 + q

5
2 + 2q3 + 2q

7
2 + 3q4 + 3q

9
2 + 4q5 + 4q

11
2 + . . .

1,. . . ,2 6 1
16 1 + q

1
2 + q + 2q

3
2 + 2q2 + 3q

5
2 + 4q3 + . . .

1,. . . ,4 6 1
16 1 + q

1
2 + q + 2q

3
2 + 2q2 + 3q

5
2 + 4q3 + . . .

1,. . . ,2 7 3
28 1 + q

1
2 + q + 2q

3
2 + 3q2 + 3q

5
2 + 5q3 + . . .

1,. . . ,4 7 1
28 1 + q

1
2 + 2q + 2q

3
2 + 3q2 + 4q

5
2 + 6q3 + . . .

1,. . . ,6 7 1
4 1 + q + q

3
2 + 2q2 + 2q

5
2 + 3q3 + . . .

Table 5. Generating functions in the RSOS model with an odd numbers of sites. The generating

functions are written up to the number of terms that we have observed on the lattice.

Observe that we can write

∆ =
1

16
− 1

4k
+

(2j − k−2
2 )2

4k
, (8.9)

that is,

∆ =
1

16
+
l̃(l̃ + 2)

4k
, (8.10)

where l̃ = k−2
2 − 2j − 1. This is formally similar to the form of the conformal weights for

the vertex model or spin chain and even lengths, up to the addition of 1
16 — the dimension

of the “twist-field” in a free-boson theory.

We compare the numerical results obtained from the lattice model with the CFT

quantities defined in (8.7) in table 5.

In conclusion, we see that the correspondence, for k integer, between RSOS restric-

tions of the critical antiferromagnetic Potts model and parafermions extends to the case of

disorder operators for odd numbers of sites. It is not clear to us what this means for the

SL(2,R)/U(1) theory. In particular, it is not clear what eq. (8.2) means from the point of

view of (deformed) W∞ algebra.

9 Conclusion

Our analysis of conformal boundary conditions for the AF Potts model confirms the close

relationship of the CFT for this model with the SL(2,R)/U(1) coset sigma model, since,

for all types of boundary conditions we have found, the generating functions of levels are

expressed in terms of discrete characters for the sigma model. Puzzles remain however.

The most obvious one is that we have not been able to find conformal boundary conditions

leading to a continuous spectrum. This may well have to do with the subtle (and not fully

understood) difference between the critical theory for the Potts model and its “untwisted”

staggered six-vertex model version. Nonetheless, our results confirm that the bulk theory

possesses a spectrum with a continuous component: this is a simple consequence, for

instance, of the observation of discrete characters, together with the general formulas for

their modular transforms [43].
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We should further highlight that the geometry of the lattice on which we considered

our model, while natural in the formulation of the Potts model, does not allow us to write

an integrable transfer matrix that commutes for all values of the spectral parameter u.

(Except, that is, for the special case of the three-state Potts model discussed in section 7

where the six-vertex model to which the Potts model was mapped does indeed have the

required geometry to be integrable). We therefore cannot directly use the tools of the Bethe

Ansatz to study the model in this geometry. One would hope, however, that changing

the geometry to one in which we can take advantage of integrability, will not change the

universality class of the model. Doing so should allow us to further explore the conformally

invariant boundary conditions and their continuum limits: this will be explored in our next

paper. A related aspect is that all of our analysis was related to isotropic transfer matrices

and not Hamiltonians; what the ‘alt’ boundary conditions correspond to in the anisotropic

limit is not so clear.

Another troubling aspect is that our results do not have much overlap with those in [16].

In this paper, the authors have identified a single set of boundary conditions leading to a

discrete spectrum, the case of strings stretching between D0-branes. The corresponding

partition functions are written in this reference as

ZD0
mm′ =

m+m′−1∑
2J+1=max(m,m′)

∑
l∈Z

[
χd(J,l−J) − χ

d
(−J−1,l+J+1)

]
. (9.1)

This corresponds, in our notations, to

ZD0
mm′ =

m+m′−1∑
2J+1=max(m,m′)

∑
l∈Z

[
λd−J,l − λdJ+1,l

]
. (9.2)

For m = m′ = 1 for instance we have

ZD0
11 =

∑
l∈Z

[
λd0,l − λd1,l

]
. (9.3)

A remarkable aspect of this expression is that it expands at small q with the central

charge cBH

ZD0
11 = q−cBH/24

(
1 + 2q1+ 1

k + q2 + . . .
)
, (9.4)

Since none of the boundary conditions (at least, in the context of the Potts model) we have

discussed exhibit the true central charge of the black-hole sigma model, the D0-branes

of [16] remain unidentified in lattice terms.19

On the other hand, we have found boundary conditions not discussed in [16], for which

the generating functions expand in terms of discrete characters of SL(2,R)/U(1), and thus

which should respect all the symmetries of the theory. What this means with respect to

the analysis in [16] is not clear to us at this point. We note however that the results in [16]

are not supposed to be a complete classification: see [55, 56] for more on this.

19Note that while the states in the representation with spin J = 0 are not normalisable, the corresponding

character can still appear in the partition functions in [16].

– 45 –



J
H
E
P
1
0
(
2
0
1
9
)
2
5
4

In conclusion, we finally note that putting together the fixed and the alt boundary

conditions for the RSOS version of the AF Potts model for rational values of k gives rise to

a set of generating functions that seem to correspond formally to “rational parafermions”

string functions in a SU(2)k=P/Q/U(1) theory. This aspect will be discussed further in an

upcoming paper.
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A Coulomb gas

We have no clear understanding of the relationship between the SU(2) parafermions and

the SL(2,R)/U(1) coset CFT, apart from the fact that this seems to involve discrete rep-

resentations. It is interesting however to observe that both theories can be described quite

naturally in terms of a “Coulomb gas”, which should give one additional intuition on the

continuum limit of our lattice model.

We follow here the work of [57].20 The starting point is a pair of bosonic fields φ1 and

φ2, with propagators

〈φ1(z)φ1(w)〉 = −2 ln(z − w)

〈φ2(z)φ2(w)〉 = −2 ln(z − w) (A.1)

and a stress tensor

T = −1

4
(∂φ1)2 +

1

4
(∂φ2)2 + iα0∂

2φ1 . (A.2)

With a charge at infinity α0 = 1
2
√
k

for the first boson φ1, the central charge is the

parafermionic central charge c = cPF = 2 − 6
k . There are various ways to introduce

screening operators in this theory. The choice made in [57], uses both bosons φ1, φ2, and

leads to the three currents:

J1 = ∂φ2 exp [2iα0φ1] (A.3)

together with

J± = exp

[
− i

2

√
k φ1 ±

1

2

√
k − 2 φ2

]
. (A.4)

These screening operators, having conformal dimension one, commute with the Virasoro

algebra. It turns out that they also commute with the “parafermionic” currents

Ψ = − i
2

(√
k

k − 2
∂φ1 + i∂φ2

)
exp

[
1√
k − 2

φ2

]
,

Ψ† = − i
2

(√
k

k − 2
∂φ1 − i∂φ2

)
exp

[
− 1√

k − 2
φ2

]
(A.5)

20Note that we use k instead of k + 2 in that reference.
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of conformal dimension k−1
k in the theory with cPF. The vertex operators

Vlm = exp

[
−i l

2
√
k + 2

φ1 +
m

2
√
k
φ2

]
(A.6)

with conformal weight

∆m
l =

l(l + 2)

4k
− m2

4(k − 2)
(A.7)

then play a special role: the action of J± on Vlm is only well defined for l,m integer and

l ±m even. Vlm is annihilated by the corresponding charges Q± iff −l ≤ m ≤ l.
We start with the Fock space Flm with

TrFlm
qL0−c/24 =

1

η(q)2
q

(l+1)2

4k
− m2

4(k−2) . (A.8)

We haven’t found a realization of this Fock space in the lattice model. However, within

Flm we have the trace in KerQ±:

TrFlm∩KerQ+q
L0−c/24 =

1

η(q)2

∞∑
n=0

(−1)nq
k(n

2
+ l+1

2k )
2−(k−2)

(
n
2

+ m
2(k−2)

)2

=
1

η(q)2
q

(l+1)2

4k
− m2

4(k−2)

∞∑
n=0

(−1)nq
1
2
n(n+l+1−m) , (A.9)

and

TrFlm∩KerQ−q
L0−c/24 =

1

η(q)2

∞∑
n=0

(−1)nq
k(n

2
+ l+1

2k )
2−(k−2)

(
n
2
− m

2(k−2)

)2

=
1

η(q)2
q

(l+1)2

4k
− m2

4(k−2)

∞∑
n=0

(−1)nq
1
2
n(n+l+1+m) . (A.10)

(note that the exchange of Q± corresponds to switching the sign of m.) The discrete

characters of the SL(2,R)/U(1) theory are obtained as

λd
J=m+1

2
,M= l−m

2

= TrFlm∩KerQ+q
L0−c/24 . (A.11)

so we see that with alt boundary conditions, the lattice model reproduces the content of

Flm ∩KerQ+.

Moreover, we can now take the trace in Flm over states in KerQ+ ∩ KerQ− and

Flm/KerQ+ ∩KerQ−, corresponding to the space F̃lm in [57]. We have

Tr F̃lm
qL0−c/24 =

1

η(q)2

[ ∞∑
n=0

(−1)nq
k(n

2
+ l+1

2k )
2−(k−2)

(
n
2

+ m
2(k−2)

)2

+
∞∑
n=1

(−1)nq
k(n

2
+ l+1

2k )
2−(k−2)

(
n
2
− m

2(k−2)

)2
]
. (A.12)
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or

Tr F̃lm
qL0−c/24 =

q
(l+1)2

4k
− m2

4(k−2)

η(q)2

[ ∞∑
n=0

(−1)nq
n2

2
+

n(l+1−m)
2 +

∞∑
n=1

(−1)nq
n2

2
+

n(l+1+m)
2

]
. (A.13)

We observe now the identity

Kl = TrF̃l0
qL0−c/24 =

q(l+1)2/4k

η(q)2

[
1 + 2

∞∑
n=1

(−1)nqn(n+l+1)/2

]
. (A.14)

and more generally,

TrWb
j /Wu

j+r
qL0−c/24 = Tr F̃lm

qL0−c/24 (A.15)

with the usual correspondence (6.12). Hence the “tops” of the blob algebra modules in the

lattice model with alt boundary conditions reproduce the content of F̃lm. Moreover the

Temperley-Lieb modules with free boundary conditions reproduce the content of F̃l0.

When k is rational, we can consider also the action of powers of Q1, it is well defined

only in the case Q
l+1( mod Q)
1 acting on Flm where we parametrized k = P/Q. Then

Ql+1
1 Vlm = 0, and it is possible to focus21 on the cohomology of Q1 as in [57] (see in

particular table 1 in that reference).

In the particular case when k is an integer, the string functions can be obtained as

cml =

∞∑
n=0

TrF̃l+2nk,m
qL0−c/24 − TrF̃2k−l−2+2nk,m

qL0−c/24 (A.16)

The corresponding alternating sum coincides with the sum on the lattice to extract the

simple tops of the blob algebra modules, suggesting in particular that Q1 is represented on

the lattice by the Uqsl(2) raising (or lowering) operator.
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