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Estimation and Optimization for Molecular
Communications with a Coexistence Constraint

Malcolm Egan, Valeria Loscri, Ido Nevat, Trung Q. Duong and Marco Di Renzo

Abstract—At present, molecular communications has largely
been studied in isolation; that is, without the presence of
any external biological systems. However, for applications in
nanomedicine and advanced manufacturing, this assumption of
isolation is unlikely to always hold. A key question is there-
fore how to design signaling strategies such that the desired
information can be communicated, while not disrupting the
function of the external biological system. In this paper, we
study this problem by establishing a coexistence constraint based
on the Kullback-Leibler divergence between the distribution of
molecules on the surface of the biological system, with and
without the presence of the molecular communication system.
We then address the problem of how the transmitting device
can estimate these distributions from local observations of its
environment. Based on this, we optimize the modulation scheme
used by the transmitter subject to the coexistence constraint.
Tradeoffs between the coexistence constraint, the probability of
error, and the number of samples used to estimate distributions
needed to compute the coexistence constraint are then studied
numerically.

I. INTRODUCTION

The use of molecular communication—where information
is encoded in the type, quantity, or timing of molecules—
has been proposed to form the basis of new technologies for
advanced manufacturing and nanomedicine, amongst others
[1], [2]. A common feature of these applications is that the
molecular communication system is embedded in a complex
biochemical system. For example, in bacteria bioreactors [3]
the introduction of new chemical species communicating
control information may promote the production of desired
synthetic molecules. However, these new species may also
increase the metabolic load, which reduces the growth of the
colony (e.g., [4]).

In order to minimize the impact of molecular communica-
tion networks on any external biochemical system—or support
coexistence—there is a need to carefully design the commu-
nication strategy. One way of quantifying the perturbation
due to the presence of a molecular communication system is
through changes to steady state concentrations [5]. As such,
an important coexistence constraint is that changes to expected
steady state concentrations are bounded.
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At present, there is limited work addressing this coexistence
problem in molecular communications (an extensive survey
of recent work is available in [6]). In our previous work [5],
the problem was formalized and, for simple chemical systems
in the environment, information molecule selection strategies
were proposed. In particular, these strategies ensured that the
steady state concentrations in the biological system did not
change.

However, it may be difficult in practice to find information
molecules that do not change steady state concentrations
in complex external biochemical systems. In this case, it
is necessary to design the communication strategy to relax
the conditions imposed in [5] and consider coexistence with
bounded changes to expected steady state concentrations.

In this paper, we study molecular communication systems
that do not perturb the expected steady state concentrations
of an external biochemical system by more than a fixed
value δ. We first observe that this difference in expected
steady state concentrations can be bounded by the Kullback-
Leibler divergence between the distribution of molecules on
the surface of the biochemical system, with and without a
molecular communication system present. This provides a
means of selecting a communication strategy that satisfies the
coexistence constraint.

A key challenge in ensuring satisfaction of the coexistence
constraint is how to obtain an estimate of the distribution for
the number of molecules on the surface of the biochemical
system. This is complicated due to the fact that receptors on
the transmitter to detect the presence of molecules may be
non-specific. This means that each receptor can bind with
more than one type of species. As the biological system
may be sensitive to only a subset of chemical species in the
environment, it is necessary for the transmitter to correctly
estimate the distribution for a particular type given the receptor
observations.

We address the problem of obtaining estimates of concen-
tration distributions given the observations from non-specific
receptors. To do this, we use a recent technique from the
stochastic chemical reaction network (SCRN) literature [7]. In
particular, based on the observations at the receptors, a SCRN
is constructed which produces samples from the posterior
distribution of concentrations of molecules in the environment.
This approach has the benefit that it is based on a bio-circuit
and requires very few resources in order to perform the sam-
pling procedure. We remark that our approach complements
recent work of developing bio-circuits to perform coding
and decoding [8] by providing a means of obtaining side



information about the biological environment of the molecular
communication system.

With the samples from the concentration posterior distribu-
tions in hand, it is then possible to construct estimators for
these distributions. As such, the coexistence constraint can be
computed for a given communication strategy. In particular,
we use the estimates to optimize molecular communication
systems where information is encoded in the rate of production
of molecules. This modulation scheme has been also studied
in [9], albeit when a coexistence constraint is not present.
For the binary case, we then numerically optimize the rates
of production for each symbol to minimize the probability of
error subject to the coexistence constraint. In this setting, we
demonstrate the tradeoffs between the coexistence constraint
and the probability of error, along with the impact of the num-
ber of samples used to estimate distributions of concentrations.

II. SYSTEM MODEL

A. Molecular Communication Network Model

Consider a molecular communication system consisting of
a single transmitter and a single receiver. We assume that
the devices are synchronized and that the transmitter uses a
binary modulation scheme, where at the beginning of each
time slot a random quantity, X , of molecules are emitted.
The random variable X follows a Poisson distribution with
parameter λm, m ∈ {0, 1}, where m corresponds to the bit
that is to be modulated. We assume that λ1 > λ0 ≥ 0.

Each emitted molecule from the transmitter reaches the
receiver within a time period T with probability p. We assume
that transmissions are spaced sufficiently far apart in time
that there is no inter-symbol interference. As such, the only
molecules that arrive at the receiver within the time slot are
those that are also transmitted within the same time slot.
Hence, the number of molecules that reach the receiver in
a given time slot is also Poisson with parameter pλm, m ∈
{0, 1}.

We remark that the probability p that each molecule reaches
the receiver in a given time slot is determined by the fluid
medium. For example, if the molecules diffuse according to
one-dimensional Brownian motion and there are no other
biochemical processes in the environment, then the probability
p is determined by the cumulative distribution function of an
inverse Gaussian random variable [10]. Moreover, p may also
be affected by the ability of the receiver to absorb information-
carrying molecules.

With probability 1−p, a molecule emitted by the transmitter
does not reach the receiver within time T . In this paper, we
make the conservative assumption that all molecules emitted
by the molecular communication system that do not reach the
receiver bind to the biological system, which is detailed next.

B. Biological System Model

The biological system model that we consider in this paper
is motivated the biochemical processes present inside the
bacteria Escherchia coli. This kind of system exploits a sensing
mechanism to adapt to the concentration of certain chemical

species in the environment. In the case of Escherichia coli, this
sensing mechanism allows for the bacteria to move towards
food sources or away from repellants [11].

In this system, when molecules from the environment bind
with receptors on the surface of the biological system, an
adaptation process begins. This process ultimately adjusts
the steady state concentration1 of a given chemical species,
denoted by F , within the biological system. We assume
that the biological system is sensitive to both information
molecules from the communication system and also other
chemical species that are naturally present in the environment.
We denote by Z the total concentration of all molecules for
which the biological system is sensitive. It is assumed that the
concentration of Z is stationary in space when the molecular
communication is not present. This means that estimates for
this distribution obtained in one region are also valid in other
regions.

In order to model the kinetics of the biological system, we
adopt a stochastic chemical reaction network model. In partic-
ular, there are assumed to be s0 chemical species (including F )
and r0 chemical reactions. In general, the network of chemical
reactions can be written as [12],

s0∑
i=1

νikSi →
s0∑
i=1

ν′ikSi, k = 1, . . . , r0, (1)

where νik, ν′ik ∈ Z≥0. We denote νk = [ν1k, . . . , νs0k]T and
ν′k = [ν′1k, . . . , ν

′
s0k

]T .
At time t, the number of molecules for each species is

described by a component of the random vector X(t). To
account for the fact that reactions require individual molecules
of each chemical species to be in close proximity, the rate that
the k-th reaction occurs when the quantity of molecules for
each species is given by x is denoted by λk(x), called the
propensity. If the k-th reaction occurs at time t, the new state
is then

X(t) = X(t−) + ν′k − νk. (2)

Following [12], the number of times the k-th reaction occurs
by time t is given by the counting process

Rk(t) = Yk

(∫ t

0

λk(X(s))ds

)
, (3)

where the Yk, k = 1, . . . , r0 are independent unit rate Poisson
processes. We assume stochastic mass action kinetics, which
means that for x ∈ Zs0≥0 the propensities are given by

λk(x) = κk

(
s0∏
l=1

νlk!

)(
x

νk

)
, k = 1, . . . , r0, (4)

where κk > 0 is the rate constant for the k-th reaction.
As such, the state of the system at time t is given by

X(t) = X(0) +

r0∑
k=1

Rk(t)(ν′k − νk) (5)

1The steady state concentration occurs when the concentration x satisfies
dx
dt

= 0.



and the concentration dynamics forms a Markov chain.
We assume the initial state of the biological system X(0)

is fixed except for the species corresponding to Z and that
a stationary distribution exists. Note that conditions for the
existence of a stationary distribution can be found in [12]. As
such, the stationary distribution in a given time slot depends
on Z. We therefore denote the steady-state concentration of F
by ΦF (Z).

In the sequel, we will also assume that the distribution
for the concentration of Z in the absence of the molecular
communication system is Poisson distributed with parameter
qZ . This can be justified as the Poisson distribution is known
to be the stationary distribution of many stochastic chemical
reaction networks [12].

C. Coexistence Constraint

Due to the importance of steady state concentrations on
biological function, we formalize the coexistence constraint
as follows. Recall that ΦF (Z) is the random variable cor-
responding to the steady state concentration of the chemical
species F affecting the function of the biological system. The
concentration ΦF (Z) has distribution PΦF (Z), where Z is the
quantity of molecules bound to the biological system in a given
time slot.

Let PZ be the distribution of molecules at the biological
system when the communication system is present and QZ be
the distribution when the communication system is not present.
One means of ensuring coexistence is therefore to ensure that
for some δ > 0,

D(QZ ||PZ) < δ, (6)

where D(·||·) denotes the Kullback-Leibler divergence. To
justify this constraint let x0 denote the empty symbol where
the transmitter does not send anything. When ΦF (Z) has
bounded support with maximum value Φmax, it then follows
that

|EΦF (Z)[ΦF (Z)]− EΦF (Z)|X=x0
[ΦF (Z)]|

≤ Φmax‖PΦF (Z) − PΦF (Z)|X=x0
‖1

≤ Φmax

√
2D(PΦF (Z)|X=x0

||PΦF (Z))

≤ Φmax

√
2D(QZ ||PZ). (7)

The second inequality follows from Pinsker’s inequality and
the third inequality follows from the data processing inequality
for the Kullback-Leibler divergence [13]. The difference in
expectations in (7) directly constrains the variations in the
steady state concentration of F . As such, the coexistence
constraint in (6) forms a reasonable measure of changes to
the function of the biological system.

III. ESTIMATION FOR DISTRIBUTIONS OF BACKGROUND
CONCENTRATIONS

In order to design communication strategies such that the
coexistence constraint in (6) holds, we require the distribution
of concentrations for chemical species in the environment.
In order to estimate these distributions, we require samples.

However, in general receptors that bind to molecules in the
environment are non-specific. This means that more than
one chemical species in the environment can bind with each
receptor.

In this section, we develop a means of computing the co-
existence constraint for the molecular communication system
detailed in Section II with non-specific receptors on the surface
of the transmitter. In this setting, the number of each type of
molecule produced by the receptors depends linearly on the
number of molecules that bind with the receptors. In particular,

r = Ol, (8)

where r ∈ ZnR

≥0 is the number of each type of receptor
molecule produced, which can be directly observed within the
transmitting device. The vector l ∈ ZnL

≥0 is the number of
each type of species in the environment that bind to receptors
on the transmitter. The matrix O is an nR × nL observation
matrix determining the production of receptor molecules given
the number of molecules from the environment that bind with
each receptor.

A. Posterior Via Chemical Reaction Networks

We now detail the procedure to obtain samples of the
posterior Pr(l = u|r) developed in [7]. More precisely, this
posterior is obtained under the Bayesian methodology, assum-
ing the product-Poisson prior for the number of molecules in
the environment that bind with the receptors, given by

Pr(l = u) =

nL∏
i=1

e−q̃i
q̃ui
i

ui!
, (9)

where l ∈ ZnL

≥0, r ∈ ZnR

≥0 , q̃ = [q̃1, . . . , q̃nL
]T are the positive

rate parameters.
To begin, we require the notion of a tidy observation matrix

O. The matrix O is tidy if there exists a nL × nR matrix M
such that OM = InR×nR

and M ∈ ZnL×nR

≥0 . The chemical
reaction network which will compute the samples from the
distribution Pr(l|r) is defined as follows. Note that ker(O)
denotes the nullspace of the matrix O.

Definition 1. Consider the observation matrix O =
(oij)nR×nL

with rational entries oij ∈ Q and a basis B for
Zn ∩ ker(O). The chemical reaction network Proj(O,B) is
defined by the species X1, . . . , Xn and for each b ∈ B (viewed
as columns of B), the reactions∑

j:bj>0

bjXj →
∑
j:bj<0

−bjXj∑
j:bj<0

−bjXj →
∑
j:bj>0

bjXj . (10)

For each reaction, we denote the molecular weight for species
i on the reactant side of reaction k by νik(B) the molecular
weight for species i on the product side of reaction k by
ν′ik(B), analogously to the notation used in the model of
the biological system. The vectors of molecular weights for
reaction k are denoted by νk(B) and ν′k(B), respectively.



Note that the basis can be constructed as follows. Let B′

be a basis for the nullspace of O with rational coefficients.
Then, B can be obtained by scaling the columns of B′ such
that each element is an integer.

To illustrate the construction of the chemical reactions in
Definition 1, consider the following example given in [7].

Example 1. Consider an observation matrix

O =

(
1 0 1
0 1 1

)
(11)

Note that O is tidy since there exists

M =

1 0
0 1
0 0

 (12)

such that OM = InR×nR
.

Observe that a basis for the kernel is given by (1, 1,−1)T ,
which has integer coefficients. The chemical reactions in
Definition 1 are then given by

X1 +X2 → X3

X3 → X1 +X2. (13)

A realization of the trajectories for this SCRN with rate
coefficients κq,1 = q3 for the first reaction in (13) and κq,2 =
q1q2 for the second reaction in (13), where q = [2, 2, 2]T

is shown in Fig. 1. For the purposes of illustration, initial
concentrations X(0) = [30, 50, 0]T . These trajectories were
obtained via the stochastic simulation method known as the
Gillespie algorithm [14]. Observe the convergence of the
trajectories to a stationary distribution.
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Fig. 1. Plot of a realization of the concentrations of X1, X2, X3 from
Examples 1

A main result in [7] is that the distribution of the posterior
Pr(l|r) with the product-Poisson prior can be sampled from
the concentrations of species X1, . . . , Xn in Definition 1 at a
sufficiently large time t.

Theorem 1. Consider the chemical reaction system
(Proj(O,B), κ) with stochastic mass action kinetics,
associated message matrix M, and the initial state
n(0) =

∑nR

i=1 rimi, where2 κk = q̃ν
′
k(B). Then, the

Bayesian posterior Pr(l|r) with the product-Poisson prior is
the stationary distribution of the stochastic chemical reaction
network.

Theorem 1 provides a means of obtaining samples from
the posterior distribution Pl|r. This will be used in the sequel
to obtain an estimate of Pl and to compute the coexistence
constraint in (6). Ultimately, this will form a basis to optimize
the modulation scheme in Section IV.

B. Distribution of Z and the Coexistence Constraint

The chemical reaction network described in Section III-A
provides a means of obtaining samples of the distribution of
molecules l outside the device conditioned on the observations
r. As detailed in Section II, we assume that one element of
l will correspond to the species Z to which the biological
system is sensitive. Without loss of generality, we will take
l1 = Z. As such, the estimate of the distribution of Pl|r
can then be used to obtain an estimate for the distribution of
Z when the molecular communication system is not present,
denoted by Zback. This will be used to select a modulation
scheme satisfying the coexistence constraint in (6).

We adopt the following approach to estimating the dis-
tribution of PZback

. For each observation r, the stochastic
chemical reaction network in Section III-A produces a sample
from the posterior distribution PZback|r. To proceed, we recall
the assumption from Section II that PZback

is a Poisson
distribution, albeit with an unknown parameter qZ .

To obtain an estimate of qZ , for each observation r we first
estimate the posterior distribution PZback|r from K samples
via the empirical distribution

P̂Zback|r(z) =
1

K

K∑
i=1

1{Zr,i≤z}, (14)

where each Zr,i is a random variable drawn independently
from PZback|r. The true value of Zback corresponding to the
observation r is then estimated via the MAP estimator

Ẑback = arg max
z
P̂Zback|r(z). (15)

This procedure is then repeated for every realization
of r, from which we obtain a sequence of M estimates
Ẑback,1, . . . , Ẑback,M . These estimates are used as a proxy
for the true value of the realization of Zback resulting in the
observation r. Under the assumption that Zback is Poisson
distributed, the parameter qZ can then be obtained via the
maximum likelihood estimate

q̂Z =
1

M

M∑
k=1

Ẑback,k. (16)

2To avoid any confusion, note that the values of ν′k(B) here correspond to
the reaction network in Definition 1 and not the biological system.



The estimated distribution of Zback is then

P̂Zback
(z) = e−q̂Z

(q̂Z)z

z!
. (17)

Table I demonstrates the effect of increasing the number of
samples M in order to estimate qZ . In the table, q denotes the
true value of the parameter and qprior denotes the parameter
used in the prior. The estimate of the posterior distribution
for each observation r were obtained using 10 independent
observations of the SCRN at t = 30 s. Observe that obtaining
the samples from the posterior improves the estimate of q
over the prior. As expected, the standard deviation (Std.)
also decreases as the number of samples increases. The gap
between the estimate and the true parameter is due to the fact
that the posterior is obtained from only one observation of
r. Typically this can be improved by using Bayesian updating
where after each observation r the prior is replaced by the new
posterior distribution. However, as the posterior distribution is
not a product-Poisson prior it cannot be directly applied. It is
an avenue of future work to address this issue.

TABLE I
ESTIMATION OF q̂Z

q qprior Samples M Average q̂Z Std. q̂Z
4 2 10 2.98 0.57
4 2 20 2.95 0.33
4 2 50 2.94 0.27
4 2 100 2.94 0.17
4 3 10 3.4 0.52
4 3 20 3.43 0.39
4 3 50 3.43 0.26
4 3 50 3.41 0.19

With the estimated distribution P̂Zback
in hand, we can

now compute the coexistence constraint for a given distribu-
tion of information molecules at the biological system. Let
Zinfo be the distribution of molecules that are transmitted
by the molecular communication system that arrive at the
biological system. Note that Zinfo|X=0 ∼ Pois((1 − p)λ0)
and Zinfo|X=1 ∼ Pois((1 − p)λ1), under the assumption in
Section II that all emitted molecules by the communication
system that do not reach the receiver are bound to the
biological system. The Kullback-Leibler divergence required
to compute the coexistence constraint is then given by

D(P̂Zback
||P̂Zback+Zinfo

)

=
∑
j∈Z≥0

P̂Zback
(j) log

(
P̂Zback

(j)∑
k∈Z≥0

PZinfo
(j − k)P̂Zback

(k)

)
.

(18)

IV. OPTIMIZING RELIABILITY FOR BINARY MODULATION

In this section, we address the problem of optimizing the
modulation scheme for the molecular communication system
detailed in Section II subject to the coexistence constraint in
(6). Denote the probability of error given transmission rates

λ0, λ1 by Pe(λ0, λ1). Then, we seek to solve the optimization
problem

min
λmin≤λ0<λ1≤λmax

Pe(λ0, λ1) (19)

subject to the constraint

D(P̂Zback
||P̂Zback+Zinfo

) < δ. (20)

Note that since the transmitter emits a Poisson distributed
number of molecules, it follows that the optimal decision rule
is obtained from the binary hypothesis test

H0 : Y ∼ Pois(pλ0)

H1 : Y ∼ Pois(pλ1). (21)

It is then straightforward to obtain the decision rule via the
likelihood ratio test [15]. In particular, given an observation
of y molecules at the receiver, the decision rule is

y
H1

≷
H0

p(λ1 − λ0)

log
(
λ1

λ0

) =: τ. (22)

Under this decision rule, the probability of error is given by

Pe(λ0, λ1) =
1

2

bτc∑
i=0

e−λ1p
(λ1p)

i

i!

+
1

2

1−
bτc∑
i=0

e−λ0p
(λ0p)

i

i!

 . (23)

The probability of error subject to the coexistence constraint
can then be solved numerically by optimizing λ1, λ0 ∈ R+.
Next, we examine the tradeoffs introduced by the coexistence
constraint and the estimation procedure detailed in Section III.

A. Numerical Results

We first investigate the tradeoff between the probability of
error and the coexistence constraint under the assumption the
distributions PZback

and PZback+Zinfo
are perfectly known.

This provides insight into the impact of the coexistence
constraint on communication.

Fig. 2 plots the probability of error in (23) for varying values
of δ in (6) and probability p that a given molecule reaches
the receiver. In this figure, it is assumed that the transmitter
knows the true distribution of Zback, which is Poisson with
parameter q = 2. The values of λ0, λ1 are constrained to
lie in [0, 20]. The key observation is that as the value of δ
increases the probability of error reduces. However, an error
floor is reached due to the presence of the upper bound on the
value of λ1. This upper bound incorporates constraints on the
ability for the transmitter to generate the required number of
molecules that are to be emitted. Moreover, observe that as the
success probability p is increased, the error floor significantly
decreases. As such, improving the quality of the channel can
lead to very large reductions in the probability of error.

The estimation procedure in Section III will inevitably
lead to estimation errors in the parameter qZ . As such, it is
important to understand the effect of the estimation error on
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Fig. 2. Plot of the probability of error for varying values of the coexistence
constraint δ.

the probability of error and the coexistence constraint. To this
end, Fig. 3 plots the difference between the Kullback-Leibler
divergence with the optimized modulation scheme (based on
the estimated qZ) and δ using the true distribution of Zback,
called the tolerance. In the figure, δ = 0.2 and q = 2. Observe
that for q̂Z (estimated qZ) larger than 2, the coexistence
constraint is not satisfied. As such, in scenarios where the
estimated q̂Z can be significantly larger than the true value q
it is highly desirable to optimize the modulation scheme using
a smaller value of δ.
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V. CONCLUSION

While a range of different techniques have been proposed
to improve the performance of molecular communication
systems, almost all assume that there is no external biological

systems present. When such biological systems are in fact
present—likely in applications such as nanomedicine and
advanced manufacturing—the design of the molecular commu-
nication system must be adapted to ensure that biological func-
tion is not disrupted. In this paper, we have studied molecular
communication systems subject to an additional coexistence
constraint. This coexistence constraint is formalized in terms
of a Kullback-Leibler divergence between the distribution on
the number of molecules that can bind to the biological system,
with and without the presence of the communication system.

We have shown that this constraint can significantly reduce
the performance of the molecular communication system by
introducing error floors in the probability of error. We have
also made initial steps towards resolving the problem of how
to estimate the distributions on the number of molecules. In
particular, by adapting techniques from stochastic chemical
reaction networks, part of the estimation problem can be
performed by a bio-circuit. This is highly desirable from the
perspective of reducing the complexity of the transmitting
device.
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