
HAL Id: hal-02178389
https://hal.science/hal-02178389

Submitted on 9 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Position certainty propagation: a localization service for
Ad-Hoc Networks

Abdallah Sobehy, Eric Renault, Paul Mühlethaler

To cite this version:
Abdallah Sobehy, Eric Renault, Paul Mühlethaler. Position certainty propagation: a localization
service for Ad-Hoc Networks. Computers, 2019, 8 (1), pp.Article 6. �10.3390/computers8010006�.
�hal-02178389�

https://hal.science/hal-02178389
https://hal.archives-ouvertes.fr


computers

Article

Position Certainty Propagation: A Localization
Service for Ad-Hoc Networks

Abdallah Sobehy 1,*, Eric Renault 1 and Paul Muhlethaler 2

1 Samovar, CNRS, Télécom SudParis, University Paris-Saclay, 9 Rue Charles Fourier, 91000 Évry, France;
eric.renault@telecom-sudparis.eu

2 INRIA Roquenourt, BP 105, 78153 Le Chesnay Cedex, France; Paul.Muhlethaler@inria.fr
* Correspondence: sobehy@telecom-sudparis.eu

Received: 11 November 2018; Accepted: 2 January 2019; Published: date
����������
�������

Abstract: Location services for ad-hoc networks are of indispensable value for a wide range of
applications, such as the Internet of Things (IoT) and vehicular ad-hoc networks (VANETs). Each
context requires a solution that addresses the specific needs of the application. For instance, IoT sensor
nodes have resource constraints (i.e., computational capabilities), and so a localization service should
be highly efficient to conserve the lifespan of these nodes. We propose an optimized energy-aware
and low computational solution, requiring 3-GPS equipped nodes (anchor nodes) in the network.
Moreover, the computations are lightweight and can be implemented distributively among nodes.
Knowing the maximum range of communication for all nodes and distances between 1-hop neighbors,
each node localizes itself and shares its location with the network in an efficient manner. We simulate
our proposed algorithm in a NS-3 simulator, and compare our solution with state-of-the-art methods.
Our method is capable of localizing more nodes (≈ 90% of nodes in a network with an average
degree ≈ 10).

Keywords: localization service; MANETs; WSNs

1. Introduction

Localization is the process of acquiring the position information of an entity in a coordinate
system. Knowledge of the position of network nodes is invaluable for numerous applications, such as
routing, autonomous air-vehicles, network security, environment surveillance for military purposes,
and so on. The network is modeled as an undirected graph, where vertices represent a set of nodes
and edges are links between two nodes within communication range. Nodes which are aware of their
coordinates or position are known as anchor nodes. The aim is to compute the position of other nodes
within the network with the help of these anchor nodes. We attempt to achieve this goal by using
the position information of anchor nodes and the relative distance between their one-hop neighbors.
Since, in some ad-hoc networks (e.g., IoT), the devices have limited resources, it is computationally
expensive to equip each node with a localization sensor such as GPS. Thus, we attempt to localize
nodes where only a subset are equipped with localization sensors.

Using the distance between one-hop neighbors to localize nodes is known as range-based
localization, where the distance between nodes is computed either through Received Signal Strength
Indicator (RSSI), Time Of Arrival (TOA), or Time Difference Of Arrival (TDOA). TOA and TDOA
require external hardware to synchronize a transmitter and a receiver, while RSSI does not need
additional hardware as the distance is derived from a signal attenuation model which relates signal
strength to the distance. However, using RSSI is subject to error due to environmental factors (indoors
or outdoors), multi-path fading, and noise [1]. In [2], RSSI was found to vary consistently, with a
distance up to 50 m.
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Considering the resource limitation of the network nodes, we propose a lightweight solution
based on a series of triangulations. If a non-anchor node lies within the vicinity of three nodes whose
positions are known, it can efficiently estimate its own position via triangulation, because the distances
to these nodes are known. The node then shares its position with other nodes, to further propagate the
location estimation process. However, in some less connected regions of the network, this condition
will not hold, prohibiting the location discovery for existing solutions (such as [3,4]). Our contribution
involves the use of triangulation to estimate the coordinates of non-anchor nodes within the vicinity
of exactly two anchor nodes. The triangulation yields two possible positions for non-anchor nodes.
We introduce a mechanism which attempts to eliminate one of the positions, to localize non-anchor
nodes in less connected regions of the network. This approach improves significantly the localization
of unknown positions of network nodes.

2. Related Work

Localization of network nodes is crucial for plethora of applications; for instance, improvement
of routing techniques [5–7]. A straightforward method to address the localization problem is to
equip all nodes with a location sensor (such as a GPS), and share the location information. There
are two main paradigms to share position information: Rendez-vous-based and flooding-based. In
rendez-vous-based methods, some nodes are elected to store node position information and respond
to inquiries when position information is requested. The disadvantage of such a method is that it
centralizes the information in only a few nodes, and thus there is a risk of information loss if such
nodes break down [8]. Flooding-based methods overcome this disadvantage by broadcasting node
position information to the network. The cost involved in such an approach is excessive message
exchange, contributing to network overhead. In Semi-Flooding based Location Service (SFLS) [8], the
location information is forwarde with higher frequency to close neighbors (in terms of the number
of hops) and lower frequency to further nodes, in order to decrease bandwidth consumption while
maintaining adequate knowledge of neighbors’ positions.

In the case where not all nodes are equipped with a GPS, localizing non-anchor nodes require
additional information to relate nodes to each other. According to the classification specified in [9],
node relations can be connectivity-based, which simply indicates whether a node is in connection with
anchor nodes or not. This is used in [10], where a node’s position is assumed to be the average of
the known positions of the other nodes. Another type of inter-node relation is the distance between
one-hop neighbors, which is widely used to estimate the positions of non-anchor nodes [3,4]. Relative
distance information is an added benefit, which helps to improve the accuracy of the location. In
addition, some solutions use the Angle-of-Arrival to relate nodes, or a combination of the mentioned
measurement types [11].

The localization problem can also be seen as an optimization problem, which can be solved using
numerical techniques such as Semi-Definite Programming (SDP) [12] or linear programming [13]. To
avoid the inaccuracies of signal propagation models when using RSSI for distance measurements, some
studies [14–16] have used interval-analysis. In interval-based analysis, instead of computing direct
distances from RSSI, a set of inequalities is formulated to indicate that a node is on a ring between
2 radii, based on its relative position to other nodes. Then, the defined areas for nodes can be further
restrained using the Waltz algorithm [17].

Some approaches divide the problem into subproblems, as in [2], where (1) base stations classify
ordinary nodes into clusters based on their proximity to anchor nodes, and (2) within each cluster,
a node seen by three anchor nodes is located using a simple geometrical computation. In [1], the
region where the network is deployed is divided into rectangular grids as a first step, then within each
small grid the location is refined. However, in the previously mentioned approaches, the number of
GPS nodes needs to be high in order to satisfy the necessary constraints. In [9,18,19], the probability
distribution is integrated in the location process, rather than attributing a single position for each
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node. Such a method allows the uncertainty of measurements to be taken into account—be it the GPS
position or the relative distance between nodes [9].

Generally speaking, if the distance of a non-anchor node to three anchor nodes is known the
node can be located with simple geometric computations, except in rare cases where the nodes are
collinear or when some nodes overlap. This might imply a conclusion that at least three GPS nodes
in the network are needed for location. However, in [9], the proposed solution attempts to localize
the network with a single anchor node. Each node starts with a uniform probability distribution over
the deployment region and, as the roaming anchor node passes by, the ordinary nodes tweak the
distribution to localize the nodes. In this context, the authors experiment their solution where the
anchor nodes use a random model to traverse the network, and have a reasonable claim that traversing
the network can be optimized to improve the location process. In [9,18], negative information about
the absence of a node in the proximity of the anchor nodes is used in the location process. This kind of
information is used as a basis for our algorithm.

An approach which is seemingly far from the above-mentioned methods, yet interesting to
address the node location problem, are Graph Layout Algorithms such as FDP [20] and neato [21].
Even though the objective of these algorithms is generally to create an easy-on-the-eye graph, some
variations make it possible to fix the positions of some nodes (the anchor nodes) and to set a suitable
edge length (i.e., the distance between nodes). We have tested these algorithms using graphviz [22],
and the estimated node positions are satisfactory.

Other methods, which use a set of distance equations and optimization techniques, usually require
high computation power, which is impractical for these networks. In this case, the computation is
done remotely in a centralized fashion. The graph structure might not yield a unique solution. Even if
the graph has a unique solution, finding this solution has been proved to be NP-hard [23].

The presented work is an extension of our previous work on localization [24]. We address the
problem from the graph point of view, aimed at pinpointing the location of as many nodes as possible.
In our approach, we first consider perfect distance measurements and compare it to an existing
method [4], and show that our method is able to localize more nodes in a randomly generated network
by exploiting the case where a non-anchor node is within vicinity of only two localized nodes. Next,
we introduce Gaussian noise to distance measurements to simulate the effect of real world errors
in distance measurements. Gaussian noise is widely accepted in simulating distance errors, and is
experimentally validated in [25]. Table 1 summarizes different approaches to solve the localization
problem.

Table 1. Localization approaches.

Approach Cost of Sensors Comments

Flooding based Expensive Information well distributed, but bandwidth-consuming.

Rendez-vous based Expensive Centralized, but bandwidth-friendly.

Semi-Flooding [8] Expensive Sweet spot between flooding and rendez-vous.

Connectivity based [10] Not Expensive Low complexity, but low accuracy.

Optimization [12,13] Not Expensive Adequate accuracy, but dependent on environment noise.

Interval analysis [14–16] Moderately Expensive Adequate accuracy, and mitigates environment noise.

GPS-less [4] Not Expensive Adequate accuracy, and position information is in a local
coordinate system.

PCP (proposed method) Not Expensive Adequate accuracy, and high localization percentage.

In Section 3, the system model is presented and the principal localization steps of the algorithm
are introduced. In Section 4, we explain the distributed implementation of the algorithm, which shows
how each node acquires awareness of its location and the location of other nodes. Next, the algorithm
is compared with the GPS-free [4] method, which is widely referenced in the literature and has some
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similarities with our method, allowing clear comparison and explanation of results. Next, the behavior
of our method is studied, with distance measurement errors, in the NS-3 [26] network simulator in
Section 5. Section 6 contains the conclusion and discusses possible future work.

3. System Model

3.1. Overview

The network can be considered as an undirected graph G = (V, E) where V = {0, 1, ..., n}
represent the nodes, each with a given communication range. For simplicity, we assume that all nodes
have the same communication range. Any two nodes within a distance smaller than or equal to the
communication range has an edge constructed between them, representing two-way communication.
The edge is assigned a weight, which represents the distance between the nodes. It is assumed that the
network contains at least three anchor nodes, which are within communication range of at least one
non-anchor node.

3.2. Position Certainty Propagation Algorithm

The self-localization process is composed of two major cases: (a) When the positions and distances
to three or more one-hop neighbors are known, and (b) when the positions and distances to exactly two
one-hop neighbors are known. The latter is considered a bottleneck, which inhibits other algorithms
[3,4] from localizing nodes in less-connected regions in the network, and thus the position discovery
does not propagate.

3.2.1. Three or More Nodes With Known Position in Their Vicinity

When a node collects enough position information through position broadcasts of
anchor/localized nodes, so that at least three one-hop neighbor positions are known, it can estimate
its position (via triangulation) using the distance to each of these nodes. The localization process
can be viewed as the intersection of circles whose centers are nodes with known positions and radii
being distances from the known position nodes to the node to be localized. This is visualized in
Figure 1, which shows a 15-node network in a 20 m × 20 m region, where each node has a maximum
communication range of 8 m. In this example, three anchor nodes [10, 13, 3] are used to localize node
12.

Figure 1. Computing position, based on three known position nodes.
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The centers of the green circles are the positions of the anchor nodes [10, 13, 3]. The radius of
each circle is the distance between the anchor node at its center and the node 12. However, due to
measurements errors, the three circles do not necessarily intersect at one exact point. To overcome this,
we use a variant of the residual weight algorithm [27]. This algorithm was originally implemented
to mitigate the effect of Non-Line-Of-Sight (NLOS) measurement errors. When the distance and
position information of more than three nodes is collected, an estimated position is computed for each
possible combination of three or more nodes, using least-squares error minimization. To illustrate
this, for position/distance information of four nodes, (4

3) positions are computed for all three-node
combinations, and one position for the four nodes together. Each estimated position is given a weight
that is inverse to the normalized residual error. Finally, the chosen position is the weighted average
of all positions (another possibility is to choose the position with the minimum residual error). Since
minimizing the error does not always guarantee an estimation that is the closest to the actual position
[3], we choose not to use least-squares error minimization, in order to minimize computation effort.
Rather, for position/distance information of three nodes, we compute a position for each combination
of node pairs (in this case, three combinations) by computing two intersections of the two circles
and eliminating one of the positions, using the third circle. Then, the weighted average of the three
positions is chosen as the estimation. Let us consider a node pair [A, B], whose known positions are
[a.x, a.y] and [b.x, b.y], respectively. The distances to node C, whose position is to be computed, are ac
and bc, respectively. First, the distance between A and B is computed:

ab =
√
(a.x− b.x)2 + (a.y− b.y)2. (1)

The intersection between two circles generally yields two positions. The computation of the two
possible positions is easier if the two circles lie on the horizontal axis and one of them is at the origin.
Thus,~a is subtracted from a and b. Next, the rotation angle shown in Equation (2) is applied, so that a
is transferred to the origin and b resides on the x-axis.

θrot = arctan
(

b.y− a.y
b.x− a.x

)
(2)

After applying the translation and rotation, the two intersection points will have the same
x-coordinate. The y-coordinate for one intersection point is above the x-axis and the other is below the
x-axis. The rotated coordinates of the intersection points are shown in Equations (3) and 4.

c.xrot =
ab2 + ac2 − bc2

2ab
(3)

c.yrot = ±
√
(ab + ac + bc)× (ab + ac− bc)× (ab− ac + bc)× (−ab + ac + bc)

2ab
(4)

Finally, to restore the intersection points in the original coordinate system, the opposite rotation
and translation are applied to the rotated coordinates, as follows:

c =

[
cos(θrot) − sin(θrot)

sin(θrot) cos(θrot)

] [
c.xrot ±c.yrot

]
+~a. (5)

The next step is to eliminate one of the two positions using the third position/distance pair [d, dc]
of node D, whose position is also known. The elimination process consists simply of choosing the
position for which the distance to the third node is almost equal to the distance dc. The error for the
estimated known position is the absolute difference between dc and the distance between the chosen
position and d.The weight given for the chosen position is 1/error. Finally, the estimated position is
the weighted average of the chosen positions. If there are more than three one-hop neighbors with
known positions, the process is done for all 3 one-hop neighbor combinations, and the estimate chosen
is that which yields the least error.
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It should be noted that this process is not possible if the three nodes with known positions are
collinear. In this case, two of the three nodes are chosen, so that the largest angle of the triangle
of the two nodes (with known positions) and the node to be localized is as close as possible to 90◦.
This criterion is chosen so that the two possible positions of the intersection of two circles are further
from each other, which helps in the elimination step that follows. The localization process using the
positions and distances to only two one-hop neighbors is explained in the following subsection.

3.2.2. Two Nodes With Known Positions in the Vicinity

The first step is to compute the two possible positions, as previously shown in Equations (1)
to (5). The information required to eliminate one of the two positions is the maximum range of
communication, a list of received positions of other nodes in the network, and the IDs of one-hop
neighbors. The position to be estimated is expected to be within the maximum range of the one-hop
neighbors, and outside the maximum range for n-hop neighbors (where n > 1). This requires that the
node stores the IDs of all one-hop neighbors, and updates them frequently. Also, the received positions
of neighbors in the network are stored in a table.

In order to eliminate a position, the distances to all stored positions of other nodes in the network
are computed. If a computed distance to a one-hop neighbor is larger than the maximum range of
communication, the position is eliminated because it implies that this 1-hop neighbor is outside the
maximum range of communication. On the other hand, if the computed distance to an n-hop neighbor
is smaller than the communication range, the position is also eliminated because it implies that this
n-hop neighbor is one hop away. If one of the two positions is eliminated, the other position is chosen
to be the estimated position. If neither of the two positions is eliminated, the estimation is discarded
until more information is available.

To illustrate, we continue the localization process of nodes in the 15-node network previously
shown in Figure 1. The continuous localization of nodes propagates, until there are no more nodes
that can be localized with three or more nodes in their vicinity. This state is shown in Figure 2, where
node 6 has only two nodes with known positions in its vicinity, 9 and 13. The two possible positions
from the two circle intersections are shown as blue octagons. Since node 6 is aware that it has only two
1-hop neighbors, computing the distance between the lower left blue octagon to any node with known
position (e.g., node 0) will yield a distance smaller than the maximum communication range. Since
node 0 does not belong to the list of 1-hop neighbors, this position is eliminated and the other position
is chosen to be the estimate, as it does not introduce any conflicts. Similarly, node 1 can be localized
using nodes 5 and 8.

The algorithm continues to compute the position of nodes with the two previously mentioned
cases, until no more positions can be estimated. This is the case when a node sees two nodes with
known positions within its vicinity, but neither of the two possible positions introduces conflict and
thus cannot be eliminated. Also, when a node is seen only by one neighbor with known position, it
may be localized anywhere on the circle centered at the node with known position and whose radius
is the distance between the two nodes. Therefore, its position cannot be effectively established. This
can be seen when attempting to compute the position of node 11, where its only neighbor with known
position is node 8. The final outcome of the algorithm in Figure 3 shows that only node 11’s position
cannot be computed.

The main advantage of this algorithm is its lightness, as it comes down to a series of triangulation
steps. The next section discusses the implementation of the proposed solution in a distributed manner.
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Figure 2. Computing position, based on two nodes with known positions.

Figure 3. The final result of the algorithm.

4. Distributed Implementation of the Algorithm

In this section, we present the algorithm implemented on each node in the network. The first part
of the algorithm is sharing positions (if found) through the network, in a bandwidth efficient manner.
The second part is the previously described localization method. We use a semi-flooding method
(SFLS) [8] to share known positions, as it takes the advantages of both flooding and rendez-vous
based methods, while mitigating their drawbacks. In this method, each node broadcasts its own
position (if found) with an identifier, such as a time-stamp or sequence number. A node that receives
another node’s position with a higher sequence number or time-stamp re-broadcasts once every two
receivables. In other words, when a node receives a position for the first time, it rebroadcasts. The
next time it receives the new position of the same node, it does not rebroadcast and keeps alternating
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the rebroadcast decision for the following received positions. This method is bandwidth-friendly and
compatible with our localization algorithm, because nodes need more frequent information about
their closer neighbors. Assuming the broadcast interval is t seconds, one-hop neighbors receive
the position information every t seconds, two-hop neighbors receive position information every 2 t
seconds, three-hop neighbors receive position info every 4 t seconds, and so on. In [8], it has been
shown mathematically that the mean number of broadcasts mi performed to update the position
information of node i grows approximately linearly with the number of nodes in the network, where
nodes are uniformly distributed. This ensures scalability with respect to bandwidth consumption. The
broadcasting of positions, receiving them, and initiating the self-localization algorithm is illustrated in
Algorithm 1.

Algorithm 1 SFLS Position sharing.

1: ownSeqNum = 0 (Sequence number starts at 0 for all nodes)
2: retransmitDecision (stores retransmission decision for all nodes, initialized to true for all nodes)
3: N (list of received node positions) and N1 (1-hop neighbors with known positions)
4: Id1 : list of IDs of all one-hop neighbors and distanceTo stores distances to 1-hop neighbors
5: procedure BROADCAST_OWN_POSITION
6: if nodeType == anchor then
7: ownSeqNum ++
8: pos = anchor_pos
9: else if position is estimated then

10: pos = estimatedPos
11: end if
12: packet = [ownID, pos, ownSeq, ownID]
13: broadcast packet
14: end procedure
15: procedure RECEIVE(sendID, pos, seqNum, ID1−hop)
16: prevSeqNum = seqNum[sendID]
17: if seqNum > prevSeqNum then
18: seqNum[sendID] = seqNum
19: N[sendID] = pos
20: update distanceTo[ID1−hop]
21: if sendID == ID1−hop then
22: N1[sendID] = pos
23: end if
24: if nodeType! = anchor and seqNum > ownSeqNum and N1.size >= 2 then
25: sel f Localize()
26: end if
27: end if
28: rebroadcast(sendID, pos, seqNum, ownID)
29: end procedure
30: procedure REBROADCAST(sendID, pos, seqNum, ownID)
31: if retransmitDecision[sendID] == true then
32: packet = [sendID, pos, seqNum, ownID]
33: broadcast packet
34: retransmitDescision[sendID] = f alse
35: else
36: retransmitDescision[sendID] = true
37: end if
38: end procedure

Three procedures are described in Algorithm 1:

(a) Broadcast own position: Startup method is called every t seconds for anchor nodes at the
beginning of the simulation. For non-anchor nodes, it is called, once their positions are
estimated, to start broadcasting their positions with the interval t. Note that the sequence
number (which indicates the freshness of position information) is incremented only by anchor
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nodes. This is because the position information originates from the anchor nodes, while the
localization of all the other nodes is more or less inherited from them. Thus, when a non-anchor
node is localized, it updates its sequence number to be equal to that of the nodes used to localize
it.

(b) Receive: Called every time a packet is received. The inputs to the procedure are the ID of the
original creator of the packet sendID, the position of sending node pos, the associated sequence
number seqNum, and the ID of the one-hop neighbor that relayed the packet ID1−hop. When
new information arrives, this method checks if the gathered information is sufficient to attempt
to estimate a node’s position. If so, it calls the sel f Localize method, which is described in
Algorithm 2.

(c) Rebroadcast: Called by the receive method, after the received position is processed, to decide
whether to forward the received packet according to the SFLS rule.

The second part of the algorithm is the localization part, which was explained in the previous
section. Thus, each time updated position information is received, an attempt is made to localize a
node by calling sel f Localize() in the receive method. The localization procedure is further detailed in
Algorithm 2.

Algorithm 2 Position Certainty Propagation: sel f Localize().

1: mostRecentOneHop = list of 1-hop neighbors with the highest sequence number
2: maxSeqNumFound = seqNum of any of the nodes in the mostRecentOneHop
3: if mostRecentOneHop has 3 or more nodes then
4: estimatedPos = intersection(mostRecentOneHop)
5: ownSeqNum = maxSeqNumFound
6: else if mostRecentOneHop has 2 nodes then
7: [pos1, pos2] = intersection(mostRecentOneHop)
8: P1Neighs = n for each n ∈ N where distance(n, pos1) <= CommRange
9: P1Neighs = N − P1Neighs

10: P2Neighs = n for each n ∈ N where distance(n, pos2) <= CommRange
11: P2Neighs = N − P2Neighs
12: pos1IsCompatible ⇐⇒ for each n ∈ P1Neighs, n ∈ Id1 and for each m ∈ P1Neighs, m /∈ Id1
13: pos2IsCompatible ⇐⇒ for each n ∈ P2Neighs, n ∈ Id1 and for each m ∈ P2Neighs, m /∈ Id1
14: if pos1IsCompatible and not pos2IsCompatible then
15: estimatedPos = pos1
16: ownSeqNum = maxSeqNumFound
17: else if pos2IsCompatible and not pos1IsCompatible then
18: estimatedPos = pos2
19: ownSeqNum = maxSeqNumFound
20: end if
21: end if

Let N1 be the list of detected neighbors with known positions within communication range of
the node. When N1 includes two or three nodes, the position of the node can be estimated using
the intersection method. If N1 includes two nodes, the intersection method returns the two possible
positions, one of which is to be eliminated (if possible). Let N be the list containing position information
of all the received positions of network nodes. The first line gets the 1-hop neighbors whose positions
are known and have the highest sequence number available. This ensures that the positions used to
localize the node are from the same time step, and thus ensures the information is coherent. Then, if
the number of 1-hop node positions is three or more, the intersection method returns one position that
is stored in estimatedPos and the sequence number is updated to be equal to the sequence number
of nodes used in localization. If there were two 1-hop nodes with known positions, the intersection
method returns two possible positions, which are then tested in an attempt to eliminate one of them
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using the procedure explained above. Once estimatedPos is updated, it will be used together with the
sequence number in the next broadcast_own_position call.

5. Performance Evaluation

5.1. Comparison with GPS-Free Method

In order to assess our algorithm, we compare it with an existing solution [4], which we will refer
to as GPS-free. We implemented the first part of the GPS-free algorithm, where node positions are
computed in a local coordinate system of one of the nodes in the network. The paper further explains
how to choose a stable coordinate system for the network, which does not concern us since we evaluate
the solution for a static instance of the network. The algorithm compromises the following steps:

1. Each node creates a local map, composed of itself and the maximum possible number of 1-hop
neighbors via triangulation, making itself the origin.

2. Node k can transfer its coordinate system to node i if both nodes exist in the local map of one
another, in addition to a third node common to both local maps.

3. All nodes in the network attempt to transfer their coordinate system to node i, so that all node
positions are computed in one common coordinate system.

We refer the reader to the GPS-free article [4] for further details of how these steps are executed.
Observing the behavior of GPS-free in some graphs, we figured out an improvement that can increase
the percentage of localized nodes. The improvement concerns the condition that only nodes who
cannot build a local map are transferred to another coordinate system via triangulation. We quote
from the GPS-free paper: “The nodes that are not able to build their local coordinate system but
communicate with three nodes that already computed their positions in the referent coordinate system
can obtain their position in the Network Coordinate System by triangulisation” [4]. We extended this
behaviour to nodes that built their local map, but still cannot transfer their local coordinate system
to the referent coordinate system; in this case, the node only computes its position in the reference
coordinate system.

5.1.1. Experimental Setup

Our objective is to compute the positions in the global coordinate system, using GPS information
of three nodes. In the GPS-free method, even though the positions are computed in a local coordinate
system, it is possible to transfer the node positions to the global coordinate system if the 3 GPS
nodes have their positions computed. Similar to our approach, GPS-free is based on triangulations.
However, it does not consider the case when a node is within the range of only two known position
nodes. The results of this study highlight the added benefit of using such a case. Each simulation
run is a connected geometric graph (aka a disc graph), where nodes are randomly positioned in a
100 m × 100 m grid. Three anchor nodes are randomly chosen, so that at least one non-anchor node is
within their communication range. Our algorithm is run, to compute the positions of the non-anchor
nodes as previously described. GPS-free is run when the node (chosen to have all nodes transferred to
its coordinate system) is the one that maximizes the number of estimated nodes. This ensures that the
best possible result from the GPS-free method is obtained, without taking into account whether the
GPS nodes are among the nodes with the computed positions. The success percentage is the percentage
of nodes whose position is computed. Two experiments are conducted, one varying the maximum
communication range [14, 15, 16.., 23] m while keeping the average number of nodes constant at
100 nodes. In the second experiment, the communication range is kept constant at 14 m, while the
average number of nodes varies [100, 115, 130, 145, 160]. The number of nodes in each experiment
follows a Poisson distribution with the given average. For each graph configuration, the experiment is
repeated 1000 times and the confidence interval is shown as a vertical bar around the point.
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5.1.2. Experimental Results

Figure 4 shows a comparison between PCP, GPS-free, and the GPS-free extended version. We start
with a maximum communication range of 14 m, and increment it by 1 m for each new configuration.
The graph shows the average node degree at each maximum communication range. Put differently, for
the first configuration each node has a maximum communication range of 14 m and the average node
degree over the 1000 simulations is approximately 5.5; the next configuration has a range of 15 m, which
gives an average node degree of 6.3, and so on. It can be clearly seen that the maximum communication
range has a direct impact on the number of localized nodes. As the maximum communication range
increases, consequently so does the average node degree, and it is possible to estimate the positions of
more nodes. When the average degree is ≈ 10, our algorithm is able to compute the positions of ≈ 90%
of nodes. Also, our algorithm shows a higher success percentage for all configurations than GPS-free
and the GPS-free extended version. In another attempt to study the effect of varying the number of
nodes while keeping the maximum communication range constant at 14 m, increasing the number of
nodes has a similar effect to increasing the maximum communication range. Here, the node density
(nodes/m2) is shown against the success rate.

Figure 4. Comparing PCP to the GPS-free and GPS-free extended methods.

5.2. Behavior in Simulated Network

In this section, we study the behavior of our algorithm in a simulated network created using the
NS-3 simulator [26]. The network is composed of 49 nodes, spread out on a 7× 7 grid. The horizontal
and vertical distances between the nodes are 10 m. The anchor nodes are chosen to be in the middle of
the networks, as depicted in Figure 5. The maximum range of communication is set to 15 m, using the
RangePropagationLossModel class. Communication between nodes is through wifi 802 11.b standard,
with a data rate equal to 1 Mbps. It is to be pointed out that WiFi is not the only standard to be used for
inter-node communication, it is provided here as an example. Generally speaking, any communication
technology that allows broadcasting can be used. It is to be noted that performing a broadcast is far
easier than point-to-point communication, since the latter might need to store and update routing
tables. Thus, this simplicity of just using broadcasts is an advantage of our solution.

The time interval between broadcasts is 1 s. The anchor nodes start broadcasting their own
position at slightly different instants, to avoid packet loss due to multiple transmissions in the same
instant. Once a non-anchor node estimates its position, it starts its own broadcast cycle with the 1 s
interval. This means that after the three anchor nodes start broadcasting their position, the first node to
be localized is node 18, which starts broadcasting its own position so that further nodes are localized.
If there are no measurement errors, all the nodes are correctly localized within the first second by
the successive localization and broadcasting mechanism. We introduce distance measurement errors
between nodes by adding Gaussian noise with zero mean and different standard deviation values
for each experiment. The average position error for all nodes in the network is computed over a
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period of time which includes five broadcasts for all network nodes. The position error for a node is
the difference in the distance between the estimated and the actual position. The results are shown
in the left-hand graph of Figure 6. Since not all nodes know their position at the same instant, the
average localization error is shown against the sequence number. The ith sequence number on the
x-axis indicates the ith anchor node’s own position broadcast, which is inherited by non-anchor nodes
when localized. Even though the nodes are localized at different time instants, during the first second
all the nodes update their position and set their sequence number to one. The experiment is repeated
1000 times at each standard deviation value. The distance measurement error and confidence interval
are plotted. For 1 cm standard deviation, the average error fluctuates around 3.5 cm. For 3 cm and
5 cm, the average error is around 11 cm and 18 cm, respectively. The left graph shows the stability of
position estimation over a period of time. The right-hand graph shows the average localization error
(during one time step) for a wider range of noise values, by varying the standard deviation from 1 cm
to 15 cm. The graph shows a linear relation between noise and localization error.

Figure 5. Grid network.

Figure 6. Noise effect during 5 time steps (left). Average localization error against noise standard
deviation values (right).
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To study the effect of error propagation as nodes towards the edge of the network are localized,
we repeat the experiment for different numbers of nodes in the network. The 3 anchor nodes are
always chosen to be in the center of the network, and the standard deviation for the Gaussian noise is
set to 5 cm. The results are shown in Figure 7. The first setup is a network with four nodes, three of
which are anchor nodes. This means that the fourth node is localized directly through anchor nodes,
yielding a very small average localization error. The second setup includes 16 nodes, which means
that the anchor nodes are surrounded by one layer of non-anchor nodes colored in green, as shown in
the left part of Figure 7. Each subsequent setup adds one extra layer of nodes; a 36-node network has
two layers of nodes surrounding the anchor nodes, and so on. It can be seen that, as the layers around
the anchor nodes increase, the average localization error increases. This is due to error propagation,
which induces larger errors towards the edge of the network.

Figure 7. 16-node network example (left). Localization error against number of nodes (right).

Another aspect to look into is the network traffic consumed in order to maintain position
knowledge in the network. As previously mentioned, we use SFLS to share position information. The
first broadcast is a traditional flooding, because the first request to rebroadcast is set to true for all
nodes. However, the second broadcast is limited to the 1-hop neighbors as they do not rebroadcast
received positions. Figure 8 shows the number of broadcasts at each time step, also indicated by
the sequence number of the transmitted positions. The number of broadcasts is highest for the first
broadcast, as all nodes broadcast the position of all nodes, thus yielding a number of broadcasts
equal to n2 (where n is the number of nodes in the network). The next broadcast wave includes a
broadcast to one-hop neighbors only, then the rebroadcasting is cut off, yielding a small number of
broadcasts. Nodes alternate allowing and blocking rebroadcasts, such that closer nodes receive higher
frequency updates while further nodes are updated less frequently. Using traditional flooding for
each position update leads to a number of broad casts ≈ n2 for all time steps, as the number of broad
casts at sequence number 1 in figure 8. This increase in bandwidth consumption does not yield any
improvement to the localization accuracy. Since SFLS does not flood the whole network with position
packets for every position update of node i and the position update rate is relatively small compared
to channel bandwidth, the collision rate is negligible. Even in the case of losses, since the update
frequency is highest for nearby nodes, the position update rebroadcast will reach nearby nodes sooner
than further nodes. For further nodes, in the case of node mobility, the relative position change will
be less significant compared to nearby nodes. Consequently, the effect of data loss on further nodes
is expected to be less significant. If for any reason, the data-loss rate is significantly affecting the
solution’s accuracy, SFLS can be adjusted to increase the ratio of forwarding received positions. In
other words, instead of forwarding once every two received positions (or n times out of p, in general),
the ratio n/p can be increased to account for losses.
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Figure 8. Trace of number of broadcasts per time step.

6. Conclusion

The work presented in this article proposed a location service solution that is lightweight,
bandwidth friendly, and cost and energy efficient. Cost and energy consumption is conserved by
requiring a minimum of three GPS-equipped nodes. The computations used to localize nodes are not
complicated, and do not require many cycles (as in the case of optimization). Sharing positions with
other nodes in the network is done using a semi-flooding method, to conserve network bandwidth.
The solution requires that the anchor nodes are in the vicinity of at least one non-anchor node, in
order to be able to start. This starting condition constraint might appear to hinder the generality of the
algorithm, but this can be mitigated by electing some virtual anchor nodes that satisfy the condition.
These virtual anchor nodes are given assumed positions, so that they form a triangle from the known
distance between them. For instance, let us assume non-collinear nodes i, j, k see each other, and at
least a fourth node l. Node i is positioned at the origin, node j is on the horizontal axis at a distance
equal to dist(i, j) and node k is added to have a positive y-value using triangluation. The algorithm
then treats them as anchor nodes and computes the position of the rest of the nodes, as previously
explained. When at least three real anchor node positions have been computed, all the nodes can then
be transferred to the global coordinate system, using the computed and actual positions of anchor
nodes [4].

The solution was compared to another method [4], and it was shown that our solution achieves
a higher percentage of localized nodes. In a network with an average degree ≈ 10, around 90%
of the nodes are localized. Furthermore, we tested our algorithm using NS-3, while introducing
distance measurement errors, and the average error is shown to be stable for a 50-node network.
Also, the average localization error increases linearly with the standard deviation of the Gaussian
measurement noise. The position sharing technique used conserves bandwidth by reducing position
update frequency to further nodes. For future work, the error propagation effect towards the edge
of the network needs to be mitigated. Additionally, the impact of node mobility on the accuracy of
localization is also to be considered.
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