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Abstract: Dye confinement into carbon nanotube significantly affects the electronic charge density 

distribution of the final hybrid system. Using the electron-phonon coupling sensitivity of the Raman 

G-band, we quantify experimentally how charge transfer from thiophene oligomers to single walled 

carbon nanotube is modulated by the diameter of the nano-container and its metallic or 

semiconducting character. This charge transfer is shown to restore the electron-phonon coupling into 

defected metallic nanotubes. For sub-nanometer diameter tube, an electron transfer optically activated 

is observed when the excitation energy matches the HOMO-LUMO transition of the confined 

oligothiophene. This electron doping accounts for an important enhancement of the 

photoluminescence intensity up to a factor of nearly six for optimal confinement configuration. This 

electron transfer shifts the Fermi level, acting on the photoluminescence efficiency. Therefore, 

thiophene oligomer encapsulation allows modulating the electronic structure and then the optical 

properties of the hybrid system.  

 

1. Introduction 

Hybrid nano-systems, consisting of chromophores confined into the hollow core of single-walled 

carbon nanotubes (CNT) [1–11] are very exciting materials, not only for their potential applications, 

but also for the physical interactions taking place in between the two sub-systems. In this context, the 

new electronic structure of the hybrid system has to be understood properly. Number of investigations 

have been carried out by DFT calculations [4,12–16]. For instance, DFT calculations suggest that 

nanotube can modulate electronic and absorption properties of dye oligomers by changing the 

interchain interactions [13]. It is also predicted that the electronic states added by encapsulated 
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terthiophene molecules to the CNT band structure give rise to optical effects in the radiative relaxation 

from the excited states of CNT [16]. The calculations also emphasize that the CNT diameter drives 

the electronic properties of the hybrid system. The ionisation potential of the encapsulated species 

can be altered by the tube curvature [12] and simulations foresee the appearance of a tiny CT between 

encapsulated oligothiophenes and CNT when the diameter of the tube is reduced below 1 nm [4]. In 

contrast, only few experimental works report a qualitative observation of charge transfer (CT) for 

different types of confined molecules [6,9]. Stable amphoteric doping by encapsulation of organic 

molecules inside carbon CNT was only shown for a specific tube diameter [9]. A significant CT from 

the encapsulated oligothiophene to CNT regarding the Raman G band behavior was also reported [6]. 

Nevertheless, despite all these studies, there is no experimental quantification of this charge transfer 

and key parameters such structural and electronic properties of CNT are not taken into account.  

To experimentally address this question, we present here a joint Raman and photoluminescence study 

of the confinement of dimethyl-quaterthiophenes (4T), inside single-walled carbon nanotubes, 

revealing charge transfers which depend on the CNT diameter and its electronic properties (metallic 

or semiconducting).  

2. Experimental Section 

2.1 Sample Preparation 

Four sources of CNT were used in this study. Commercial electric arc single-walled carbon nanotubes 

(1.2 nm < diameter < 1.6 nm) and called CNT14 in the following. Two kinds of CNT14 were used: 

(1) purified and annealed MEIJO nanotubes from Meijo Nano Carbon (http://www.meijo-

nano.com/en/) and (2) highly functionalized (called defective in the following) nanotubes from 

carbon solution (http://www.carbonsolution.com/products)[17]. Carbon CNT synthesized by the 

eDIPS method[18] (1.6 nm < diameter < 2 nm) (CNT17 in the following) are also studied. CoMoCAT 

carbon nanotubes[19] enriched in (7,6) nanotubes (0.6 nm < d < 1 nm), (www.sigmaaldrich.com/) 

called CNT09 in the following are also used. Carbon Solution and CoMoCAT CNT were purified by 

air oxidation and subsequently treated to remove the catalyst. The CNT17 nanotubes were purified 

according to the method previously described[11].  

Encapsulation of dimethyl-quaterthiophene (C18H14S4) into carbon nanotubes was performed using 

the vapor reaction method previously described[6]. The hybrid material is named 4T@NTXX in the 

following where XX represents the mean diameter (09, 14 or 17 Å). The reference pristine nanotubes 

(NTXX) have undergone the same thermal treatments as the hybrid sample during the encapsulation 

process. Encapsulation was probed by TEM and x-ray diffraction (Figure 1 & 2 of SM). 
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2.2 Raman Spectroscopy 

Micro Raman experiments have been performed on a triple monochromator spectrometer (Jobin 

Yvon T64000), equipped with a charge-coupled detector, in a backscattering geometry, using the 

fixed 413.0, 457.9, 488.0, 501.0, 514.5, 521, 532.0, 568.2, 647.1 and 660.0 nm excitation 

wavelengths. In order to prevent the heating of the tubes and oligomers, the laser power was adjusted 

at 200 μW. This laser power is less than half the power causing a variation of the Raman spectrum. 

The spot diameter is of about 3 μm using a 50× objective. The resolution is about 2 cm–1. At least 

five spatially separated areas of each sample were probed to ensure homogeneity. 

2.3 Annular dark-field scanning TEM (ADF-STEM) and SR-EELS 

4T@NT samples were dispersed in n-hexane by ultrasonication, and dropped onto molybdenum 

microgrids coated with holey amorphous carbon films for analyses by annular dark-field scanning 

TEM (ADF-STEM). A JEOL JEM-2100F electron microscope equipped with double JEOL Delta 

spherical aberration correctors was operated at an electron accelerating voltage of 60 kV for STEM 

observation. Spatially-resolved Electron energy-loss spectroscopy (SR-EELS) measurement was 

carried out using a Gatan Quantum electron spectrometer attached to the microscope. Elemental 

distributions of carbon and sulfur in individual CNTs were determined based on the intensities of 

their K and L edges, respectively, at each measured point in the scanned areas by STEM-EELS 

chemical mapping. 

2.4 Photoluminescence spectroscopy  

Photoluminescence Excitation (PLE) spectroscopy was performed using a home-made PL setup. The 

output of a Xe lamp was monochromated and focalised on the sample. PL is recorded with a 320 mm 

spectrometer and 150 lines/mm grating, and detection is performed by a nitrogen-cooled 512 pixel 

linear InGaAs array. Pristine and encapsulated CNTs were suspended in aqueous solvent using 

sodium cholate surfactant by sonication using a microson ultrasonic cell disruptor Misonix XL2000 

for 20 min at 50% followed by ultracentrifugation at 120 kg for 30 min.  

3. Results 

3.1 ADF-STEM and SR-EELS 

STEM-EELS studies were performed on all the hybrid nanotubes under investigation to ascertain the 

4T encapsulation efficiency[11]. Figures 1.a,b,c display a ADF-STEM images of 4T into small 

diameter (~9 Å) CNT (4T@NT09), see experimental section).  
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Figure 1: ADF-STEM images of a 4T@NT09 nanotubes and superimposed carbon (yellow) and sulfur (green) 

elemental maps. Two EEL spectra (d,e) extracted from the marked areas showing K edge of carbon 

 (∼ 284 eV) and L2,3 edge of sulfur (∼165–220 eV) only in (d). Inset in a) Structure of 4T. 

A clear contrast is observed inside the tube, indicating that they are filled. Additionally, SR-EELS 

experiments were carried out to unveil the chemical nature of the confined species and their 

localization. The highlighted area (green square) in Figures 1 a,b,c corresponds to a domain where 

EELS measurements have been performed. Figures 1.d,e show two EEL spectra recorded in the 

marked areas in Figure 1.c. The energy loss near-edge features (ELNES) of the carbon K edge (C–

K), which consists of a π* peak at ∼285 eV and a well-defined σ* band starting at ∼292 eV, are 

present in both EEL spectra. The S–L2,3 edge, which consist of a rather large peak around 165–220 

eV, is clearly visible only in Figure 1.d. It appears that sulfur (from 4T) is not surrounding the 
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nanotubes but is mainly localized within the hollow core of the tubes giving thus insights on the 

quality of the encapsulation procedure.

3.2 Raman measurements 

Raman spectroscopy is used to probe pristine CNT and hybrid 4T@NT in order to investigate the 

physical interactions taking place between the confined molecules (4T) and the host nanotubes.  

The G- and G+ (lying from 1500 to 1595 cm-1) modes correspond respectively to the circumferential–

transverse (TO) and the longitudinal (LO) optical modes [20] of semiconducting CNT (Sc_CNT). 

For metallic tubes (M_CNT), a Kohn anomaly (vibrations are partially screened by electrons [21]) 

strongly reduces the LO frequency and significantly modifies the profile of the mode. Thus, the G- 

and G+ bands are respectively assigned to the LO and TO modes [22]. The LO mode (for both 

Sc_CNT or M_CNT) is particularly sensitive to changes in the electronic structure, making it as a 

powerful tool to probe CT.   

3.2.1. Hybrid systems with semiconducting nanotubes 

The G-band behavior for semiconducting CNT upon CT can be described as follow: 

 - For narrow diameter semiconducting CNT, static n (p)-type doping respectively reduces (increases) 

the force constants by adding (or removing) electrons on the bonding, leading respectively to a 

softening or a hardening of the G+ band [23–25]. In this case, the magnitude of the shift can be derived 

from the following relationship adapted from [23] or [25] : 

static(cm-1) = -804×c -5126×c
2-176790×c

3-1657×c
3/2 (1) 

where c is the number of electron transferred per carbon atom of the nanotube [25].  

- For large diameter semiconducting CNT, because of the narrow energy bandgap, an EPC takes 

place, reducing the vibration frequency of pristine nanotubes. Upon CT, the Fermi level downshifts 

or upshifts (for hole and electron transfer respectively), modifying EPC and leading to a systematic 

upshift of G-band position (named renormalization effect)[26] whatever the kind of doping (n or p 

type)[25,26].  

Finally, for all kind of tubes, once c is determined, the Fermi level shift can be estimated for weak 

charge transfer with the following equation, adapting the equation below from Ref. [27]:  

∆𝐸𝐹(𝑒𝑉) = 51.77 × 𝜌𝑐 × 𝑑(𝑛𝑚)       (2)         

 where d is the CNT diameter.  

Therefore, a careful analysis of the Raman LO G-band after 4T encapsulation is a powerful tool to 

investigate the CT and the Fermi level shift.  

mailto:laurent.alvarez@umontpellier.fr


6 
 

* laurent.alvarez@umontpellier.fr;  33 4 67 14 35 41 
 

Figure 2 displays the high energy modes of the pristine CNT (black curves) and 4T@NT nanosystems 

(blue curves) for different CNT diameters measured at different excitation wavelengths. Other spectra 

are shown in figure 3 of SM. The spectra exhibit the G-bands of the nanotubes (G- and G+ lying from 

1500 to 1595 cm-1) and the C=C stretching vibrations of the confined 4T (around 1440-1530 cm-1).  
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Figure 2: Raman spectra of pristine (black curve) and hybrid (blue curve) nanotubes of different diameters excited at 

different excitation wavelengths. Hybrid spectra are offset for clarity. 

We can observe significant changes both in position (inset Fig.2) and profile after 4T encapsulation. 

It is worth to mention that the magnitude and the direction (upward or downward) of the G-band 

shifts strongly depend on the CNT diameter (Inset Fig.2 and Fig.4 SM). Figure 3 displays the relative 

G+ band shifts of the hybrid systems with respect to pristine Sc_CNT as a function of several 

excitation wavelengths for the three different CNT diameters (NT09, NT14 and NT17) considered in 

this work. This G+ band corresponds to the LO mode of Sc_CNT. We can clearly observe a significant 

downshift for small diameter tubes (NT09, blue circle), consistent with a static effect (change in a 
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lattice spacing) due to an electron transfer (ELT) from the 4T. By contrast, larger diameter tubes 

(NT14 and NT17, wine triangle and black square respectively) exhibit a slight upshift, consistent with 

a dynamic effect (renormalization).  

The Raman G-bands are very sensitive not only to charge transfer but also to different environmental 

effects such as temperature [28,29], strain [28,30,31] and pressure [32]. However, these effects shift 

the G+ band in the same direction independently on the CNT diameter, unlike the results displayed 

on figure 3. In addition, no G+-band shift has been reported for encapsulated molecules giving rise to 

van der Waals interactions with CNT [33,34]. Therefore, the G+ band behavior for the three diameters 

under investigations and for all excitation wavelengths are interpreted in terms of ELT from the 

confined 4T to the host CNT, neglecting all other effects. 
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Figure 3: Raman G+-band shifts of Sc_NT after 4T confinement as a function of the excitation wavelength for 4T@NT17 (black square), 

4T@NT14 (wine triangle) and 4T@ NT09 (blue circle). 

For small diameter tubes (NT09), according to equation (1), shifts in the range from -0.28 cm-1 to -

1.6 cm-1 corresponds to c~(1.1±0.7)×10-3. Considering then a length of the 4T molecule around 2 

nm and calculating the number of carbon atoms in a CNT of the same length with a diameter of 9 Å, 

this value suggests 4T=0.25±0.15, (4T is the number of electron withdrawn from one 4T molecule) 

and assuming that only one 4T molecule is inserted into a NT09 section [11]. Considering equation 

(2), the Fermi shift EF=0.05±0.03 eV for 4T@NT09. 

Thus, for Sc_CNT, the ELT seems more important for small diameter (NT09) with respect to larger 

tubes (NT14), in good agreement with our DFT calculations (Fig.5 SM). 

Furthermore, an important amplification of the downshift for excitation wavelengths between 488 

and 521 nm is evidenced. As the optical absorption of the confined 4T molecules lies in this energy 

range, we can reasonably assume an additional photo-induced CT, leading to a larger G-band 

downshift (from -2.2 cm-1 to -3.7 cm-1), corresponding to c~(3.2±0.8)×10-3 and 4T=0.73±0.17. 
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Here,EF=0.15±0.04 eV for 4T@NT09 at the molecule resonance. This photo-activated CT has been 

observed with porphyrin molecules deposited on the outer surface of double walled carbon nanotubes 

[35]. Then, the redox state of the molecule under light irradiation is assumed to be stable overs hours. 

For larger diameter tubes (NT14 and NT17), the slight upshift (roughly constant over the excitation 

wavelength range) indicates that dynamic effects dominate the G-band behavior. Considering 

calculations on graphene [23], on individual semiconducting CNT [26] or measurements on an 

ensemble of CNT [36], the magnitude of the upshifts observed on figure 3 from +0.11 cm-1 to +0.37 

cm-1 (for NT14) can be explained by an ELT such as c~(0.6±0.3)×10-3 and 4T=0.10±0.05 (assuming 

that two 4T molecules are inserted in the CNT section of such a diameter [11]). The Fermi level shift 

is then estimated as EF=0.045±0.025 eV for 4T@NT14.  

3.2.2 Hybrid systems with metallic nanotubes 

For metallic CNT, a Kohn anomaly (vibrations are partially screened by electrons [21]) due to EPC, 

strongly reduces the LO frequency and changes the profile of the mode. This coupling, between the 

electronic continuum and the discrete vibrational states, induces for the LO mode an asymmetric 

Breit-Wigner-Fano (BWF) line shape [37] (green cross of figure 4), described by the following 

equation:[37,38] 

𝐼(𝜔) = 𝐼0
[1+(𝜔−𝜔𝐵𝑊𝐹)/𝑞Γ]

2

[1+(𝜔−𝜔𝐵𝑊𝐹)/Γ]2
    (3) 

where 1/q measures the strength of the interaction, BWF is the peak frequency at maximum intensity 

I0 and  the spectral width.  

Therefore, upon CT, the G- band frequency and lineshape of metallic CNT are significantly modified.  

Figure 4 displays the Raman G bands of CNT14, NT14 defective nanotube (NT14_D, D stands for 

defect), and 4T@NT14_D using a red excitation wavelength (660 nm), allowing to probe M_NT14 

[38]. The defective CNT (NT14_D) are not annealed after the purification step, giving rise to several 

functional groups (C-OH, C=O, COOH…) remaining at their outer surface. 

The BWF line shape of the Raman G--band observed for non-defective tubes (green cross) and signing 

an important EPC [38], is strongly modified for defective nanotubes (black open circle). Considering 

that surface defects induce a p-type doping of the tube [39], the downshift of EF weakens the EPC, 

thus upshifting the G- modes [26]. After 4T encapsulation (blue triangle), the peculiar BWF profile 

is recovered. This phenomenon is interpreted as a consequence of ELT from the confined molecule to 

the nanotube, shifting back EF (balancing out the p-type doping from defects) and reducing the 

phonon energy by a strengthening of the EPC. This is another clue emphasizing the CT from 4T 

encapsulation is given by the study of defective metallic CNT. 
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Figure 4: Raman spectra of annealed M_CNT14 (green cross), defective nanotube CNT14_D (open circle) and hybrid 4T@NT14_D 

(blue triangle) 

The next step is to obtain a quantitative information on the CT between the encapsulated 4T and CNT 

from the G-band shifts. To this aim, we compare our experimental results to theoretical models 

developed either for graphene [23] and/or metallic CNT [26,27,36,40]. Some of these calculations 

are combined to measurements on individual CNT [26,27,40] or an ensemble of CNT [36]. It is worth 

to mention that, fortunately, the CT estimation from our data does not strongly depend on the chosen 

model. 

Several Raman spectra of metallic NT14 and 4T@NT14 samples recorded with different excitation 

wavelengths (633, 638, 647 and 660 nm) have been fitted using a BWF equation (Fig.6 SM) to study 

the coupling after 4T encapsulation.  

The fitting parameters (Fig.5) for the different excitation wavelengths evidence a weakening of the 

EPC after 4T encapsulation as the coupling factor -1/q decreases from -0.20 down to -0.10, 

concomitant with a G--band  upshift BWF of around 3 cm-1 in average and a narrowing of the peak 

width  for about 4  cm-1. All modifications are consistent with a weakening of EPC [40]. 

Considering studies on individual CNT, the frequency shifts suggest an ELT per carbon atom of CNT 

of c~(1.8±0.4)×10-3 (4T~0.30±0.07) [26], giving EF=0.14±0.03 eV. Considering now the 

experimental work by A. Das et al. [36], performed on an ensemble of CNT, the peak widths and the 

frequency shifts are given as a function of the Fermi level shift. Comparing our values in Fig.5.a (top 

and bottom) to their data, one can estimate EF=0.16±0.4 eV in our 4T@NT14, giving rise to 

c~(2.3±0.6)×10-3 and 4T=0.32±0.03. Finally, it is worth mentioning that the decrease by a factor of 

2 of the coupling parameter -1/q (Fig.5.a, middle) has been already observed on individual nanotube 
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of similar diameter (1.2 nm) and associated to a Fermi level shift EF~0.2 eV, in rather good 

agreement with our measurements. 
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Figure 5: a) BWF (top), -1/q (middle) and  (bottom) values for NT14 (black square) and 4T@NT14 (blue circle) as a function of 

excitation wavelengths. b) BWF (top), -1/q (middle) and (bottom) values for NT09 (black square) and 4T@NT09 (blue circle) as a 

function of excitation wavelengths. 

We also investigate the G--band (metallic LO mode) behavior undergoing the EPC and exhibiting a 

BWF line shape to probe metallic small diameter NT09. The situation is significantly different from 

the case of NT14 for at least two reasons:  i) to probe metallic NT09, excitation wavelengths in the 

450-550 nm range are required, corresponding to the absorption window of the 4T (leading to 

resonance conditions of the confined molecules; ii) the gap opening due to CNT curvature [41,42] is 

no longer negligible [27]. 

Fitting the Raman modes for both pristine CNT and hybrid system 4T@NT09 (figure 7 SM), we 

calculate -1/q, BWF and . Figure 5.b displays the fitting parameters as a function of the excitation 

wavelengths. Out of the resonance window of the encapsulated molecule, we firstly notice very slight 

difference between empty NT09 and 4T@NT09, meaning that metallic NT09 are hardly altered by 

the interaction with the 4T. By contrast, within the resonance window, one can clearly observe after 

4T confinement a strong enhancement of the coupling factor -1/q, a decrease of  and a slight upshift 

of the frequency whose magnitude depends on the excitation wavelength. Thus, for NT09, the 4T 

confinement rather strengthen the asymmetry of the EPC. These behaviors are consistent with a 
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significant photo-activated charge transfer as the energy range matches the 4T absorption. According 

to literature, this suggests that the photo-excited electrons coming from the encapsulated 4T mostly 

contribute to the asymmetry of the G--band due to electron-electron interactions [43,44].  

3.3 Photoluminescence measurements 

Figure 6 exhibits the photoluminescence excitation (PLE) maps of both NT09 (Fig. 6.a) and hybrid 

4T@NT09 (Fig.6.b). For this diameter distribution, only one 4T molecule is inserted into a nanotube 

section. On these PLE maps one can see that after 4T encapsulation both E22 and E11 CNT transition 

energies (between symmetric van Hove singularities) are shifted. In addition, a significant increase 

of the photoluminescence intensity is generally observed. Indeed, figure 7.a shows that the PL 

intensity ratio derived from figure 5 (I4T@NT09/INT09) increases with the nanotube diameter. Note that 

here the intensities have been normalized by adjusting the absorption intensity on the E22 transitions 

of both samples (fig.8 SM). (6, 5) CNT shows an intensity ratio close to unity as its diameter is too 

narrow to incorporate a 4T molecule. On the contrary, a ~5.5 increase of PL intensity is observed for 

the (9, 4) nanotube. This shows that the encapsulation of 4T molecules allows to tune the emission 

properties of these small diameter CNT. This behavior has also been observed for ferrocene or alkane 

encapsulation [45,46]. Moreover, a similar diameter dependence of the PL intensity was already 

observed when nanotubes undergo a strong external electric field [47]. Larger diameter tubes with 

smaller bandgap would be more altered as their exciton binding energy is reduced. In our case, the 

increase of the intensity could be explained by the weak electron transfer from the confined 4T 

molecule to the CNT compensating the natural p-type doping of pristine nanotubes due to curvature 

[48], defects [49]… Thus, the charge transfer moves back the Fermi level closer to its expected 

position for “perfect” tube [45], increasing the PL efficiency when the size of the nano-container 

increases. The maximum PL intensity is reached for an optimized tube diameter of 0.92 nm, here 

(9,4). The following drop for the (8,6) nanotubes can be interpreted with two hypothesis 1) a 

progressive negative charge transfer from 4T after natural p doping compensation or 2) a change of 

chromophore environment, 4T favoring -type interaction with the nanotube walls when its diameter 

increases. As mentioned above, both E22 and E11 transitions of filled nanotubes are shifted with 

respect with empty nanotubes. 

Figure 9 of SM displays the energy shifts the E22 (blue square) and E11 (red circle) for 4T@NT09 

with respect to NT09. It shows that (7,5) and (8,4) nanotubes exhibit red shifts up to 30-40 meV. 

These behaviors have been also observed when asymmetric dyes molecules or alkanes are 

encapsulated in small diameter nanotubes [2,46]. Among the potential origins of these shifts, 

mechanical strain and dielectric screening have to be considered. Moreover, it turns out that 

mechanical strain leads to energy shifts with the same amplitude but with opposite signs for the E11 
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and E22 transitions [50]. Furthermore, if one considers that the difference of exciton screening due to 

the encapsulation of 4T molecules is of the same amplitude and sign for both E11 and E22 transitions, 

as it is the case for changes in the surrounding environment, one can separate the contributions of 

screening and strain (see SM) [51].  

 a) 

 

b) 

 

Figure 6: PL signal intensity versus emission (x-axis) and excitation (y-axis of NT09 (a) and 4T@NT09 (b) 

Figure 7.b exhibits the results obtained for our small diameter tubes. We can clearly identify two 

distinct behaviors, considering that the (6,5) nanotube is probably empty because of its narrow 

diameter preventing molecule encapsulation.  
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Figure 7: a) PL intensity ratio between 4T@NT09 and NT09 as a function of CNT diameters  

b) Mechanical and electronic contributions of the PL energy shifts for 4T@NT09 with respect to NT09 

The (7,5) and (8,4) nanotubes undergo both mechanical strain and screening effects whereas larger 

diameter tubes (from (7,6) to (8,6)) display rather small shifts indicating no important changes with 

respect to the empty nanotubes. These behaviors are very reasonably assigned to the local structures 

predicted from DFT calculations and illustrated by two schemes in figure 6a. For very small diameter 

tubes (below 0.86 nm corresponding to minimum diameter allowing 4T encapsulation), the 4T 

molecule is incorporated but induces constraints on the nanotube and leads to mechanical strains. In 
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contrast, on large diameter tubes, the molecules are located near the center of the tube with only weak 

mechanical constraints [52]. Moreover, the sign of the strain induced shift depends also on q=n-m 

mod(3). Therefore, the (7, 5) nanotubes with q=-1 and the (8, 4) nanotubes with q=1 should exhibit 

strain induced shifts with opposite sign [50]. This is exactly what is shown on figure 10, thus 

reinforcing our interpretation. 

4. Conclusions 

In summary, significant electron transfer from confined quaterthiophene derivatives to single-walled 

carbon nanotubes is evidenced. The amount of exchanged electrons strongly depends on the nanotube 

diameter and its metallic or semiconducting character. In addition, a photo-activated transfer takes 

place for small diameter tube when the excitation wavelength matches the 4T absorption. Different 

behaviors are observed for metallic nanotubes with different diameters. For small diameters (NT09), 

the coupling factor increases within the resonance window of the 4T, featuring a strengthening of the 

electron-phonon coupling. In contrast, for large diameter tubes, this factor is reduced out of the 

resonance, consistent with a weakening of the coupling. This charge transfer leads also to an 

important enhancement of the photoluminescence intensity of small diameter tubes by a factor up to 

six. This effect is assigned to a n-type doping balancing out the natural p-type doping of small 

diameter tubes due to defects or - orbital hybridization. This study allows an experimental 

quantification of the charge transfer from confined quaterthiophene to host carbon nanotube as a 

function of key parameters such as diameter, and electronic character (metallic or semiconducting) 

of nanotube. 
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