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Abstract 

 The traditional goals of quantitative analytics cherish simple, transparent models to 

generate explainable insights. Large-scale data acquisition, enabled for instance by brain 

scanning and genomic profiling with microarray-type techniques, has prompted a wave of 

statistical inventions and innovative applications. Modern analysis approaches 1) tame large 

variable arrays capitalizing on regularization and dimensionality-reduction strategies, 2) are 

increasingly backed up by empirical model validations rather than justified by mathematical 

proofs, 3) will compare against and build on open data and consortium repositories, as well 

as 4) often embrace more elaborate, less interpretable models in order to maximize 

prediction accuracy. Here we review these trends in learning from “big data” and illustrate 

examples from imaging neuroscience. 
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Introduction 

Tension is emerging in everyday data analysis in the biomedical sciences. Around the 

turn of the century, deployment of new measurement techniques, especially microarray-like 

techniques in genomics and brain scanning in neuroscience, have ignited data accumulation 

at massive scale 1. As one consequence, the amount of health-related data is expected to 

double several times per year starting from 2020 (Nature editorial, 2016). Data-analytical 

methodology in turn has expanded more in the last two decades than any other point in 

history 2,3. However, emerging opportunities to generate quantitative insight from 

accumulating data are adopted with hesitation in many empirical domains. Here, we portray 

the growing stack of algorithmic tools, illustrated with examples from the area of human 

neuroscience. 

 In many empirical sciences, classical statistics is still the dominant arsenal for deriving 

rigorous conclusions from data. A form of linear regression was already used by Gauss 

around 1795, and null-hypothesis testing emerged in the early 20th century to formally 

assess the significance of tail-area statistics 2. Closed-form textbook formulae (for italic 

terms see glossary) were a necessity to avoid laborious paper-and-pencil calculations 4. 

Electronic computations only became slowly available after World War II 2. Hence, a new 

modeling approach was routinely validated by virtue of mathematical theory. Specifically, 

consistency theorems formally characterize how a particular analysis method behaves if the 

sample size increases indefinitely 5,6. Much emphasis was put on straightforward linear 

models due to key advantages for understanding the relationships between carefully 

selected input variables. Simpler, less data-hungry models were also generally preferred 

because data acquisition was financially and logistically expensive for most of the last 

century. This is why experimental laboratory studies needed to be carefully planned in 
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advance, and research hypotheses had to be precisely defined beforehand 7,8. From this 

traditional perspective of scientific investigation, re-analysing general-purpose data 

repositories would have been of little appeal. Moreover, it was only in the 90’s that desktop 

computer software for many machine-learning algorithms or Bayesian modeling approaches 

became widely available 2. 

 Impressive data aggregation in the early 21st century has given rise to a new kind of 

empirical research 9,10. In many scientific domains, information has become cheaper, 

considerably more fine-grained and multi-faceted, as well as freely available. This shift of 

context opens the door to the principled exploration of already acquired “found” 

observational data. Increasingly, quantitative analysis tools are designed, evaluated, and 

deployed ad-hoc before complete formal analysis of their mathematical properties. Instead, 

empirical justifications are obtained from successful prediction performance in separate 

reference datasets 4,11. More broadly, modern data analysis needs to negotiate trade-offs 

between statistical notions like effect uncertainty (e.g., ‘How sure are we about a detected 

effect?’) and computer-science notions like computational load and memory resources (e.g., 

‘How expensive does the analysis become with an increasing number of input variables?’) 

9,12. 

 

 

 

Global trends in empirical data analysis 

As a looming culture clash, university education in various empirical fields is still 

focused on classical methods from a time of scarce data and limited computation. 

Blossoming data resources however entail a need for exploiting analytical techniques suited 
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for today’s data-rich setting. Getting back to our guiding example, imaging neuroscience has 

spawned increasingly wide and deep datasets over recent years. However, the adoption of 

analytical tools tailored for modern data is accelerating only recently 13,14. The most 

commonly used methods from statistics and computing were not designed to solve the 

types of problems that data-rich scientists, including neuroscientists, are facing today. The 

present overview retraces this emerging transition from formally inspired modeling of a few 

hand-selected variables to learning complicated patterns from data with increasingly 

adaptive algorithms: 

 

1) Many empirical sciences are now generating detailed phenotypical descriptions of 

organisms and phenomena like the brain. Investigators confronted with hundreds or 

thousands of quantitative measurements are also confronted with how to estimate 

statistical models with potentially hundreds or thousands of parameters. This new context 

questions the long-standing dogma that statistical analysis should strive to be maximally 

impartial. Instead, the unfolding analysis paradigm appears to ask ‘What is the most useful 

a-priori knowledge that can inform and shape my quantitative analysis?’. The consequence is 

growing importance of bias-inducing regularization strategies and data transformations for 

dimensionality reduction like clustering and matrix decomposition. 

 

2) Classical modeling tools have usually been trusted after their formal properties 

had been mathematically understood in detail. Increasing data availability is escalating the 

pace at which new quantitative methods are invented and re-purposed, even before 

studying their theoretical properties. As such, the modern quantitative investigator has 

special interest in asking ‘How well does my obtained modeling solution hold up when 
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directly evaluated in other sampled observations?’ Hence, extracted candidate models are 

more often grounded in empirical cross-validation or posterior predictive checks to judge the 

model’s quality and practical usefulness. 

 

3) Many empirical sciences have centered on careful planning and conducting of 

experiments in the laboratory. This predominance of acquiring expensive in-house datasets 

is re-balanced to ever-wider usage of openly accessible observational datasets. Investigators 

can increasingly ask ‘How does my research question play out in existing consortium data?’ 

or ‘how does my newly developed method scale to open population datasets?’. These 

opportunities can improve the reproducibility of scientific claims and the comparability of 

quantitative approaches. 

 

4) Empirical sciences like imaging neuroscience capitalize on always more complex, 

sometimes untransparent modeling approaches. These investigators may want to ask ‘How 

well can a powerful pattern-learning algorithm forecast outcomes from the natural 

phenomenon under study?’. On the one hand, by maximising prediction accuracy on new 

data or settings, much harder problems can be tackled than before. On the other hand, 

uncompromising prediction studies may lose some interpretational grip on understanding 

the isolated role of each model parameter. The resulting interpretability trade-offs incur 

ethical and policy-related consequences for science, business, and government. 

 

 

 

Deeper phenotyping yields data with always more variables 
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The brain sciences have recently been highlighted as the potentially most data-rich 

medical specialty (Nature Editorial 2016). In genomics and imaging genetics, jointly 

considering >1,000,000 single nucleotide polymorphisms (SNPs) typically exceeds the 

thousands of participants in the currently biggest human cohorts e.g., 15. In imaging 

neuroscience, a brain scan with commonly available resolution offers measurements from 

~100,000-500,000 locations (‘high-p’ scenario with many variables). Yet, sample sizes have 

reached hundreds or thousands of participants (‘low-n’ scenario with few observations) only 

over recent years. In this context, too few sample observations from the participants may be 

available to allow for rigorous statements about each separate input dimension like a 

specific gene or a particular brain location. At the extreme, detailed neuroanatomical studies 

with measurements at micrometer resolution may be available in one or only few 

participants 16. Consequently, application of dimensionality-reduction techniques is 

becoming hard to avoid in various empirical sciences. The theme of reducing abundant 

multivariate information to the relevant essence is reflected in matrix decomposition 

techniques like principal component analysis (PCA), canonical correlation analysis (CCA), 

partial least squares (PLS), independent component analysis (ICA), and expanding tensor-

decomposition techniques as well as clustering techniques like k-means 17,18. In many 

workflows, it becomes an important pre-processing step to re-express the data in a simpler 

underlying form before applying the final data analysis model, such as linear regression 19. 

In traditionally small datasets with few variables, computing ordinary linear 

regression analysis, as a special instance of maximum likelihood estimation (MLE), readily 

provides parameter estimates, with almost optimal precision 5. Standard linear regression 

corresponds well to the traditional goals of statistics that valued impartiality to what may be 

expected in the data - unbiasedness. Indeed, even datasets with ~30-40 variables were still 

https://paperpile.com/c/P5MWqG/J44m/?prefix=Nature%20Editorial&noauthor=1
https://paperpile.com/c/P5MWqG/J44m/?prefix=Nature%20Editorial&noauthor=1
https://paperpile.com/c/P5MWqG/J44m/?prefix=Nature%20Editorial&noauthor=1
https://paperpile.com/c/P5MWqG/J44m/?prefix=Nature%20Editorial&noauthor=1
https://paperpile.com/c/P5MWqG/J44m/?prefix=Nature%20Editorial&noauthor=1
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considered high-dimensional in the 80’s and 90’s 1. Already in this setting, the formal theory 

backing up linear regression models starts to lose some of its optimality, although MLE 

successfully legitimized a series of classical statistics approaches still in pervasive use today 1. 

Introducing an increasing number of input variables into a linear model usually leads to an 

increasing number of parameters to be fitted. Such larger models incur higher variance in 

estimating their model parameter values, e.g., due to ambiguities in the fitting of partially 

redundant variables that carry similar information about the target outcome 19. 

Even when adding more parameters to simple linear models, the expanded model 

capacity - with higher degrees of freedom - adds challenges to interpretation. With 

increasing number of model parameters, it becomes more difficult to clearly attribute the 

variance explained by each individual input variable 1. Larger linear models are also more 

susceptible to picking up on idiosyncrasies and noise in data. In the high-dimensional 

scenario, hundreds or thousands of input variables (e.g., brain region volumes, functional 

connectivity strengths, or gene expression levels) can be submitted to model fitting. It 

becomes harder to tell, using classical goodness-of-fit tests, how well an obtained linear 

model actually encapsulates the data at hand. At the extreme, the number of measured 

variables exceeds the number of available samples or observations in many modern datasets 

20. Such data-rich settings hinder the reproducible identification of unique model parameter 

solutions. Such contexts render common linear-regression models non-identifiable, which 

makes the parameter value estimates difficult to interpret, and model performance on new 

data poor 21. 

 The amount of information that can be gleaned from emerging high-dimensional 

datasets may sometimes remain low even if the sample size is increasing 22,23. Probably no 

statistical approach performs well if thousands of input variables are truly individually 
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informative about the outcome to be predicted 21. Specially, with high dimensions, pre-

assuming a more parsimonious underlying representation in the relevant variables (e.g., 

identifying a smaller number of latent factors of variation) may be a pragmatic way to obtain 

useful and interpretable modeling solutions. Consequently, modern data often make it 

necessary to introduce some intentional bias into the data-analysis process. In addition to 

dimensionality-reduction techniques, a plethora of regularization strategies have flourished 

in response 21. Often very simple extensions of traditional tools like linear regression can be 

effective in datasets with high-dimensional measurements. Such penalized linear models 

dedicated to many variables p are epitomized by the increasing adoptions of Ridge 

regression, Lasso, and Elastic Net 21. 

In particular, several classical analysis tools underwent a sparsification over the last 

15-20 years: the introduced biasing assumption is that most input variables in the data are 

expected to be uninformative about the outcome. Sparsified model extensions were 

enthusiastically embraced by the machine-learning community 21. Those often-frequentist 

modeling approaches try to learn from data which input variables can be ignored by 

encouraging a maximum of model parameters with exactly-zero values. This penalized 

modeling regime assumes that effective model estimation should be skewed towards finding 

only a subset of the input variables to be relevant to the research question 21. Besides 

sparsity-inducing regression via Lasso and Elastic Net, these highly effective parsimony 

constraints recently motivated, for instance, sparse PCA, sparse CCA, or sparse k-means. 

Instead, more Bayesian-minded analysts may prefer estimating the uncertainty of 

possible model parameter values and corresponding variable influence to be close to zero or 

not 24-26. The investigtor embracing Bayesian statistics intentionally biases model estimation 

by skewing parameter values towards existing knowledge expressed in prior distributions 27. 
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For instance, such approaches can capitalize on hierarchical dependence structure in the 

data that exists between the quantitative measurements, such as to share statistical 

strengths between individual outcomes pooled from different time points of a longitudinal 

study. In high dimensions, many Bayesian approaches may however suffer as the prior 

probability distribution can take unexpected shapes, which may preclude the “true” 

parameter values from being recovered. As a manifestation of this so-called curse of 

dimensionality, imposing prior knowledge by guiding model estimation to expect certain 

ranges of model parameter values more than others may become ineffective 28. Even if 

probabilistic parameter distributions could be obtained on each input dimension, it would be 

challenging for a domain expert to interpret every single parameter 12. Algorithmically, even 

modern approximate methods for Markov chain Monte Carlo sampling widely used to infer 

Bayesian models are susceptible to the consequences of the curse of dimensionality 29. 

These side-effects of rich multi-variable phenotyping need to be tackled in an 

increasing number of modern neuroscience studies. Linear but flexible pattern-learning 

models have repeatedly yielded useful dimensionality reductions of high-dimensional subject 

descriptions and integration of different modalities of detailed measurements. In this spirit, 

CCA was used by Smith and colleagues to uncover population co-variation that links coupling 

measures of various brain networks and extensive phenotyping by a diversity of behavioral 

indicators 30. Standard CCA can be viewed as reminiscent of classical statistics because this 

model is fitted based on MLE without deliberately imposing prior knowledge or bias that 

would guide parameter estimation. However, the same CCA method can be viewed to 

represent a proto-typical approach suited for modern datasets because of in-built 

dimensionality reduction, avoiding strong (parametric) assumptions about the distributions 

to be encountered in the data, the native ability to fuse two heterogeneous data modalities, 
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and acting in the high-variance regime due to the considerable degrees of freedom. CCA 

models have recently seen extensions and applications for sparse penalization 31, Bayesian 

modeling 32, and deep learning 33. This multivariate method is complementary to so-called 

mass univariate approaches, which have been pervasively used in imaging neuroscience to 

study effects separately for each part of the brain 34,35. 

In a recent CCA application in imaging neuroscience 30, one significant population 

mode of multi-modal co-variation was obtained based on one robust set of canonical 

correlations. This multivariate brain-behavior pattern extracted from rich phenotyping 

demonstrated a positive-negative axis: intelligence, memory and cognition tests and indices 

of life satisfaction on the positive end, and negative life-factor measures at the other end 

(Fig. 1). Additionally, the functional connectivity weights emphasized prominent modulation 

of the brain’s “default mode network” (DMN). The doubly-multivariate CCA technique was 

recently re-purposed to revisit the idea that the DMN subserves some of the most human-

defining cognitive processes by pooling neural information across the cortical landscape 36. 

Profiting from multi-modal imaging data of 10,000 UK Biobank participants (Fig. 2), major 

nodes of the DMN could be shown to explain variance in how canonical brain networks 

communicate with each other. This population neuroscience study 36 thus provided robust 

indicators that the biological role of the DMN may emerge from propagating brain-wide 

information flow to orchestrate the cortical network repertoire, potentially mediated by the 

right and left temporoparietal junction of the DMN (cf., 37). Sparsity to intentionally bias CCA 

estimation was recently used to provide a more complete understanding of the functional 

connectivity patterns of this major brain network during mind-wandering experience in 

humans 38. Thus, imposing exactly-zero relevance weights, certain random-thought 
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behaviors among richly phenotyped experiences could be isolated to underlie functional 

connectivity signatures in the DMN. 

 

 

 

Empirical model checks enabled by always larger sample sizes 

Classical statistics was conceived when datasets had modest sample size 2,7. In the 

early 20th century, a primary concern was to gather information from scarce data points to 

achieve reasonable confidence in the model estimates for meaningful parameter 

interpretation. In this data-scarce context, a key theoretical property to judge the usefulness 

of a given modeling approach was asymptotic consistency. This formal guarantee of model 

performance has certified a host of long-standing statistical approaches. This criterion 

quantifies whether model estimation converges to the true variable relationships as the 

number of observation samples increases, mimicking for instance availability of brain scans 

from an infinite number of participants. 

However, increasingly flexible algorithmic approaches, with data-hungry deep neural-

network algorithms as an extreme case, can simply memorize much of the provided 

observation samples in certain settings. That is, modern complex models may enjoy 

consistency guarantees, but be highly prone to seriously overfit the provided data 39. This 

adaptiveness of flexible modeling approaches can lead to spuriously high performance when 

evaluated on the observations used for model fitting (in-sample performance). This scenario 

may change the role of consistency theorems if the goal is to build models that perform well 

on observations to be sampled in the future, rather than the data sample at hand. Hence, in 

mathematical theory describing the convergence behavior of many machine-learning 
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models, finite-sample theorems are common where model performance is assessed as a 

function of the amount of observations available for model fitting, with its formal relation to 

the complexity of the chosen model and the ground-truth information density of the data 

rather than the raw number of input variables 22,23. 

With the increasing sample sizes of modern datasets, empirical evaluation 

procedures are becoming attractive to vouch model quality beyond those participants or 

observations used for model estimation, to new, independent data points. In fact, even a 

simple, inflexible model with few parameters can often overfit the available observations. 

This is because not every aspect of the measured data usually reflects the phenomenon of 

interest 24. For instance, magnetoencephalographic brain measurements of neural activity 

responses can be influenced by passing trains hundreds of meters away, or by other 

electromagnetic fluctuations that happen to occur in the environment. Here, the model used 

may not have optimally fitted to the intended purpose in the participant sample at hand, 

even if the model enjoys the theoretical consistency guarantee to approach the true 

statistical relationship with unlimited amounts of data 22. Moreover, at a given sample size of 

say 1,000 brain scans, it is possible that a purposefully biased model has already converged 

closer to the ground-truth solution based on the limited number of available observations 

than an unbiased model that is theoretically ensured to be correct in unlimited observations 

or participants. 

 As a consequence of staggering increase in sample size, modern quantitative analyses 

can increasingly be backed up by data-dependent optimality criteria rather than relying 

mostly on formal optimality guarantees. In the machine-learning community, resampling 

and permutation schemes are popular, typically non-parametric tools to glean further 

information from the data themselves. As an important example, cross-validation 
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procedures 40,41 repeatedly split the available observations to assess the discrepancy 

between potentially overly optimistic model performance on the training data used for 

model estimation and the previously unseen test data. This empirical model check can now 

be increasingly used to approximate the expected model performance in observations or 

participants yet-to-be-observed in the future 2,19. An additional validation data split (internal 

to the training data) routinely serves for tuning any algorithm hyper-parameters to the data 

at hand, such as to optimize the strength of inducing zero parameters by sparse 

regularization. 

Similarly, empirical permutation procedures allow non-parametric null-hypothesis 

testing based on exchangeability assumptions. This practical re-implementation of classical 

statistical inference is more general and flexible than what can typically be achieved by the 

common assumptions of ‘independent and identically distributed’ 28. Additionally, bagging 

can improve prediction performance on new data based on data resampling and averaging 

hundreds of model solutions 42. Moreover, bootstrapping can bestow population uncertainty 

intervals around almost any frequentist statistical approach, derived directly from the 

available observations themselves 43. These empirical model checks are based on repeatedly 

resampling the data at hand, which yields more truthful results with more observations. 

In a similar data-guided fashion, Bayesian approaches commonly re-adjust prior 

assumptions consecutively to enhance model estimation. The practical performance of each 

candidate model can be evaluated using posterior predictive checks that generate new data 

from candidate sets of posterior parameter distributions 28. As Bayesian estimation 

conditions on the provided participants or observations, their fully specified probability 

intervals for each model parameter are valid for any sample size. These confidence bounds 

naturally tend to become always narrower as the amount of available observations grows. 
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Moreover, as the influence of the imposed prior knowledge gradually wanes with increasing 

sample size, the means of the inferred posterior parameter distributions ultimately converge 

with frequentist estimates of a particular parameter value (from MLE). 

In imaging neuroscience, the recent surge in sample size led to re-evaluation of some 

established means to draw rigorous conclusions from brain measurements. In a sample of 

~5,000 UK Biobank participants, Pearson correlation analyses between a behavioral 

phenotype and a brain imaging feature at r=0.1 were found statistically significant for the 

most part (Fig. 3). This was even the case after correction for multiple comparisons 44, which 

was anticipated long ago 45. In this univariate-flavored approach, reporting effect estimates 

as interesting based on p-values alone may become insufficient if many observations are 

included in the analysis. This calls for systematic reporting of effect sizes (i.e., model 

parameter values) and other importance metrics such as prediction performance computed 

from cross-validation procedures 8,46. Further, having larger participant samples, combined 

with more complicated multivariate analysis settings, has propelled the use of non-

parametric null-hypothesis testing schemes based on more flexible exchangeability 

assumptions and data resampling schemes 47,48. For instance, also in imaging neuroscience, 

statistical significance is increasingly drawn by generating a to-be-tested empirical null 

distribution directly from the data themselves. For instance, as by shuffling which brain scan 

is labeled as male versus female to make statements about statistically distinguishable sex 

differences in the brain 49. The more participants’ data are available in a neuroscience 

dataset, the more reliable conclusions from these resampling procedures can become 50. 

When will the sample sizes be sufficient for fitting and evaluating deep-learning 

approaches in the area of imaging neuroscience? Experts recently proposed a general rule of 

thumb 51: In various application areas, n=5,000 samples per category to be distinguished 
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were often necessary to achieve relevant model prediction performance. However, datasets 

with n>10,000,000 samples were repeatedly necessary to exceed human-level performance. 

The low sample(n)-to-variables(p) ratio in today’s neuroscience datasets may still hamper 

the potential of multivariate deep-learning techniques. Some current shortcomings on data 

availability in imaging neuroscience may be alleviated by data augmentation strategies, 

using deep neural-network algorithms whose parameters were already estimated on 

independent data, and other tricks 51. 

 

 

 

Open data become test bed and reference point 

The modus operandi in many empirical sciences is still to collect and analyse in-house 

data for publication in one paper. Various kinds of questions simply cannot be asked 

quantitatively using one small dataset, such as extracting links between a human’s genetic 

blueprint and her vast diversity of behaviors 52. Often genomics amasses data from 

participant samples collaboratively to chase small effects in multi-site consortia as a 

confederated research endeavor (e.g., Psychiatric Genomics Consortium). There are always 

more incentives and maturing practices to accumulate, curate, and distribute data for 

exploration, knowledge generation, and intervention 53. This trend reverberates in various 

empirical research communities and is reinforced by data sharing mandates increasingly 

specified by funding agencies 54. 

 Availability of rich open datasets enables using and intersecting data in unexpected 

ways, fuels continuous development of novel multivariate pattern-learning techniques, and 

renders new research questions actionable. A trusted community dataset can provide a 
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common test bed for those analysis methods as well as benchmarks to compare against a 

set of state-of-the-art methods in different processing pipelines. As an early tradition in 

machine learning, MNIST established itself as a community-wide dataset with 70,000 images 

of scanned hand-written digits ‘0’ to ‘9’. New approaches are expected to beat the globally 

recorded status quo, and to compare against human performance in the task of number 

detection 51. Kaggle-like competitions are also gaining momentum, where a data-analysis 

challenge is announced and a larger portion of an existing dataset is provided for model 

development (www.kaggle.com). At the end of the competition, the modeling solutions 

from each team are evaluated and ranked on the private part of the dataset (examples from 

neuroimaging: 55,56). Such prime example of healthy competition starts to show high efficacy 

to crowd-source novel analysis strategies to solve global challenges in biomedicine, as well 

as in business and government. Open data sharing is also an opportunity to dramatically 

reduce research costs. More broadly, in the future, new data-analysis methods will perhaps 

be validated empirically based on statistical performance on shared datasets across diverse 

existing studies and across various workflows 4,11. 

In imaging neuroscience, a majority of the large-scale data initiatives so far were 

retrospective collections of independently acquired data from different research centers 57. 

Such data repositories can vary considerably in key properties, such as data quality and 

quality-control procedures. Across-site heterogeneity may explain why, counterintuitively, 

predictive model performance has been repeatedly reported to decrease as the available 

data increase 58. As an ambitious attempt to create a large-scale neuroimaging dataset, the 

ENIGMA consortium launched in 2009 to centrally orchestrate research projects and 

recruitment of participating groups by providing analysis pipelines and quality control 

protocols. Several thousand participants were characterized with different imaging 
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modalities and genetic profiling. A smaller number of data initiatives realized prospectively 

planned collections with agreed-upon standards for data acquisition. Ensuing repositories 

offer higher data comparability due to strengthened efforts to, among many others, 

calibrated acquisition conditions, staff training, or traveling experts. The Human 

Connectome Project (HCP) was launched in 2009 59 to promote insight into human brain 

connectivity by providing extensive multi-modal measurements of ~1,200 healthy adults 

(aged 22-35), including ~300 twin pairs. For each participant, the project gathered structural, 

functional, and diffusion MRI, genotyping data, as well as a variety of >400 demographic, 

behavioral, and lifestyle indicators. With genetic profiling and an extensive variety of 

phenotyping descriptors, UK Biobank Imaging is even more comprehensive. This data 

collection initiative set out in 2006 to gather genetic and environmental (e.g., nutrition, 

lifestyle, medications) data of ~500,000 volunteers (aged 40-69) and is currently the world’s 

largest biomedical dataset. Its brain and body imaging extension was launched in 2014 (with 

the brain imaging gathering structural, functional, diffusion, and susceptibility-weighted MRI 

for ~100,000 participants by 2022) 44. 

 Compared to more established application domains of machine learning, large 

datasets of human populations pose additional challenges. Extensive phenotypical profiling 

calls for a careful balance of trust between protecting each participant’s privacy and 

providing rich open biomedical datasets to the larger research community. UK Biobank 

participants may be given the possibility to opt-out of sharing records and retroactively deny 

consent at any time. Industry can boost health-related big-data analytics by offering 

computing infrastructure as well as data gathering. However, possible conflicts of interest 

need to be taken into consideration. As public and media perception is very important, 
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transparent presentation, that is both enthusiastic about the benefits of a study but also 

completely honest, is crucial to avoid inaccurate negative messages being promulgated. 

 

 

 

Powerful “black box” predictions supplement simple models 

As a core value of classical data analysis, insight is maximized by assuming linear 

additivity in how the input variables relate to each other and to the output prediction 5,11. A 

traditional goal of statistics is to cleanly isolate the (univariate) effects of “special” variables 

on an outcome, such as a risk factor or a treatment response. All components of the model 

were supposed to be readily understandable by the investigator. The input variables were 

typically meticulously hand-picked and chosen to have meaningful units based on existing 

domain knowledge. This analysis paradigm of generating subject-matter understanding from 

“introspecting” isolated variable relationships has contributed tremendously to scientific 

progress in the 20th century 2. However, this explainable modeling regime may also have 

exhausted the repertoire of natural phenomena that can be usefully described and 

understood by straightforward linear modeling (but see 60). 

In many empirical sciences, including imaging neuroscience, investigators started 

moving towards more complex modeling approaches and analysis pipelines. Expanding data 

resources is a prerequisite to estimating flexible, highly adaptive models that have a larger 

capacity to represent convoluted relationships between variables, such as hierarchical 

dependencies and higher-order non-linearity 61. As more data become available, empirical 

scientists can now bring to bear more flexible models. In certain cases, the price one may 

have to pay is that some aspects of the estimated model remain partly opaque to human 
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intuition, pushing investigators to give up on uncompromised model transparency. As an 

early hint, Bayesian hierarchical modeling can gain traction on complicated datasets that 

handle nested data settings (e.g., brain scans from participants in different cities) with many 

more model parameters than input variables. These extensions of classical linear models 

allow for integrating disparate information sources, sharing statistical strengths between 

variability sources, de-escalating concerns of class imbalance and selection bias, and 

estimating full uncertainty distributions 28. As a side effect of increased model complexity, 

however, not every single parameter value of such a Bayesian hierarchical model may merit 

equal attention for scientific interpretation. 

As a continuation of this theme, in adaptive machine-learning algorithms, and 

especially in deep neural-network algorithms, much emphasis is put on the output of a 

model. This change of focus is why identifiability may receive lesser attention in certain 

studies, although model interpretability was key in classical statistics. Take for example a 

neurosurgeon who wants to remove brain tissue without impairing language. By relying on a 

linear model, she predicts outcome in a language task from neural activity measured across 

the cortex 34. If quite different model parameter solutions yield an identical prediction 

accuracy, the model is not identifiable. This fitted linear model cannot be physiologically 

interpreted as a brain map indicating where tissue resection is safer to preserve language 

capacity. Different candidate models would have other parameters with small absolute 

values that can suggest diverging brain locations to be less implicated in language processes, 

which hampers the classical goal towards mechanistic explanation. 

Instead, the predictive analyst would typically neglect such arbitrary values of 

estimated model parameters and prioritize successful prediction of language performance. 

This neuroscience example illustrates that parameter interpretation is often more 
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challenging in multivariate models optimized for prediction performance 2. The difficulty in 

explaining the role of individual input variables is even bigger in current deep neural-network 

architectures 62. Here, the output predictions can result from highly nonlinear processing 

cascades from the input variables. There may be little hope to exhaustively understand 

every single one of the thousands or millions of model parameters in some of today’s 

machine-learning models (63; blogpost by Frank Harrell at http://www.fharrell.com/post/medml/). Although some 

remedies have been recently proposed 64,65, these largely provide understandable 

simplifications of or linear approximations to the actual non-linear prediction function. 

Consequently, for increasingly popular, powerful prediction models, classical 

(parametric) inference may become more challenging to obtain statistically significant p-

values. In complicated non-linear models it is partly infeasible to assess the “trueness” of an 

effect of individual input variables, as an exclusive path for scientific knowledge creation 

8,66,67. These developments do not belittle the importance of working theories in guiding the 

cumulative construction of scientific understanding. However, there are certain hard 

problems in empirical research where estimating complex “black box” models may be one of 

the very few viable solutions. This is probably the case in weather forecasting, perhaps also 

in some areas of neuroscience. Assessing which aspects of a phenomenon have been 

successfully captured or inadvertently ignored in an estimated model will probably more 

often rely on predictive simulation of new data or querying the obtained model for 

predictions on unseen participants or observations in the 21th century. As a side effect of 

optimizing uncompromised prediction performance, some neuroscience applications may 

move away from the goal of causal discovery, or even move away from cumulative creation 

of scientific knowledge 68. Aiming for crude prediction performance estranges the 

investigator from asking ‘why?’ - the reason behind statistical relationships between certain 
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input variables. Today, there is still no commonly agreed upon framework for causal 

inference. 

Instead of carving out new biological mechanisms in nature, prediction metrics can 

capture how well an estimated complex “black box” model can “imitate” or “reproduce” the 

studied phenomenon. The Bayesian-frequentist debate, which ignited much controversy in 

20th century statistics (e.g., 69), may give way to a new antagonistic discourse. One candidate 

dilemma is classical statistical inference in interpretable models, versus prediction accuracy 

of complicated natural phenomena, with particularly flexible analysis approaches to 

quantitatively describe particularly complex systems, such as the human brain in health and 

disease. In many settings, empirical scientists may have to prioritize ‘providing insight’ (i.e., 

classical statistical inference targeted at single input variables) against ‘accurately modeling 

the world’ (i.e., model prediction outputs) 70. The implied domain interpretability trade-offs 

will have important consequences for ethical considerations and policy making 71. 

 In imaging neuroscience, the prediction-inference antagonism has surfaced as 

whether or not the prediction accuracies of increasingly used multivariate pattern-learning 

approaches and machine-learning algorithms should undergo post-hoc statistical 

significance testing (cf. 46,58,72). This discussion appears to highlight a culture clash between 

different data-analysis communities seldom in contact before 11. Neuroimaging and other 

empirical academic fields have been dominated by a decade-long legacy of initial linear-

regression-type estimation and subsequent statistical null-hypothesis testing. Since its 

inception, machine learning, however, has put a premium on prediction performance as 

“hard currency” 11,19. This is especially the case given the immediate practical relevance for 

various data-intensive industries, such as recommendation systems or micro-targeted 

customer advertisement 73. In general, input variables that do enhance prediction accuracy 
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do not always declare to be statistically significant 13,24,57. Conversely, variables that are 

assessed to be statistically significant can be useless for the goal of prediction in new data in 

certain cases (cf. 67). To recapitulate these diverging modeling notions of importance, 

validating a built machine-learning model based on the metric of successful out-of-sample 

prediction is based on extracting patterns in the training data and evaluating how well these 

identified relationships extrapolate to independent observations drawn from the same 

distribution. In contrast, classical null-hypothesis significance testing pursues a different 

analytical goal in asking the question whether an obtained prediction accuracy exceeds two 

standard deviations of happening by chance under some null hypothesis. 

 

 

 

Conclusion 

Historically, innovation and changing practices in quantitative analytics have been 

shaped by trends in application domains. The recent advent of massive data in neuroscience 

and biomedicine is ushering towards larger revisions in everyday analytical practices: 1) 

Unconstrained linear regression models have been a workhorse in 20th century empirical 

research. However, in the 21st century, analysis that biases model estimation by parameter 

regularization or involves dimensionality-reducing transformations may become ubiquitous 

as extensive datasets become more available. 2) Many classical models have routinely been 

backed up by consistency theorems, emulating infinite sample size to characterize the 

model’s quality for converging to a good parameter solution. Assessing model quality based 

on the variance explained in the fitted data will probably be increasingly supplemented by 

empirical validation procedures such as prediction accuracy in untouched data. 3) Many 



  23 

empirical sciences like neuroscience may transition from the predominance of a-priori 

planned, gathered, and published experimental data to conducting more re-analyses of 

freely available data resources with deep and wide phenotyping. Traditionally, scientific 

value was seen in unique private datasets. Now, creative modeling strategies may become 

key to making the most of mushrooming open datasets. 4) Powerful predictive models may 

not easily lend themselves to exhaustive understanding of all extracted variable-variable 

relationships. However, the democratization and feasibility of advanced pattern-learning 

algorithms may enable quantifying always more sophisticated phenomena in nature. Hence, 

an important dilemma arises between classical relevance claims about single model 

parameters and successful “black box” predictions of complicated natural phenomena. 

These megatrends in data analytics hopefully propel the scientific description of particularly 

complex systems, epitomized by the human brain in health and disease. 
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Glossary 

Technical term 
 

(examples from neuroscience) 

Core intuition 

Bagging 
(

74
) 

‘Wisdom of crowds’ strategy to enhance predictive performance by averaging several 
outcome predictions from models that have been fitted to resampled versions of the 
same dataset. 

Bias vs. variance 
(

75
) 

The bias-variance trade-off calibrates between losing information (bad fit to data at 
hand) or succumbing to noise (bad extrapolation to new data). A model with high 
bias tends to ignore relevant patterns in the data - underfitting due to low effective 
degrees of freedom. A model with high variance tends to extract arbitrary patterns in 
the data - overfitting due to high effective degrees of freedom. 

Bayesian vs. frequentist 
modeling 
(

76-78
) 

Bayesian modeling assumes the model parameters to be random and the data to be 
fixed; vice versa for frequentist modeling. Consequently, Bayesian analysis provides 
certainty distributions for each model parameter value, while frequentist analysis 
yields a single best-guess value for each model parameter. Bayesian model posterior 
distributions are conditioned on the data at hand, while frequentist model estimation 
implicitly averages across other data one could have observed. 

Canonical correlation analysis 
(

79
) 

(Multivariate) pattern-discovery approach that extends the idea of principal 
component analysis to two variable sets or two datasets. Mutual dependences are 
extracted as correlated linear combinations of these two data matrices. 

Closed-form solutions A mathematical formula that solves a problem “in one shot” by a circumscribed set of 
computing operations (i.e., non-iterative), always yielding the same result in the 
same amount of time. 

Consistency theorems or 
asymptotic guarantees 

A widely-used class of mathematical proofs that study the properties of a given 
modeling approach by taking the number of data points to infinity. It is without 
asymptotic consistency guarantees, that finite-sample theorems describe properties 
of modeling approaches as a function of the number of available data points. 

Cross-validation 
(

80,81
) 

A (non-parametric) sequential resampling procedure used as the gold standard to 
practically quantify the performance of predictive models to extrapolate discovered 
patterns to future data. First, model estimation is carried out by fitting the parameter 
values to the training data (in-sample). Second, if model hyper-parameters need to 
be set, model selection can be carried out on another independent data split - 
validation data - to automatically tune towards a winning hyper-parameter 
combination. Third, model evaluation then quantifies the pattern generalization 
based on predictive performance in independent hold-out data (out-of-sample). The 
overall process is repeated for different splits of the available data (usually 5 or 10 
times). Underfitting yields bad in- and bad out-of-sample generalization performance. 
Overfitting yields excellent in- and bad out-of-sample prediction accuracy. 

Curse of dimensionality 
(“High dimensions”) 
(

82
) 

If data have abundant input variables, relative to the available number of data points, 
each such input dimension is populated with and represented by less data points. 
Hence, even classical (unregularized) linear regression can be over-parameterized. In 
this setting, common models have trouble finding patterns existing in the data and 
goodness-of-fit metrics (computed in-sample) may become impotent. Variance in 
model parameter estimation escalates and thus data overfitting becomes a core 
challenge. 

Data augmentation A heterogeneous group of ad-hoc engineering tricks to repeatedly duplicate and 
modify the original data points while trying to keep their characteristics realistic. The 
increased effective sample size can allow for estimating more robust model 
parameters. 

Deep neural-network 
algorithms 
(“Deep learning”) 
(

83-85
) 

A growing class of pattern-learning algorithms that perform prediction based on a 
non-linear, hierarchical, multi-layer neural-network model. Deep neural-network 
algorithms are able to fit parameters of a particularly high number of nested non-
linear processing layers and have extreme freedom in fitting patterns in data. 
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Degrees of freedom The number of separate pieces of information to be estimated from data. In the 
setting of classical linear regression, the degrees of freedom typically refer to the 
number of independent data points n minus the number of fitted model parameters 
p to estimate residual errors. This conception is starting to struggle or is difficult to 
compute for many modern adaptive modeling approaches. 

Dimensionality reduction 
(

86,87
) 

Breaking down the number of input variables to a (much) smaller number of 
quintessential summary variables. Examples include clustering approaches, like k-
means, to partition an array of input variables into typically few non-overlapping 
variable groups, and matrix decomposition approaches, like PCA and ICA, to extract 
new continuous representations spanning across input variables that may have 
partial overlap with each other. 

Exchangeability 
(

49
) 

A characteristic of the data that is a more general form of the independent-and-
identically-distributed (i.i.d.) assumption. For example, null hypothesis testing may be 
used to try to reject that males and females have the same average height. Here, 
exchangeability may be imposed by shuffling which height measurement belongs to 
male or female participants to assess whether the summary statistics differ given 
otherwise identical joint distributions among the input variables. 

Ground truth 
(88) 

The true pattern in nature to be approximated by using quantitative modeling of 
empirical measurements. 

Hierarchical multi-level 
regression 
(

27,89
) 

Extension of classical linear regression, where the model parameters are also 
themselves modeled. Linear interactions are introduced by data-level regression 
parameters being regularized in groups towards upper-level model parameters to 
“borrow statistical strength”, such as between study sites. Can be carried out in the 
frequentist regime, but lends itself particularly well to Bayesian modeling. Linear 
hierarchical regression can more readily fit models with more parameters p than 
observations n. 

Identifiability 
(

34
) 

Whether the parameter values of a given model can be unambiguously estimated 
and thus meaningfully interpreted. The combination of data scenario and model 
properties may result in identifiability (highly valued in classical statistics) or non-
identifiability (often a smaller concern in predictive machine-learning applications). 
Non-identifiable model parameters can result in very different fitted values despite 
identical prediction performance of the overall model. 

K-means clustering 
(

90
) 

A popular clustering algorithm that partitions the p input variables into k non-
overlapping groups. 

Markov chain Monte Carlo 
(MCMC) sampling 
(

91
) 

An iterative sampling procedure for numerical approximation of challenging posterior 
integrals, such as those often arising in Bayesian statistics. Each random ‘draw’ yields 
one candidate set of model parameters that are jointly plausible as to how the data 
could have come about. 

Maximum likelihood 
estimation (MLE) 
(

35
) 

Formal (parametric) framework on how to find one good set of model parameter 
values (assumed to be fixed) that maximize the plausibility of how the data may have 
come about given a pre-specified model. Ordinary linear regression and other 
classical approaches are special cases. MLE enjoys strong asymptotic guarantees, but 
can incur problems as the number of input variables p increase. 

Multivariate vs. univariate 
modeling 
(

34,72,92,93
) 

Technically, univariate methods consider one variable at a time, whereas multivariate 
methods consider several, possibly many, variables at a time. In neuroscience 
applications, “univariate” analysis has often been taken to refer to estimating effects 
for a single brain location, particular brain connection, or specific gene at a time. 
Instead, “multivariate” analysis would jointly assess patterns in many such biological 
measurements. 

Parametric vs. non-parametric 
(

47
) 

A parametric approach explicitly assumes structure or a particular form of how the 
input variables relate to the output. A non-parametric approach tries to fully model 
the data themselves, for instance by avoiding assuming Gaussian normality in the 
data. 

Partial least squares 

(
17,18

) 

(Multivariate) pattern-discovery approach aimed at decomposition of covariation, 
similar to canonical correlation analysis. While partial least squares operates on the 
un-normalized covariation, canonical correlation analysis acts on the data in a 
scale/unit-invariant fashion. 
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Permutation procedures 
(

47,49
) 

A computation-intensive group of typically non-parametric resampling procedures, 
which can control error rates (including correction for multiple comparisons), while 
making few theoretical assumptions. For instance, such procedures enable 
computation of empirical distributions under some null hypothesis for significance 
testing in a much wider range of analysis scenarios. 

Posterior predictive checks In Bayesian modeling, generating new data (typically outcome predictions) from 
model parameter sets sampled from MCMC chains to assess discrepancies between 
an obtained probabilistic model and the actual data at hand. 

Regularization / penalization / 
shrinkage / sparsification 
(

94,95
) 

Bias is introduced on purpose in model estimation, for instance to address the curse 
of dimensionality. As one widespread example, sparse modeling via L1 term 
characteristically drives towards variable selection by encouraging exactly-zero model 
parameter values (cf. Lasso regression). As another widely-used example, L2 terms 
intentionally skew model parameter values to be closer to zero (cf. Ridge regression). 

Tail-area statistics 
(

96
) 

Instead of some aggregate statistic (e.g., mean, median, mode), interest lies in the 
shape of a data distribution; especially its extremes with low probability. Special 
interest was placed outside of the 95% interval assessing whether or not an 
observation exceeds two standard deviations as in null-hypothesis significance 
testing. 

Variability 
(

97
) 

A property of the data. E.g., how does the volume of the amygdala really differ 
between individuals? The variability of a parameter estimate does not go to zero as 
the sample size approaches infinity, in contrast to uncertainty. 

Uncertainty 
(

97
) 

A property of the modeling approach. E.g., how sure are we about the modeling 
estimate of amygdala volumes? The uncertainty of an estimated parameter value 
goes to zero as the number of data points n increases indefinitively, in contrast to 
variability. Frequentist standard deviations or error bars may mix aspects of 
variability and uncertainty, in contrast to Bayesian posterior density intervals. 
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Figure 1 
 
Significant population mode that relates patterns of inter-network connectivity to patterns within 
deep behavioral phenotyping. In the ~500 participant release of the Human Connectome Project, 
canonical correlation analysis lends itself particularly well to uncovering multi-modal 
correspondences between brain and behavior. Intrinsic network coupling fluctuations between 200 
nodes were demonstrated to bear rich relationships with >100 cognitive assessments, demographic 
profiles, and life-factor indicators. A functional connectivity fingerprint emerged with rich profiling of 
behavioral associations that varied along a global positive-negative axis with high intelligence, 
memory and cognition performances on the one end, and negative lifestyle measures and events on 
the other end. The brain regions exhibiting strongest contributions to coherent connectivity changes 
were reminiscent of the default mode network, which is implicated in episodic memory and semantic 
capacity, mental scene construction, and complex social reasoning such as taking other people’s 
perspective. Reprinted with permission from 30. 

 
Figure 2 
 
Strongest population mode that links intra-network connectivity patterns and inter-network 
connectivity patterns. In ~10,000 UK Biobank participants, canonical correlation analysis was used to 
identify robust correspondences between functional connectivity shifts inside a major brain network 
(top), the default mode network, and functional connectivity shifts between a set of major brain 
networks (bottom). This large-scale analysis made apparent that specific subregions inside the 
default mode network, namely, the right and left anterior temporoparietal junction, could play a 
dominant role in the process of global network reconfiguration in humans. Reprinted with 
permission from 36. 
 

Figure 3 
 
Relevance of population associations between six brain-imaging modalities and thousands of 
behavioral phenotypes. For ~21,000 UK Biobank participants, this Manhatten plot depicts results 
from ~15 million cross-subject association tests (each color indicates a different neuroimaging 
modality). The horizontal dashed lines indicate significance after correction for multiple statistical 
comparisons based on Bonferroni’s more stringent method (Bonf, upper line) or more modern false 
discovery rate (FDR, lower line). Even after accounting for family-wise error, ~28,000 (Bonferroni) or 
~180,000 (FDR) brain-behavior associations remained statistically significant at the population level. 
These results demonstrate the rich relationships between different brain tissue measurements and 
extensive phenotyping of many thousand individuals. Figure computed analogous to previous study 
on the UK Biobank 44. 

 
 
 
 
 
 


